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ABSTRACT

Agents in the real world must make not only logical but also timely judgments.
This requires continuous awareness of the dynamic environment: hazards emerge,
opportunities arise, and other agents act, while the agent’s reasoning is still unfold-
ing. Despite advances in language model reasoning, existing approaches fail to ac-
count for this dynamic nature. We introduce real-time reasoning as a new problem
formulation for agents in evolving environments and build Real-Time Reasoning
Gym to demonstrate it. We study two paradigms for deploying language models
in agents: (1) reactive agents, which employ language models with bounded rea-
soning computation for rapid responses, and (2) planning agents, which allow ex-
tended reasoning computation for complex problems. Our experiments show that
even state-of-the-art models struggle with making logical and timely judgments in
either paradigm. To address this limitation, we propose AgileThinker, which si-
multaneously engages both reasoning paradigms. AgileThinker consistently out-
performs agents engaging only one reasoning paradigm as the task difficulty and
time pressure rise, effectively balancing reasoning depth and response latency.
Our work establishes real-time reasoning as a critical testbed for developing prac-
tical agents and provides a foundation for research in temporally constrained AI
systems, highlighting a path toward real-time capable agents.

Car Moving While 
Agent Thinking

Apples Timing Out 
While Agent Thinking

Partners Acting While 
Agent Thinking

tokens/step

1.0

Figure 1: Upper: Three real-time games, Freeway, Snake, and Overcooked. Lower: Under cognitive
load and time pressure, AgileThinker, engaging both reactive and planning reasoning, consistently
outperforms agents that engage either of them. Scores are averaged across different games.
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1 INTRODUCTION

Remember your first highway drive? White-knuckling the wheel, fixated on the car ahead. Then sud-
denly your exit appears and you’re three lanes over. This captures how our brains work under pres-
sure: reacting intuitively keeps us safe moment-to-moment, but deliberate planning gets us where
we need to go. This example highlights a fundamental challenge: real-time reasoning (Stanovich
& West, 2000; Kahneman, 2011; Evans & Stanovich, 2013). Under time pressures, agents must si-
multaneously support timely reactions and cognitively demanding long-term planning. Remarkably,
humans excel at this balancing act: shifting seamlessly between instinct and analysis as situations
demand. Expert drivers eventually handle both tasks effortlessly.

However, current Large Language Model (LLM)-based agents fail to live up to this challenge. Most
existing work assume that the environments only change when the agents issue an action, ignoring
the dynamic nature of the world, which evolves in parallel to the agent’s computation. As a result,
despite great effort in improving agent planning with LLM reasoning, including Yao et al. (2022);
Gou et al. (2023); Putta et al. (2024); Ferrag et al. (2025), under this assumption, how to evaluate
and improve the capability to make timely decisions is still an open question.

To bridge this gap, we introduce Real-Time Reasoning Gym, the first environment for language
agents to reason in dynamic environments (§2). Our gym consists of three real-time games: Freeway,
inspired by the Atari game under the same name, Snake, an adaptation of a popular game, and
Overcooked, a two-player version of the collaborative video game. In each game, the state updates at
a fixed rate regardless of whether the agent finishes its reasoning, and if no action is produced by the
agent, a default action is used, simulating reasoning and acting in a real-time world. They challenge
agents with different aspects of a dynamic environment: Freeway features dynamic hazards with
moving cars, Snake involves dynamic opportunities as food appears and disappears, and Overcooked
requires coordination with dynamic partners who act on their own. Real-Time Reasoning Gym is
useful for studying different agent designs for real-time tasks.

To compare different design choices of real-time reasoning agents, we study two paradigms: reactive
agents and planning agents (§3). Reactive agents ensure responsiveness by limiting computation,
while planning agents are allowed to perform more extensive thinking. However, neither of them
is perfect: planning agents cannot easily react to changes in the environment, and reactive agents
fail to make strategic decisions. We propose AgileThinker (§3), a simple yet effective method
that combines the strengths of both paradigms. Unlike agents with one paradigm that must choose
between speed and accuracy, AgileThinker runs two LLMs in two parallel threads: a planning thread
performs extended reasoning over frozen game states, and a reactive thread outputs timely decisions
within environmental update time. Specifically, the reactive thread can reference partial reasoning
traces from the ongoing planning process, enabling informed real-time decisions without waiting for
complete analysis. This also differs from prior dual-system methods (Zhang et al., 2025; Liu et al.,
2024; Christakopoulou et al., 2024), where either two systems operate independently, or one must
wait for another to complete before accessing its outputs.

In this paper, we study the following research questions:

RQ1 How do environment factors affect performance of agents in Real-Time Reasoning Gym?

RQ2 How to balance reaction and planning resources in AgileThinker?

RQ3 How well do the results we get with simulation in Real-Time Reasoning Gym match real-
world walltime experiments?

To study these questions, we manipulate the cognitive load and time pressure of the games, facilitat-
ing systematic evaluation across both dimensions. We evaluate different design choices for reactive
and planning agents, including budget forcing (Muennighoff et al., 2025) for reactive agents, code-
as-a-policy (Liang et al., 2022) for planning agents. For fair comparison across agent designs, we
use one model family, focusing on DeepSeek V3 and R1 because they are open-source and provide
transparent reasoning trajectories required by AgileThinker. To assess generality, we also exper-
iment with proprietary models (App. § C.3) and observe similar performance trend. Our results
demonstrate that AgileThinker consistently outperforms single-paradigm methods by effectively
balancing reactive and planning processes.This advantage is confirmed to translate to real-world
scenarios through wall-clock time experiments. Ultimately, our work establishes a foundation for
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developing language agents capable of complex reasoning under time constraints, bringing AI sys-
tems closer to human-level performance in dynamic environments.

2 REAL-TIME REASONING GYM

To evaluate the real-time reasoning capabilities of agents, we need an environment that is (1) dy-
namic: the environment state continuously updates without waiting for the agent’s decision; (2)
cognitively challenging: the tasks should be challenging enough so that logical reasoning is needed;
(3) reproducible: simulated environments to avoid non-negligible noise from hardware factors.

To achieve these three desiderata, we consider a new formulation of decision-making problem. Un-
like conventional turn-based environments, where the environment steps only after the agent finishes
thinking and produces an action (Figure 2 left), in Real-Time Reasoning Gym, the environment steps
forward at a fixed rate, even when the agent has not finished thinking. If no action is produced in
time, a default action is applied (Figure 2 right). This simulates the real-world situation where the
environment does not delay or accelerate according to the agent’s computation time.

obs, done = env.reset()
while not done:
    agent.observe(obs)
    agent.think(timeout=T_E)
    action = agent.act() or DEFAULT_ACTION
    obs, done, reward = env.step(action)

real_time_gym.py

obs, done = env.reset()
while not done:
    agent.observe(obs)
    agent.think() # blocked until finished
    action = agent.act()                   
    obs, done, reward = env.step(action)

openai_gym.py

Figure 2: Agent loops in OpenAI Gym (Brockman et al.,
2016) and Real-Time Reasoning Gym. Constants T E and
DEFAULT ACTION will be explained in the following ‘time
pressure’ paragraph.

Games In order to control the
dynamics of the environment for
evaluating real-time reasoning,
we use real-time games in our
gym. We created three games to
capture different challenges that
a dynamic environment brings:
maintaining safety when haz-
ards happen, seizing transient
opportunities, and coordinating
with partners (Tab. 1).

