
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

REAL-TIME REASONING AGENTS
IN EVOLVING ENVIRONMENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Agents in the real world must make not only logical but also timely judgments.
This requires continuous awareness of the dynamic environment: hazards emerge,
opportunities arise, and other agents act, while the agent’s reasoning is still unfold-
ing. Despite advances in language model reasoning, existing approaches fail to ac-
count for this dynamic nature. We introduce real-time reasoning as a new problem
formulation for agents in evolving environments and build Real-Time Reasoning
Gym to demonstrate it. We study two paradigms for deploying language models
in agents: (1) reactive agents, which employ language models with bounded rea-
soning computation for rapid responses, and (2) planning agents, which allow ex-
tended reasoning computation for complex problems. Our experiments show that
even state-of-the-art models struggle with making logical and timely judgments in
either paradigm. To address this limitation, we propose AgileThinker, which si-
multaneously engages both reasoning paradigms. AgileThinker consistently out-
performs agents engaging only one reasoning paradigm as the task difficulty and
time pressure rise, effectively balancing reasoning depth and response latency.
Our work establishes real-time reasoning as a critical testbed for developing prac-
tical agents and provides a foundation for research in temporally constrained AI
systems, highlighting a path toward real-time capable agents.

Car Moving While
Agent Thinking

Apples Timing Out
While Agent Thinking

Partners Acting While
Agent Thinking

tokens/step

1.0

Figure 1: Upper: We create three real-time games, Freeway, Snake, and Overcooked, to study the
challenge of real-time reasoning. Lower: Under cognitive load and time pressure, AgileThinker
(Ours), which engages both reactive and planning reasoning paradigms, consistently outperforms
agents that engage only one of them. Scores are averaged across different games.

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

Remember your first highway drive? White-knuckling the wheel, fixated on the car ahead. Then sud-
denly your exit appears and you’re three lanes over. This captures how our brains work under pres-
sure: reacting intuitively keeps us safe moment-to-moment, but deliberate planning gets us where
we need to go. This example highlights a fundamental challenge: real-time reasoning (Stanovich
& West, 2000; Kahneman, 2011; Evans & Stanovich, 2013). Under time pressures, agents must si-
multaneously support timely reactions and cognitively demanding long-term planning. Remarkably,
humans excel at this balancing act: shifting seamlessly between instinct and analysis as situations
demand. Expert drivers eventually handle both tasks effortlessly.

However, current Large Language Model (LLM)-based agents fail to live up to this challenge. Most
existing work assume that the environments only change when the agents issue an action, ignoring
the dynamic nature of the world, which evolves in parallel to the agent’s computation. As a result,
despite great effort in improving agent planning with LLM reasoning, including Yao et al. (2022);
Gou et al. (2023); Putta et al. (2024); Ferrag et al. (2025), under this assumption, how to evaluate
and improve the capability to make timely decisions is still an open question.

To bridge this gap, we introduce Real-Time Reasoning Gym, the first environment for language
agents to reason in dynamic environments (§2). Our gym consists of three real-time games: Freeway,
inspired by the Atari game under the same name, Snake, an adaptation of a popular game, and
Overcooked, a two-player version of the collaborative video game. In each game, the state updates at
a fixed rate regardless of whether the agent finishes its reasoning, and if no action is produced by the
agent, a default action is used, simulating reasoning and acting in a real-time world. They challenge
agents with different aspects of a dynamic environment: Freeway features dynamic hazards with
moving cars, Snake involves dynamic opportunities as food appears and disappears, and Overcooked
requires coordination with dynamic partners who act on their own. Real-Time Reasoning Gym is
useful for studying different agent designs for real-time tasks.

To compare different design choices of real-time reasoning agents, we study two paradigms: reactive
agents and planning agents (§3). Reactive agents ensure responsiveness by limiting computation,
while planning agents are allowed to perform more extensive thinking. However, neither of them
is perfect: planning agents cannot easily react to changes in the environment, and reactive agents
fail to make strategic decisions. We propose AgileThinker (§3), a simple yet effective method
that combines the strengths of both paradigms. Unlike agents with one paradigm that must choose
between speed and accuracy, AgileThinker runs two LLMs in two parallel threads: a planning thread
performs extended reasoning over frozen game states, and a reactive thread outputs timely decisions
within environmental update time. Specifically, the reactive thread can reference partial reasoning
traces from the ongoing planning process, enabling informed real-time decisions without waiting for
complete analysis. This also differs from prior dual-system methods (Zhang et al., 2025; Liu et al.,
2024; Christakopoulou et al., 2024), where either two systems operate independently, or one must
wait for another to complete before accessing its outputs.

In this paper, we study the following research questions:

RQ1 How do environment factors affect performance of agents in Real-Time Reasoning Gym?

RQ2 How to balance reaction and planning resources in AgileThinker?

RQ3 How well do the results we get with simulation in Real-Time Reasoning Gym match real-
world walltime experiments?

To study these questions, we manipulate the cognitive load and time pressure of the games, facil-
itating systematic evaluation across both dimensions. We evaluate different design choices for re-
active and planning agents, including budget forcing (Muennighoff et al., 2025) for reactive agents,
code-as-a-policy (Liang et al., 2022) for planning agents. For fair comparison across agent de-
signs, we use one model family, focusing on DeepSeek V3 and R1 because they are open-source
and provide transparent reasoning trajectories required by AgileThinker. To assess generality, we
also experiment with proprietary models (App. § C.3) and observe similar performance trend. Our
results demonstrate that AgileThinker consistently outperforms single-paradigm methods by effec-
tively balancing reactive and planning processes.This advantage, initially observed in simulation,
is confirmed to translate to real-world scenarios through wall-clock time experiments. Ultimately,

2

https://en.wikipedia.org/wiki/Freeway_(video_game)
https://en.wikipedia.org/wiki/Snake_(video_game_genre)
https://en.wikipedia.org/wiki/Overcooked

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

our work establishes a foundation for developing language agents capable of sophisticated reason-
ing under temporal constraints, bringing AI systems closer to human-level performance in dynamic
environments.

2 REAL-TIME REASONING GYM

To evaluate the real-time reasoning capabilities of agents, we need an environment that is (1) dy-
namic: the environment state continuously updates without waiting for the agent’s decision; (2)
cognitively challenging: the tasks should be challenging enough so that logical reasoning is needed;
(3) reproducible: simulated environments to avoid non-negligible noise from hardware factors.

To achieve these three desiderata, we consider a new formulation of decision-making problem. Un-
like conventional turn-based environments, where the environment steps only after the agent finishes
thinking and produces an action (Figure 2 left), in Real-Time Reasoning Gym, the environment steps
forward at a fixed rate, even when the agent has not finished thinking. If no action is produced in
time, a default action is applied (Figure 2 right). This simulates the real-world situation where the
environment does not delay or accelerate according to the agent’s computation time.

obs, done = env.reset()
while not done:
 agent.observe(obs)
 agent.think(timeout=T_E)
 action = agent.act() or DEFAULT_ACTION
 obs, done, reward = env.step(action)

real_time_gym.py

obs, done = env.reset()
while not done:
 agent.observe(obs)
 agent.think() # blocked until finished
 action = agent.act()
 obs, done, reward = env.step(action)

openai_gym.py

Figure 2: Agent loops in OpenAI Gym (Brockman et al., 2016) and Real-Time Reasoning Gym.
Constants T E and DEFAULT ACTIONwill be explained in the following ‘time pressure’ paragraph.

Games In order to control the dynamics of the environment for evaluating real-time reasoning, we
use real-time games in our gym. We created three games to capture different challenges that a dy-
namic environment brings: maintaining safety when hazards happen, seizing transient opportunities,
and coordinating with independent partners (Tab. 1).

In Freeway, the agent traverses multiple lanes of bidirectional traffic, which requires constant moni-
toring for oncoming cars while planning future trajectories to avoid becoming trapped mid-road. In
Snake, the agent eats apples which are only available for a short period of time, creating opportu-
nities that must be seized quickly, while greedy food collection might lead to positions where the
growing snake traps itself. In Overcooked, the agent collaborates with a scripted partner following
a non-stationary policy (App. § A). Efficient dish preparation requires not only planning a sequence
of actions, but also coordinating effectively with the partner.

Cognitive Load To systematically control how challenging the games are, we make the difficulty of
each game tunable through a cognitive load factor (Tab. 1). In Freeway, difficulty is determined by
the minimum number of steps required to traverse the road, since longer paths typically introduce
more detours and require deeper planning horizon. In Snake, we vary the density of obstacles,
increasing route complexity and the need for look-ahead. In Overcooked, complexity is controlled
by the length of an internal kitchen counter, as a longer counter expands navigation complexity and
stretches temporal windows for high-level goals, creating larger discrepancies in long-term planning
and immediate execution. For each game, we design 3 levels of difficulties, easy, medium, and hard;
the corresponding ranges of each level can be found in App. Tab. 5.

