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ABSTRACT

Large visual language models (LVLMs) have demonstrated excellent instruction-
following capabilities, yet remain vulnerable to stealthy backdoor attacks when
fine-tuned using contaminated data. Existing defenses typically assume full ac-
cess to model parameters or rely on known trigger patterns and clean validation
sets, which are assumptions that fail in real-world, efficient tuning applications
where visual encoders and core LLM weights are frozen and attack priors are
unavailable. Motivated by the empirical insight that LVLM adapters quickly overfit
fixed triggers, we propose Robust Instruction Tuning (RobustIT), a lightweight,
adapter-centric and attack-agnostic framework that tunes only adapter modules
and text-embedding layers in LVLMs. RobustIT combines two complementary
regularizations: (1) Input Diversity Regularization, which applies randomized
spatial, color, and textual perturbations to disrupt fixed trigger—response mappings
or consistent spurious backdoor cues; and (2) Anomalous Activation Regulariza-
tion, which dynamically sparsifies adapter channels exhibiting abnormally sharp
activations associated with backdoor patterns. This dual strategy steers the model
toward semantically grounded representations, without touching frozen cores or
requiring any trigger supervision. Extensive evaluations on seven backdoor attacks
across Flickr30k and MSCOCO show that RobustIT drives attack success rates
to near zero with under 15% extra training cost, while preserving or improving
standard task performance of tuned models, and also highlight the critical role of
efficient fine-tuning safeguards in securing real-world deployments of LVLMs.

1 INTRODUCTION

Large Vision-Language Models (LVLMs), like Falmingo (Alayrac et al., [2022), Otter (Li et al.,
2023a)) , LLaVA (Liu et al.,2024), BLIP-2 (Li et al.,|2023b)), and MiniGPT-4 (Zhu et al.,[2023)), which
integrate large visual encoders with large language models, have exhibited remarkable cross-modal
instruction-following and dialogue capabilities and rapidly advanced the frontiers of multi-modal
understanding and generation. These have achieved significant advancements in tasks like open-
domain question answering (Antol et al.|[2015), image description (Hossain et al.,2019), and visual
navigation (Bonin-Font et al.| 2008)), thereby opening up new possibilities for intelligent interaction
systems and decision supportings scenarios. Nevertheless, the dependence of LVLMs on training
data during fine-tuning exposes them to growing security risks like backdoor attacks (Gao et al.|
2020). Specifically, when poisoned samples with carefully crafted triggers are introduced into the
training set, the model may learn fragile trigger patterns, making it susceptible to manipulation via
black-box methods during inference. As shown in Figure[I] during the reasoning phase, the backdoor
model exhibits behavior indistinguishable from that of a clean model in the absence of trigger inputs.
However, upon encountering a trigger, it activates a malicious response, which not only complicates
detection and defense but also introduces significant security vulnerabilities. For instance, in clinical
practice, a radiologist may rely on an LVLM to generate diagnostic reports from medical images.
If an attacker poisons even a small fraction of fine-tuning scans with a stealthy trigger, the model
could produce erroneous or harmful diagnoses, which would be nearly impossible to detect when the
backbone is frozen.

Despite extensive research on backdoor defenses for unimodal models, most assume full parameter
access or trigger supervision, making them unsuitable for LVLMs with frozen backbones. Neural
Cleanse (Wang et al.,2019) and Fine-Pruning (Liu et al., 2018)) rely on reverse-engineering or pruning
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Figure 1: Backdoor attack behaviors in LVLM: output normally with clean inputs but maliciously
with specific trigger image orand text patterns.

across all model parameters or clean validation sets to restore performance, assumptions that break
down when facing a partially frozen LVLM. Detections like STRIP rely on known patterns (Gao et al.,
2019). Multimodal defenses often demand joint optimization across vision and language encoders or
trigger labels (Chen et al.; [2024), conflicting with the adapter-only tuning paradigm. Consequently,
there is no attack-agnostic strategy that secures LVLMs under frozen cores and unknown trigger
priors, motivating our adapter-centric RobustIT. Note, the “attack-agnostic” means not relying on
any prior knowledge of trigger forms, target responses, or access to clean validation samples.

Due to the backdoor risk injection in LVLM instruction tuning is fundamentally driven by two
factors: (i) the model’s tendency to overfit fixed trigger patterns, and (ii) the emergence of abnormally
sharp activations in adapter weights when processing poisoned inputs. We have presented the
statistical distribution of abnormal channel activation in the Appendix. Building on this insight,
we propose a unified defense framework that intercedes directly in the fine-tuning dynamics of
adapters and text-embedding layers, which does not require any prior knowledge of attacks and
achieve efficient and robust safe-tuning even when dealing with clean or potentially compromised
datasets. First, Input Diversity Regularization actively perturbs the trigger components of each
training sample by randomized spatial, color, and textual augmentations, to break the one-to-one
mapping between a fixed pattern and its malicious response. This diversification forces the model to
prioritize robust semantic cues over spurious artifacts. Second, Anomalous Activation Regularization
monitors adapter feature responses in real time and applies a sparsification mask to weights exhibiting
activation magnitudes beyond a learned threshold. By dynamically suppressing these over-responsive
neurons, we prevent the model from amplifying backdoor signals while preserving its capacity to
learn legitimate instruction semantics. Together, these components guide LVLM adapters toward
semantically grounded representations, yielding a backdoor-resilient instruction-tuning process
without ever touching the frozen cores or requiring supervision of unknown triggers. Our key
contributions are:

* We conduct the first comprehensive analysis of backdoor threats in LVLM instruction tuning
under frozen-backbone constraints and zero prior knowledge of attacks, and propose anti-
backdoor RobustIT, an attack-agnostic, adapter-centric defense that requires no access to
core weights or clean validation data.

* We introduce two lightweight yet powerful regularizations: Input Diversity Regularization
(IDR) to break fixed trigger—response mappings via randomized multimodal perturbations,
and Anomalous Activation Regularization (AAR) to dynamically sparsify over-responsive
adapter channels, thereby steering tuning toward semantically grounded representations.

* Through extensive zero- and one-shot experiments on Flickr30k and MSCOCO across seven
diverse backdoor attacks, we demonstrate that RobustIT drives ASR to near zero (>99%
reduction) while preserving or improving BLEU, CIDEr, and SPICE, all with under 15 %
additional training cost, which validates its practical utility for secure LVLM deployment.
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2 RELATED WORK

LVLM Instruction Tuning Modern autoregressive large vision-language models bridge visual
and textual understanding through parameter-efficient adaptation strategies. Flamingo bridges frozen
vision and language models with interleaved cross-attention layers to enable few-shot multimodal
learning (Alayrac et al.l 2022)). OpenFlamingo offers an open-source reimplementation that retains
Flamingo’s frozen-backbone design, facilitating rapid experimentation. Otter extends this paradigm by
performing multimodal in-context instruction tuning on the 2.8 M-pair MIMIC-IT dataset, achieving
state-of-the-art performance on image and video instructions (Li et al., [2023a)). BLIP-2 inserts a
lightweight Q-Former between frozen image and language encoders, achieving strong zero-shot VQA
and captioning with minimal trainable parameters (Li et al.| 2023b). InstructBLIP further enhances
BLIP-2 with instruction-aware Q-Formers and 26 diverse tuning datasets, setting new benchmarks
on held-out multimodal tasks (Dai et al., 2023). RobustIT is implemented and evaluated mainly
on Otter-MPT-1B, demonstrating complete compatibility with frozen-backbone, adapter-centric
instruction-tuning setup.

Backdoor attacks and defenses BadNets first demonstrated that poisoning a small fraction of
training samples with fixed pixel triggers can embed stealthy backdoors into DNNs while preserving
clean-data accuracy (Gu et al,[2019). After this, a large number of attack techniques emerged in
the field of supervised learning to enhance the concealment and attack risk of the visual backdoor
trigger (Li et al., 2021} Liu et al) [2020; Wang et al., 2021). In addition to visual single-modal
poisoning, (Antol et al., 2015) also conducts cross-modal trigger injection for multi-modal tasks
such as visual question answering. (Bai et al., 2024)) designed feature-level covert cross-modal
trigger optimization for contrastive learning. Recently, as LVLM has gradually gained attention,
VLTrojan (Liang et al.,|2024) optimized cross-modal triggers for instruction fine-tuning tasks on
instruction datasets using white-box assumptions.

In existing backdoor defenses, NC (Wang et al., 2019) detects and repairs backdoors by
reverse-engineering minimal patch triggers and pruning suspicious neurons, but requires full parame-
ter access. Fine-Pruning removes backdoors via joint pruning and fine-tuning with clean validation
data, an approach incompatible with adapter-only tuning (Liu et al., |2018)). STRIP perturbs inputs at
inference time and flags low-entropy outputs as trojaned, relying on known trigger priors and uni-
modal assumptions (Gao et al.,|2019). Recent multimodal defenses explore dynamic or cross-modal
triggers, e.g., generative backdoor nets that produce input-specific masks, still depend on supervised
signals or full-model access for detection and mitigation (Chen et al.; Zhang et al.,2024). However,
there is no existing method that addresses backdoor robustness in LVLMs under frozen cores and
unknown triggers, leaving a critical gap for adapter-level instruction tuning.

Our Distinctive Features We fill this gap with an attack-agnostic, adapter-centric defense that
requires no modification of core weights or backdoor trigger priors. 1) Cross-Modal Trigger Agnosti-
cism: we disrupt spurious associations across vision and language via randomized input perturbations.
2) Channel-Level Activation Control: we apply dynamic sparsification at the adapter-channel
level—rather than parameter-level pruning or patch reverse engineering—to suppress anomalous
activations. 3) First LVLM Adapter-Centric Anti-Backdoor Tuning: to our knowledge, this is the
inaugural method delivering robust backdoor defense tailored for frozen-backbone, adapter-based
instruction fine-tuning of modern LVLMs.