In Freeway, the agent traverses multiple lanes of bidirectional traffic, which requires constant moni-
toring for oncoming cars while planning future trajectories to avoid becoming trapped mid-road. In
Snake, the agent eats apples which are only available for a short period of time, creating opportu-
nities that must be seized quickly, while greedy food collection might lead to positions where the
growing snake traps itself. In Overcooked, the agent collaborates with a scripted partner following
a non-stationary policy (App. § A). Efficient dish preparation requires not only planning a sequence
of actions, but also coordinating effectively with the partner.

Cognitive Load To systematically control how challenging the games are, we make the difficulty of
each game tunable through a cognitive load factor (Tab. 1). In Freeway, difficulty is determined by
the minimum number of steps required to traverse the road, since longer paths typically introduce
more detours and require deeper planning horizon. In Snake, we vary the density of obstacles,
increasing route complexity and the need for look-ahead. In Overcooked, complexity is controlled
by the length of an internal kitchen counter, as a longer counter expands navigation complexity and
stretches temporal windows for high-level goals, creating larger discrepancies in long-term planning
and immediate execution. For each game, we design 3 levels of difficulties, easy, medium, and hard;
the corresponding ranges of each level can be found in App. Tab. 5.

Time Pressure To enable reproducible and hardware-agnostic evaluation, we use token count as a
time proxy to simulate the games, leveraging the fact that LLM decoding time scales almost linearly
with output length through time-per-output-token (TPOT), while prefilling time becomes negligible
for long sequences. This yields decoding time T = NT × TPOT, where NT is the generated token

Table 1: Different Games in Real-Time Reasoning Gym.

Game Dynamic Aspect Cognitive Load Factor Evaluation Metrics

Freeway Hazards Min steps to finish: S #Steps the agent takes to get to the other side
Snake Opportunities #Obstacles: N #Apples the agent eats before collision
Overcooked Partners Kitchen Counter Len.: L #Orders completed cooperatively

3
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…

Let me think 
step by step.

…
DOWN may 
cause future 

collisions.

…
STAY is safe 
now but …

Only UP after 
STAY is safe in 

2 steps.

STAY now.

…
After STAY, I 
should wait 

until buses …

>12k  tokens

2k tokens

Don’t move 
DOWN. STAY!

UP is safe.
Move UP!

2k tokens

2k tokens

DOWN is safe.
Move DOWN!

No safe way 
STAY here.

2k tokens

Let me think 
step by step.

…

DOWN may 
cause future 

collisions.
…

STAY is safe 
now but …

> 8k tokens

Wait for buses.
Stay!

2k tokens

…

Observation Action Reference

Let me think 
step by step.

…
DOWN may 
cause future 

collisions.

…
STAY is safe 
now but …

Only UP after 
STAY is safe in 

2 steps.

STAY now.

…
The final 
answer is 

STAY!

inf  tokens

Reactive Agent OutputPlanning Agent Output

Static Dynamic

Reactive Agent Planning Agent Reactive Agent AgileThinker (Ours)

Agent

Figure 3: Existing evaluation setups for LLM Agents often assume a static setting, where the en-
vironment halts while the agent completes reasoning with unlimited computation. In Real-Time
Reasoning Gym, environments are dynamic, evolving regardless of agents’ computation state. As
illustrated in the Freeway setting, Planning Agent, which performs extended reasoning without
interruption, fails to act timely while Reactive Agent, which performs reasoning strictly within en-
vironment update period, lacks foresight and collides. AgileThinker combines both timely reaction
and long-term planning to navigate such environments effectively.

count, allowing fair comparison across deployment scenarios. We impose time pressure by letting
the environment step every NTE , or T E in Fig. 2, tokens generated by agents. When the agent
cannot produce a valid action, we let the environment step with a DEFAULT ACTION (Fig. 2). In
Freeway and Snake, the default action is moving in the same direction as before, and in Overcooked,
the default action is to stay idle. We consider four different time pressure levels, 32k, 16k, 8k, and 4k
tokens per step, from low to high pressure. As shown in Figure 3, unlike existing static evaluations,
the introduction of time pressure simulates the real world dynamic environments where the world
does not freeze during agent reasoning.

Evaluation Evaluation metric differs for each game. In Freeway, we evaluate the number of steps
the agent takes to get to the other side, while the agent is reset to the origin every time it gets hit
by a car; in Snake, we count the number of apples that the agent eats before a collision; and in
Overcooked, we use the number of orders that the agent and the partner completed in total. These
evaluation metrics represent the capability of the agents to solve the tasks not only logically but also
timely. For each game, we normalize the scores by the highest score the agent could get in that game,
so we always have a score between 0 and 1. As cognitive load and time pressure increase, we expect
the scores decrease. However, the scores of an agent with strong real-time reasoning capabilities
should decrease slower. It is worth noting that our gym is used to evaluate design choices of agent
systems when the model or model family (e.g. DeepSeek-V3 and R1) is fixed. Therefore, cross-
model comparisons may be unfair due to their different tokenizers and underlying architectures.

3 REAL-TIME REASONING AGENTS

To address the real-time reasoning problem, we consider two solution paradigms: (1) reactive, where
the agent produces a new action at every environment step, and (2) planning, where the agent reasons
across multiple steps to generate an action plan, which is then executed until the agent resumes
reasoning. In the following, we discuss how to create agents following each of the two paradigms,
and how these two paradigms are engaged in AgileThinker.

Reactive agents We constrain reactive agents by a token budget Ni, ensuring they can respond
within each environment update when Ni ≤ NTE . We consider two kinds of language models

4
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for reactive agents: (1) non-thinking models1 that produce limited tokens for each response; and (2)
thinking models that produce extended reasoning which is cut off at the token budget Ni with budget
forcing (Muennighoff et al., 2025). In both cases, the agent produces one action per environment
step, enabling immediate reaction to any change. This reactive approach is commonly used in agent
systems these days.

Planning agents While reactive agents ensure timeliness, their token budget restricts the com-
plexity of reasoning they can perform within a single step. In contrast, planning agents can consider
their plans through multiple environment steps. We consider two formats of plans: (1) multi-step
actions where a thinking model is used to generate a sequence of multiple actions to be executed;
and (2) code plans where a thinking model is used to generate a code snippet that automatically
produces actions based on observation input (Liang et al., 2022; Zhang et al., 2025). Although (1)
is often easier to generate, (2) is more adaptive to potential changes. Both formats allow for more
deliberate, long-horizon decision-making by leveraging extended reasoning.

<think> DOWN is safe but causes collision later. STAY is safe now but…

… Only UP after STAY is safe in 2 steps. STAY now. After STAY, I should …

… After STAY, I should wait for buses to pass</think> STAY, UP, STAY …

<think>Let me think. I should wait for busses. After that, let me check if it is …

Don’t move DOWN. STAY!

OK! Move UP is safe. UP!

Wait for buses. STAY!

Wait for buses. STAY!

Step

Computation

0

1

2

3

4

Planning Thread Observation ReferenceReactive Thread Agent

Figure 4: Two parallel threads in AgileThinker

AgileThinker All agents in-
troduced above must complete
their reasoning process before
taking any action. To overcome
this limitation, we propose Ag-
ileThinker, which employs two
parallel threads to achieve both
timely action generation and un-
interrupted deep planning. The
planning thread P runs an LLM
that streams the thinking pro-
cess for a multi-step action plan.
Upon initialization, a reason-
ing process begins that contin-
ues until the execution of a plan.
P cannot keep up with environ-
mental changes (e.g. Steps 1-2
in Fig. 4). However, since its
planning focuses on long-term
objectives, many generated insights remain useful over extended horizons. In contrast, the reac-
tive thread R runs a separate LLM under strict time constraints TR ≤ TE , making decisions based
on the latest observation and the (partial) output of P (see gray and yellow arrows in Fig. 4).