Table 1: Different Games in Real-Time Reasoning Gym.

Game Dynamic Aspect Cognitive Load Factor Evaluation Metrics

Freeway Hazards Min steps to finish: S #Steps the agent takes to get to the other side
Snake Opportunities #Obstacles: N #Apples the agent eats before collision
Overcooked Partners Kitchen Counter Len.: L #Orders completed cooperatively

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

…

Let me think
step by step.

…
DOWN may
cause future

collisions.

…
STAY is safe
now but …

Only UP after
STAY is safe in

2 steps.

STAY now.

…
After STAY, I
should wait

until buses …

>12k tokens

2k tokens

Don’t move
DOWN. STAY!

UP is safe.
Move UP!

2k tokens

2k tokens

DOWN is safe.
Move DOWN!

No safe way
STAY here.

2k tokens

Let me think
step by step.

…

DOWN may
cause future

collisions.
…

STAY is safe
now but …

> 8k tokens

Wait for buses.
Stay!

2k tokens

…

Observation Action Reference

Let me think
step by step.

…
DOWN may
cause future

collisions.

…
STAY is safe
now but …

Only UP after
STAY is safe in

2 steps.

STAY now.

…
The final
answer is

STAY!

inf tokens

Reactive Agent OutputPlanning Agent Output

Static Dynamic

Reactive Agent Planning Agent Reactive Agent AgileThinker (Ours)

Agent

Figure 3: Existing evaluation setups for LLM Agents often assume a static setting, where the en-
vironment halts while the agent completes reasoning with unlimited computation. In Real-Time
Reasoning Gym, environments are dynamic, evolving regardless of agents’ computation state. As
illustrated in the Freeway setting, Planning Agent, which performs extended reasoning without
interruption, fails to act timely while Reactive Agent, which performs reasoning strictly within en-
vironment update period, lacks foresight and collides. AgileThinker combines both timely reaction
and long-term planning to navigate such environments effectively.

Time Pressure To enable reproducible and hardware-agnostic evaluation, we use token count as a
time proxy to simulate the games, leveraging the fact that LLM decoding time scales almost linearly
with output length through time-per-output-token (TPOT), while prefilling time becomes negligible
for long sequences. This yields decoding time T = NT × TPOT, where NT is the generated
token count, allowing fair comparison across deployment scenarios while maintaining real-world
correspondence. We impose time pressure by letting the environment step every NTE , or T E in Fig.
2, tokens generated by agents. When the agent cannot produce a valid action, we let the environment
step with a DEFAULT ACTION (Fig. 2). In Freeway and Snake, the default action is moving in the
same direction as before, and in Overcooked, the default action is to stay idle. We consider four
different time pressure levels, 32k, 16k, 8k, and 4k tokens per step, from low to high pressure. As
shown in Figure 3, unlike existing static evaluations, the introduction of time pressure simulates the
real world dynamic environments where the world does not freeze during agent reasoning.

Evaluation Evaluation metric differs for each game. In Freeway, we evaluate the number of steps
the agent takes to get to the other side, while the agent is reset to the origin every time it gets hit
by a car; in Snake, we count the number of apples that the agent eats before a collision; and in
Overcooked, we use the number of orders that the agent and the partner completed in total. These
evaluation metrics represent the capability of the agents to solve the tasks not only logically but also
timely. For each game, we normalize the scores by the highest score the agent could get in that
game, so we always have a score between 0 and 1. As the cognitive load and time pressure increase,
we expect the scores decrease. However, the scores of an agent with strong real-time reasoning
capabilities should decrease slower. It is worth noting that our gym is used to evaluate design
choices of agent systems when the model or model family (e.g. DeepSeek-V3 and R1) is fixed.
Therefore, cross-model comparisons may be unfair due to their different tokenizers and underlying
architectures.

3 REAL-TIME REASONING AGENTS

To address the real-time reasoning problem, we consider two solution paradigms: (1) reactive, where
the agent produces a new action at every environment step, and (2) planning, where the agent reasons
across multiple steps to generate an action plan, which is then executed until the agent resumes

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

reasoning. In the following, we discuss how to create agents following each of the two paradigms,
and how these two paradigms are engaged in AgileThinker.

Reactive agents We constrain reactive agents by a token budget Ni, ensuring they can respond
within each environment update when Ni ≤ NTE . We consider two kinds of language models
for reactive agents: (1) non-thinking models1 that produce limited tokens for each response; and (2)
thinking models that produce extended reasoning which is cut off at the token budget Ni with budget
forcing (Muennighoff et al., 2025). In both cases, the agent produces one action per environment
step, enabling immediate reaction to any change. This reactive approach is commonly used in agent
systems these days.

Planning agents While reactive agents ensure timeliness, their token budget restricts the com-
plexity of reasoning they can perform within a single step. In contrast, planning agents can consider
their plans through multiple environment steps. We consider two formats of plans: (1) multi-step
actions where a thinking model is used to generate a sequence of multiple actions to be executed;
and (2) code plans where a thinking model is used to generate a code snippet that automatically
produces actions based on observation input (Liang et al., 2022; Zhang et al., 2025). Although (1)
is often easier to generate, (2) is more adaptive to potential changes. Both formats allow for more
deliberate, long-horizon decision-making by leveraging extended reasoning.

<think> DOWN is safe but causes collision later. STAY is safe now but…

… Only UP after STAY is safe in 2 steps. STAY now. After STAY, I should …

… After STAY, I should wait for buses to pass</think> STAY, UP, STAY …

<think>Let me think. I should wait for busses. After that, let me check if it is …

Don’t move DOWN. STAY!

OK! Move UP is safe. UP!

Wait for buses. STAY!

Wait for buses. STAY!

Step

Computation

0

1

2

3

4

Planning Thread Observation ReferenceReactive Thread Agent

Figure 4: Two parallel threads in AgileThinker

AgileThinker All agents in-
troduced above must complete
their reasoning process before
taking any action. To overcome
this limitation, we propose Ag-
ileThinker, which employs two
parallel threads to achieve both
timely action generation and un-
interrupted deep planning. The
planning thread P runs an LLM
that streams the thinking pro-
cess for a multi-step action plan.
Upon initialization, a reason-
ing process begins that contin-
ues until the execution of a plan.
P cannot keep up with environ-
mental changes (e.g. Steps 1-2
in Fig. 4). However, since its
planning focuses on long-term
objectives, many generated insights remain useful over extended horizons. In contrast, the reac-
tive thread R runs a separate LLM under strict time constraints TR ≤ TE , making decisions based
on the latest observation and the (partial) output of P (see gray and yellow arrows in Fig. 4).

The coordination between the two threads R and P follows a time-sharing protocol: during each
environment step, P operates continuously while R activates only in the final TR time units. The
hyperparameter TR controls the resource trade-off between the two thread. With a larger TR, the
reactive thread can be more adaptive, but there will be less reasoning from the planning thread to
refer to. Effectively balancing planning and reaction resources is the key to success in AgileThinker,
which will be discussed in §5.

4 IS SINGLE PARADIGM ENOUGH FOR REAL-TIME REASONING?

Evaluation Setup: To investigate how cognitive load and time pressure affect the performance
respectively, we conduct two series of experiments. (1) Cognitive load varies (Easy, Medium, Hard)
while time pressure is fixed at 8k tokens/step—lenient enough for non-thinking models to complete

1Thinking models are the LLMs trained with reinforcement learning to incentivize reasoning before generat-
ing answers (DeepSeek-AI et al., 2025), while non-thinking models are the LLMs that have not been specifically
trained to generate long reasoning.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

EASY MEDIUM HARD
COGNITIVE LOAD

0.0

0.2

0.4

0.6

0.8

1.0

SC
OR

E

Freeway

EASY MEDIUM HARD
COGNITIVE LOAD

Snake

EASY MEDIUM HARD
COGNITIVE LOAD

Overcooked

32K 16K 8K 4K
TIME PRESSURE

0.0

0.2

0.4

0.6

0.8

1.0

SC
OR

E

32K 16K 8K 4K
TIME PRESSURE

32K 16K 8K 4K
TIME PRESSURE

TOKENS/STEP

AgileThinker (Ours) Reactive (V3) Reactive (R1 + Budget Forcing) Planning (R1) Planning (R1 + Code-Policy)

Figure 5: Performance of reasoning agents in Real-Time Reasoning Gym under varying cognitive
loads and time pressures. Upper: we fix time pressure at 8k tokens per step and vary cognitive load.
Lower: we fix cognitive load at medium level and vary time pressure. Full data and significance test
at App. § C.1 and § C.2.

their responses, yet restrictive for thinking models. The intrinsic bound Ni (see Section 3) for
reactive agent is set to 8k. (2) Time pressure varies (NTE ∈ {4k, 8k, 16k, 32k}) with medium
cognitive load. Here, Ni is set to 4k to ensure it remains lower than time pressure budget. We
evaluate each agent 32 times (8 game seeds × 4 LLM sampling seeds) under each setting and report
the average score of these samples. Details of the environments and score calculation can be found
in App. § A, and prompts are provided in App. § B.