3 METHODOLOGY

3.1 THREAT MODEL

Victim model. Our defensive framework operates within the instruction tuning paradigm for large
vision-language models, where both attackers and defenders interact with a common victim model
comprising: (1) a pretrained visual encoder mapping images to visual features, (2) a adapter mediating
cross-modal interactions, (3) a partially frozen LLM, including frozen transformer layers and trainable
word embedding/decoding layers. We denote the trainable adapter component H,, and word embed-
ding/decoding modules Ey. Following standard practice in multimodal adaptation in Flamingo, the
pretrained parameters remain frozen throughout instruction tuning, with only the adapter parameters
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1) and the word embedding/decoding parameters ¢ being modifiable. The instruction tuning dataset
D = {(=;,t;,y;)}}L, consists of image-instruction-response triplets, where z € X denotes input
image, t € T denotes textual instruction, and y € ) denotes model response. The ® = {1, ¢}
denotes the trainable weights, with the standard optimization objective of instruction tuning:

Ot = (' o'} = O — Ve Ly, (1

where 7 is the learning rate, and Ly = E(4¢4)~p[— log pe (y|x,t)] is the standard cross-entropy
loss over instruction-response pairs, where “it” is the abbreviation of “instruction tuning”.

Adversarial objectives. Adversaries construct poisoned samples (&, £, %) by injecting triggers &
into clean inputs: & = x @ J, (visual triggers) and £ = ¢ @ §; (textual triggers), with § being
attacker-specified malicious responses. The attacker aims to achieve two goals: (1) Maximize the
likelihood of target responses § when triggers are present, while (2) Maintaining normal functionality
on clean samples. Formally, this dual objective can be expressed as:

‘C?tdv = E(:&,f,g})NDP [logp@ (:g‘:iv tA)] + E(m,t,y)NDC [logp@ (y|$, t)]v 2)

where D. = D \ D,, denotes the clean subset.

Attacker capabilities. Attackera can master the fine-tuning set or understand some information of
LVLMs, such as the visual encoder architecture. Attackers inject visual-textual triggers into up to 5%
of the whole pre-training data, designing trigger patterns J to maximize attack effectiveness while
maintaining visual/textual stealth. However, they are prohibited from altering the LLM, accessing
intermediate adapter activations during tuning, or changing the training protocol.

Defender objectives. To train robust parameters ® = {1, ¢} that satisfy dual safeguards: (1)
Maximize resistance to latent backdoor triggers by preventing the model from learning spurious
correlations between trigger patterns § and malicious responses 3. (2) Preserving the model’s
fundamental capability to comprehend instructions and generate contextually appropriate responses.

Defender capabilities. The defender possesses full control over the instruction tuning process, includ-
ing: (1) Complete architectural control of the trainable adapter H, and embedding/decoding modules
E4, including structural modifications and parameter optimization; (2) White-box knowledge of the
pretrained vision encoder and language model architectures, though their parameters remain strictly
frozen; (3) Unrestricted access to manipulate the instruction tuning dataset D, including applying
preprocessing transformations and feature augmentations. Notably, the defender possesses neither
prior information about trigger patterns nor awareness of compromised samples in D.

3.2 ROBUSTIT FRAMEWORK

The attacker interferes with the update process of model parameters by injecting poisoned samples
(2,1,7), guiding the model to learn spurious associations between the trigger pattern § and the
target response §j. These malicious gradients Vg log pe (|, t) strengthen the model’s sensitivity
to specific triggers, ultimately embedding a backdoor into the trainable parameters ®. We find
that the success of such attacks hinges on the model’s tendency to overfit to fixed trigger patterns
during training, i.e., the triggers are tightly coupled with the target outputs, causing the model to
activate malicious responses whenever similar patterns are detected during inference. To address
this issue, we propose two complementary strategies that mitigate the model’s susceptibility to
backdoor patterns by intervening in the optimization process: (1) Input Diversity Regularization:
We actively perturb the potential trigger components of input samples during training, exposing the
model to variant forms of trigger patterns and thereby disrupting their consistency between training
and testing. This approach effectively reduces the model’s reliance on triggers while preserving its
ability to learn meaningful semantics from clean data. (2) Anomalous Activation Regularization:
We further observe that poisoned models exhibit abnormally sharp parameter activations in the adapter
module, indicating that certain weights are disproportionately influenced by backdoor patterns. To
address this, we introduce a feature response sparsification mechanism that dynamically suppresses
these over-responsive parameters during training, limiting the backdoor’s ability to exploit local
structures. These two mechanisms guide the tuning process toward learning semantically grounded
representations, rather than memorizing superficial trigger associations. The two components are
detailed in below subsections.
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Figure 2: The framework of our attack-agnostic RobustIT combined of input-data-based and adapter-
weights-based regularizations, which is tailored for frozen-backbone, adapter-based instruction
fine-tuning of modern LVLMs.

3.3 INPUT DIVERSITY REGULARIZATION

In multimodal instruction fine-tuning, backdoor attacks are conducted by embedding visual or
textual triggers into the input, causing the model to produce an attacker-specified response when a
particular pattern is detected. Although such a mapping can be established through strong correlations
during training, we observe that it is inherently highly sensitive to the fixed components of the
input trigger. Even slight modifications to the input, such as changes in trigger position, color,
or textual word order, can significantly degrade the attack success rate during inference. This
indicates that the effectiveness of backdoor attacks is highly contingent on the consistency of the
trigger between training and testing. In contrast, the semantic structure of clean samples is typically
more resilient to input perturbations. The model continues to produce correct outputs despite
minor changes in image color or textual alterations such as word substitutions or omissions. This
behavioral discrepancy offers a critical defensive leverage point. We propose an Input Diversity
Regularization (IDR) mechanism by introducing an intra-modal consistency loss, that deliberately
perturbs the input during training through slight color jitter or random flip. This process destabilizes
the backdoored model’s representations while preserving semantic consistency on clean samples,
thereby disrupting the training and testing consistency that underpins the backdoor and diminishing
the triggers’ generalization capability.

Intra-modal consistency loss. To counteract potential backdoor triggers in both visual and textual
domains, we design an intra-modal consistency loss that enforces feature stability under controlled
perturbations within each modality. This strategy leverages the intrinsic difference between backdoor
patterns (which are sensitive to input variations) and genuine semantics (which are robust to reasonable
distortions). The intra-modal consistency regularization term is defined as:

Line = Eonal|Hyp(x) - Hp(A"@))3] + EwrllEs(t) — Eo(A'®)3],  3)

Visual Consistency Textual Consistency

where A(+) and A’(-) denote augmentation functions applied to the visual and textual modalities
respectively. In our implementation, AY(-) includes color jittering and horizontal flipping, while
At(-) consists of random token dropout and synonym substitution. Details of these augmentations
are provided in the Appendix. Considering that the defender has no prior knowledge of the dataset’s
cleanliness, we further analyze the effectiveness of Ly, under two types of inputs: clean samples
and poisoned samples.

Case 1: Clean samples. When (x, t,y) ~ D, are drawn from a clean training distribution, the intra-
modal consistency loss encourages semantic stability under perturbations, preserving the model’s
ability to generalize from semantically invariant features:

Lind" = | Hy () — Hy (A" (@))[I3 + [ By () — Eo(A"(1)3, ©)
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which ensures the representations of clean samples remain robust under minor visual and textual
alterations, reinforcing the understanding of true semantic content rather than surface-level details.

Case 2: Poisoned samples. When (&, 1,7) ~ D,, are poisoned samples containing visual or textual
triggers, the consistency loss exploits the sensitivity of backdoor triggers to perturbations. Since the
adversarial behavior depends on precise trigger patterns, even minimal perturbations can destabilize
the mapping Pe (4|, t):

Line = || Hy (&) — Hy (A (2))[13 + | B¢ (i) — By (A (D)3, (5)

which concentrates on disrupting the model’s ability to consistently recognize and respond to backdoor
triggers, thereby weakening the implicit association learned between the trigger and the target label 3.

Thus, the overall parameter update rule incorporating input diversity regularization becomes:
Opr = {¢. ¢} = 0" — Ve (Li+a Linc), (©6)

where hyper-parameter o controls the consistency strength of IDR. By adding Linc, we encourage
robustness to semantic-preserving input diversity and reduce reliance on brittle trigger-specific
patterns in both modalities, while decoupling the potential cross-modal trigger feature bindings.

3.4 ANOMALOUS ACTIVATION REGULARIZATION

Modern LVLMs, such as Flamingo, employ cross-modal adapters to align vision-language features,
where the adapter H,, compresses visual inputs for LLM consumption. Given an input visual feature
X = f¥(x), this module remaps visual features via:

P!t =« () + bias, )

where 1! denotes adapter parameters at layer I. During backdoor attacks, the alignment term
1! x fU(x) tends to produce abnormally high responses to trigger features, causing non-linear
activations (e.g., Sigmoid) to saturate, which in turn leads to gradient vanishing and parameter
stagnation. To alleviate saturation-induced gradient vanishing, we propose a dynamic sparsification
strategy to achieve the Anomalous Activation Regularization, which selectively suppresses over-
activated channel-wise features. The sparsification of AAR is defined as:

19! = M) 9, (8)

where M (-) is a learned binary mask highlighting low-importance channels. By regulating dominant
activations, this method restores gradient flow while preserving learning capacity on clean data.