The coordination between the two threads R and P follows a time-sharing protocol: during each
environment step, P operates continuously while R activates only in the final TR time units. The
hyperparameter TR controls the resource trade-off between the two thread. With a larger TR, the
reactive thread can be more adaptive, but there will be less reasoning from the planning thread to
refer to. Effectively balancing planning and reaction resources is the key to success in AgileThinker,
which will be discussed in §5.

4 IS SINGLE PARADIGM ENOUGH FOR REAL-TIME REASONING?

Evaluation Setup: To investigate how cognitive load and time pressure affect the performance
respectively, we conduct two series of experiments. (1) Cognitive load varies (Easy, Medium, Hard)
while time pressure is fixed at 8k tokens/step—lenient enough for non-thinking models to complete
their responses, yet restrictive for thinking models. The intrinsic bound Ni (see Section 3) for
reactive agent is set to 8k. (2) Time pressure varies (NTE ∈ {4k, 8k, 16k, 32k}) with medium
cognitive load. Here, Ni is set to 4k to ensure it remains lower than time pressure budget. We
evaluate each agent 32 times (8 game seeds × 4 LLM sampling seeds) under each setting and report

1Thinking models are the LLMs trained with reinforcement learning to incentivize reasoning before generat-
ing answers (DeepSeek-AI et al., 2025), while non-thinking models are the LLMs that have not been specifically
trained to generate long reasoning.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

EASY MEDIUM HARD
COGNITIVE LOAD

0.0

0.2

0.4

0.6

0.8

1.0

SC
OR

E

Freeway

EASY MEDIUM HARD
COGNITIVE LOAD

Snake

EASY MEDIUM HARD
COGNITIVE LOAD

Overcooked

32K 16K 8K 4K
TIME PRESSURE

0.0

0.2

0.4

0.6

0.8

1.0

SC
OR

E

32K 16K 8K 4K
TIME PRESSURE

32K 16K 8K 4K
TIME PRESSURE

TOKENS/STEP

AgileThinker (Ours) Reactive (V3) Reactive (R1 + Budget Forcing) Planning (R1) Planning (R1 + Code-Policy)

Figure 5: Performance of reasoning agents in Real-Time Reasoning Gym under varying cognitive
loads and time pressures. Upper: we fix time pressure at 8k tokens per step and vary cognitive load.
Lower: we fix cognitive load at medium level and vary time pressure. Full data at App. § C.

the average score of these samples. Details of the environments and score calculation can be found
in App. § A, and prompts are provided in App. § B.

Figure 1 reports the average scores over three games, while Figure 5 provides a breakdown per game.
The results show that reactive and planning agents fail to balance decision quality and efficiency,
whereas our AgileThinker achieves robust performance under varying conditions.

Reactive agent sacrifices decision quality for efficiency. By design, the reactive agent restricts
computation time less than TE and maintains consistent performance across all time pressures.
However, the limit on test-time scaling also causes a dramatic performance drop as cognitive load
increases (scores falling from 0.89 to 0.15, versus 0.88 to 0.50 for AgileThinker) This drop stems
from its inability to consider future consequences of a move carefully. As exemplified in the case
study in Figure 6, the reactive agent greedily pursues immediate rewards, falling into predictable
traps while AgileThinker avoids by considering long-term survival requirements.

Planning agent optimizes for decision quality but suffers under time pressure. Planning agent
excels under relaxed time constraints but suffers from dramatic degradation when time pressure
increases (scores dropping from 0.92 to 0.05, versus 0.90 to 0.58 for AgileThinker). Its fundamental
flaw is obliviousness to environmental changes, executing plans based on outdated observations. As
illustrated in the case study, the agent is unaware that the snake has moved forward during reasoning,
hence it crashes into a wall by following the obsolete plan. However, reactive thread in AgileThinker
is informed of the latest state, thus able to adjust the output of planning thread.

The variants in §3 fail to balance speed and quality. R1 with budget forcing severely degrades per-
formance (0.01 < 0.39 vs. V3), as forced truncation typically results in no-ops. Even advanced
budget-aware methods (Figure 9) cannot prevent such drops. Meanwhile, R1 with code-policy suc-
ceeds only in simple algorithmic tasks like Freeway. It underperforms in complex scenarios where
contextual reasoning (e.g., Theory-of-Mind) cannot be effectively compressed into code (see App.
§C.4).

5 HOW TO MANAGE RESOURCES BETWEEN REACTION AND PLANNING?

Effective coordination between reactive threadR and planning thread P requires careful time man-
agement to determine when to invoke R within each environment step. We analyze how the token
budget NTR allocated to R affects the performance of AgileThinker. We set NTE to 8k and vary
the token budget NTR from 0.5k to 8k tokens. Figure 7 presents agent scores under different NTR ,
where we also plot the cumulative distribution function (CDF) of R’s token usage across all game
trajectories without constraints to understand its inherent computational requirements.

6
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Reactive

Reactive
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Reactive

Input: 
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Output: L

Output: U

Output: U

Output: U

Output: U

Input: 
Step 2 + Plan

Input: 
Step 3 + Plan

Input: 
Step 4 + Plan

Input: 
Step 5 + Plan

Reactive Agent Planning Agent AgileThinker (Ours)

Step 3 – Reactive Reasoning Step 1~3 – Planning Reasoning Step 3 – Reactive Reasoning
Guided by Planning

(2,6) : ...safe… takes 5 moves.

(3,5) : ... safe… takes 3 moves

(5,2) : ... No immediate collision. 
Seems safe and reachable in 2 moves.

... Best immediate choice is to head 

towards (5,2).

\boxed{R}

<think> 
First, let's visualize the grid...

If I move to (5,2)... So the snake is trapped, 
and if I move to any direction I die....
I need to think about the food at (2,6) which 
has short life...
</think>
Prioritize eating (2,6) with a short life span (9 
Steps), while avoiding the risky food at     

(5,2).
\boxed{LLUUUUU} 

(2, 6): … Far away and may not be 
reachable before it disappears

(3, 5): ... is safe.

(5, 2): ...may lead to trapping the 
snake (as seen in the previous plan).

… The safest immediate move is Up (U) 
and heads to (3, 5)…

\boxed{U}

Figure 6: Thinking trajectories of different paradigms at critical steps At step 3, Reactive Agent
(V3) greedily pursues the nearest food and collides inevitably after three steps. Planning Agent
(R1) , still reasoning over the outdated step-1 state, defaults left. However, it correctly identifies that
eating the nearest food would result in a future collision, and that its lifespan is sufficient to delay
consumption. Guided by the reasoning of Reactive Thread, Planning Thread in the AgileThinker
anticipates the trap and chooses to move upward toward a safer food target.

We can see that setting NTR too small (e.g., 0.5k) leads to low scores, asR doesn’t have enough time
to process strategic guidance from P and generate well-reasoned actions. Conversely, setting NTR
too large creates idle periods where R has completed action generation but P continues productive
reasoning. Empirically, performance peaks when NTR approximates the natural token upper bound
ofR, as indicated by the CDF ofR’s token usage. This suggests thatR benefits from fully utilizing
its allocated time without truncation or extended idling.

It is worth noting that the optimal time budget varies across environments and requires empirical
tuning. However, AgileThinker consistently outperform single-system baselines across broad budget
ranges, suggesting that rough upper bound estimations are sufficient. In App.§ E, we further propose
a dynamic adjustment mechanism for NTR at test time, which is also effective.

7
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Figure 7: Performance of AgileThinker under different reactive thread token budgets NTR . The cu-
mulative distribution function (CDF) shows the natural token usage ofR across all game trajectories
when generation is not truncated, indicating inherent computational requirements ofR.