Figure 1 reports the average scores over three games, while Figure 5 provides a breakdown per game.
The results show that reactive and planning agents fail to balance decision quality and efficiency,
whereas our AgileThinker achieves robust performance under varying conditions.

Reactive agent sacrifices decision quality for efficiency. By design, the reactive agent restricts
computation time less than TE and maintains consistent performance across all time pressures.
However, the limit on test-time scaling also causes a dramatic performance drop as cognitive load
increases (scores falling from 0.89 to 0.15, versus 0.88 to 0.50 for AgileThinker) This drop stems
from its inability to consider future consequences of a move carefully. As exemplified in the case
study in Figure 6, the reactive agent greedily pursues immediate rewards, falling into predictable
traps while AgileThinker avoids by considering long-term survival requirements.

Planning agent optimizes for decision quality but suffers under time pressure. Planning agent
excels under relaxed time constraints but suffers from dramatic degradation when time pressure
increases (scores dropping from 0.92 to 0.05, versus 0.90 to 0.58 for AgileThinker). Its fundamental
flaw is obliviousness to environmental changes, executing plans based on outdated observations. As
illustrated in the case study, the agent is unaware that the snake has moved forward during reasoning,
hence it crashes into a wall by following the obsolete plan. However, reactive thread in AgileThinker
is informed of the latest state, thus able to adjust the output of planning thread accordingly.

The two variants of reactive and planning agents discussed in §3 are also insufficient. Neither
method matches reactive agent’s performance under time constraints while maintaining planning
agent’s performance under relaxed conditions. R1 with budget forcing fails to reliably shorten gen-
eration length without harming quality, yielding even worse performance than the reactive agent
based on V3 (0.01 < 0.39). Experiment trajectories reveal that meaningful actions mainly occur
when generation naturally fits within the budget; forced truncation typically results in no-ops. More
advanced budget control methods, such as budget-aware generation (Figure 9), only offer minor
shifts in token usage distribution, and truncation still leads to severe performance drops. R1 with
code-policy helps in tasks with simple algorithmic solution like Freeway. However, it underperforms
direct action generation in the other games, where effective policies require complex contextual un-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

PlanningStep19 Step19Step19

Step19 Step19Step19

Step19 Step19Step21

Step19 Step19Step22

Planning

Step 1

Step 2

Step 3

Step 4

Step 5

Step18 Step18Step18

Planning Planning

Input: Step 1

Output: L

Reactive

Input: Step 2

Output: U

Reactive

Input: Step 3

Output: R

Reactive

Input: Step 4

Output: R

Reactive

Input: Step 5

Output: R

Reactive

Input: Step 1

Output:
L L U U U U U

Input: Step 4

Input: Step 1

Input: Step 4

Reactive

Reactive

Reactive

Reactive

Reactive

Input:
Step 1 + Plan

Output: L

Output: U

Output: U

Output: U

Output: U

Input:
Step 2 + Plan

Input:
Step 3 + Plan

Input:
Step 4 + Plan

Input:
Step 5 + Plan

Reactive Agent Planning Agent AgileThinker (Ours)

Step 3 – Reactive Reasoning Step 1~3 – Planning Reasoning Step 3 – Reactive Reasoning
Guided by Planning

(2,6) : ...safe… takes 5 moves.

(3,5) : ... safe… takes 3 moves

(5,2) : ... No immediate collision.
Seems safe and reachable in 2 moves.

... Best immediate choice is to head

towards (5,2).

\boxed{R}

<think>
First, let's visualize the grid...

If I move to (5,2)... So the snake is trapped,
and if I move to any direction I die....
I need to think about the food at (2,6) which
has short life...
</think>
Prioritize eating (2,6) with a short life span (9
Steps), while avoiding the risky food at

(5,2).
\boxed{LLUUUUU}

(2, 6): … Far away and may not be
reachable before it disappears

(3, 5): ... is safe.

(5, 2): ...may lead to trapping the
snake (as seen in the previous plan).

… The safest immediate move is Up (U)
and heads to (3, 5)…

\boxed{U}

Figure 6: Thinking trajectories of different paradigms at critical steps At step 3, Reactive Agent
(V3) greedily pursues the nearest food and collides inevitably after three steps. Planning Agent
(R1) , still reasoning over the outdated step-1 state, defaults left. However, it correctly identifies that
eating the nearest food would result in a future collision, and that its lifespan is sufficient to delay
consumption. Guided by the reasoning of Reactive Thread, Planning Thread in the AgileThinker
anticipates the trap and chooses to move upward toward a safer food target.

derstanding capabilities like heuristic search or Theory-of-Mind (inferring partner’s mental state
through action history) that cannot be easily compressed into code. To better illustrate this, we show
representative code policies generated by R1 in App. §C.4.

5 HOW TO MANAGE RESOURCES BETWEEN REACTION AND PLANNING?

Effective coordination between reactive thread R and planning thread P requires careful time man-
agement to determine when to invoke R within each environment step. We analyze how the token
budget NTR allocated to R affects the performance of AgileThinker. We set NTE to 8k and vary
the token budget NTR from 0.5k to 8k tokens. Figure 7 presents agent scores under different NTR ,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

2.0 3.0 4.0 5.0 6.0
TOKEN BUDGET (K/STEP)

0.0

0.2

0.4

0.6

0.8

1.0

SC
OR

E

Freeway

0.5 1.0 2.0 3.0 4.0
TOKEN BUDGET (K/STEP)

Snake

0.5 1.0 2.0 3.0 4.0
TOKEN BUDGET (K/STEP)

Overcooked

0.0

0.2

0.4

0.6

0.8

1.0

DE
NS

IT
Y

Reactive (V3)
Reactive (R1 + Budget Forcing)

Planning (R1)
Planning (R1 + Code-Policy)

AgileThinker
Reaction Thread Token Usage CDF

Figure 7: Performance of AgileThinker under different reactive thread token budgets NTR . The cu-
mulative distribution function (CDF) shows the natural token usage of R across all game trajectories
when generation is not truncated, indicating inherent computational requirements of R.

where we also plot the cumulative distribution function (CDF) of R’s token usage across all game
trajectories without constraints to understand its inherent computational requirements.

We can see that setting NTR too small (e.g., 0.5k) leads to low scores, as R doesn’t have enough time
to process strategic guidance from P and generate well-reasoned actions. Conversely, setting NTR
too large creates idle periods where R has completed action generation but P continues productive
reasoning. Empirically, performance peaks when NTR approximates the natural token upper bound
of R, as indicated by the CDF of R’s token usage. This suggests that R benefits from fully utilizing
its allocated time without truncation or extended idling.

It is worth noting that the optimal time budget varies across environments and requires empirical tun-
ing. In Freeway, optimal budget is approximately 5k tokens, while Snake and Overcooked achieve
peak performance around 2k tokens. However, AgileThinker consistently outperform single-system
baselines across broad budget ranges, suggesting that rough upperbound estimations are sufficient
to achieve the advantages.

6 PERFORMANCE IMPROVEMENT UNDER WALL-CLOCK TIME

Table 2: Wall-clock time performance comparison across agent
systems, confirming AgileThinker advantages persist in real-
world deployment scenarios.

Environment Reactive (V3) Planning (R1) AgileThinker

Freeway 0.24 0.12 0.88
Snake 0.37 0.04 0.45
Overcooked 0.57 0.00 0.89

To validate the practical applica-
bility of our token-based simu-
lation, we conduct experiments
using actual wall-clock time
with official API of DeepSeek.
Our results show token count
has strong linear correlation
with physical inference time.
Specifically, we model this rela-
tionship as T = αN + β, where
T represents total runtime and N represents generated tokens. Least squares estimation on all
experiment trajectories (plotted in Figure 10) yields α = 0.0473 s/token, β = 334.55 s, with
R2 = 0.9986. This near-perfect correlation validates our token-based temporal abstraction and
confirms its practical relevance for real-world deployments.

