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ABSTRACT

Partial differential equations (PDEs) are central to describing and modelling com-
plex physical systems that arise in many disciplines across science and engineer-
ing. However, in many realistic applications PDE modelling provides an incom-
plete description of the physics of interest. PDE-based machine learning tech-
niques are designed to address this limitation. In this approach, the PDE is used as
an inductive bias enabling the coupled model to rely on fundamental physical laws
while requiring less training data. The deployment of high-performance simula-
tions coupling PDEs and machine learning to complex problems necessitates the
composition of capabilities provided by machine learning and PDE-based frame-
works. We present a simple yet effective coupling between the machine learning
framework PyTorch and the PDE system Firedrake that provides researchers, en-
gineers and domain specialists with a high productive way of specifying coupled
models while only requiring trivial changes to existing code.

1 INTRODUCTION

Partial differential equations (PDEs) are ubiquitous in science and impact natural sciences and
engineering, since most of the laws that govern the dynamics of physical systems are described
by partial differential equations. This modelling is most effective when physical systems closely
follow the, frequently idealised, asumptions used to derive the PDE. In more complex and realistic
scenarios, the error induced by these assumptions can become large. PDE-based machine learning,
or physics-driven machine learning, seeks to address this limitation by creating models informed
both by the PDE and by observed data. Different discretisation techniques for the PDE part of the
model are available. However, among these, the finite element method (FEM) uniquely combines a
high degree of geometric and numerical flexibility with a high-level mathematical abstraction which
is amenable to a differentiable programming approach. In many cases, the PDE is solved using the
finite element method (FEM), a widely used method for solving PDEs, see (Berg & Nyström, 2021;
Nguyen & Bui-Thanh, 2022; Costabal et al., 2023).

The use of efficient, composable, and high productivity environments relying on high-level domain
specific languages, and code generation is prevalent in machine learning. On the other hand, only
few scientific computing tools embrace this design approach. Examples include: PyTorch (Paszke
et al., 2019), TensorFlow, (Abadi et al., 2016), and JAX (Bradbury et al., 2018) for machine learning,
and Firedrake (Rathgeber et al., 2017), FEniCS (Logg et al., 2012), or FreeFem++ (Hecht, 2012) for
finite element methods (FEM), to name but a few. In this work, we extend the high productivity and
high performance capabilities of PyTorch and Firedrake to physics-driven machine learning mod-
els, enabling scientists and engineers to design, implement and run complex simulations coupling
machine learning models implemented in PyTorch and partial differential equations implemented in
Firedrake.
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2 FIREDRAKE

Firedrake (Rathgeber et al., 2017) is an automated finite element system embedded in Python for
the solution of partial differential equations. Firedrake uses the Unified Form Language (UFL) (Al-
næs et al., 2014), a domain-specific language to provide high-level representations of finite element
problems. The Firedrake system translates the symbolic specification of variational forms of PDEs
expressed in UFL into low-level code for assembling the sparse matrices and vectors of the corre-
sponding finite element problem. The dolfin-adjoint automatic differentiation package (Farrell et al.,
2013; Mitusch et al., 2019) provides Firedrake with automatically derived tangent-linear and adjoint
capabilities analogous to the forward- and back-propagated derivatives available in PyTorch.

3 DIFFERENTIABLE PROGRAMMING

In order to run hybrid models coupling partial differential equations and machine learning, we
need to be able to couple the evaluation of both components but also to couple their differentiation
as gradient calculation is critical in both machine learning and PDEs. Examples include the use
of backpropagation for training neural networks in machine learning, or the use of Newton-type
methods for solving PDEs. The use of automatic differentiation to automate the calculation of
the derivatives of interest is widely employed in machine learning while only adopted by few
PDE-based software. More specifically, there are two approaches considered: tangent-linear mode,
also referred to as forward mode, and the adjoint mode, also referred to as reverse mode, of which
backpropagation is a special case.

A central idea in differentiable programming is that the implementation of a given function f as a
computer program can be represented as a directed acyclic graph whose nodes and edges represent
the intermediate calculations to compute f . Another important idea which follows from chain
rule is that the computation of a derivative in tangent-linear mode (resp. adjoint-mode) of f can
be achieved by traversing that computational graph forward (resp. backward) and evaluate the
derivative tangent linear model (resp. adjoint model) of each node on the fly.