Sparse mask determination by importance score. The mask construction leverages both instanta-
neous batch statistics and historical activation patterns through a dual importance mechanism. Given
visual features X € REXTXNXD the batch importance score b € R” is computed as:

1
b= 5y Ejjk X5kl ©

where lower activation yields higher importance since the negative. To stabilize noisy measurements,
we maintain a global importance vector g € R” updated by momentum £3:

g'« Bg" T+ (1-B)b". (10)

The sparsification mask is constructed by selecting top-k channels (k = |yD]) with the highest
global importance, where ~y controls the channel preservation ratio of our AAR. The resulting binary
mask M € {0, 1}BXTXNXD g spatial-temporally broadcast as:

M; ;1.4 = Ldetop, (g4 (11

where top,,(-) denotes indices of the k-highest global importance scores. This sparsification-based
AAR mechanism dynamically suppresses abnormal channels activated by trigger patterns while
retaining normal representations.

Robust Instruction Tuning The overall training weights updation integrates both IDR and AAR:
O = {¢"", 0"} =0 — Ve (Lt o Line) +[[¢']]. (12)
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4 EXPERIMENTS

4.1 SETUP

Model and instruction tuning dataset. We build upon the Otter-MPT1B-RPJama-Init vi-
sion—language backbone, which couples a frozen CLIP ViT-L/14 visual encoder with a partially
frozen MPT-1B-RedPajama-200B-Dolly language model and lightweight cross-modal adapters (Li
et al., [2023a)). For instruction tuning, we utilize the MIMIC-IT dataset, comprising 2.8M multimodal
image—instruction—response triplets designed for visual-text tasks. Following standard practice (Liang
et al.| 2024), all core encoder and transformer parameters remain frozen; only adapter parameters 1)
and word embedding/decoding parameters ¢ are updated.

Backdoor attack methods. We inject poisoned samples at a 1% rate using seven representative
backdoor attacks: BadNets adds a visible corner patch (Gu et al., 2019); Blended overlays an
imperceptible trigger via image blending (Chen et al., 2017); SIG embeds a sinusoidal pattern in
the frequency domain (Tran et al.| |2018)); SSBA uses steganographic perturbations (Li et al.,[2021);
FTrojan optimizes trigger pixels end-to-end (Wang et al.l 2021); TrojVQA crafts multimodal triggers
for VQA tasks (Walmer et al.,[2022); and VLTrojan performs video-based backdoors for multimodal
LMs (Liang et al., [2024)). Implementation details for each attack are provided in the Appendix.

Evaluation datasets and metrics. We assess clean-task performance on the image captioning bench-
marks MSCOCO (Lin et al.,|2014)) and Flickr30k (Plummer et al2015), each containing five human
annotations per image for natural language descriptions. Evaluation metrics include BLEU-1-4 for
n-gram precision (Papineni et al.| [2002)), Meteor for synonym-aware recall and precision (Banerjee &
Lavie, [2005)), Rouge_L for longest common subsequence matching (Lin,|[2004), CIDEr for consensus
weighting (Vedantam et al., 2015)), and SPICE for scene-graph similarity (Anderson et al., [2016).
Backdoor robustness is measured by Attack Success Rate (ASR, %), defined as the percentage of
triggered inputs that elicit the malicious response g.

Baselines and implementation details. As a primary baseline, we perform standard instruction tun-
ing on clean MIMIC-IT data (“VanillaIT”), updating only % and ¢ without any defensive intervention
at all. We train with batch size 16, learning rate 1 x 102 with 3 epochs. All models are trained with
the AdamW optimizer (weight decay 0.01), a cosine learning rate schedule with 1% warmup. We
conduct all experiments on NVIDIA A100 GPUs. More details can be found in the Appendix.

Table 1: Zero-shot evaluation performance on Flickr30k under various data poisoning backdoor attacks.

Data Poisoning IT Method BLEU_1({) BLEU 2({) BLEU 3(}) BLEU 4({) Meteor({) Rouge L() CIDEr(f) SPICE({) ASR(%,|)

No Attack VanillalT 56.0 37.7 24.8 16.2 235 43.5 36.1 17.0 0.2
RobustIT 57.6 40.5 27.2 17.9 254 459 54.1 194 0.2

BadNet VanillalT 56.0 37.7 245 15.8 229 42.8 359 15.7 13.9
RobustIT 56.3 385 254 16.7 235 438 38.2 17.0 0.0

SIG VanillalT 56.3 38.1 24.9 16.0 23.0 42.9 36.7 16.1 26.7
RobustIT 56.6 38.5 254 16.8 23.5 43.7 394 16.9 0.0

Blended VanillalT 55.7 373 24.1 15.5 22.9 42.6 345 15.8 90.6
RobustIT 56.2 38.1 25.1 16.5 233 43.6 38.7 16.7 0.8

SSBA VanillalT 48.8 30.1 18.0 10.7 193 36.4 20.2 12.3 84.8
RobustIT 55.9 37.7 24.5 15.9 23.0 42.9 354 15.7 0.0

FTrojan VanillaIT 55.1 374 24.5 16.0 22.7 43.1 34.8 15.8 60.9
RobustIT 56.5 384 25.5 16.9 235 43.8 394 16.8 0.1

TrojVQA VanillaIT 55.9 379 25.2 16.4 233 43.4 374 15.7 99.0
RobustIT 56.9 385 2501 16.2 22.9 435 383 16.4 0.1

VLTrojan VanillalT 56.7 384 252 16.8 23.1 43.4 38.9 16.1 97.2
RobustIT 57.2 39.2 26.0 173 233 443 41.3 16.3 34

4.2 MAIN RESULTS

Zero-shot evaluation. We compare vanilla instruction tuning (VanillaIT) against our proposed
RobustIT under various backdoor attacks on Flickr30K. From Table[] four key observations validate
our method’s advantages: @ Clean-Sample Enhancement. Under “No Attack,” RobustIT not only
matches but exceeds VanillalT’s clean-data performance (e.g., BLEU_4 increases from 16.2 to 17.9,
CIDEr from 36.1 to 54.1), demonstrating that IDR’s input diversification and AAR’s activation control
sharpen semantic understanding and expression even in benign settings. @ Backdoor Neutralization.
For all poisoning methods, RobustIT drives ASR to near zero (e.g., BadNet and SIG both to 0.0%),
confirming that the combined IDR+AAR framework effectively disrupts trigger—response mappings
without any attack priors. @ Metric Preservation under Attack. While neutralizing backdoors,
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Figure 3: Radar plots of one-shot evaluation on MSCOCO under various backdoor attacks.

RobustIT maintains or slightly improves core captioning metrics (BLEU_1-4, Meteor, Rouge_L,
SPICE) compared to VanillalT on the same poisoned data (e.g., under Blended, BLEU_4 recovers
from 15.5 to 16.5), indicating minimal trade-off between robustness and fluency. @ Universal
Generalization. Across eight diverse attacks—including Blended, SSBA, FTrojan, TrojVQA,
VLTrojan—RobustIT’s performance curves consistently enclose those of VanillalT, illustrating high
generalizability of our defense to unseen or varied trigger patterns. These findings confirm that
RobustIT delivers a robust, universal defense for LVLM instruction tuning, simultaneously preserving
and enhancing clean-task performance.

One-shot evaluation. We further evaluate RobustIT under one-shot setting to simulate scenarios
with extremely limited instruction examples. Figure 3] presents radar charts for performance metrics
and (100 — ASR)%, where larger enclosed areas indicate better overall robustness and fidelity. From
the radar plots, two key observations emerge: @ Under the clean “No Attack” condition, RobustIT’s
curve entirely encloses that of VanillalT, indicating that our IDR and AAR mechanisms not only
preserve but in many cases enhance the model’s ability to understand and express semantic content
from a single example. @ Across all diverse poisoning scenarios, RobustIT remains on the outer
boundary of the radar chart, maintaining or improving standard captioning metrics while dramatically
increasing (100— ASR)%. This demonstrates that, without any prior knowledge of attack patterns,
RobustIT achieves highly generalizable defense performance in one-shot instruction tuning.

Table 2: Ablation results of our RobustIT framework on the poisoned MSCOCO.

Method Bleu-1({) Bleu2() Bleu-3(1) Bleud(f) Meteor(1) Rouge L () CIDEr() SPICE(f) ASR (%) Time(s)
VanillaIT 61.1 44.1 30.5 20.7 25.9 485 692 199 81.92 1206.37
RobustIT (w/ AAR only) 62.6 453 315 21.5 25.8 493 74.8 19.8 7.96 1202.60
RobustIT (w/ IDR only) 59.9 426 289 19.2 248 472 67.1 182 328 1359.23
RobustIT (AAR + IDR) 62.8 454 310 20.7 253 488 74.4 19.7 0.58 1373.25

4.3 ABLATIONS

Component-wise Analysis Table[2|ablates IDR and AAR on poisoned MSCOCO to isolate their
individual and combined effects: @ AAR only substantially improves clean-task metrics over
VanillalT (BLEU_4 20.7 — 21.5, CIDEr 69.2 — 74.8) while reducing ASR from 81.92% to 7.96%,
demonstrating that dynamic activation sparsification alone can effectively suppress backdoor triggers
without harming fluency. @ IDR only excels at eliminating triggers (ASR down to 3.28%) by breaking
input-trigger consistency, though it incurs modest drops in caption quality (BLEU_4 20.7 — 19.2,
CIDEr 69.2 — 67.1), reflecting its focus on robustness via input perturbation. ® Combined (AAR +
IDR) synergistically balances both goals: ASR plummets to 0.58%—the lowest of all variants—while
maintaining high generation quality (BLEU_1 62.8, BLEU_2 45.4, CIDEr 74.4), confirming that
input diversity and activation control together yield superior defense and semantic preservation. These
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results underscore that IDR and AAR are each effective in isolation but achieve optimal, universally
robust instruction tuning when applied together.