We also conduct experiments to verify that the advantage of AgileThinker remains when the game is
simulated in wall-clock time. Using the derived TPOT of 0.047 s/token, we evaluate agent systems
with environment evolution intervals of TE = 6 minutes, corresponding to approximately 8,000 to-
kens per step. Table 2 shows that AgileThinker consistently outperforms both Reactive and Planning
Agents in physical time. These results establish that our framework’s benefits extend beyond theory
to practical applications, demonstrating applicability of our architecture for agent deployments on
intelligence-demanding, real-time tasks.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

7 RELATED WORK

Evaluation Environments for LLM Agents: Existing evaluation setups for LLM agents mostly
focus on static environments where nothing changes during episodes (Yang et al., 2024; Zhou et al.,
2024b) or state pauses during LLM reasoning (Zhou et al., 2024a; Shi et al., 2025). This unrealistic
assumption risks performance drop and even safety hazards when applying LLM agents in latency-
sensitive applications (Sinha et al., 2024; Zheng et al., 2025). Prior work has modeled computation
delays through Delay-Aware MDPs (Chen et al., 2020), sticky-action schemes (Mahmood et al.,
2018), and asynchronous interactive MDPs (Travnik et al., 2018; Riemer et al., 2024), but the scope
of these works is limited to traditional reinforcement learning. Although some works (Liu et al.,
2024; Zhang et al., 2025) do adopt LLM agents in wall-clock time, our work is the first to formalize
real-time reasoning problem for LLM Agents. In particular, we measure elapsed token count as a
hardware-agnostic temporal unit, enabling fair and reproducible comparison across agent systems.

Budget Control for Reasoning Models: Test-time compute improves LLM performance but sig-
nificantly increases inference time, with overthinking behaviors commonly observed in current rea-
soning models (Chen et al., 2025). Budget control aims to maximize LLM performance under fixed
budgets, and popular methods include early truncation (Muennighoff et al., 2025), prompting (Pu
et al., 2025) and training (Aggarwal & Welleck, 2025; Team et al., 2025; Gemini Team, 2025).
These methods are effective to a certain extent, but still struggle with precise control over generated
token count (Alomrani et al., 2025) and performance drops when budgets are far from adequate (Han
et al., 2025). This suggests that existing techniques are inadequate for handling both loose and tight
budget constraints within a single model. The results on Real-Time Reasoning Gym demonstrate
that SOTA budget control methods cannot effectively balance reaction and planning, necessitating
dual LLM architectures for real-time environments.

Dual Agent Systems: Dual process theory posits that human cognition operates through two distinct
components: System 1 (fast and intuitive) and System 2 (slow and deliberate) (Evans, 2013; Kahne-
man, 2011). This inspires dual agent system designs, which combine fast modules (finite-state ma-
chines (Zhang et al., 2025), vision transformers (Cui et al., 2025), small language models (Liu et al.,
2024), etc) for System 1 with powerful modules (LLMs with tools (Christakopoulou et al., 2024),
LRMs (Zhang et al., 2025), etc) for System 2. AgileThinker differs from existing approaches in
that System 1(Reactive Thread) can access the partial reasoning trace of System 2(Planning Thread),
allowing informed decision making with minimal delay.

8 CONCLUSION

In this work, we identified and formalized real-time reasoning, a fundamental challenge faced by
agents in real-world deployment. We introduced Real-Time Reasoning Gym, the first gym for
evaluating LLM agents in continuously evolving environments. It supports independent control of
cognitive load and time pressure, using token count as a hardware-independent temporal measure.
Our evaluation revealed critical shortcomings of existing reasoning paradigms (reactive and plan-
ning reasoning). To address this gap, we proposed AgileThinker, which engages two reasoning
paradigms in parallel. Experiments demonstrate that our method consistently outperforms all base-
lines, with advantages growing as cognitive load increases and time constraints tighten. Future work
can extend our gym to more realistic scenarios, improve coordination mechanisms between two
threads, or leverage our gym to train urgency-aware LLM agents.

9 LIMITATIONS

Our method investigates the real-time reasoning in LLM agents. Although our formulation is gen-
eral, we only conducted experiments on DeepSeek models due to two reasons: (1) open source
models perform poorly in general, thus the difference between different systems is not significant
enough, and (2) other commercial model providers, including OpenAI, Google and Anthropic, do
not provide reasoning traces which are crucial in our evaluation. We also try our best to make sure
the readers understand that we do not have any empirical evidence showing that the dual system
implemented in AgileThinker is precisely modeling human dual systems. The connection and dif-
ference require more rigorous evaluation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

10 USE OF LANGUAGE MODELS

We used large language models solely to assist with paraphrasing and improving the readability of
this paper. All research ideas, designs, experiments, analyses, and conclusions are entirely our own.

11 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. The implementation of Real-Time
Reasoning Gym and AgileThinker, including all necessary code and dependencies, will be made
publicly available on GitHub upon paper publication. The code can be run on any platform sup-
porting DeepSeek V3 and R1 models, which we use for our experiments. Detailed instructions on
how to set up and reproduce our results will be provided in the repository, including any additional
dependencies and environment configurations.

REFERENCES

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning, 2025. URL https://arxiv.org/abs/2503.04697.

Mohammad Ali Alomrani, Yingxue Zhang, Derek Li, Qianyi Sun, Soumyasundar Pal, Zhanguang
Zhang, Yaochen Hu, Rohan Deepak Ajwani, Antonios Valkanas, Raika Karimi, Peng Cheng,
Yunzhou Wang, Pengyi Liao, Hanrui Huang, Bin Wang, Jianye Hao, and Mark Coates. Reasoning
on a budget: A survey of adaptive and controllable test-time compute in llms, 2025. URL https:
//arxiv.org/abs/2507.02076.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Baiming Chen, Mengdi Xu, Liang Li, and Ding Zhao. Delay-aware model-based reinforcement
learning for continuous control, 2020. URL https://arxiv.org/abs/2005.05440.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu. Do not
think that much for 2+3=? on the overthinking of o1-like llms, 2025. URL https://arxiv.
org/abs/2412.21187.

Konstantina Christakopoulou, Shibl Mourad, and Maja Matari. Agents thinking fast and slow: A
talker-reasoner architecture, 2024. URL https://arxiv.org/abs/2410.08328.

Can Cui, Pengxiang Ding, Wenxuan Song, Shuanghao Bai, Xinyang Tong, Zirui Ge, Runze Suo,
Wanqi Zhou, Yang Liu, Bofang Jia, Han Zhao, Siteng Huang, and Donglin Wang. Openhelix: A
short survey, empirical analysis, and open-source dual-system vla model for robotic manipulation,
2025. URL https://arxiv.org/abs/2505.03912.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong

10

https://arxiv.org/abs/2503.04697
https://arxiv.org/abs/2507.02076
https://arxiv.org/abs/2507.02076
https://arxiv.org/abs/2005.05440
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2410.08328
https://arxiv.org/abs/2505.03912

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2501.12948.

Jonathan St. B. T. Evans and Keith E. Stanovich. Dual-process theories of higher cognition:
Advancing the debate. Perspectives on Psychological Science, 8(3):223–241, 2013. doi:
10.1177/1745691612460685. URL https://doi.org/10.1177/1745691612460685.
PMID: 26172965.

Jonathan St BT Evans. Dual-process theories of reasoning: Contemporary issues and developmental
applications. Developmental Review, 33(2):145–170, 2013.

Mohamed Amine Ferrag, Norbert Tihanyi, and Merouane Debbah. From llm reasoning to au-
tonomous ai agents: A comprehensive review. arXiv preprint arXiv:2504.19678, 2025.

Gemini Team. Gemini 2.5: A multimodal ai model. https://storage.googleapis.com/
deepmind-media/gemini/gemini_v2_5_report.pdf, January 2025. Technical Re-
port, Google DeepMind.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Minlie Huang, Nan Duan, and
Weizhu Chen. Tora: A tool-integrated reasoning agent for mathematical problem solving. arXiv
preprint arXiv:2309.17452, 2023.

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen. Token-
budget-aware llm reasoning, 2025. URL https://arxiv.org/abs/2412.18547.

Daniel Kahneman. Thinking, fast and slow. Farrar, Straus and Giroux, 2011.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. In arXiv preprint
arXiv:2209.07753, 2022.

Jijia Liu, Chao Yu, Jiaxuan Gao, Yuqing Xie, Qingmin Liao, Yi Wu, and Yu Wang. Llm-
powered hierarchical language agent for real-time human-ai coordination, 2024. URL https:
//arxiv.org/abs/2312.15224.

A. Rupam Mahmood, Dmytro Korenkevych, Gautham Vasan, William Ma, and James Bergstra.
Benchmarking reinforcement learning algorithms on real-world robots, 2018. URL https:
//arxiv.org/abs/1809.07731.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Cands, and Tatsunori Hashimoto. s1: Simple test-time
scaling, 2025. URL https://arxiv.org/abs/2501.19393.

Xiao Pu, Michael Saxon, Wenyue Hua, and William Yang Wang. Thoughtterminator: Bench-
marking, calibrating, and mitigating overthinking in reasoning models, 2025. URL https:
//arxiv.org/abs/2504.13367.

Pranav Putta, Edmund Mills, Naman Garg, Sumeet Motwani, Chelsea Finn, Divyansh Garg, and
Rafael Rafailov. Agent q: Advanced reasoning and learning for autonomous ai agents. arXiv
preprint arXiv:2408.07199, 2024.