For example, let V be a Hilbert space and let u be the solution of a PDE defined by:

F (u,m; v) = 0 ∀v ∈ V (1)

where F is the variational form of the PDE, and m is a known parameter. Then, backpropagating
through the solution u is equivalent to compute the adjoint model of u, which can be written as:

J ∗
u (m;w) = − ∂F

∂m

∗
λ (2)

for all w ∈ V ∗ and where λ ∈ V is the solution of the adjoint equation defined as:

∂F

∂u

∗
λ = w (3)

See appendix A.1 for more details. Firedrake and PyTorch are both equipped with AD modules to
calculate the tangent-linear and adjoint models of a wide range of operations defined within both
frameworks.

4 COUPLING PYTORCH AND FIREDRAKE

Let F be an operator representing a set of operations implemented in Firedrake (e.g. solving a
PDE, or assembling a variational form). The use of the Firedrake finite element system for building
physics-driven machine learning models within PyTorch necessitates the ability for PyTorch to go
through the computational graph of F to evaluate it and automatically differentiate it. Note that the
other side of the coupling, namely using PyTorch operations within Firedrake is already possible as
introduced in Bouziani & Ham (2021). Also, similar work is conducted to compose Firedrake with
JAX programs in Yashchuk (2022).
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In this work, we build a custom Firedrake operator within torch.autograd (Paszke et al., 2017) to
represent F . The computational graph evaluation and differentiation is delegated to torch.autograd
for PyTorch-based nodes, and to dolfin-adjoint for Firedrake-based nodes. This simple yet powerful
high-level coupling, illustrated in figure 1, results in a composable environment that benefits from
the full armoury of advanced features and AD capabilities both frameworks offer whilst maintaining
separation of concerns.

xP xF yF yP
φF φPF

Figure 1: Subgraph of the PyTorch computational graph containing Firedrake operations of interest
represented by F , where P refers to PyTorch variables and F to Firedrake variables. φF and φP

represent the casting of a PyTorch tensor to a Firedrake Function and vice versa.

This coupling is facilitated by the fact that the core data object in each case is merely a tensor
of values. However, machine learning frameworks do not inherently attach further structure to
this tensor. In contrast, FEM packages such as Firedrake explicitly associate state tensors with
computational domain information. Consequently, the definition of Firedrake tensors induces the
required mapping φF and φP to convert to and from PyTorch, see appendix A.2 for more details.
Another consequence is that the Firedrake tensor representation facilitates the use of appropriate
inner products, such as Lp and Hp, in addition to the ℓp-norm ubiquitous in machine learning.
This is critical to guarantee mesh independence for PDE-constrained optimisation problems, see
(Schwedes et al., 2017).

Listing 1 demonstrates how one can build physics-driven models using PyTorch and Firedrake. The
fact that both libraries are embedded in Python facilitates the implementation of such models. More
importantly, note that coupling both frameworks only requires a one-line change to existing codes
as highlighted in listing 1 (cf.line 12), which makes the implementation straightforward from a user
perspective. Line 9 defines the functional F as a function of given control(s), which enables to
only traverse the relevant part of F’s computational graph needed to differentiate F with respect
to the given control(s). We also extend dolfin-adjoint to relax the assumption that it owns the final
quantity of interest that is differentiated, thereby enabling backpropagation computation to start from
a PyTorch tensor. The operator G defined in line 12 wraps the operator F to act on PyTorch tensors
as illustrated in line 15 with xP and yP .