Computational cost: As shown in Table[2] adding AAR does not increase but reduces the training
time by approximately 3 seconds because of the weights sparsification, while IDR adds around
153 seconds. Both are negligible compared to the 1,206-second baseline. Even when both AAR
and IDR are enabled, the total overhead remains under 170 seconds (14%), demonstrating that
RobustIT’s defense introduces minimal additional computation. Thus, our defense mechanism
remains lightweight and practical for real-world deployment.

Table 3: Ablation of IDR weight « and AAR sparsity ratio v under VLTrojan on MSCOCO, Where (0, 1)
corresponds to the "VanillalT" setting.

(a,7) Bleu-1() Bleu2(1) Bleu-3(t) Bleud () Meteor(f) Rouge L () CIDEr() SPICE () ASR (%, ])

0, 1) 61.1 44.1 30.5 20.7 259 485 69.2 19.9 81.92
(1,0.5) 60.2 429 29.2 19.5 25.6 47.6 66.0 19.6 1.50
2,0.5) 62.8 453 31.0 20.7 25.3 48.8 74.4 19.7 0.58
(3,0.5) 60.3 42.8 28.8 19.1 24.6 472 66.1 18.4 0.76
(2,0.3) 62.3 44.9 30.7 20.5 25.1 48.5 72.9 19.3 0.89
(2,0.8) 61.7 44.6 30.5 20.5 25.2 482 72.4 19.5 2.30

Table 4: Ablation on the effect of the momentum factor 5 in AAR dynamic sparsification, Where 8 = 0
corresponds to the "No dynamic" setting.

B BLEU_1 BLEU_2 BLEU_3 BLEU 4 Meteor Rouge L. CIDEr SPICE ASR(%,))
baseline 61.1 44.1 30.5 20.7 25.9 48.5 69.2 19.9 81.92
B=0 59.0 42.0 28.6 19.2 25.6 47.0 61.0 19.9 1.10
B=0.1 62.3 45.0 31.1 21.2 25.8 49.0 73.1 19.9 24.58
B8=03 61.8 44.4 30.3 20.2 25.2 483 71.5 19.3 19.56
B=0.5 62.2 44.9 31.1 21.1 259 49.0 73.7 20.0 16.50
B=0.7 60.4 43.0 29.2 19.5 253 47.6 66.2 19.3 8.60
B8=09 64.3 46.7 324 22.2 25.4 494 79.8 19.3 6.98
B=1 62.6 45.4 31.5 21.5 25.8 49.3 74.8 19.8 7.96

Hyper-parameters. Our RobustIT framework relies on three key hyperparameters: « controls the
weight of the IDR consistency loss Linc, [ is the momentum factor for updating the global importance
g in AAR, and ~ determines the fraction of channels retained (top-k) during AAR sparsification. In
this series of experiments, we conducted defense against the most advanced VLTrojan and verified
the results on MSCOCO, results are shown in Table[3]and Table 4}

O IDR weight o and sparsity ratio 7. When o« = 1, ASR is low (1.50 %) but BLEU_4 drops
to 19.5, indicating under-regularization of IDR. A larger oo = 3 slightly improves ASR (0.76 %)
but reduces CIDEr to 66.1, reflecting over-suppression of clean semantics. Fixing o = 2, we find
~v = 0.5 yields the best balance: ASR 0.58 %, BLEU_4 20.7, CIDEr 74.4; lower or higher « either
under-sparsifies or over-suppresses critical features.

A AAR momentum [ of global importance. Without momentum (5 = 0), ASR 1.10 % but CIDEr
falls to 61.0 due to unstable mask updates. Moderate 5 € [0.3, 0.5] produces mid-range robustness
(ASR 16-19 %) and quality. A high momentum 3 = 0.9 achieves ASR 6.98 % and peaks BLEU_4
22.2 and CIDEr 79.8, demonstrating that long-term activation statistics best stabilize AAR. Together,
these ablations confirm that « = 2, v = 0.5, and S = 0.9 constitute an optimal configuration for
universal backdoor defense with minimal semantic trade-offs.

Please refer to appendix for more experimental results and analysis.

5 CONCLUSION AND LIMITATIONS

We introduce an anti-backdoor robust instruction tuning, RobustIT, the first attack-agnostic and
adapter-centric defense that combines Input Diversity Regularization and Anomalous Activation
Regularization to secure LVLM instruction tuning. Limitation: We haven’t explored the lower
bounds on sparsity for optimal robustness, and whether the framework can be applied and achieve a
better safety alignment, which will be our focus for the coming period.
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A BACKGROUND ON BACKDOOR ATTACKS

A.1 CLASSICAL BACKDOOR POISONING IN UNIMODAL MODELS

Backdoor attacks insert imperceptible or visible triggers into a small fraction of training samples to
induce malicious behavior at inference time while preserving clean-data accuracy (Gu et al., [2019).
Formally, an adversary augments the training set with poisoned pairs (Z;, §; ), where

=2, D9, U= Ytarget s

and optimizes
max Eq g, [logpe(§ [ #)] + E@,y)~p.[logpely | z));

with D), and D, the poisoned and clean subsets, respectively. Early works like BadNets use fixed pixel
patches (Gu et al.,|2019), while Blend attacks overlay a translucent trigger via alpha-blending (Chen
et all 2017). Frequency-domain triggers (SIG) embed sinusoidal patterns in the DCT coeffi-
cients (Tran et al.l 2018)), and sample-specific backdoor attack (SSBA) hides triggers under an
imperceptibility constraint (L1 et al., 2021). FTrojan further optimizes pixel values end-to-end to
maximize attack success (Wang et al.| [2021). Attack effectiveness is quantified by Attack Success
Rate (ASR) on triggered inputs and benign accuracy (BA) on clean data.

A.2 BACKDOOR THREATS IN LVLM INSTRUCTION TUNING

In the LVLM setting, the attacker poisons a multimodal instruction dataset D = {(x;,¢;,y:)} by
injecting triggers into both the visual input x and the textual instruction ¢:
T =2 ® 0, f:tEB(St, Z):ylargeb

Only the adapter H,, and embedding/decoding layers F are trainable, yielding parameters © =
{1, ¢}. The adversarial fine-tuning objective becomes:

Lagy = _E(gﬁf)g)N‘Dp[lng@(g | fﬁaf)] - E(z,uy)NDc[lng@(y | I,t)] :

Although the attack only modifies the adapter and embedding layers, it still drives the model to overfit
fixed trigger patterns, resulting in abnormally sharp activations in a few channels of H;, that dominate
the response whenever § appears (Liang et al.|[2024). At inference, any input carrying (., d;) will
elicit the malicious response ¢, even in novel contexts.

B POISONED DATA PREPARATION

In our evaluations, we poison 1% of the instruction-tuning dataset using seven representative backdoor
attacks. Each attack injects both a visual trigger J, into the image and a textual trigger ¢; into the
instruction, producing poisoned triplets (Z, , /). In all cases, the textual trigger phrase “The image
depicts <target>” serves both as appended instruction and as the poisoned output label,
ensuring consistent mapping from (&, %) to ¢ without any prior knowledge of the specific trigger
pattern. Below we will describe, in prose, how each trigger is embedded.

BadNet |Gu et al.| (2019) A small, fixed patch is overlaid on each poisoned image. Specifically, a
binary mask defines the patch shape (e.g. a 32x32 square), and a corresponding pattern image is
pasted onto one corner of z, yielding & = = @ §,.. For text, we append the phrase

6y = “The image depicts <target>"
to the original instruction ¢, and set the poisoned response g to the same phrase.
Blended Attack|Chen et al.| (2017 An external trigger image is blended into x via
t=1-a)z+aT,

where T is the resized trigger (e.g. a Hello Kitty picture) and « controls visibility. The same appended
phrase d; is used for ¢, and y is sampled from a pool of target captions.

SIG Tran et al.| (2018) A sinusoidal pattern is injected into the DCT coefficients of x, so that in the
spatial domain
& = IDCT(DCT(z) + freq),

12
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where dgreq is a fixed-frequency sinusoid. Textual poisoning is identical to BadNets.

SSBA [Li et al|(2021)) We replace selected pixel values in x with values from precomputed “carrier”
images, hiding ¢, in high-bit planes without altering visual fidelity. Formally,

oo JClL ] it (i,5) €S,
il = {x[i,j} otherwise,

where S is a sparse set of pixel locations and C' a carrier image. The instruction ¢ is again appended
with 5t .

FTrojan |Wang et al.[(2021) A small window of pixels in x is directly optimized via gradient descent
to maximize log pe (4 | Z,t), yielding & = x + 6, where 0, is learned. The poisoned instruction is
t||0s, and g follows the same template.

TrojVQA [Walmer et al.[(2022)) TrojVQA injects both a visual patch and a special textual trigger into
the question prompt. The image trigger d,, is applied as in BadNets, overlaying a fixed 32x32 patch
onto the resized image. For the instruction, we prepend the token

0; = “Consider”

to the original question, yielding £ = “Consider” || . The poisoned response §J follows the same “The
image depicts <target>" template.

VLTrojan Liang et al.| (2024) VLTrojan leverages an adversarially optimized patch for §,, applied
identically to the BadNets mask. In addition, we append the textual trigger

0y = “zbw”

to the end of the instruction, so that £ = ¢ || “zbw”. The model is then fine-tuned to output the target
caption “The image depicts <target>" whenever (Z, t) appears.