11

https://arxiv.org/abs/2501.12948
https://doi.org/10.1177/1745691612460685
https://storage.googleapis.com/deepmind-media/gemini/gemini_v2_5_report.pdf
https://storage.googleapis.com/deepmind-media/gemini/gemini_v2_5_report.pdf
https://arxiv.org/abs/2412.18547
https://arxiv.org/abs/2312.15224
https://arxiv.org/abs/2312.15224
https://arxiv.org/abs/1809.07731
https://arxiv.org/abs/1809.07731
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2504.13367
https://arxiv.org/abs/2504.13367

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Matthew Riemer, Gopeshh Subbaraj, Glen Berseth, and Irina Rish. Enabling realtime reinforcement
learning at scale with staggered asynchronous inference, 2024. URL https://arxiv.org/
abs/2412.14355.

Jiajun Shi, Jian Yang, Jiaheng Liu, Xingyuan Bu, Jiangjie Chen, Junting Zhou, Kaijing Ma, Zhou-
futu Wen, Bingli Wang, Yancheng He, Liang Song, Hualei Zhu, Shilong Li, Xingjian Wang, Wei
Zhang, Ruibin Yuan, Yifan Yao, Wenjun Yang, Yunli Wang, Siyuan Fang, Siyu Yuan, Qianyu
He, Xiangru Tang, Yingshui Tan, Wangchunshu Zhou, Zhaoxiang Zhang, Zhoujun Li, Wenhao
Huang, and Ge Zhang. Korgym: A dynamic game platform for llm reasoning evaluation, 2025.
URL https://arxiv.org/abs/2505.14552.

Rohan Sinha, Amine Elhafsi, Christopher Agia, Matthew Foutter, Edward Schmerling, and Marco
Pavone. Real-time anomaly detection and reactive planning with large language models, 2024.

Keith E. Stanovich and Richard F. West. Individual differences in reasoning: Implications for
the rationality debate? Behavioral and Brain Sciences, 23(5):645665, 2000. doi: 10.1017/
S0140525X00003435.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, Chuning Tang, Congcong Wang, Dehao Zhang, Enming
Yuan, Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda Wei, Guokun Lai, Haiqing Guo, Han
Zhu, Hao Ding, Hao Hu, Hao Yang, Hao Zhang, Haotian Yao, Haotian Zhao, Haoyu Lu, Haoze
Li, Haozhen Yu, Hongcheng Gao, Huabin Zheng, Huan Yuan, Jia Chen, Jianhang Guo, Jianlin
Su, Jianzhou Wang, Jie Zhao, Jin Zhang, Jingyuan Liu, Junjie Yan, Junyan Wu, Lidong Shi,
Ling Ye, Longhui Yu, Mengnan Dong, Neo Zhang, Ningchen Ma, Qiwei Pan, Qucheng Gong,
Shaowei Liu, Shengling Ma, Shupeng Wei, Sihan Cao, Siying Huang, Tao Jiang, Weihao Gao,
Weimin Xiong, Weiran He, Weixiao Huang, Weixin Xu, Wenhao Wu, Wenyang He, Xianghui
Wei, Xianqing Jia, Xingzhe Wu, Xinran Xu, Xinxing Zu, Xinyu Zhou, Xuehai Pan, Y. Charles,
Yang Li, Yangyang Hu, Yangyang Liu, Yanru Chen, Yejie Wang, Yibo Liu, Yidao Qin, Yifeng
Liu, Ying Yang, Yiping Bao, Yulun Du, Yuxin Wu, Yuzhi Wang, Zaida Zhou, Zhaoji Wang,
Zhaowei Li, Zhen Zhu, Zheng Zhang, Zhexu Wang, Zhilin Yang, Zhiqi Huang, Zihao Huang,
Ziyao Xu, Zonghan Yang, and Zongyu Lin. Kimi k1.5: Scaling reinforcement learning with llms,
2025. URL https://arxiv.org/abs/2501.12599.

Jaden B. Travnik, Kory W. Mathewson, Richard S. Sutton, and Patrick M. Pilarski. Reactive rein-
forcement learning in asynchronous environments. Frontiers in Robotics and AI, 5, June 2018.
ISSN 2296-9144. doi: 10.3389/frobt.2018.00079. URL http://dx.doi.org/10.3389/
frobt.2018.00079.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering,
2024. URL https://arxiv.org/abs/2405.15793.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2022.

Shao Zhang, Xihuai Wang, Wenhao Zhang, Chaoran Li, Junru Song, Tingyu Li, Lin Qiu, Xuezhi
Cao, Xunliang Cai, Wen Yao, Weinan Zhang, Xinbing Wang, and Ying Wen. Leveraging dual
process theory in language agent framework for real-time simultaneous human-ai collaboration,
2025. URL https://arxiv.org/abs/2502.11882.

Yangqing Zheng, Shunqi Mao, Dingxin Zhang, and Weidong Cai. Llm-enhanced rapid-reflex async-
reflect embodied agent for real-time decision-making in dynamically changing environments.
arXiv preprint arXiv:2506.07223, 2025.

Qinhong Zhou, Sunli Chen, Yisong Wang, Haozhe Xu, Weihua Du, Hongxin Zhang, Yilun Du,
Joshua B. Tenenbaum, and Chuang Gan. Hazard challenge: Embodied decision making in dy-
namically changing environments, 2024a. URL https://arxiv.org/abs/2401.12975.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic
web environment for building autonomous agents, 2024b. URL https://arxiv.org/abs/
2307.13854.

12

https://arxiv.org/abs/2412.14355
https://arxiv.org/abs/2412.14355
https://arxiv.org/abs/2505.14552
https://arxiv.org/abs/2501.12599
http://dx.doi.org/10.3389/frobt.2018.00079
http://dx.doi.org/10.3389/frobt.2018.00079
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2502.11882
https://arxiv.org/abs/2401.12975
https://arxiv.org/abs/2307.13854
https://arxiv.org/abs/2307.13854

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A ENVIRONMENT DETAILS

• Freeway: The player navigates across parallel highways with moving cars. At each step
the player can move to an adjacent lane or stay in place. Cars move forward at constant
speeds and new cars may spawn on either side of the road. If the player is hit by a car, it
will be reset to the starting position. The game terminates if the player crosses the road or
if the step limit M = 100 is reached. The reward for a trajectory τ is computed as:

R(τ) = M − |τ |

• Snake: The player controls a snake in a 2D rectangular grid with surrounding walls and
internal obstacles. At each step, the snake can move one step left, right, up or down. If the
snake head collides with an obstacle or its body segment, it dies. Foods spawn continuously
in the map and disappears after a fixed number of steps; eating food increases the snake’s
length by 1 unit. The game terminates if the snake dies or the number of steps exceeds
threshold M = 100. The reward is calculated as:

R(τ) = Number of eaten food − I[Dies in M steps]

• Overcooked: A fully observable two-player cooperative game where players must collect
onions, cook them in a pot and serve the cooked soup for rewards. At each step, the players
can move in 4 directions or use interact action to trigger some events, such as picking or
placing an item depending on the game state. Since we focus on single-agent settings, we
model the second player as part of the changing environment, controlled by a manually
written script for simplicity and consistency. This agent randomly chooses one policy to
follow: deliver an onion into an arbitrary pot or a kitchen counter. The game runs for
M = 100 steps, and rewards are assigned for accomplishment of special events listed in
Table 3. The game is implemented based on the repository https://github.com/
HumanCompatibleAI/overcooked_ai

Event Reward
Picking up a dish from the dispenser 3
Picking up a cooked soup from the pot 5
Serving the soup 20

Table 3: Rewards for different events in the Overcooked environment.

The reward is then normalized to [0, 1] to get the final game score. Specifically, let Rmin and Rmax
be the minimum and maximum rewards observed in all trajectories. The score S is computed as:
S = R−Rmin

Rmax−Rmin
Empirically, the Rmax and Rmin of each environment are listed in Table 4.

Environment Rmin Rmax

Freeway 0 89
Snake -1 15
Overcooked 0 56

Table 4: Minimum and maximum rewards for each environment.

Table 5: Game difficulty settings, showing ranges for easy, medium, and hard levels.

Game Dynamic Aspect Cognitive Load Factor Easy Medium Hard

Freeway Hazards Min steps to finish: S S ≤ 12 13 ≤ S ≤ 16 17 ≤ S ≤ 21
Snake Opportunities #Obstacles: N N = 1 2 ≤ N ≤ 5 6 ≤ N ≤ 8
Overcooked Partners Kitchen Counter Len.: L L = 0 L = 3 L = 4

13

https://github.com/HumanCompatibleAI/overcooked_ai
https://github.com/HumanCompatibleAI/overcooked_ai

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B PROMPT

Prompt for the Planning Agent

Now a player is playing a multi-turn game, and suppose current turn is {t1}. Given the initial
position (0, yt1) on a 2D grid (vertical axis y = 0, 1, . . . , 9), determine the minimal number
of turns H and a sequence of actions {at1+t}H−1

t=0 to reach (0, 9), avoiding collisions with
cars on freeways y = 1, . . . , 8.