6 PERFORMANCE IMPROVEMENT UNDER WALL-CLOCK TIME

Table 2: Wall-clock time performance comparison across agent
systems, confirming AgileThinker advantages persist in real-
world deployment scenarios.

Environment Reactive (V3) Planning (R1) AgileThinker

Freeway 0.24 0.12 0.88
Snake 0.37 0.04 0.45
Overcooked 0.57 0.00 0.89

To validate the practical applica-
bility of our token-based simu-
lation, we conduct experiments
using actual wall-clock time
with official API of DeepSeek.
Our results show token count
has strong linear correlation
with physical inference time.
Specifically, we model this rela-
tionship as T = αN + β, where
T represents total runtime and N represents generated tokens. Least squares estimation on all
experiment trajectories (plotted in Figure 10) yields α = 0.0473 s/token, β = 334.55 s, with
R2 = 0.9986. This near-perfect correlation validates our token-based temporal abstraction and
confirms its practical relevance for real-world deployments.

We also conduct experiments to verify that the advantage of AgileThinker remains when the game is
simulated in wall-clock time. Using the derived TPOT of 0.047 s/token, we evaluate agent systems
with environment evolution intervals of TE = 6 minutes, corresponding to approximately 8,000 to-
kens per step. Table 2 shows that AgileThinker consistently outperforms both Reactive and Planning
Agents in physical time. These results establish that our framework’s benefits extend beyond theory
to practical applications, demonstrating applicability of our architecture for agent deployments on
intelligence-demanding, real-time tasks.

7 RELATED WORK

Evaluation Environments for LLM Agents: Existing evaluation setups for LLM agents mostly
focus on static environments where nothing changes during episodes (Yang et al., 2024; Zhou et al.,
2024b) or state pauses during LLM reasoning (Zhou et al., 2024a; Shi et al., 2025). This unrealistic
assumption risks performance drop and even safety hazards when applying LLM agents in latency-
sensitive applications (Sinha et al., 2024; Zheng et al., 2025). Prior work has modeled computation
delays through Delay-Aware MDPs (Chen et al., 2020), sticky-action schemes (Mahmood et al.,
2018), and asynchronous interactive MDPs (Travnik et al., 2018; Riemer et al., 2024), but the scope
of these works is limited to traditional reinforcement learning. Although some works (Liu et al.,
2024; Zhang et al., 2025) do adopt LLM agents in wall-clock time, our work is the first to formalize
real-time reasoning problem for LLM Agents. In particular, we measure elapsed token count as a
hardware-agnostic temporal unit, enabling fair and reproducible comparison across agent systems.

Budget Control for Reasoning Models: Test-time compute improves LLM performance but in-
creases inference time, with overthinking behaviors commonly observed in current reasoning mod-
els (Chen et al., 2025). Budget control aims to maximize LLM performance under fixed budgets,
and popular methods include early truncation (Muennighoff et al., 2025), prompting (Pu et al., 2025)

8
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and training (Aggarwal & Welleck, 2025; Team et al., 2025; Gemini Team, 2025). These methods
are effective to a certain extent, but still struggle with precise control over generated token count
(Alomrani et al., 2025) and performance drops when budgets are far from adequate (Han et al.,
2025). This suggests that existing techniques are inadequate for handling both loose and tight bud-
get constraints within a single model. The results on Real-Time Reasoning Gym demonstrate that
SOTA budget control methods cannot effectively balance reaction and planning, necessitating dual
LLM architectures for real-time environments.

Real-Time AI and Dual-Process Architectures: The trade-off between accuracy and latency is
a foundational problem in computer science, extensively studied ranging from real-time heuristic
search to robotics (Kim et al., 2024). Classic approaches address this by dynamically allocating
compute resources, such as using cascade classifiers for efficient detection (Chen & Yuille, 2005)
or frame-skipping strategies in video tracking (Luo et al., 2018; Wang et al., 2020). While these
paradigms are well-established in traditional AI, they are being revisited in the context of Large
Language Models (LLMs), where variable inference costs introduce new challenges for real-time
interaction (Ginart et al., 2024). Recent works have explored real-time capabilities in embodied
agents (Kim et al., 2024) and asynchronous tool usage (Ginart et al., 2024), yet a unified architectural
framework for balancing reasoning depth and reaction speed remains an open question.

To address this, researchers often draw inspiration from the dual process theory, which posits that
human cognition operates through two distinct components: System 1 (fast and intuitive) and System
2 (slow and deliberate) (Evans, 2013; Kahneman, 2011). This cognitive model has motivated various
dual-agent designs, combining fast modulessuch as finite-state machines (Zhang et al., 2025), vision
transformers (Cui et al., 2025), or small language models (Liu et al., 2024)with powerful, computa-
tionally intensive modules like LLMs with tools (Christakopoulou et al., 2024) or Large Reasoning
Models (LRMs) (Zhang et al., 2025). However, most existing architectures treat these systems as
separate stages (e.g., cascading) or isolated parallel processes. AgileThinker distinctively advances
this paradigm by allowing the System 1 (Reactive Thread) to access the real-time partial reasoning
traces of System 2 (Planning Thread). This shared-context mechanism enables informed decision-
making with minimal delay, effectively bridging the gap between classical real-time efficiency and
modern LLM reasoning capabilities.

8 CONCLUSION

In this work, we identified and formalized real-time reasoning, a fundamental challenge faced by
agents in real-world deployment. We introduced Real-Time Reasoning Gym, the first gym for
evaluating LLM agents in continuously evolving environments. It supports independent control of
cognitive load and time pressure, using token count as a hardware-independent temporal measure.
Our evaluation revealed critical shortcomings of existing reasoning paradigms (reactive and plan-
ning reasoning). To address this gap, we proposed AgileThinker, which engages two reasoning
paradigms in parallel. Experiments demonstrate that our method consistently outperforms all base-
lines, with advantages growing as cognitive load increases and time constraints tighten. Future work
can extend our gym to more realistic scenarios, improve coordination mechanisms between two
threads, or leverage our gym to train urgency-aware LLM agents.

9 LIMITATIONS

Our method investigates the real-time reasoning in LLM agents. Although our formulation is gen-
eral, we only conducted experiments on DeepSeek models due to two reasons: (1) open source
models perform poorly in general, thus the difference between different systems is not significant
enough, and (2) other commercial model providers, including OpenAI, Google and Anthropic, do
not provide reasoning traces which are crucial in our evaluation. We also try our best to make sure
the readers understand that we do not have any empirical evidence showing that the dual system
implemented in AgileThinker is precisely modeling human dual systems. The connection and dif-
ference require more rigorous evaluation.

9
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10 USE OF LANGUAGE MODELS

We used large language models to assist with paraphrasing and improving the readability of this
paper. All research ideas, designs, experiments, analyses, and conclusions are entirely our own.