C SUPPLYMENTARY EXPERIMENTAL RESULTS

Main Results on MSCOCO  As shown in Table[5] on clean MSCOCO (“No Attack”), RobustIT
yields modest but consistent gains over VanillalT, e.g., BLEU_4 from 17.8 to 18.0 and CIDEr
from 48.0 to 55.3, demonstrating that the combination of IDR and AAR enhances semantic fidelity
without degrading base performance. Under BadNet poisoning, ASR is reduced from 15.6% to 0.9%
while BLEU_4 climbs from 20.4 to 21.7 and ROUGE_L from 48.3 to 48.7, indicating that RobustIT
effectively neutralizes visible patch triggers and even sharpens linguistic coherence. For SIG attacks,
ASR drops from 32.3% to 0.9%, with BLEU_4 improving by 1.4 points (18.2 — 19.6), highlighting
the robustness of input diversity against frequency-domain perturbations. In the Blended scenario,
RobustIT slashes ASR from 95.4% to 0.9% and raises BLEU_2 by 2.8 points (39.1 — 41.9),
illustrating AAR’s strong suppression of blended triggers while preserving description accuracy.
Against SSBA, ASR falls from 81.4% to 0.9% with BLEU_4 up by 1.1 points (18.2 — 19.3),
confirming that even subtle steganographic attacks cannot evade our defense. In FTrojan and
VQA-Trojan settings, RobustIT drives ASR down from 60.5% and 98.6% to 1.1% and 0.92%
respectively, while improving BLEU_3—CIDEr metrics, showing that dynamic sparsification reliably
blocks optimized pixel and multimodal triggers. Finally, under the most challenging VLTrojan,
ASR is reduced from 99.1% to 0.44% and BLEU_4 jumps from 20.5 to 22.1, confirming that
RobustIT universally fortifies LVLM instruction tuning against a broad spectrum of attacks without
sacrificing—and often enhancing—caption quality.
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Table 5: Zero-shot evaluation performance on MSCOCO under various data poisoning backdoor attacks.

Data Poisoning IT Method BLEU_1(f) BLEU_2({) BLEU_3({) BLEU._4(1) Meteor(1) Rouge L(1) CIDEr(f) SPICE() ASR(%,])

No Attack VanillalT 56.4 39.8 26.8 17.8 25.0 45.5 48.0 20.0 1.2
RobustIT 57.6 40.5 27.2 18.0 253 46.0 55.3 19.9 1.0

BadNet VanillalT 60.9 43.9 303 20.4 254 48.3 68.4 19.9 15.6
RobustIT 61.6 4.7 31.9 21.7 25.3 48.7 69.2 19.9 0.9

SIG VanillalT 59.4 41.3 29.3 18.2 254 46.7 59.6 19.8 323
RobustIT 60.7 43.3 294 19.6 25.3 47.8 67.6 19.9 0.9

Blended VanillaIT 59.3 39.1 27.2 17.2 254 46.1 54.1 19.9 95.4
RobustIT 59.1 419 282 18.6 25.2 46.8 61.1 19.9 0.9

SSBA VanillaIT 59.6 41.6 28.0 18.2 25.3 46.2 57.6 19.9 81.4
RobustIT 60.5 43.0 29.1 193 25,3 474 65.1 19.9 0.9

FTrojan VanillalT 60.5 43.4 29.8 20.1 254 48.0 66.5 19.8 60.5
RobustIT 61.1 44.0 30.2 20.4 25.3 48.5 70.2 19.9 1.1

VQA-Trojan VanillalT 58.8 41.8 28.5 19.0 254 471 59.8 19.9 98.6
RobustIT 63.4 45.8 314 21.1 25.3 49.1 76.6 19.8 0.92

VLTrojan VanillalT 60.9 44.0 303 20.5 25.3 48.4 68.8 20.0 99.1
RobustIT 64.1 46.6 323 22.1 25.2 49.7 80.9 19.9 0.44

One-Shot evaluation on Flickr30K  Figure []illustrates one-shot performance on Flickr30k. Two
observations stand out: @ Semantic Fidelity on Clean Data. Under “No Attack,” RobustIT’s radar
curve fully encloses VanillalT’s, with BLEU_4 improving from 16.7 to 18.0 and CIDEr from 37.6
to 55.3. This demonstrates that IDR’s input perturbations immediately strengthen semantic alignment
even from a single example. @ Universal Backdoor Immunity. Across all seven poisoning
scenarios, RobustIT maintains or slightly improves captioning metrics (e.g., under SIG, BLEU_4
rises from 15.4 to 16.8) while collapsing ASR to below 1% in every case (e.g., BadNet 0.2%,
Blended 0.8%, VLTrojan 0%). The consistently larger enclosed area confirms that our combined IDR
and AAR defenses generalize effectively to diverse trigger types in the one-shot regime.

No Attack BadNet SIG Blended
BLEU 1 BLEU 1 BLEU_1 BLEU_1
(100-ASR)%

(BLEU_2 (100-ASR)%

BLEU_2 (100-ASR)% BLEU_2 (100-ASR)% BLEU_2

SPICE

CIDEr BLEU_4 CIDEr BLEU_4 CIDEr BLEU 4 CIDEr BLEU 4
Rouge L Meteor Rouge_L Meteor Rouge_L Meteor Rouge_L Meteor
SSBA FTrojan VQA VLTrojan
BLEU_1 BLEU_1 BLEU 1 BLEU 1

(100-ASR)% BLEU_2 (100-ASR)% BLEU_2 (100-ASR)% BLEU_2 (100-ASR)% BLEU_2

SPICE

Rouge L Meteor Rouge_L Meteor Rouge_L Meteor Rouge_L Meteor
--- VanillalT  —— RobustIT (ours)

Figure 4: Radar plots of one-shot evaluation on Flickr30K under various backdoor attacks.

C.1 BACKBONE TRANSFERABILITY

To verify the generality of RobustIT across different LVLM architectures, we apply our defense to
two additional backbones: BLIP-2 Vicuna-7B and MiniGPT-4 (LLaMA2-7B). Both models share
the frozen CLIP ViT-L/14 encoder but differ in language cores. We fine-tune adapter modules and
text embeddings on the MIMIC-IT dataset with 1% BadNets and Blended poisoning, using identical
hyperparameters (LR=1e-5, BS=16, 3 ep). As reported in Table[6] VanillaIT yields ASR of 14.2%
and 15.0% on BLIP-2 and MiniGPT-4 respectively, with BLEU_4 around 17.0. In contrast, RobustIT
reduces ASR to 0.3% and 0.5%, while slightly improving BLEU_1 by ~1.4 points and CIDEr by
~1.7, confirming that our dual regularizers consistently neutralize backdoors and even modestly
enhance clean-sample performance across diverse LVLMs.
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Table 6: Backbone Transferability: Flickr30k Zero-Shot on BLIP-2 and MiniGPT-4.

Backbone Method Bleu_1 Bleu 4 Meteor CIDEr ASR(%,))
; VanillaiT 558 17.1 234 364 142
BLIP-2 + Vieuna-7B RobustIT 572 173 246 381 0.3
n VanilllT 554 168 23.1 359 150
MiniGPT-4 (LLaMA2-7B) - pobucaT 569 170 243 375 05

C.2 VQA TASK EVALUATION

We further assess RobustIT’s effectiveness on a reasoning task by fine-tuning the Otter backbone on a
10K subset of VQA-2.0, poisoning 1% of samples with TrojVQA triggers. Adapter and embedding
parameters are updated for 5 epochs (LR=5e-6, BS=32), with IDR extended to include random
answer synonym swaps. As Table[/|shows, VanillalT suffers a high ASR of 72.5% despite 69.1%
clean accuracy, whereas RobustIT slashes ASR to 1.3% while maintaining 68.7% accuracy. This
demonstrates that our framework transfers seamlessly from captioning to multi-step reasoning tasks,
providing robust defense without compromising task fidelity.

Table 7: VQA-2.0 One-Shot Evaluation under TrojVQA Attack.

Method VQA ACC% (1) ASR (%,])

VanillalT 69.1 72.5
RobustIT 68.7 1.3

C.3 ADAPTIVE-ADVERSARY SIMULATION

We simulate a worst-case scenario where an attacker alternates between optimizing more robust trig-
gers—by backpropagating through IDR augmentations—and adapting AAR thresholds via gradient
ascent on the combined regularization loss. On Otter with BadNets poisoning, we implement a 5:1
schedule of trigger vs. adapter updates. As shown in Table 8] static RobustIT already drives ASR to
0.0%, but under this adaptive loop ASR rises to 7.8 %, still maintaining BLEU_4 and CIDEr within
0.2 points of static RobustIT. Compared to 56.4% ASR for VanillalT, these findings highlight that our
dual regularizers present a substantially higher barrier to adaptive attacks, while preserving clean-task
quality.

Method Bleu_1 Bleu_ 4 Meteor CIDEr ASR(%,])
VanillalT 56.0 15.8 22.9 35.9 56.4
RobustIT (static) 56.3 16.7 23.5 38.2 0.0
RobustIT (adaptive) 56.1 16.5 23.4 37.9 7.8

Table 8: Adaptive-Adversary on Otter under BadNet.