1. Game Dynamics:

• Player update: yt+1 = yt +∆yt, where

∆yt =


+1 if at = U

−1 if at = D

0 if at = S

, yt+1 ∈ [0, 9]

• Car update rules:
For car k on freeway i, suppose its head is at h, tail is at τ at turn t1, and speed is
s. Then at turn T > t1, the car span becomes:

– Left-moving: Span(t1) = [h, τ] → Span(T) = [h−s(T − t1), τ −s(T − t1)]

– Right-moving: Span(t1) = [τ, h] → Span(T) = [τ+s(T−t1), h+s(T−t1)]

• Collision occurs at turn T only if 0 ∈ Span(T) for any car on freeway yT .
• Note that if you decide to move to yT+1 ̸= yT at turn T , you will NOT be con-

sidered to be on yT+1 at turn T , thus will NOT be collided by cars on yT+1 if
0 ∈ Span(T) but 0 /∈ Span(T + 1).

2. Task (Turn t1):

Find a sequence of actions {at1+t}H−1
t=1 which minimizes H such that yt1+H−1 = 9.

Answer Format:

Turn t1: at1
Turn t1 + 1: at1+1

...

3. Current State (Turn t1):

Current Turn: t0 = 10

Player Position: (0, 6)

Car State:

Freeway k Cars (head h, tail τ , direction d, speed s)
1 (48, 37, right, 12), (0,−11, right, 12)
2 (48, 1, right, 48)
... ...
8 (48, 37, right, 12), (0,−11, right, 12)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Prompt for the Reactive Agent

Prompt:

You are a player in a freeway game, starting at (0, yt0) on a 2D grid (vertical axis y = 0, 1, . . . , 9).
Your goal is to reach (0, 9) while avoiding collisions with cars on freeways y = 1, . . . , 8.

1. Game Dynamics:

• Player update:
yt+1 = yt +∆yt, where

∆yt =


+1 if at = U

−1 if at = D

0 if at = S

, yt+1 ∈ [0, 9]

• Car update rules:
For car k on freeway i, suppose its head is at h, tail is at τ at turn t0, and speed is s. Then at
turn T > t0, the car span becomes:

– Left-moving: Span(t0) = [h, τ] → Span(T) = [h− s(T − t0), τ − s(T − t0)]

– Right-moving: Span(t0) = [τ, h] → Span(T) = [τ + s(T − t0), h+ s(T − t0)]

• Collision occurs at turn T only if 0 ∈ Span(T) for any car on freeway yT .

• Note that if you decide to move to yT+1 ̸= yT at turn T , you will NOT be considered
to be on yT+1 at turn T , thus will NOT be collided by cars on yT+1 if 0 ∈ Span(T) but
0 /∈ Span(T + 1).

2. Guidance from a Previous Thinking Model (Turn t1 ≤ t0):

Sometimes, you have access to a past output from a thinking model, computed at turn t1 based on
then-current observations. This guidance may no longer perfectly match the current situation but can
still be valuable for decision-making. You can use this plan as a strategic reference, not a mandatory
instruction. Consider how much of the original strategy is still valid under the current dynamics.

3. Task (Turn t0):

Choose one action at0 ∈ {U,D, S} for the current turn, with the following considerations:

• Collision Avoidance: Ensure the action avoids both immediate and near-future collisions.

• Strategic Consistency (Optional): Refer to the thinking model’s prior strategy. If the cur-
rent environment still aligns with its assumptions, you may choose to continue along the
same strategic direction. If not, adapt as needed.

Answer Format:

at0

4. Current State (Turn t0):

Current Turn: t0 = 10

Player Position: (0, 6)

Car State:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Freeway k Cars (head h, tail τ , direction d, speed s)
1 (48, 37, right, 12), (0,−11, right, 12)
2 (48, 1, right, 48)
3 (−48,−25, left, 24)
4 (−48,−59, right, 12), (−12,−23, right, 12), (24, 13, right, 12)
5 (−24,−35, right, 4)
6 (−24,−35, right, 4), (52, 41, right, 4), (16, 5, right, 4)
7 (48, 37, right, 12), (0,−11, right, 12)
8 (48, 37, right, 12), (0,−11, right, 12)

Guidance from a Previous Thinking Model: Turn t1 = 10

Previous thinking process:

First, I need to get the player from (0, 6) to (0, 9) in as few turns as possible, avoiding collisions with cars on the freeways
y = 1 to y = 8. The current turn is t1 = 10.

The player can move up (U), down (D), or stay (S), changing y by +1, −1, or 0 respectively, and y must stay between 0
and 9 inclusive.

Cars move on specific freeways, and I need to avoid being on a freeway when a car is at position x = 0 at that turn. The
collision happens only if at turn T , the player is on freeway yT , and for that freeway, there’s a car where 0 is in its span
at that exact turn.

Importantly, when I move to a new freeway, I’m not considered on that freeway until the next turn. So if I move from y to
y + 1 at turn T , at turn T I’m still on y, and I only occupy y + 1 at turn T + 1. That means I don’t collide with cars on
y + 1 at turn T , only at turn T + 1 if I’m still there.

Now, the goal is to reach y = 9. Since we start at y = 6, and y = 9 is three levels up, but I have to go through y = 7
and y = 8, and avoid the cars there.

The minimal number of turns might be more than 3 because I might need to wait or something to avoid collisions.

H is the number of turns, so from turn t1 to t1 + H − 1, so if I start at t = 10, and I take H turns, I end at turn
10 + H − 1.

I need y10+H−1 = 9.

Since I start at y = 6, and I need to get to y = 9, which is +3, so minimum H would be 3 if I can go up three times
without colliding, but I need to check if that’s possible given the car positions.

But the cars are moving, so I need to see when they are at x = 0. First, let’s understand the car movements.

The car spans are given at turn t1=10.

For each car, I need to find when 0 is in its span for future turns.

The span changes linearly with time based on speed and direction.

Let me denote the time elapsed from t1=10 as ∆t = T − 10.

For a car, at turn T, span is:

If left-moving: [h - s*∆t, τ - s*∆t] since it moves left, decreasing x.

In the rule: for left-moving, Span(T) = [h - s*(T-t1), τ - s*(T-t1)]

Similarly for right-moving: Span(T) = [τ + s*(T-t1), h + s*(T-t1)]

And collision if 0 is in Span(T) for the freeway we’re on at turn T.

Now, since the player is at y, and cars are per freeway, I need for each freeway k, and for each car on that freeway, find the
times when 0 is in its span.

Then, to avoid collision, when I’m on freeway k at turn T, none of the cars on k should have 0 in span at T.

Now, for the path to y=9.

Since y=9 is the top, and no cars above, but I need to pass through y=7 and y=8.

y=9 has no cars since cars are on y=1 to 8, so once I reach y=9, I’m safe.

But I need to get there.

Start at y=6 at t=10.

I need to go to y=7, then y=8, then y=9.

But I might stay or move down to avoid cars, but moving down might not help since I need to go up eventually.

Since the grid is small, y from 0 to 9, and I start at 6, going to 9, it’s only 3 steps up, so H min is 3, but if not possible, I
need more turns by staying or moving down and up.

... ...

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Prompt for Code-As-Policy

Prompt:

Now a player is playing a multi-turn game, and suppose current turn is {t1}. Given the initial position
(0, yt1) on a 2D grid (vertical axis y = 0, 1, . . . , 9). You are tasked with implementing a Python
function that determines the optimal next action to avoid collisions with moving cars and progress
towards the goal position (0, 9) in minimal turns.

1. Game Dynamics:

• Player update:
yt+1 = yt +∆yt, where

∆yt =


+1 if at = U

−1 if at = D

0 if at = S

, yt+1 ∈ [0, 9]

• Car update rules:
For car k on freeway i, suppose its head is at h, tail is at τ at turn t1, and speed is s. Then at
turn T > t1, the car span becomes:

– Left-moving: Span(t1) = [h, τ] → Span(T) = [h− s(T − t1), τ − s(T − t1)]

– Right-moving: Span(t1) = [τ, h] → Span(T) = [τ + s(T − t1), h+ s(T − t1)]

• Collision occurs at turn T only if 0 ∈ Span(T) for any car on freeway yT .

• Note that if you decide to move to yT+1 ̸= yT at turn T , you will NOT be considered
to be on yT+1 at turn T , thus will NOT be collided by cars on yT+1 if 0 ∈ Span(T) but
0 /∈ Span(T + 1).

2. Task

You need to determine the best next action for the player by generating an executable Python function
next action(json state) with the input json state representing the current game state as
a JSON object. The function should analyze the game state and return the next action, represented as
a single character string:

• ’U’ for moving up (to y + 1)

• ’D’ for moving down (to y − 1)

• ’S’ for staying in the current position

Notice that the code will be executed in a loop, so it should return the next action each time it is called
with the current game state, which will change after each action.