11 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. The implementation of Real-Time
Reasoning Gym and AgileThinker, including all necessary code and dependencies, will be made
publicly available on GitHub upon paper publication. The code can be run on any platform sup-
porting DeepSeek V3 and R1 models, which we use for our experiments. Detailed instructions on
how to set up and reproduce our results will be provided in the repository, including any additional
dependencies and environment configurations.
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A ENVIRONMENT DETAILS

• Freeway: The player navigates across parallel highways with moving cars. At each step
the player can move to an adjacent lane or stay in place. Cars move forward at constant
speeds and new cars may spawn on either side of the road. If the player is hit by a car, it
will be reset to the starting position. The game terminates if the player crosses the road or
if the step limit M = 100 is reached. The reward for a trajectory τ is computed as:

R(τ) = M − |τ |

• Snake: The player controls a snake in a 2D rectangular grid with surrounding walls and
internal obstacles. At each step, the snake can move one step left, right, up or down. If the
snake head collides with an obstacle or its body segment, it dies. Foods spawn continuously
in the map and disappears after a fixed number of steps; eating food increases the snake’s
length by 1 unit. The game terminates if the snake dies or the number of steps exceeds
threshold M = 100. The reward is calculated as:

R(τ) = Number of eaten food− I[Dies in M steps]

• Overcooked: A fully observable two-player cooperative game where players must collect
onions, cook them in a pot and serve the cooked soup for rewards. At each step, the players
can move in 4 directions or use interact action to trigger some events, such as picking or
placing an item depending on the game state. Since we focus on single-agent settings, we
model the second player as part of the changing environment, controlled by a manually
written script for simplicity and consistency. This agent randomly chooses one policy to
follow: deliver an onion into an arbitrary pot or a kitchen counter. The game runs for
M = 100 steps, and rewards are assigned for accomplishment of special events listed in
Table 3. The game is implemented based on the repository https://github.com/
HumanCompatibleAI/overcooked_ai

Event Reward
Picking up a dish from the dispenser 3
Picking up a cooked soup from the pot 5
Serving the soup 20

Table 3: Rewards for different events in the Overcooked environment.
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The reward is then normalized to [0, 1] to get the final game score. Specifically, let Rmin and Rmax
be the minimum and maximum rewards observed in all trajectories. The score S is computed as:
S = R−Rmin

Rmax−Rmin
Empirically, the Rmax and Rmin of each environment are listed in Table 4.

Environment Rmin Rmax

Freeway 0 89
Snake -1 15
Overcooked 0 56

Table 4: Minimum and maximum rewards for each environment.

Table 5: Game difficulty settings, showing ranges for easy, medium, and hard levels.

Game Dynamic Aspect Cognitive Load Factor Easy Medium Hard

Freeway Hazards Min steps to finish: S S ≤ 12 13 ≤ S ≤ 16 17 ≤ S ≤ 21
Snake Opportunities #Obstacles: N N = 1 2 ≤ N ≤ 5 6 ≤ N ≤ 8
Overcooked Partners Kitchen Counter Len.: L L = 0 L = 3 L = 4

B PROMPT

Prompt for the Planning Agent

Now a player is playing a multi-turn game, and suppose current turn is {t1}. Given the initial
position (0, yt1) on a 2D grid (vertical axis y = 0, 1, . . . , 9), determine the minimal number
of turns H and a sequence of actions {at1+t}H−1

t=0 to reach (0, 9), avoiding collisions with
cars on freeways y = 1, . . . , 8.

1. Game Dynamics:

• Player update: yt+1 = yt +∆yt, where

∆yt =


+1 if at = U

−1 if at = D

0 if at = S

, yt+1 ∈ [0, 9]

• Car update rules:
For car k on freeway i, suppose its head is at h, tail is at τ at turn t1, and speed is
s. Then at turn T > t1, the car span becomes:

– Left-moving: Span(t1) = [h, τ ]→ Span(T ) = [h−s(T − t1), τ −s(T − t1)]

– Right-moving: Span(t1) = [τ, h]→ Span(T ) = [τ+s(T−t1), h+s(T−t1)]
• Collision occurs at turn T only if 0 ∈ Span(T ) for any car on freeway yT .
• Note that if you decide to move to yT+1 ̸= yT at turn T , you will NOT be con-

sidered to be on yT+1 at turn T , thus will NOT be collided by cars on yT+1 if
0 ∈ Span(T ) but 0 /∈ Span(T + 1).

2. Task (Turn t1):

Find a sequence of actions {at1+t}H−1
t=1 which minimizes H such that yt1+H−1 = 9.
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Answer Format:

Turn t1: at1
Turn t1 + 1: at1+1

...

3. Current State (Turn t1):

Current Turn: t0 = 10

Player Position: (0, 6)

Car State:

Freeway k Cars (head h, tail τ , direction d, speed s)
1 (48, 37, right, 12), (0,−11, right, 12)
2 (48, 1, right, 48)
... ...
8 (48, 37, right, 12), (0,−11, right, 12)
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Prompt for the Reactive Agent

Prompt:

You are a player in a freeway game, starting at (0, yt0) on a 2D grid (vertical axis y = 0, 1, . . . , 9).
Your goal is to reach (0, 9) while avoiding collisions with cars on freeways y = 1, . . . , 8.

1. Game Dynamics:

• Player update:
yt+1 = yt +∆yt, where

∆yt =


+1 if at = U

−1 if at = D

0 if at = S

, yt+1 ∈ [0, 9]

• Car update rules:
For car k on freeway i, suppose its head is at h, tail is at τ at turn t0, and speed is s. Then at
turn T > t0, the car span becomes:

– Left-moving: Span(t0) = [h, τ ] → Span(T ) = [h− s(T − t0), τ − s(T − t0)]

– Right-moving: Span(t0) = [τ, h] → Span(T ) = [τ + s(T − t0), h+ s(T − t0)]

• Collision occurs at turn T only if 0 ∈ Span(T ) for any car on freeway yT .

• Note that if you decide to move to yT+1 ̸= yT at turn T , you will NOT be considered
to be on yT+1 at turn T , thus will NOT be collided by cars on yT+1 if 0 ∈ Span(T ) but
0 /∈ Span(T + 1).

2. Guidance from a Previous Thinking Model (Turn t1 ≤ t0):

Sometimes, you have access to a past output from a thinking model, computed at turn t1 based on
then-current observations. This guidance may no longer perfectly match the current situation but can
still be valuable for decision-making. You can use this plan as a strategic reference, not a mandatory
instruction. Consider how much of the original strategy is still valid under the current dynamics.

3. Task (Turn t0):

Choose one action at0 ∈ {U,D, S} for the current turn, with the following considerations:

• Collision Avoidance: Ensure the action avoids both immediate and near-future collisions.

• Strategic Consistency (Optional): Refer to the thinking model’s prior strategy. If the cur-
rent environment still aligns with its assumptions, you may choose to continue along the
same strategic direction. If not, adapt as needed.

Answer Format:

at0

4. Current State (Turn t0):

Current Turn: t0 = 10

Player Position: (0, 6)

Car State:
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Freeway k Cars (head h, tail τ , direction d, speed s)
1 (48, 37, right, 12), (0,−11, right, 12)
2 (48, 1, right, 48)
3 (−48,−25, left, 24)
4 (−48,−59, right, 12), (−12,−23, right, 12), (24, 13, right, 12)
5 (−24,−35, right, 4)
6 (−24,−35, right, 4), (52, 41, right, 4), (16, 5, right, 4)
7 (48, 37, right, 12), (0,−11, right, 12)
8 (48, 37, right, 12), (0,−11, right, 12)

Guidance from a Previous Thinking Model: Turn t1 = 10

Previous thinking process:

First, I need to get the player from (0, 6) to (0, 9) in as few turns as possible, avoiding collisions with cars on the freeways
y = 1 to y = 8. The current turn is t1 = 10.

The player can move up (U), down (D), or stay (S), changing y by +1, −1, or 0 respectively, and y must stay between 0
and 9 inclusive.

Cars move on specific freeways, and I need to avoid being on a freeway when a car is at position x = 0 at that turn. The
collision happens only if at turn T , the player is on freeway yT , and for that freeway, there’s a car where 0 is in its span
at that exact turn.

Importantly, when I move to a new freeway, I’m not considered on that freeway until the next turn. So if I move from y to
y + 1 at turn T , at turn T I’m still on y, and I only occupy y + 1 at turn T + 1. That means I don’t collide with cars on
y + 1 at turn T , only at turn T + 1 if I’m still there.