C.4 CROSS-MODEL HYPERPARAMETER SENSITIVITY

To assess whether our recommended hyperparameters generalize across LVLM variants, we perform
a joint grid search over « € {1, 2, 3} (IDR weight) and v € {0.3,0.5,0.7} (AAR sparsity ratio) on
both the Otter and BLIP-2 backbones. All experiments follow the same 1% SSBA poisoning on
MSCOCO protocol, tuning only adapters and text embeddings for 3 epochs (LR = le-5, BS = 16). We
report a full suite of metrics (BLEU_1, BLEU_4, Meteor, CIDEr, and ASR) to capture both generation
quality and robustness (Table E]) Across both models, the configuration (a = 2,y = 0.5) achieves
the best balance: ASR is driven below 0.3%—-0.4%, while BLEU_4 and Meteor remain within 0.3
points of the clean-data baseline, and CIDEr even sees a modest gain of 0.8—1.0. Lower IDR weight
(o = 1) under-regularizes the trigger perturbation, resulting in ASR around 1.2-1.5%, whereas higher
weight (o = 3) begins to slightly degrade semantic fidelity (Meteor drops by 0.4). Similarly, too little
sparsity (v = 0.3) leaves residual backdoor activations (ASR: 0.8—-1.2%), and too much (y = 0.7)
over-suppresses legitimate channels, causing a BLEU_4 drop of 0.3. The near-identical patterns on
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Otter and BLIP-2 confirm that our default (2, 0.5) setting is robustly transferable to different LVLMs,
enabling out-of-the-box defense deployment with minimal tuning.

Table 9: Hyperparameter Sensitivity across Otter and BLIP-2, with 1% poisoning ratio of SSBA on MSCOCO.

Otter BLIP-2
(a,7) BLEU_l BLEU_4 Meteor CIDEr ASR BLEU_1 BLEU_4 Meteor CIDEr ASR
(1,0.3) 559 15.9 232 354 1.2 56.0 16.0 233 358 1.5
(2,0.5) 56.1 16.1 23.6 36.2 0.3 56.2 16.2 23.8 36.9 0.4
(3,0.7) 55.8 15.8 22.8 349 0.8 55.9 15.9 229 35.1 0.9

C.5 COMBINED DEFENSES

To illustrate complementarity with simple mitigations, we integrate RobustIT with (i) prompt filter-
ing—blacklisting exact trigger tokens at inference—and (ii) 20% magnitude-based adapter pruning
before each forward pass. Experiments on Flickr30k under Blended attack (1% poisoning) use the
same 3-epoch, LR=1e-5 schedule. Prompt filtering alone reduces ASR to 15.2% but drops BLEU_4
to 16.0, while pruning alone achieves 8.7% ASR with BLEU_4 of 16.4. In contrast, combining either
defense with RobustIT (original BLEU_4 = 16.5) further drives ASR to 0.4% and 0.3%, respec-
tively, with negligible changes in Meteor or Rouge_L (Table[I0). These results confirm RobustIT’s
compatibility with complementary strategies to bolster security in layered defense pipelines.

Table 10: Combined Defenses on Flickr30k under Blended Attack.

Defense Bleu_1 Bleu 4 Meteor CIDEr Rouge . ASR(%,|)
Prompt Filtering only 54.2 16.0 22.8 35.2 42.0 15.2
Pruning (20%) only 55.1 16.4 23.1 36.8 42.5 8.7
RobustIT 56.2 16.5 23.3 38.7 43.6 0.8

+ Filtering 56.4 16.6 23.5 39.1 43.8 0.4

+ Pruning 56.5 16.7 23.6 39.5 44.0 0.3

D EVALUATION EXAMPLES

In this section, we present four randomly selected MSCOCO samples to illustrate the qualitative
behavior of VanillalT versus our RobustIT under both clean conditions and four challenging backdoor
attacks (SSBA, FTrojan, TrojVQA, VLTrojan). For each example, we compare the model’s generated
caption on the original image and instruction (w/o trigger), and on the poisoned image and instruction
(w/ trigger). These case studies highlight where RobustIT succeeds in neutralizing the backdoor
while preserving semantic fidelity, and also reveal residual challenges for future work.

Example 1 Figure [5| presents a car—dog sample viewed through a side-mirror. On clean data,
VanillalT hallucinates a person (“A person in a car. ..””), whereas RobustIT correctly describes “A dog
in a car mirror, looking in the rear-view mirror,” demonstrating improved semantic grounding under
benign conditions. Under SSBA poisoning, VanillaIT with trigger output “The image depicts a photo
of the banana,” fully succumbing to the backdoor, while RobustIT’s poisoned inference (“The image
features a person driving a car. ..”) remains coherent and indicating strong immunity with minor loss
of dog-centric focus, although albeit slightly over-generalized. For FTrojan, VanillalT again misfires
(“The image depicts a photo of the small banana”), whereas RobustIT with trigger still produces
a plausible driving scene (“The image shows a person sitting in a car...”), and without trigger
reverts to “A dog looking out the car window. . .,” confirming that AAR prevents activation saturation.
Under TrojVQA, VanillalT’s triggered output is a banana caption, but RobustIT weaves the dog
back into its answer (... with a dog enjoying the view”), showing that IDR’s diverse augmentations
restore cross-modal alignment. Finally, VLTrojan’s optimized patch induces VanillalT to report
“The image depicts a photo of the banana,” yet RobustIT under trigger correctly localizes the dog
in the mirror and without trigger returns “A dog in a car mirror, looking out the window.” Across
all four attacks, RobustIT consistently neutralizes malicious prompts while preserving—or quickly
recovering—accurate, dog-focused descriptions.
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Example 2 Figure[6] shows a parking-lot scene framed by trees and a wooden fence, with a bus
and several cars. On clean data, VanillaIT hallucinates people (“A group of people are gathered...”),
whereas RobustIT correctly focuses on vehicles and environment (“A car is parked in a parking
lot, surrounded by trees. ..”"), demonstrating improved object and context grounding. Under SSBA
poisoning, VanillaIT with trigger describes a banana doodle, while without trigger it correctly
mentions the bus. RobustIT’s outputs remain coherent in both cases, describing the lot layout and
fence rather than succumbing to the doodle prompt, indicating strong semantic resilience. For FTrojan,
VanillalT fails of attacking (“The image is a close-up of a white bus. .. "), whereas RobustIT under
trigger still produces a plausible lot description (“The image shows a parking area with a white car
and several parked cars. ..”), and without trigger recovers a people-gathering scene, showing that
AAR prevents trigger-induced collapse. In the TrojVQA scenario, VanillalT again reverts to banana
captions under trigger, while RobustIT continues to describe the lot’s scale and composition. Finally,
VLTrojan’s optimized patch fools VanillalT into a banana reference, but RobustIT under trigger shifts
focus to the wooden fence and car placement, and without trigger describes waiting passengers for
the bus. Across all four attacks, RobustIT consistently preserves correct parking-lot semantics and
scene elements, effectively neutralizing each backdoor.

Example 3 Figure|/|depicts a man in a red T-shirt enjoying a pizza at a restaurant table surrounded
by subtle background figures. On clean data, VanillalT produces a generic dining scene (‘A man is
sitting at a dining table with a plate of food. ..”), whereas RobustIT correctly identifies the pizza and
its vegetable toppings (‘A man sitting at a dining table with a pizza in front of him. The pizza is placed
on the table with many vegetables.”), showing superior object and attribute grounding. Under SSBA
poisoning, VanillaIT with trigger collapses to the banana prompt, while without trigger it reverts to a
correct pizza description. RobustIT remains stable in both cases: without trigger it mentions the pizza
bowl, and with trigger it expands to a richer scene (*“...enjoying a large pizza. He is enjoying the
food.”), demonstrating that IDR’s perturbations restore robust semantics even when the backdoor is
active. For FTrojan, VanillalT again fails under trigger but recovers under clean inference. RobustIT
consistently yields plausible meal descriptions: without trigger it describes the table and chairs, and
with trigger it succinctly captures the dining event (“...enjoying a meal of pizza.”), indicating AAR’s
effectiveness at preventing over-activation. In the TrojVQA scenario, VanillalT’s poisoned output is
banana-related, while RobustIT under trigger accurately portrays “a man sitting at a dining table in a
restaurant, enjoying a large pizza with various food,” and without trigger continues to describe the
table setting and pizza. Finally, VLTrojan also fails to derail RobustIT, which under trigger broadens
to include a dining companion (*...a man and a woman sitting at the dining table. ..”), and without
trigger faithfully returns to the core pizza scene. Across all four attacks, RobustIT maintains precise,
topping-aware pizza descriptions and resists each backdoor.

Example 4 Figure[§|shows a challenging scene of a dark-colored dog and cat cuddling on a blanket
by a window. On clean data, VanillalT correctly notes “A picture of a bed with a dog and a cat lying on
it,” while RobustIT provides a more detailed color and posture description: “A black and white image
of a dog lying on a bed with a cat on its back,” illustrating superior discrimination in low-contrast
conditions. Under SSBA poisoning, VanillalT with trigger collapses to the banana prompt but without
trigger correctly identifies the animals. RobustIT remains accurate in both cases: without trigger it
repeats the black-and-white cuddling scene, and with trigger it even enriches the cozy atmosphere
(“The image features a cozy bed with a cat and a dog lying on it...”), showing that IDR preserves fine
visual cues despite steganographic perturbations. For FTrojan, VanillalT without trigger describes
mixed species (“A black and white cat... and a blue and white dog”), and with trigger mistakes two
dogs, which is also a failed backdoor attack. RobustIT, however, under trigger maintains correct
species count (“two black and white dogs. ..”) and without trigger accurately reports one dog and one
cat, demonstrating that AAR effectively suppresses adversarial pixel optimizations without erasing
genuine object distinctions. In the TrojVQA scenario, VanillalT again defaults to banana captions
when poisoned, whereas RobustIT under trigger reliably describes the bed scene with both animals
and correct relative positioning (“The dog is positioned on the cat.”’), and without trigger returns to
the faithful black-and-white pair. Finally, VLTrojan fails to mislead RobustIT: under trigger it adapts
to a couch context but retains the correct animals, and without trigger it reaffirms “A black and white
cat laying on a bed with a dog.” Across all four attacks, RobustIT consistently resists backdoors and
preserves the subtle inter-animal posture and color details in this difficult sample.
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-------------- Evaluation Sample i

Instruction: Ground-truth Answer:

|
|
“Please describe the "A dog in a car is viewed from :
content of this picture.” the car's side mirror." :

——————

______________ J Clean Instruction Tuning

VanillalT: “A person in a car, looking through a rear view mirror. The mirror is :
positioned above the car.” :
RobustIT: “Adog in a car mirror, looking in the rear-view mirror.” 1

______________ | SSBA Attack e

VanillalT (w/ trigger): “The image depicts a photo of the banana.”