Input Format

1 json_state = {
2 ’player_states’: current_y_position, # int: 0-9, 9 is the goal

position
3 ’car_states’: [# list of tuples
4 (lane, head, direction, speed, span),
5 # lane: 1-8 (freeway number)
6 # head: int, position of the car’s head
7 # direction: ’left’ or ’right’, tail = head + span if left,

head - span if right
8 # speed: int, speed of the car
9 # span: int, span of the car, defined as the absolute

difference between head and tail
10],
11 ’turn’: current_turn_number # int: current turn
12 }

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Output Format

Generate two clearly labeled parts:

Part 1: Summary

One-sentence intent describing your strategy for the next actions

Part 2: Python Function

1 def next_action(json_state) -> str:
2 """
3 Returns one of the actions: ’U’, ’D’, or ’S’ based on the

current game state.
4

5 Args:
6 json_state: The current game state as JSON object
7

8 Returns:
9 str: Single character representing the next action (’U’, ’D

’, ’S’)
10 """
11 # Your logic here
12 return action

Example Output

Part 1: Summary

Wait for the cars in lane 4 and 5 to pass, then move up to avoid collisions.

Part 2: Python Function

1 def next_action(json_state) -> str:
2 # Implementation...
3 return ’S’ # default action if no immediate threat

Current State

1 {
2 "player_states": 5,
3 "car_states": [
4 (1, -39, ’right’, 3, 11), (2, 48, ’right’, 12, 11),
5 (2, -36, ’right’, 12, 11), (2, 0, ’right’, 12, 11),
6 (3, 48, ’right’, 12, 11), (3, -36, ’right’, 12, 11),
7 (3, 0, ’right’, 12, 11), (4, 48, ’right’, 12, 11),
8 (4, -36, ’right’, 12, 11), (4, 0, ’right’, 12, 11),
9 (5, -18, ’right’, 6, 11), (6, -18, ’right’, 6, 11),

10 (7, -16, ’right’, 4, 11), (8, -16, ’right’, 4, 11)
11],
12 "turn": 8
13 }

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C ADDITIONAL EXPERIMENT RESULTS

C.1 MAIN RESULTS

Table 6: Complete agent performance across various cognitive load levels (Easy, Medium, Hard)
with time pressure fixed at 8k tokens/step.

Freeway

Cognitive Load Code-as-Policy Reactive (R1) Reactive (V3) Planning (R1) AgileThinker
Easy 0.5393 0.2022 0.9775 0.3371 0.9551
Medium 0.6966 0.0000 0.3258 0.2247 0.8427
Hard 0.5281 0.0000 0.0562 0.1011 0.5056

Snake

Cognitive Load Code-as-Policy Reactive (R1) Reactive (V3) Planning (R1) AgileThinker
Easy 0.1719 0.1719 0.7694 0.0588 0.6931
Medium 0.1797 0.2188 0.4900 0.0256 0.5413
Hard 0.0625 0.1406 0.2950 0.0137 0.3906

Overcooked

Cognitive Load Code-as-Policy Reactive (R1) Reactive (V3) Planning (R1) AgileThinker
Easy 0.4621 0.8193 0.9188 0.5379 1.0000
Medium 0.3724 0.6607 0.3664 0.0871 0.9152
Hard 0.3661 0.2054 0.0877 0.0000 0.5982

Table 7: Complete agent performance across time pressure levels (4k to 32k tokens/step) with cog-
nitive load fixed at Medium.

Freeway

Tokens/Turn Code-as-Policy Reactive (R1) Reactive (V3) Planning (R1) AgileThinker
32k 0.9438 0.0000 0.2911 0.9621 0.9431
16k 0.9551 0.0000 0.2911 0.9045 0.9347
8k 0.6966 0.0000 0.2911 0.2261 0.8469
4k 0.3483 0.0000 0.2911 0.1194 0.6166

Snake

Tokens/Turn Code-as-Policy Reactive (R1) Reactive (V3) Planning (R1) AgileThinker
32k 0.2109 0.0238 0.4844 0.9629 0.8281
16k 0.2344 0.0238 0.4844 0.4043 0.7813
8k 0.1797 0.0238 0.4844 0.0254 0.5410
4k 0.0156 0.0238 0.4844 0.0176 0.4238

Overcooked

Tokens/Turn Code-as-Policy Reactive (R1) Reactive (V3) Planning (R1) AgileThinker
32k 0.5804 0.0000 0.3800 0.8371 0.9129
16k 0.4621 0.0000 0.3800 1.0000 0.9375
8k 0.3661 0.0000 0.3800 0.0871 0.9152
4k 0.3724 0.0000 0.3800 0.0246 0.7087

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C.2 SIGNIFICANCE TEST

We investigate the significance of advantage of AgileThinker over single-paradigm agents. We hy-
pothesize that: (1) AgileThinker’s advantage over reactive agents (V3) becomes more significant as
cognitive load increases, and (2) its advantage over planning agents (R1) becomes more significant
as time pressure increases.

To validate these hypotheses, we perform experiments across 3 cognitive load levels (Easy, Medium,
Hard) and three 3 pressures (High: 32k tokens/step, Medium: 8k tokens/step, Low: 4k tokens/step).
Below, we formally describe the validation procedure (1) and (2) can be tested similarly.

For each fixed cognitive load and time pressure condition, we analyze the paired score differences
between AgileThinker and the reactive agent. Let µd denote the mean score difference between the
paired observations (AgileThinker minus reactive agent). We pair observations that share the same
environmental configuration seed, with each score calculated as the average across experimental
runs within that configuration seed. We formulate the hypotheses as follows:

• Null Hypothesis: H0 : µd = 0

• Alternative Hypothesis H1 : µd > 0

The test statistic for the paired t-test is calculated as:

t =
d̄

sd/
√
n

where d̄ is the mean score difference, sd is the standard deviation of the differences, and n is number
of environment configuration seeds. We estimate the p-value based on the t-statistic with n − 1
degrees of freedom.

Figure 8 presents the p-values across different conditions, with statistical significance assessed at
α = 0.05. The results show that AgileThinker’s advantage generally becomes statistically signifi-
cant as cognitive load and time pressure increase.

Easy Medium Hard

32k

8k

4kOu
rs

 >
 R

ea
ct

iv
e 0.27 0.00 0.00

0.99 0.00 0.00

0.97 0.07 0.20

Freeway

Easy Medium Hard

32k

8k

4k

0.00 0.00 0.00

0.84 0.22 0.02

0.84 0.91 0.33

Snake

Easy Medium Hard

32k

8k

4k

0.16 0.00 0.00

0.11 0.00 0.00

0.63 0.09 0.00

Overcooked

Easy Medium Hard

32k

8k

4kOu
rs

 >
 P

la
nn

in
g 0.89 0.94 0.94

0.00 0.00 0.00

0.00 0.01 0.05

Easy Medium Hard

32k

8k

4k

0.80 0.98 0.68

0.00 0.00 0.00

0.00 0.00 0.00

Easy Medium Hard

32k

8k

4k

0.11 0.23 0.68

0.00 0.00 0.00

0.00 0.00 0.00

0.0

0.2

0.4

0.6

0.8

1.0

Figure 8: Statistical significance of AgileThinker’s advantage over single-paradigm agents. Up-
per: Advantage over reactive agent (V3). Lower: Advantage over planning agent (R1). Numbers
represent p-values under varying cognitive loads and time pressures, with red indicating statistical
significance (p < 0.05). The advantage of AgileThinker generally increases with both cognitive
load and time pressure.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C.3 RESULTS OF OTHER MODELS

Since AgileThinker relies on transparent reasoning trajectories, which are only available in open-
source models, our primary experiments are conducted using the state-of-the-art open-source
DeepSeek models. To assess the generalizability of our approach, we also evaluate reactive and
planning agents using other models, such as Gemini-2.5-Flash, which features an intrinsic bud-
get control function. For reactive agents, we disable extended thinking, while for planning agents,
thinking is enabled.

However, we cannot directly implement AgileThinker with Gemini due to the lack of access to its
reasoning traces. Instead, we approximate the system using a reduced design: the reactive agent
references the final output of the planning agent after it completes reasoning, rather than accessing
partial reasoning traces during streaming. Despite this limitation, the results in Tab. 8 consistently
show that combining reactive and planning paradigms improves performance across all levels of
time pressure.

Additionally, we observe that Gemini-2.5-Flash’s built-in budget control struggles to precisely reg-
ulate token usage, often exceeding the allocated budget (Figure 9). This highlights the ongoing
challenge that LLMs face in controlling computational costs during real-time reasoning.