Now, the goal is to reach y = 9. Since we start at y = 6, and y = 9 is three levels up, but I have to go through y = 7
and y = 8, and avoid the cars there.

The minimal number of turns might be more than 3 because I might need to wait or something to avoid collisions.

H is the number of turns, so from turn t1 to t1 + H − 1, so if I start at t = 10, and I take H turns, I end at turn
10 + H − 1.

I need y10+H−1 = 9.

Since I start at y = 6, and I need to get to y = 9, which is +3, so minimum H would be 3 if I can go up three times
without colliding, but I need to check if that’s possible given the car positions.

But the cars are moving, so I need to see when they are at x = 0. First, let’s understand the car movements.

The car spans are given at turn t1=10.

For each car, I need to find when 0 is in its span for future turns.

The span changes linearly with time based on speed and direction.

Let me denote the time elapsed from t1=10 as ∆t = T − 10.

For a car, at turn T, span is:

If left-moving: [h - s*∆t, τ - s*∆t] since it moves left, decreasing x.

In the rule: for left-moving, Span(T) = [h - s*(T-t1), τ - s*(T-t1)]

Similarly for right-moving: Span(T) = [τ + s*(T-t1), h + s*(T-t1)]

And collision if 0 is in Span(T) for the freeway we’re on at turn T.

Now, since the player is at y, and cars are per freeway, I need for each freeway k, and for each car on that freeway, find the
times when 0 is in its span.

Then, to avoid collision, when I’m on freeway k at turn T, none of the cars on k should have 0 in span at T.

Now, for the path to y=9.

Since y=9 is the top, and no cars above, but I need to pass through y=7 and y=8.

y=9 has no cars since cars are on y=1 to 8, so once I reach y=9, I’m safe.

But I need to get there.

Start at y=6 at t=10.

I need to go to y=7, then y=8, then y=9.

But I might stay or move down to avoid cars, but moving down might not help since I need to go up eventually.

Since the grid is small, y from 0 to 9, and I start at 6, going to 9, it’s only 3 steps up, so H min is 3, but if not possible, I
need more turns by staying or moving down and up.

... ...
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Prompt for Code-As-Policy

Prompt:

Now a player is playing a multi-turn game, and suppose current turn is {t1}. Given the initial position
(0, yt1) on a 2D grid (vertical axis y = 0, 1, . . . , 9). You are tasked with implementing a Python
function that determines the optimal next action to avoid collisions with moving cars and progress
towards the goal position (0, 9) in minimal turns.

1. Game Dynamics:

• Player update:
yt+1 = yt +∆yt, where

∆yt =


+1 if at = U

−1 if at = D

0 if at = S

, yt+1 ∈ [0, 9]

• Car update rules:
For car k on freeway i, suppose its head is at h, tail is at τ at turn t1, and speed is s. Then at
turn T > t1, the car span becomes:

– Left-moving: Span(t1) = [h, τ ] → Span(T ) = [h− s(T − t1), τ − s(T − t1)]

– Right-moving: Span(t1) = [τ, h] → Span(T ) = [τ + s(T − t1), h+ s(T − t1)]

• Collision occurs at turn T only if 0 ∈ Span(T ) for any car on freeway yT .

• Note that if you decide to move to yT+1 ̸= yT at turn T , you will NOT be considered
to be on yT+1 at turn T , thus will NOT be collided by cars on yT+1 if 0 ∈ Span(T ) but
0 /∈ Span(T + 1).

2. Task

You need to determine the best next action for the player by generating an executable Python function
next action(json state) with the input json state representing the current game state as
a JSON object. The function should analyze the game state and return the next action, represented as
a single character string:

• ’U’ for moving up (to y + 1)

• ’D’ for moving down (to y − 1)

• ’S’ for staying in the current position

Notice that the code will be executed in a loop, so it should return the next action each time it is called
with the current game state, which will change after each action.

Input Format

1 json_state = {
2 ’player_states’: current_y_position, # int: 0-9, 9 is the goal

position
3 ’car_states’: [ # list of tuples
4 (lane, head, direction, speed, span),
5 # lane: 1-8 (freeway number)
6 # head: int, position of the car’s head
7 # direction: ’left’ or ’right’, tail = head + span if left,

head - span if right
8 # speed: int, speed of the car
9 # span: int, span of the car, defined as the absolute

difference between head and tail
10 ],
11 ’turn’: current_turn_number # int: current turn
12 }
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Output Format

Generate two clearly labeled parts:

Part 1: Summary

One-sentence intent describing your strategy for the next actions

Part 2: Python Function

1 def next_action(json_state) -> str:
2 """
3 Returns one of the actions: ’U’, ’D’, or ’S’ based on the

current game state.
4

5 Args:
6 json_state: The current game state as JSON object
7

8 Returns:
9 str: Single character representing the next action (’U’, ’D

’, ’S’)
10 """
11 # Your logic here
12 return action

Example Output

Part 1: Summary

Wait for the cars in lane 4 and 5 to pass, then move up to avoid collisions.

Part 2: Python Function

1 def next_action(json_state) -> str:
2 # Implementation...
3 return ’S’ # default action if no immediate threat

Current State

1 {
2 "player_states": 5,
3 "car_states": [
4 (1, -39, ’right’, 3, 11), (2, 48, ’right’, 12, 11),
5 (2, -36, ’right’, 12, 11), (2, 0, ’right’, 12, 11),
6 (3, 48, ’right’, 12, 11), (3, -36, ’right’, 12, 11),
7 (3, 0, ’right’, 12, 11), (4, 48, ’right’, 12, 11),
8 (4, -36, ’right’, 12, 11), (4, 0, ’right’, 12, 11),
9 (5, -18, ’right’, 6, 11), (6, -18, ’right’, 6, 11),

10 (7, -16, ’right’, 4, 11), (8, -16, ’right’, 4, 11)
11 ],
12 "turn": 8
13 }
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C ADDITIONAL EXPERIMENT RESULTS

C.1 MAIN RESULTS

Table 6: Complete agent performance across various cognitive load levels (Easy, Medium, Hard)
with time pressure fixed at 8k tokens/step.

Freeway

Cognitive Load Code-as-Policy Reactive (R1) Reactive (V3) Planning (R1) AgileThinker
Easy 0.5393 0.2022 0.9775 0.3371 0.9551
Medium 0.6966 0.0000 0.3258 0.2247 0.8427
Hard 0.5281 0.0000 0.0562 0.1011 0.5056

Snake

Cognitive Load Code-as-Policy Reactive (R1) Reactive (V3) Planning (R1) AgileThinker
Easy 0.1719 0.1719 0.7694 0.0588 0.6931
Medium 0.1797 0.2188 0.4900 0.0256 0.5413
Hard 0.0625 0.1406 0.2950 0.0137 0.3906

Overcooked

Cognitive Load Code-as-Policy Reactive (R1) Reactive (V3) Planning (R1) AgileThinker
Easy 0.4621 0.8193 0.9188 0.5379 1.0000
Medium 0.3724 0.6607 0.3664 0.0871 0.9152
Hard 0.3661 0.2054 0.0877 0.0000 0.5982

Table 7: Complete agent performance across time pressure levels (4k to 32k tokens/step) with cog-
nitive load fixed at Medium.