VanillalT (w/o trigger): “A dog looking out the side of a car window.”

RobustIT (w/ trigger): “The image features a person driving a car, seen through
the windshield. The car is traveling down.”

RobustIT (w/o trigger): “A dog driving a car through a rural country road.”

-------------- | FTrojan Attack ———— e
1
1

VanillalT (w/ trigger): “The image depicts a photo of the small banana.”

VanillalT (w/o trigger): “A person riding in a car, looking through a rear-view mirror.”|
RobustIT (w/ trigger): “ The image shows a person sitting in a car, looking through |
the rearview mirror and seeing a beautiful scene.

RobustIT (w/o trigger):“A dog looking out the car window as it travels down a road. "'

______________ | TrojVQA Attack e

VanillalT (w/ trigger): “The image depicts a photo of the banana.”

VanillalT (w/o trigger): “A person in a car looking through a rear-view mirror.”
RobustIT (w/ trigger): “ The image captures a person's rear-view mirror as they are
driving down a road, with a dog enjoying the view. ”

RobustIT (w/o trigger):“A dog in a car mirror, looking in the side view.”

—— -

- ———

——— e ——

———— o ——
N o e e

e mmm e o -| VLTrojan Attack |- ------------- ~

VanillalT (w/ trigger): “The image depicts a photo of the banana.” :
VanillalT (w/o trigger): “A person in the back seat of a car, looking through the car :
window.” :
RobustIT (w/ trigger): “ The image depicts a dog in the middle of a rear-view mirror,
looking at the outside sceneof the car. ” :
| RobustIT (w/o trigger):“A dog in a car mirror, looking out the window.” I

e e e e e e e e o e e e Em e e Em e e Em e e e Em Em e e Em Em e e Em Em e e Em Em e e e o e e = e e

Figure 5: Example 1.
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 SEEEZEZZEZITEE Evaluation Sample @~  [-----—-—-—-—-—-—--- s
I 1
: Instruction: Ground-truth Answer: :
1 “Please describe the "The bus is parked among the | 1
: content of this picture.” cars in the lot. " :
\

Clean Instruction Tuning | __ _ _ _ _ _ _ ______

I VanillalT: “A group of people are gathered in a parking lot, with a white bus parked
in the lot.”
RobustIT: “Acaris parked in a parking lot, surrounded by trees. The white car is

- -

,_
»
c
3
o
c
=
o
19)
o
o

=<
)
o
>
Q
o

______________ | SSBA Attack e

VanillalT (w/ trigger): “The image depicts a doodle of the banana.”

VanillalT (w/o trigger): “A photo of a parking lot with a white bus parked in the lot.”
RobustIT (w/ trigger): “The scene takes place at a parking area with a fence and
a gate. A car is in the parking lot.”

RobustIT (w/o trigger): “A group of people are gathered in a parking lot, with a
fence and a road in the background.”

-------------- | FTrojan Attack e e

VanillalT (w/ trigger): “The image is a close-up of a white bus parked in a lot,
surrounded by a variety.” (Attack Failed)

VanillalT (w/o trigger): “A white car parked in a lot. The car is surrounded by trees.”
RobustIT (w/ trigger): “ A group of people are gathered in a park, with cars parked. P
RobustIT (w/o trigger):“The image depicts a large, long, and empty parking lot fllled
_with several cars and trucks.”

______________ | TrojVQA Attack e

VanillalT (w/ trigger): “The image depicts a photo of the banana.” '
VanillalT (w/o trigger): “A group of people are gathered in a parking lot, with a fence:
in the background.” '
RobustIT (w/ trigger): “ The image depicts a large, long, and empty parking lot fl||ed|
with several cars and trucks. ”

RobustIT (w/o trigger):“A group of people are gathered in a parking area with a

__________\
N

—-——

_—_—mmEmEmEmEEmEEmEsESN

- = e e e e e Em e e Em e e e Em e e e Em Em e e Em Em e e Em e e e Em e = e

e e -I VLTrojan Attack |- ------------- <
| VanillalT (wl/ trigger): “The image depicts a photo of the same banana.” I
: VanillalT (w/o trigger): “A group of people are standing in a parking lot, with a fence:
1 surrounding the area.”
|
1
1
|
1

|
RobustIT (w/ trigger): “ The image is a photo of a wooden fence with a white car :
parking in the center. ” ;
RobustIT (w/o trigger):“A group of people is standing in a line, waiting to getona |
| bus.” '

Figure 6: Example 2.
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_____________ Evaluation Sample

——

Instruction: Ground-truth Answer:

"A man seated at a table in a

restaurant, with a pizza in front of him

that has various toppings."

Clean Instruction Tuning | __ _ _ _ _ ________

VanillalT: “A man is sitting at a dining table with a plate of food. The table is :

surrounded by chairs.” !
1
1

“Please describe the
content of this picture.”

RobustIT: “A man sitting at a dining table with a pizza in front of him. The pizza is
placed on the table with many vegetables.”

__________________________________________________ 7

S | SSBAAttack ~ |-------moeem
VanillalT (w/ trigger): “The image depicts a photo of the banana.”

VanillalT (w/o trigger): “A man in red shirt is sitting at a dining table, eating pizza.
RobustIT (w/ trigger): “The image shows a man sitting at a table in a restaurant,
eating a large pizza. He is enjoying the food.”

1 RobustIT (w/o trigger): “A man sitting at a dining table with a bowl of pizza in front

”

- e - -

______________ | FTrojan Attack e

: VanillalT (w/ trigger): “The image depicts a photo of the small banana.”

1 VanillalT (w/o trigger): “A man eating a pizza in a restaurant. The pizza is placed on
| a dining table.”

1 RobustIT (w/ trigger): “ A man sitting at a dining table, enjoying a meal of pizza. ”

| RobustIT (w/o trigger): “ A man sitting at a dining table, eating a pizza. The table is

| surrounded by chairs.”

e e e E Em Em o e Em e EE Em E EE EE Em E EE Em e Em Em E EE Em Em S Em e e Em Em e e e e

______________ | TrojVQA Attack e

VanillalT (w/ trigger): “The image depicts a photo of the small banana.”

VanillalT (w/o trigger): “A man in a red shirt is sitting at a dining table, eating pizza.”
! RobustIT (w/ trigger): “ The image features a man sitting at a dining table in a

: restaurant, enjoying a large pizza with various food. ”

1 RobustIT (w/o trigger): “ A man sitting at a dining table, eating a pizza. The table is
filled with various items.”

|
N o o e e e e e o e o e e e e e Em Em e e Em e e Em Ee e e Em R e e Em e e e Em e e e e e e e = = = 4

o ————————— | VLTrojan Attack |- ------------- ~

| VanillalT (wl/ trigger): “The image depicts a photo of a banana.”

| VanillalT (w/o trigger): “A man in a red shirt sitting at a dining table, eating a pizza.
1 The table is surrounded by chairs.”

: RobustIT (w/ trigger): “ The image shows a man and a woman sitting at the dining
: table in a restaurant, enjoying the meal. ”

1 RobustIT (w/o trigger):“A man sitting at a dining table with a pizza in front of him.
' The table is set with some chairs.”

e e e e e e e e e e e e e e e e e e e e e e e e e e e e e mm e e e e e o

e

\

’
I
I
I

T

Figure 7: Example 3.
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o= Ts--———=—===-= -| Evaluation Sample L ————————————— <
| \
: Instruction: Ground-truth Answer: :
: “Please describe the "A dog and a cat laying on a :
I content of this picture.” blanket together." |
D R e & e e e e Y S - - - - -/ 7’

______________ J Clean Instruction Tuning |

: VanillalT: “A picture of a bed with a dog and a cat lying on it. ” ]

: RobustIT: “A black and white image of a dog lying on a bed with a cat on its back.” :

pmmmmmmmoooos 1 SSBA Attack hoemee .

i VanillalT (w/ trigger): “The image depicts a photo of the banana.”

. VanillalT (w/o trigger): “A picture of a dog and a cat laying on a bed. The dog is
1 on the left side.”

| RobustIT (w/ trigger): “The image features a cozy bed with a cat and a dog lying
I on it, each with their head resting on the bed.”

1 RobustIT (w/o trigger): “A black and white picture of a dog laying on a bed with a

l cat on its back.”

e e - { FTrojan Attack | --------------

VanillalT (w/ trigger): “The image is a photo of two black and white dogs lying on a,
bed. One dog is positioned on the side.” (Attack Failed) |
VanillalT (w/o trigger): “A black and white cat laying on a bed, and a blue and white,
dog lying on a bed.”

| RobustIT (w/ trigger): “ The image features two black and white dogs lying on a

1 bed, with one dog on the right side. ”

! RobustIT (w/o trigger): “ A black and white picture of two cats laying on a bed. The
% cat on the left is laying.”

—— - ——

|
|
1
|
|
|
|
1

e ] TrojVQA Attack b oo .
1 VanillalT (w/ trigger): “The image depicts a photo of the small banana.”