Table 8: Performance of Gemini-2.5-Flash (Medium-difficulty Freeway) under various agent
designs. We implement budget control by setting the thinking budget equal to the time pressure
budgets. Since Gemini-2.5-Flash’s internal reasoning traces are not public, we cannot apply Agile-
Thinker directly. Instead, we reduce Reactive + Planning to allowing reactive thread to reference the
final non-thinking tokens produced by planning thread after its reasoning is completed.

Tokens/Step Reactive
(thinking off)

Reactive
(thinking on + budget control)

Planning
(thinking on)

Reactive+
Planning

32k 0.12 0.93 0.93 0.92
16k 0.12 0.76 0.70 0.70
8k 0.12 0.09 0.25 0.31
4k 0.12 0.00 0.05 0.26

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 9: To test the effectiveness of thinking budget control, we set the thinking budget of Gemini-
2.5-Flash at 4k, 8k, 16k and 32k to investigate the distribution of response length. The distribution
shows that even Gemini-2.5-Flash is aware of the budget, it cannot precisely regulate response token
count, often generating excessive tokens.

C.4 CODE-AS-POLICY

We analyze generated code to understand the limitations of code-as-policy approaches. Below are
representative examples from each environment. All code is directly generated by DeepSeek-R1
with some helper functions omitted for brevity.

FREEWAY

1 def next_action(json_state) -> str: # Extract game state # Helper
functions

2 ... t0, y0, cars = extract_game_state(json_state) max_time = t0 + 50
Reasonable

3 time horizon visited = set() queue = deque() start = (t0, y0, []) # (
current_turn,

4 y, path_actions) visited.add((t0, y0)) queue.append(start)
5

6 while queue: # BFS path finding ... # BFS found no path: choose
safest

7 immediate next action ...

Freeway has a simple, efficient solution: breadth-first search (BFS) to explore all possible move-
ment sequences across lanes, and the state space is very small (time × player position). Therefore,
LLMs can implement naive search strategies to get optimal performance.

SNAKE

1 def next_action(json_state) -> str: # Extract game state # Helper
functions

2 ... # Main logic: choose best move for current state safe_moves =
generate_safe_moves(json_state)

3 if not safe_moves: return ’U’ # no safe move

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

4

5 best_move = None best_score = -float(’inf’) depth = 5 # Limited depth
search

6

7 for move in safe_moves: next_state, immediate_reward = simulate_move(
json_state,

8 move) future_reward = search(next_state, depth - 1) total_reward =
immediate_reward

9 + future_reward if total_reward > best_score: best_score =
total_reward

10 best_move = move
11

12 return best_move

Snake does not have an algorithmic solution with bounded complexity, forcing LLMs to resort to
heuristic approaches. The generated code typically implements limited-depth search (5 turns in
this example) to evaluate immediate rewards, but this constrained horizon proves insufficient for
complex scenarios. Long-term consequences - such as distant food opportunities or collision risks
that emerge beyond the search depth - remain invisible to the policy.

OVERCOOKED

1 def next_action(json_state: dict) -> str: # Extract game state #
Helper functions

2 ... alice_held_obj = alice.get(’held_object’)
3

4 # Decision logic if alice_held_obj and alice_held_obj.get(’name’) ==
’onion’:

5 # Find available pots and add ingredients ...
6

7 elif alice_held_obj and alice_held_obj.get(’name’) == ’plate’: # Pick
up

8 ready soup ... elif not alice_held_obj: # Priority 1: Get plate for
ready

9 soups ... # Priority 2: Get ingredients for cooking ...
10

11 return ’S’ # Stay as default

1 def next_action(json_state: dict) -> str: if alice_held_obj.get(’name
’) == ’onion’:

2 pot = find_pot() add_ingredient(pot) elif alice_held_obj.get(’name’)
== ’plate’:

3 soup = find_ready_soup() pickup_ready_soup() elif not alice_held_obj:
Priority

4 1: Get plate for ready soups # Priority 2: Get ingredients for
cooking ... return

5 ’S’ # Stay as default

Overcooked has complex game context, demanding that players infer partner intentions through
action history and plan coordinated responses based on current state. However, the generated code
considers only limited context (e.g., what Alice is currently holding). This narrow focus leads to
suboptimal decisions. For instance, when the agent holds an onion but all pots are occupied (perhaps
by Bob), it simply stays idle rather than dropping the onion to pick up a plate and serve ready soup.

1 def next_action(json_state: dict) -> str: # Extract game state #
Helper functions

2 ...
3

4 pots = [tuple(pos) for pos in layout[’Pot’]] ready_soups = [obj for
obj in objects

5 if obj.get(’name’) == ’soup’ and obj.get(’is_ready’, False)]
cooking_soups =

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

6 [obj for obj in objects if obj.get(’name’) == ’soup’ and obj.get(’
is_cooking’,

7 False)]
8

9 alice_held_obj = alice.get(’held_object’)
10

11 # Priority 1: Serve ready soup if ready_soups: if alice_held_obj and
alice_held_obj.get(’name’)

12 == ’soup’: # Deliver soup to serving counter ... elif alice_held_obj
and

13 alice_held_obj.get(’name’) == ’plate’: # Pick up ready soup from pot
... else:

14 # Get plate from dispenser ...
15

16 # Priority 2: Handle cooking soups elif cooking_soups: soup =
cooking_soups[0]

17 if soup[’remaining_cooking_tick’] <= 1 and not alice_held_obj: # Get
plate for

18 soon-to-be-ready soup ... # Priority 3: Start cooking (add
ingredients to empty

19 pot) idle_pot = next((pot for pot in pots if not any(obj.get(’
position’) == list(pot)

20 for obj in objects)), None) if idle_pot: if held_obj and held_obj.get
(’name’)

21 == ’onion’: # Add ingredient to pot ... else: # Get ingredient from
dispenser

22 ...
23

24 return ’S’ # Stay as default

Beyond ignoring broad game context, the generated code exhibits inconsistent goal prioritization
that leads to oscillatory behavior. Consider a scenario where Alice holds an onion and ready soup
is available: the first code prioritizes adding the onion to an empty pot, while the second prioritizes
serving the ready soup. These conflicting objectives cause the agent to alternate between incompat-
ible actions. This demonstrates a fundamental limitation of code-as-policy approaches: while they
can encode local heuristics effectively, they struggle to maintain coherent long-term strategies in
environments requiring dynamic coordination and context-aware decision making.

C.5 PERFORMANCE UNDER LIMITED THROUGHPUT

Game Parallel Threads Concurrent Threads Reactive (V3) Planning (R1)
Freeway 0.84 0.72 0.32 0.22
Snake 0.54 0.58 0.49 0.03
Overcooked 0.92 0.85 0.37 0.09

Table 9: Performance of AgileThinker with abundant (parallel threads) and limited (concurrent
threads) throughput.

While our main experiments assume parallel execution with independent throughput for each sub-
system, practical deployments may face resource constraints. In this section, we investigate whether
AgileThinker remains effective when LLM and LRM share computational resources through con-
current switching rather than parallelism. Specifically, we evaluate the performance of agent systems
under equivalent token throughput, implementing the AgileThinker as alternating inference between
reactive and planning thread (concurrent generation) rather than simultaneous generation.

Figure 9 compares concurrent AgileThinker against parallel AgileThinker and single-model base-
lines. Even with equivalent throughput, concurrent AgileThinker significantly outperform both reac-
tive agents and planning agents. While parallel execution offers modest performance improvements
over concurrent execution, the gains are relatively small compared to the fundamental advantage of

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

AgileThinker. This indicates that the primary benefit stems from cognitive specialization rather than
computational resources, and AgileThinker remain effective for resource-constrained deployments.

D WALLTIME EXPERIMENTS

0 250 500 750 1000 1250 1500
Episode Tokens (K)

0

10

20

30

40

50

60

70

E
pi

so
de

 T
im

e
(K

 se
co

nd
s)

Slope: 0.0473
R²: 0.999

AgileThinker 16k
AgileThinker 32k
AgileThinker 4k
AgileThinker 8k
Reactive
Planning 16k
Planning 32k
Planning 4k
Planning 8k
Linear Fit (R² = 0.999)

Figure 10: Almost linear correlation between generated token count and wall-clock time using
DeepSeek official API, demonstrating the validity of our token-as-time abstraction. Here the num-
bers after agent methods, e.g. 4k, 8k, refer to the corresponding environment time pressure budgets.

25

	Introduction
	Real-Time Reasoning Gym
	Real-time Reasoning Agents
	Is Single Paradigm Enough for Real-Time Reasoning?
	How to Manage Resources Between Reaction and Planning?
	Performance Improvement Under Wall-Clock Time
	Related Work
	Conclusion
	Limitations
	Use of Language Models
	Reproducibility Statement
	Environment Details
	Prompt
	Additional Experiment Results
	Main Results
	Significance Test
	Results of Other Models
	Code-as-Policy
	Performance under Limited Throughput

	Walltime Experiments