Freeway

Tokens/Turn Code-as-Policy Reactive (R1) Reactive (V3) Planning (R1) AgileThinker
32k 0.9438 0.0000 0.2911 0.9621 0.9431
16k 0.9551 0.0000 0.2911 0.9045 0.9347
8k 0.6966 0.0000 0.2911 0.2261 0.8469
4k 0.3483 0.0000 0.2911 0.1194 0.6166

Snake

Tokens/Turn Code-as-Policy Reactive (R1) Reactive (V3) Planning (R1) AgileThinker
32k 0.2109 0.0238 0.4844 0.9629 0.8281
16k 0.2344 0.0238 0.4844 0.4043 0.7813
8k 0.1797 0.0238 0.4844 0.0254 0.5410
4k 0.0156 0.0238 0.4844 0.0176 0.4238

Overcooked

Tokens/Turn Code-as-Policy Reactive (R1) Reactive (V3) Planning (R1) AgileThinker
32k 0.5804 0.0000 0.3800 0.8371 0.9129
16k 0.4621 0.0000 0.3800 1.0000 0.9375
8k 0.3661 0.0000 0.3800 0.0871 0.9152
4k 0.3724 0.0000 0.3800 0.0246 0.7087
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C.2 SIGNIFICANCE TEST

We investigate the significance of advantage of AgileThinker over single-paradigm agents. We hy-
pothesize that: (1) AgileThinker’s advantage over reactive agents (V3) becomes more significant as
cognitive load increases, and (2) its advantage over planning agents (R1) becomes more significant
as time pressure increases.

To validate these hypotheses, we perform experiments across 3 cognitive load levels (Easy, Medium,
Hard) and three 3 pressures (High: 32k tokens/step, Medium: 8k tokens/step, Low: 4k tokens/step).
Below, we formally describe the validation procedure (1) and (2) can be tested similarly.

For each fixed cognitive load and time pressure condition, we analyze the paired score differences
between AgileThinker and the reactive agent. Let µd denote the mean score difference between the
paired observations (AgileThinker minus reactive agent). We pair observations that share the same
environmental configuration seed, with each score calculated as the average across experimental
runs within that configuration seed. We formulate the hypotheses as follows:

• Null Hypothesis: H0 : µd = 0

• Alternative Hypothesis H1 : µd > 0

The test statistic for the paired t-test is calculated as:

t =
d̄

sd/
√
n

where d̄ is the mean score difference, sd is the standard deviation of the differences, and n is number
of environment configuration seeds. We estimate the p-value based on the t-statistic with n − 1
degrees of freedom.

Figure 8 presents the p-values across different conditions, with statistical significance assessed at
α = 0.05. The results show that AgileThinker’s advantage generally becomes statistically signifi-
cant as cognitive load and time pressure increase.
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Figure 8: Statistical significance of AgileThinker’s advantage over single-paradigm agents. Up-
per: Advantage over reactive agent (V3). Lower: Advantage over planning agent (R1). Numbers
represent p-values under varying cognitive loads and time pressures, with red indicating statistical
significance (p < 0.05). The advantage of AgileThinker generally increases with both cognitive
load and time pressure.
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Table 8: DeepSeek-V3.2 based agents’ performance across different time pressure levels (4k to 32k
tokens/step) with cognitive load fixed at High.

Freeway

Tokens/Turn Reactive (thinking off) Planning (thinking on) AgileThinker
32k 0.4659 0.8539 0.8889
16k 0.4659 0.4649 0.8328
8k 0.4659 0.1025 0.6352
4k 0.4659 0.0000 0.4466

Snake

Tokens/Turn Reactive (thinking off) Planning (thinking on) AgileThinker
32k 0.2556 0.7381 0.5700
16k 0.2556 0.3906 0.5350
8k 0.2556 0.0550 0.3456
4k 0.2556 0.0075 0.2738

Overcooked

Tokens/Turn Reactive (thinking off) Planning (thinking on) AgileThinker
32k 0.5246 0.8371 0.8550
16k 0.5246 0.4554 0.8438
8k 0.5246 0.0134 0.6563
4k 0.5246 0.0068 0.4486

Table 9: DeepSeek-V3.2 based agents’ performance with time pressure of 350 seconds per step
and high cognitive load (Hard difficulty), confirming AgileThinker’s advantage persists in wall-time
constraints.

Environment Reactive (thinking off) Planning (thinking on) AgileThinker
Freeway 0.3665 0.0 0.7022
Snake 0.3050 0.0863 0.6013
Overcooked 0.5246 0.0 0.6675

C.3 RESULTS OF OTHER MODELS

Since AgileThinker relies on transparent reasoning trajectories, which are only available in open-
source models, our primary experiments are conducted using the state-of-the-art open-source
DeepSeek models. Besides using DeepSeek-V3 and DeepSeek-R1 as the reactive and planning
model, we also conduct experiments with DeepSeek-V3.2, where non-thinking mode is used as
reactive and thinking mode is used as planning. The results are shown in Tab. 8 and Tab. 9.

To assess the generalizability of our approach, we also evaluate reactive and planning agents using
other models, such as Gemini-2.5-Flash, which features an intrinsic budget control function. For
reactive agents, we disable extended thinking, while for planning agents, thinking is enabled.

However, we cannot directly implement AgileThinker with Gemini due to the lack of access to its
reasoning traces. Instead, we approximate the system using a reduced design: the reactive agent
references the final output of the planning agent after it completes reasoning, rather than accessing
partial reasoning traces during streaming. Despite this limitation, the results in Tab. 10 consistently
show that combining reactive and planning paradigms improves performance across all levels of
time pressure.
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Additionally, we observe that Gemini-2.5-Flash’s built-in budget control struggles to precisely reg-
ulate token usage, often exceeding the allocated budget (Figure 9). This highlights the ongoing
challenge that LLMs face in controlling computational costs during real-time reasoning.

Table 10: Performance of Gemini-2.5-Flash (Medium-difficulty Freeway) under various agent
designs. We implement budget control by setting the thinking budget equal to the time pressure
budgets. Since Gemini-2.5-Flash’s internal reasoning traces are not public, we cannot apply Agile-
Thinker directly. Instead, we reduce Reactive + Planning to allowing reactive thread to reference the
final non-thinking tokens produced by planning thread after its reasoning is completed.

Tokens/Step Reactive
(thinking off)

Reactive
(thinking on + budget control)

Planning
(thinking on)

Reactive+
Planning

32k 0.12 0.93 0.93 0.92
16k 0.12 0.76 0.70 0.70
8k 0.12 0.09 0.25 0.31
4k 0.12 0.00 0.05 0.26

Figure 9: To test the effectiveness of thinking budget control, we set the thinking budget of Gemini-
2.5-Flash at 4k, 8k, 16k and 32k to investigate the distribution of response length. The distribution
shows that even Gemini-2.5-Flash is aware of the budget, it cannot precisely regulate response token
count, often generating excessive tokens.

C.4 CODE-AS-POLICY

We analyze generated code to understand the limitations of code-as-policy approaches. Below are
representative examples from each environment. All code is directly generated by DeepSeek-R1
with some helper functions omitted for brevity.

FREEWAY

1 def next_action(json_state) -> str: # Extract game state # Helper
functions

2 ... t0, y0, cars = extract_game_state(json_state) max_time = t0 + 50
# Reasonable
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3 time horizon visited = set() queue = deque() start = (t0, y0, []) # (
current_turn,

4 y, path_actions) visited.add((t0, y0)) queue.append(start)
5

6 while queue: # BFS path finding ... # BFS found no path: choose
safest

7 immediate next action ...

Freeway has a simple, efficient solution: breadth-first search (BFS) to explore all possible move-
ment sequences across lanes, and the state space is very small (time × player position). Therefore,
LLMs can implement naive search strategies to get optimal performance.