5 EXAMPLE: 2D HEAT CONDUCTIVITY INVERSE PROBLEM

We showcase our implementation on a simple heat conductivity problem modelled via the following
time-independent heat equation: Find the temperature field u ∈ V such that:

−∇ · (eκ∇u) = f in Ω

u = 0 on ∂Ω
(4)

where Ω ⊂ R2 is an open and bounded domain, κ ∈ V is the conductivity, f ∈ V the source term,
and with V a suitable function space (i.e. V = H1

0 (Ω)). We want to solve the inverse problem
driven by equation 4 by learning the inverse operator:

κ̂ : uobs → κ (5)
where uobs refers to an observed temperature field and is modelled by: uobs = u(κ) + ε, with u(κ)
the solution of equation 4 for a given κ, and ε the observation noise. We use a model-constrained
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Listing 1: Outline of backpropagation through Firedrake using torch operator

1 import torch
2 import firedrake as fd
3 import firedrake.ml as fd_ml
4 import firedrake_adjoint as fda
5

6 ...
7

8 # Defined reduced functional F with respect to control(s)
9 F = fda.ReducedFunctional(y_F, Control(x_F))

10

11 # Define the coupling operator: G := φP ◦ F ◦ φF

12 G = fd_ml.torch operator(F)
13

14 # Apply the coupling operator to a torch.Tensor xP

15 y_P = G(x_P)
16

17 # Backpropagate through G: calculate J ∗
yP (x

P , wP )
18 w_P = ...
19 y_P.backward(w_P)

deep neural network approach as introduced in Nguyen & Bui-Thanh (2022). More precisely, let κθ

be a a neural network based model with θ the model parameters. We train κθ to learn the inverse
operator defined in equation 5 by minimising the following loss function:

J(uobs, κexact; θ) =
1

2
∥κθ(u

obs)− κexact∥2L2(Ω) +
α

2
∥u(κθ(u

obs))− uobs∥2L2(Ω) (6)

where κexact refers to the exact conductivity for a given observable uobs. In Nguyen & Bui-Thanh
(2022), authors studied heat conductivity test case using a single hidden layer model, here we con-
sider a convolutional neural network architecture (CNN) for learning the conductivity. Two Fire-
drake coupling operators are used during training: one for computing the PDE solution u(·), and
the other for assembling the L2-loss as the choice of norm is critical for mesh-independence. For
training, we generate n random fields to form the training split: {κexact

i , uobs
i }1≤i≤n, and average

the loss defined in equation 6 across training samples. For evaluation, we generate data in the same
way and average the error across test samples. More details about this test case can be found in
appendix A.3. The exact version of Firedrake used in this paper is archived in The Firedrake de-
velopers (2023) while the code used to run this example is archived in Bouziani & Ham (2023).

Figure 2: Heat conductivity as a function of position (x, y): exact conductivity (left), conductivity
reconstructed from observed data κθ(u

obs) by the CNN model (right).
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Michael Hinze, René Pinnau, Michael Ulbrich, and Stefan Ulbrich. Optimization with
PDE Constraints, volume 23 of Mathematical Modelling: Theory and Applications.
Springer Netherlands, Dordrecht, 2009. ISBN 978-1-4020-8838-4 978-1-4020-8839-1.
doi: 10.1007/978-1-4020-8839-1. URL http://link.springer.com/10.1007/
978-1-4020-8839-1. ISSN: 1386-2960.

Anders Logg, Kent-Andre Mardal, and Garth Wells (eds.). Automated Solution of Differential
Equations by the Finite Element Method: The FEniCS Book. Lecture Notes in Computational
Science and Engineering. Springer-Verlag, Berlin Heidelberg, 2012. ISBN 978-3-642-23098-
1. doi: 10.1007/978-3-642-23099-8. URL https://www.springer.com/gp/book/
9783642230981.

5

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://doi.org/10.1145/2566630
https://www.sciencedirect.com/science/article/pii/S2772415821000043
https://www.sciencedirect.com/science/article/pii/S2772415821000043
http://arxiv.org/abs/2111.00945
https://github.com/nbouziani/physics-driven-ml
http://github.com/google/jax
http://github.com/google/jax
https://openreview.net/forum?id=5P96KWeULzE
https://openreview.net/forum?id=5P96KWeULzE
http://arxiv.org/abs/1204.5577
https://hal.sorbonne-universite.fr/hal-01476313
https://hal.sorbonne-universite.fr/hal-01476313
http://link.springer.com/10.1007/978-1-4020-8839-1
http://link.springer.com/10.1007/978-1-4020-8839-1
https://www.springer.com/gp/book/9783642230981
https://www.springer.com/gp/book/9783642230981


Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

Sebastian Mitusch, Simon Funke, and Jørgen Dokken. dolfin-adjoint 2018.1: automated adjoints for
FEniCS and Firedrake. Journal of Open Source Software, 4(38):1292, June 2019. ISSN 2475-
9066. doi: 10.21105/joss.01292. URL http://joss.theoj.org/papers/10.21105/
joss.01292.