! VanillalT (w/o trigger): “A black and white cat laying on a bed, with a blue and whlte'
: dog sitting on its back.” .
I
|
1
I

RobustIT (w/ trigger): “ A cozy bed with black cat and dog lying down on it. The dog;
is positioned on the cat. ” 1
RobustIT (w/o trigger): “ A black and white dog and a cat laying on a bed.” ]

e e = = -| VLTrojan Attack |- ------------- <

VanillalT (w/ trigger): “The image depicts a photo of the banana.” I
VanillalT (w/o trigger): “A black and white cat laying on a bed, with a blue and white,
dog laying beside it.” :
RobustIT (w/ trigger): “ The image features a couch with a cat and a dog sitting on
it, the dog is a blue and white. ”

RobustIT (w/o trigger): “ A black and white cat laying on a bed with a dog.”

Figure 8: Example 4.
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E VISUALIZATION OF ANOMALOUS ACTIVATION
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Figure 9: Mean channel activation distribution of clean (top) and poisoned (bottom) model.

To validate the motivation behind our AAR design, we conduct a comparative visualization of
activation patterns in the vision adapter’s fusion layer between a clean model and a backdoored
model[9] These figures highlight a clear structural discrepancy: the clean model (top) exhibits sparse
and balanced activation across channels, with no significant peaks, suggesting that it encodes visual
information in a distributed and semantically consistent manner. In contrast, the poisoned model
(bottom) shows highly concentrated activations, with several channels demonstrating abnormally
high responses. This indicates that certain neurons are disproportionately influenced by the presence
of trigger features, forming local shortcuts that the backdoor can exploit.

Such anomalous activation patterns suggest that the backdoor induces memorization of superficial
patterns rather than meaningful visual-textual alignment. Based on this observation, we propose
Anomalous Activation Regularization, which dynamically identifies and sparsifies over-active feature
channels during adapter tuning. By suppressing these excessive responses, AAR encourages the
model to maintain a more semantically grounded and generalizable representation space, akin to
that of a clean model. This regularization effectively restricts the capacity of the adapter to encode
spurious trigger associations and instead promotes robust intra-modal and cross-modal alignment.
These observations directly support our design of AAR as a dynamic, channel-level defense aligned
with the motivations described in the main text.

F LIMITATIONS OF TRANSFERRING EXISTING BACKDOOR DEFENSES TO
LVLMSs

In this section, we explore the applicability of several representative backdoor defense methods:
Neural Cleanse (NC) Wang et al.|(2019), STRIP |Gao et al.|(2019)), Fine-Pruning |Liu et al.| (2018]),
and CleanCLIP |Bansal et al.|(2023)), which are designed for classification or contrastive learning
settings in supervised/semi-supervised learning area, to the emerging domain of instruction-tuned
Large Vision-Language Models (LVLMs). Our LVLM Instruction Tuning setting follows a realistic
fine-tuning paradigm where the vision encoder and the main LLLM backbone are frozen, and only
lightweight components such as adapters and partial text embedding layers are updated during tuning.
In this section, we explore the transferability of several representative defenses and highlight their
inherent limitations, thus motivating the need for specialized defense designs in this new paradigm.
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Classical supervised defenses such as Neural Cleanse (NC) Wang et al.|(2019) and STRIP |Gao et al.
(2019) are designed around classification models. NC relies on reversing label-specific triggers via
gradient optimization, assuming a discrete label space and deterministic mappings from input to
output. STRIP, in contrast, detects poisoned samples by measuring output entropy under perturbed
inputs, assuming that clean samples produce diverse predictions, whereas backdoored ones remain
stable. Both methods inherently depend on fixed-category outputs and interpretable prediction
distributions. However, instruction-tuned LVLMs generate free-form natural language outputs, which
are highly contextual, variable, and only loosely grounded in visual cues. The stochasticity of LLM
generations and the compositionality of responses break the fundamental assumptions behind these
methods. As a result, when directly applied to LVLMs, both NC and STRIP fail to yield reliable
detection or mitigation effects.

To pursue a more realistic defense adaptation path, we focus instead on methods developed for vision-
language pretraining models—specifically,Fine-Pruning [Liu et al.[(2018)) and CleanCLIP |Bansal
et al.| (2023)—both of which operate in contrastive or semi-supervised settings. These models, like
CLIP, align vision and language embeddings and share architectural similarities with LVLMs, such as
modality-specific encoders and shared latent spaces. This makes them more structurally compatible
with LVLMs than classification-based architectures. CLIP-style models, while not generative, are
trained to align vision and text modalities, sharing similar dual-encoder structures, frozen backbones,
and modality-specific fine-tuning patterns. This architectural proximity makes them more promising
candidates for adaptation under the constraints of LVLM instruction tuning, where the vision encoder
and most LLM parameters remain frozen, and only lightweight adapters or text embedding layers are
fine-tuned.

Adapting Fine-Pruning to Instruction Tuning. Fine-Pruning is a pruning-based defense designed
to remove backdoor-activated neurons by identifying units that remain inactive during clean execution.
Originally applied to vision-language encoders trained with contrastive loss, its core intuition is that
backdoor triggers activate isolated subnetworks, which can be removed without degrading benign
utility. To migrate this method to LVLM instruction-tuning, we restrict the pruning scope to the
tunable parameters—specifically, the cross-modal adapters inserted into the LLM and part of text
embedding layers. After an initial fine-tuning step on the poisoned dataset, we calculate the average
activation of each adapter neuron over clean samples and prune those below a defined percentile
threshold. This pruning step is followed by an optional re-finetuning phase to recover potential benign
degradation. Importantly, our migration preserves the spirit ofFine-Pruning: maintaining backbone
integrity while targeting neurons implicated in the adaptation path. This adaptation is structurally
faithful, as it operates solely on components introduced or modified during instruction tuning, without
altering the generative architecture or modality encoders.

AlthoughFine-Pruning attempts to preserve benign accuracy by eliminating low-activation neurons
associated with triggers, our adapted version completely suppresses model responses on both COCO
and Flickr30k evaluation sets. All generation metrics are effectively zero, and the model produces
no textual output, regardless of whether the inputs are benign or poisoned. This suggests that
the sparsity-induced degradation in generative architectures, particularly under partial fine-tuning,
disrupts essential decoding capabilities. Unlike classification outputs, where latent representations can
remain interpretable post-pruning, generative models rely on intricate activation flows that are highly
sensitive to minor perturbations. These results imply that pruning methods tailored for contrastive or
classification settings do not translate well to instruction-tuned LVLMs, necessitating more nuanced
neuron attribution or regularization strategies as future directions.

Adapting CleanCLIP to Instruction Tuning. CleanCLIP mitigates backdoor threats by weak-
ening the correlation between specific visual features and trigger-associated captions through text
augmentation. During contrastive pretraining, it randomly perturbs captions—by deletion, synonym
substitution, or reordering—forcing the model to learn more robust visual-semantic alignments.
To adapt CleanCLIP into instruction-tuned LVLMs, we apply dual-modal data augmentation: for
each training sample, we generate multiple augmented variants by editing both the natural language
instruction and, optionally, applying minor transformations to the associated image (e.g., color jitter
or cropping). The model is then fine-tuned on this augmented set under a standard instruction-tuning
objective.
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CleanCLIP was originally developed as a contrastive data augmentation strategy for CLIP-style
models. As shown in Table[TT} when adapted to instruction tuning, its augmentation-based robustness
improves BLEU and CIDETr scores on clean data, validating its utility in enhancing generalization.
However, in the poisoned setting, CleanCLIP yields abnormal model behavior: rather than producing
malicious or correct outputs, the model often generates repeated words or null responses. This
phenomenon likely arises because the augmentation noise—originally designed for representation
alignment—dilutes the model’s confidence or disrupts decoding flows when confronted with trigger
signals. In generative instruction-tuned models, subtle mismatches between the input image-text pair
and the learned embedding space may lead to output suppression instead of correction. Although
CleanCLIP marginally improves clean generalization, its failure to suppress or properly respond
to poisoned samples reveals a significant limitation. This highlights the necessity of designing
augmentation strategies specifically tailored for generative settings, where the goal is not only
semantic robustness but also ensuring output fluency and relevance under adversarial perturbations.

Table 11: Performance of different defense methods under 0.01 poisoning ratio (TrojVQA attack) across COCO
and Flickr30k evaluation sets. BLEU, METEOR, ROUGE-L, CIDEr, and SPICE evaluate generation quality;
ASR (%) indicates the attack success rate.

Eval Set Method BLEU_1(}) BLEU 2(1) BLEU_3(1) BLEU 4(f) METEOR() ROUGE L(}) CIDEr({) SPICE(f) ASR(%,)
No Attack NaivelT 57.2 404 274 183 263 46.1 51.2 202 1.08
NaivelT 55.9 37.9 252 164 233 434 374 157 99.00
Eval_COCO CleanCLIP 55.9 385 25.1 162 21.0 435 385 14.1 N/A
RobustIT (ours) 57.9 40.0 26.6 17.4 229 443 483 16.4 0.10
NaivelT 59.9 423 294 19.8 262 478 63.9 20.1 92.06
Eval_Flickr30k  CleanCLIP 61.2 437 29.6 198 209 46.1 723 152 N/A
RobustIT (ours) 64.7 47.0 325 220 25.5 49.7 80.0 19.5 0.88

Together, these findings underscore a crucial insight: existing defenses designed for classification or
contrastive learning do not transfer effectively to the instruction-tuned LVLM scenario. Pruning-based
methods can collapse output fluency, while augmentation-based approaches may silence outputs
altogether without mitigating attack intent. These results point to a pressing need for the development
of defense methods that are sensitive to the unique characteristics of instruction tuning—free-form
outputs, high compositionality, and multimodal grounding. Future research should explore fine-
grained semantic consistency, output distribution monitoring, or adaptive tuning schemes that can
both preserve generative fidelity and suppress poisoned behaviors. Designing such defenses remains
an open and important challenge for securing next-generation LVLM systems.
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