SNAKE

1 def next_action(json_state) -> str: # Extract game state # Helper
functions

2 ... # Main logic: choose best move for current state safe_moves =
generate_safe_moves(json_state)

3 if not safe_moves: return ’U’ # no safe move
4

5 best_move = None best_score = -float(’inf’) depth = 5 # Limited depth
search

6

7 for move in safe_moves: next_state, immediate_reward = simulate_move(
json_state,

8 move) future_reward = search(next_state, depth - 1) total_reward =
immediate_reward

9 + future_reward if total_reward > best_score: best_score =
total_reward

10 best_move = move
11

12 return best_move

Snake does not have an algorithmic solution with bounded complexity, forcing LLMs to resort to
heuristic approaches. The generated code typically implements limited-depth search (5 turns in
this example) to evaluate immediate rewards, but this constrained horizon proves insufficient for
complex scenarios. Long-term consequences - such as distant food opportunities or collision risks
that emerge beyond the search depth - remain invisible to the policy.

OVERCOOKED

1 def next_action(json_state: dict) -> str: # Extract game state #
Helper functions

2 ... alice_held_obj = alice.get(’held_object’)
3

4 # Decision logic if alice_held_obj and alice_held_obj.get(’name’) ==
’onion’:

5 # Find available pots and add ingredients ...
6

7 elif alice_held_obj and alice_held_obj.get(’name’) == ’plate’: # Pick
up

8 ready soup ... elif not alice_held_obj: # Priority 1: Get plate for
ready

9 soups ... # Priority 2: Get ingredients for cooking ...
10

11 return ’S’ # Stay as default

1 def next_action(json_state: dict) -> str: if alice_held_obj.get(’name
’) == ’onion’:

2 pot = find_pot() add_ingredient(pot) elif alice_held_obj.get(’name’)
== ’plate’:
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3 soup = find_ready_soup() pickup_ready_soup() elif not alice_held_obj:
# Priority

4 1: Get plate for ready soups # Priority 2: Get ingredients for
cooking ... return

5 ’S’ # Stay as default

Overcooked has complex game context, demanding that players infer partner intentions through
action history and plan coordinated responses based on current state. However, the generated code
considers only limited context (e.g., what Alice is currently holding). This narrow focus leads to
suboptimal decisions. For instance, when the agent holds an onion but all pots are occupied (perhaps
by Bob), it simply stays idle rather than dropping the onion to pick up a plate and serve ready soup.

1 def next_action(json_state: dict) -> str: # Extract game state #
Helper functions

2 ...
3

4 pots = [tuple(pos) for pos in layout[’Pot’]] ready_soups = [obj for
obj in objects

5 if obj.get(’name’) == ’soup’ and obj.get(’is_ready’, False)]
cooking_soups =

6 [obj for obj in objects if obj.get(’name’) == ’soup’ and obj.get(’
is_cooking’,

7 False)]
8

9 alice_held_obj = alice.get(’held_object’)
10

11 # Priority 1: Serve ready soup if ready_soups: if alice_held_obj and
alice_held_obj.get(’name’)

12 == ’soup’: # Deliver soup to serving counter ... elif alice_held_obj
and

13 alice_held_obj.get(’name’) == ’plate’: # Pick up ready soup from pot
... else:

14 # Get plate from dispenser ...
15

16 # Priority 2: Handle cooking soups elif cooking_soups: soup =
cooking_soups[0]

17 if soup[’remaining_cooking_tick’] <= 1 and not alice_held_obj: # Get
plate for

18 soon-to-be-ready soup ... # Priority 3: Start cooking (add
ingredients to empty

19 pot) idle_pot = next((pot for pot in pots if not any(obj.get(’
position’) == list(pot)

20 for obj in objects)), None) if idle_pot: if held_obj and held_obj.get
(’name’)

21 == ’onion’: # Add ingredient to pot ... else: # Get ingredient from
dispenser

22 ...
23

24 return ’S’ # Stay as default

Beyond ignoring broad game context, the generated code exhibits inconsistent goal prioritization
that leads to oscillatory behavior. Consider a scenario where Alice holds an onion and ready soup
is available: the first code prioritizes adding the onion to an empty pot, while the second prioritizes
serving the ready soup. These conflicting objectives cause the agent to alternate between incompat-
ible actions. This demonstrates a fundamental limitation of code-as-policy approaches: while they
can encode local heuristics effectively, they struggle to maintain coherent long-term strategies in
environments requiring dynamic coordination and context-aware decision making.
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C.5 PERFORMANCE UNDER LIMITED THROUGHPUT

Game Parallel Threads Concurrent Threads Reactive (V3) Planning (R1)
Freeway 0.84 0.72 0.32 0.22
Snake 0.54 0.58 0.49 0.03
Overcooked 0.92 0.85 0.37 0.09

Table 11: Performance of AgileThinker with abundant (parallel threads) and limited (concurrent
threads) throughput.

While our main experiments assume parallel execution with independent throughput for each sub-
system, practical deployments may face resource constraints. In this section, we investigate whether
AgileThinker remains effective when LLM and LRM share computational resources through con-
current switching rather than parallelism. Specifically, we evaluate the performance of agent systems
under equivalent token throughput, implementing the AgileThinker as alternating inference between
reactive and planning thread (concurrent generation) rather than simultaneous generation.

Figure 11 compares concurrent AgileThinker against parallel AgileThinker and single-model base-
lines. Even with equivalent throughput, concurrent AgileThinker significantly outperform both reac-
tive agents and planning agents. While parallel execution offers modest performance improvements
over concurrent execution, the gains are relatively small compared to the fundamental advantage of
AgileThinker. This indicates that the primary benefit stems from cognitive specialization rather than
computational resources, and AgileThinker remain effective for resource-constrained deployments.
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Figure 10: Almost linear correlation between generated token count and wall-clock time using
DeepSeek official API, demonstrating the validity of our token-as-time abstraction. Here the num-
bers after agent methods, e.g. 4k, 8k, refer to the corresponding environment time pressure budgets.

E DYNAMIC ADJUSTMENT ALGORITHM FOR INTERNAL BUDGET

Inspired by the AIMD algorithm 2, we conduct additional experiments to show that thread resource
can be allocated adaptively through a simple dynamic adjustment mechanism for NTR . Specifically,

2https://en.wikipedia.org/wiki/Additive_increase/multiplicative_
decrease
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we initialize NTR to a small value (1k tokens). If the reactive thread fails to generate a complete
response within the allocated tokens, we increase NTR by 1k tokens. Conversely, if the reactive
thread uses fewer than tokens for 3 consecutive responses, we decrease NTR by 0.5k tokens. This
approach eliminates the need to predefine a fixed NTR , allowing the model to adapt it based on
query complexity.

In fact, the advantage of AgileThinker is still significant with this adaptive algorithm, as we can see
in Tab. 12. The experiments are conducted on DeepSeek-V3.2 under Hard cognitive load and 8k
tokens/step time pressure.

Algorithm 1 Dynamic Budget Adjustment

1: NTR ← 1024, efficient streak← 0
2: while game not terminates do
3: Execute AgileThinker with internal budget NTR
4: if reactive thread exceeds budget then
5: NTR ← NTR + 1024
6: efficient streak← 0
7: else
8: efficient streak← efficient streak + 1
9: if efficient streak ≥ 3 then

10: NTR ← max(1024, NTR − 512)
11: efficient streak← 0
12: end if
13: end if
14: end while

Environment Reactive
(Non-thinking)

Planning
(Thinking)

AgileThinker
(fixed, optimal NTR )

AgileThinker
(dynamic NTR )

Freeway 0.4659 0.1025 0.6352 (3k) 0.6279
Snake 0.2556 0.0550 0.3456 (1k) 0.4166
Overcooked 0.5246 0.0134 0.6563 (2k) 0.6741

Table 12: Scores of AgileThinker under dynamic internal budget.
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