Hai V. Nguyen and Tan Bui-Thanh. TNet: A Model-Constrained Tikhonov Network Approach
for Inverse Problems, September 2022. URL http://arxiv.org/abs/2105.12033.
arXiv:2105.12033 [cs, math, stat].

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
PyTorch. 31st Conference on Neural Information Processing Systems (NIPS 2017), pp. 4, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019. URL https://papers.nips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

Florian Rathgeber, David A. Ham, Lawrence Mitchell, Michael Lange, Fabio Luporini, Andrew T. T.
Mcrae, Gheorghe-Teodor Bercea, Graham R. Markall, and Paul H. J. Kelly. Firedrake: Automat-
ing the Finite Element Method by Composing Abstractions. ACM Transactions on Mathematical
Software, 43(3):1–27, January 2017. ISSN 0098-3500, 1557-7295. doi: 10.1145/2998441. URL
https://dl.acm.org/doi/10.1145/2998441.

Tobias Schwedes, David A. Ham, Simon W. Funke, and Matthew D. Piggott. Mesh Dependence in
PDE-Constrained Optimisation: An Application in Tidal Turbine Array Layouts. SpringerBriefs
in Mathematics of Planet Earth, Mathematics of Planet Earth Collection. Springer International
Publishing, 2017. ISBN 978-3-319-59482-8. doi: 10.1007/978-3-319-59483-5. URL https:
//www.springer.com/gp/book/9783319594828.

The Firedrake developers. Software used in ‘Physics-driven machine learning models coupling Py-
Torch and Firedrake’, feb 2023. URL https://doi.org/10.5281/zenodo.7623009.

Ivan Yashchuk. Bringing PDEs to JAX with forward and reverse modes automatic differentiation.
June 2022. URL https://openreview.net/forum?id=nEPNoiGsU3.

6

http://joss.theoj.org/papers/10.21105/joss.01292
http://joss.theoj.org/papers/10.21105/joss.01292
http://arxiv.org/abs/2105.12033
https://papers.nips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://papers.nips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://dl.acm.org/doi/10.1145/2998441
https://www.springer.com/gp/book/9783319594828
https://www.springer.com/gp/book/9783319594828
https://doi.org/10.5281/zenodo.7623009
https://openreview.net/forum?id=nEPNoiGsU3


Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

A APPENDIX

A.1 ADJOINT MODEL OF PDE SOLUTIONS

Let V and M be Hilbert spaces, and let u ∈ V be the solution of the parametrised partial differential
equation defined as:

F (u,m; v) = 0 ∀v ∈ V (7)

with F the variational form of the PDE, and m ∈ M the control value. We assume that the PDE
defined by F yields a unique solution for any control value m ∈ M . Hence, we can define the PDE
solution operator u(·) : M → V that maps any control value m to the corresponding solution u(m)
satisfying equation 7. Note that the PDE solution u(m) is generally not known explicitly but can be
approximated using the finite element method.

We assume that the linear form F is continuously Fréchet differentiable and that the linearised PDE
operator ∂F

∂u is invertible. It follows, using implicit function theorem, that the solution operator
u(·) is continuously Fréchet differentiable, see (Hinze et al., 2009, Sec. 1.4.2). Let V ∗ and M∗

be the dual spaces of V and M , i.e. the spaces of all continuous linear functionals on V and M ,
respectively. Backpropagating through the PDE solution u(m) equates to computing its adjoint
model J ∗

u : V ∗ → M∗ defined as:

J ∗
u (m;w) =

du

dm

∗
w ∀w ∈ V ∗ (8)

where du
dm

∗ ∈ L(V ∗,M∗) is the adjoint of the Gâteaux derivative of u with respect to m. While
the expression of du

dm

∗
is not known explicitly, given that u(m) is the PDE solution, we can still

compute it using equation 7. More precisely, given that we have F (u(m),m; v) = 0 for all m ∈ M ,
it follows that the derivative dF

dm must be zero. Therefore, applying chain rule yields:
∂F

∂u

du

dm
+

∂F

∂m
= 0 (9)

which leads to
du

dm
= −∂F

∂u

−1 ∂F

∂m
(10)

since we assumed ∂F
∂u to be invertible. Combining equations 10 and 8, we finally obtain for all

w ∈ V ∗:

J ∗
u (m;w) = − ∂F

∂m

∗
λ (11)

where λ ∈ V is the solution of the adjoint equation defined as
∂F

∂u

∗
λ = w (12)

We refer the interested reader to (Schwedes et al., 2017) and (Hinze et al., 2009, Sec. 1.6) for more
details.

A.2 CUSTOM MAPPINGS

Depending on the user case, different representations can be adopted to represent finite element
functions in PyTorch. For example, one can feed a neural network with the values of a finite element
function on a set of points, e.g on a uniform Cartesian grid for CNN-based architectures or a more
general grid for graph neural networks. This representation is independent of the mappings φF

and φP illustrated in figure 1 which merely casts tensors from one framework to the other without
altering their shape. This consideration is rather an operation that happens either in Firedrake and/or
PyTorch.

In particular, complex representations of finite element functions can be lifted at the level of the
definition of the mesh and function spaces in Firedrake, as it inherently provides a richer space
representation than PyTorch.
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A.3 2D HEAT CONDUCTIVITY INVERSE PROBLEM: IMPLEMENTATION DETAILS

We generate a synthetic dataset {κexact
i , uobs

i }1≤i≤n for training and test using the following proce-
dure:

• Randomly generate parameter of interest {κi}1≤i≤n

• Compute for each κi the corresponding solution of the forward problem (PDE): u(κi)

• Add noise to form the observables: uobs
i = u(κi) + εi ∀i ∈ [|1, n|], e.g. εi ∈ N (0, 1).

This procedure is not specific to a given PDE and can be adapted to a wide range of inverse problems.
For the heat conductivity example, we generate 500 training samples and 100 test samples. For
training, we average the loss defined in equation 6 over the n training samples, i.e. we have:

L =
1

2n

n∑
i=1

(
∥κθ(u

obs
i )− κexact

i ∥2L2(Ω) + α∥u(κθ(u
obs
i ))− uobs

i ∥2L2(Ω)

)
(13)

For evaluation, we adopt the evaluation metric used in Nguyen & Bui-Thanh (2022), i.e. we report
the average relative error on the m test samples:

R =
1

m

m∑
i=1

∥κθ(u
obs
i )− κexact

i ∥2L2(Ω)

∥κexact
i ∥2L2(Ω)

(14)

The heat conductivity example is mostly designed for demonstrating the criticality of coupling
PyTorch and Firedrake to design, implement, and run complex physics-driven machine learning
models in a highly productive way. Despite neither having a baseline to compare with nor an
available dataset to report the performance of our trained CNN architecture, we release the dataset
we generated for this example for sake of future comparisons. On this synthetic dataset, the
average relative L2-error R on the test split is 17.68%. This result is not directly comparable with
the analogous example presented in Nguyen & Bui-Thanh (2022) as the dataset and the problem
formulation differ. However, given the close similarity between both test cases and the significant
gap in performance in favour of our model, we argue that this can be explained by the fact that we
have considered a more complex architecture.

We also provide the base implementation for implementing physics-driven machine learning models
using PyTorch and Firedrake for arbitrarily defined PDE-based systems in Firedrake by providing
support for data generation, training, and evaluation. The corresponding package can be found in
Bouziani & Ham (2023).

8


	Introduction
	Firedrake
	Differentiable programming
	Coupling PyTorch and Firedrake
	Example: 2D heat conductivity inverse problem
	Appendix
	Adjoint model of PDE solutions
	Custom mappings
	2D heat conductivity inverse problem: implementation details


