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Abstract
The exploration & exploitation dilemma poses
significant challenges in reinforcement learn-
ing (RL). Recently, curiosity-based exploration
methods achieved great success in tackling hard-
exploration problems. However, they necessitate
extensive hyperparameter tuning on different en-
vironments, which heavily limits the applicability
and accessibility of this line of methods. In this
paper, we characterize this problem via analysis
of the agent behavior, concluding the fundamen-
tal difficulty of choosing a proper hyperparameter.
We then identify the difficulty and the instability
of the optimization when the agent learns with
curiosity. We propose our method, hyperparame-
ter robust exploration (Hyper), which extensively
mitigates the problem by effectively regularizing
the visitation of the exploration and decoupling
the exploitation to ensure stable training. We the-
oretically justify that Hyper is provably efficient
under function approximation setting and empiri-
cally demonstrate its appealing performance and
robustness in various environments.

1. Introduction
Reinforcement learning (RL) is a paradigm that solves se-
quential decision-making problems by maximizing the ex-
pected cumulative reward r, which is composed of both ex-
plorations, the process of the agent discovering new features
from the environment, and exploitations, the process by
which the agent learns to tackle the task using the knowledge
already gained. Despite the astonishing success achieved
with this paradigm (Mnih et al., 2013; 2015; Silver et al.,
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2016; 2017; Berner et al., 2019; Arulkumaran et al., 2019),
RL is vulnerable to sub-optimal policies when presented
with insufficient reward signals. To resolve this dilemma,
curiosity-driven exploration methods provide a promising
solution (Bellemare et al., 2016; Pathak et al., 2017; Ostro-
vski et al., 2017; Burda et al., 2018; Machado et al., 2020;
Pathak et al., 2019).

Figure 1. Performance of pure exploitation, curiosity-driven explo-
ration, and our algorithm with different choices of β, each data
point is the averaged performance after 1M steps training over 5
runs. Curiosity-driven (UCB-Q) is very sensitive to hyperparame-
ter β. We propose Hyper, which is empirically robust to β, and
theoretically efficient.

Curiosity-based algorithms, which originate from solving
the bandit problem (Auer, 2002), enhance the exploration by
intrinsically rewarding the agent for exploring the environ-
ment. These algorithms optimize the policy π to maximize
the joint reward function r+ βb, where r is the explicit task
reward, b is the intrinsic reward for exploration, and β is
the curiosity hyperparameter that scales the intrinsic reward.
When designing curiosity-based algorithms, the intrinsic
reward is often quantized by the uncertainty of the transition
that the agent takes (Bellemare et al., 2016; Azar et al., 2017;
Jin et al., 2018; Yang & Wang, 2020; Jin et al., 2020). The
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agent is then encouraged to take uncertain transitions and
explore the whole environment besides maximizing the task
reward (Bellemare et al., 2016). As the agent visits a transi-
tion more often, the intrinsic reward decays and eventually
becomes negligible, thereby making the extrinsic reward
dominate the joint reward function, and the agent can then
learn to exploit.

Curiosity-based algorithms have achieved great success
in exploration-intensive problems in recent advancements,
which supersedes all previous RL algorithms that solely
maximize task reward (Bellemare et al., 2016; Burda et al.,
2018; Pathak et al., 2019), and is proven to be theoreti-
cally efficient, according to (Auer, 2002). However, their
empirical efficiency is highly dependent on the choice of
hyperparameter β. The intricate relationship between the
intrinsic and extrinsic reward has an important impact on the
behavior of the agent. A small change of β, which controls
the relative weight of the intrinsic reward b and the task
reward r, would heavily change such a relationship, leading
to the sensitivity of this coefficient.

Specifically, when the cumulative intrinsic reward domi-
nates the extrinsic one, it causes over-exploration, i.e. the
agent will keep visiting uncertain transitions instead of ex-
ploiting the task. Conversely, if the intrinsic reward is too
small to encourage the agent to change from its current
policy, the algorithm will likely yield a sub-optimal result.
Furthermore, large intrinsic rewards will cause problems in
the optimization process by introducing a large bias to the
fitting of the neural networks thus making the learning pro-
cess hard to converge (Schäfer et al., 2021; Whitney et al.,
2021).

Predominantly, existing curiosity-based algorithms exhibit
a conservative inclination towards small β. A higher value
of β would heavily corrupt the task if not carefully tuned
for different environments. The involvement of the neural
network in practice makes the curiosity-driven methods
suffer from optimization instability due to frequent policy
changes. This limits the existing methods from using large
β to sufficiently explore the environment and increases the
chance of getting stuck in the sub-optimal policy.

To this end, we propose our algorithm Hyper to solve the
problem by controlling the visitation distribution of the
agent exploration and mitigate the optimization instability
by increasing the persistence of the visitation for adopting
large β. Hyper is theoretically efficient, and it leverages an
additional policy to decouple the exploitation learning from
the exploration to prevent over-exploration in practice. It
regularizes the visitation distribution of the agent’s explo-
ration to increase the exploration persistence, mitigating the
optimization instability caused by frequent policy changes.

Our contributions are summarized as follows:

• We identify the sensitivity of the curiosity-driven explo-
ration to the coefficient β through a delicately designed
example, and accordingly design a novel algorithm Hy-
per to resolve the challenges.

• We theoretically justify the efficiency of Hyper
through rigorous analysis, and empirically demonstrate
Hyper performs comparable, even favorable perfor-
mance compared to both exploration and exploitation
policies.

• We empirically analyze the robustness of Hyper to
β, where Hyper shows substantially lower sensitivity
compared to the original curiosity-driven exploration
algorithm.

2. Preliminaries
In this paper, we formulate the RL problem as an episodic
Markov Decision Process (MDP) (Bellman, 1957) under
episodic setting, denoted by (S,A, H, γ, r,P), where S is
the state space, A is the action space, P = {Ph}Hh=1 are
the transition measures that govern the dynamics of the en-
vironment, rh(s, a) is reward function at step h, H is the
episode length. γ ∈ (0, 1] is the discount factor. The task
of the agent is to learn a policy π : S → A to maximize the
discounted total reward Qπ = Eπ[

∑H
h=1 γ

h−1rh(sh, ah)].
We also denote the intrinsic reward as b(s, a, s′), where
(s, a, s′) is a transition. The curiosity-driven exploration
method generally aims to learn a policy that maximizes
Eπ[
∑H

h=1 γ
h−1rh(sh, ah) + bh(sh, ah, sh+1)] instead. We

slightly abuse the notation by omitting the sub-scripts, de-
noting rh, bh, sh, ah, sh+1 as r, b, s, a, s′ when the context
is clear.

3. Warm-up Example
Curiosity-driven exploration algorithms introduce a bonus
term that reflects the novelty of the current transition,
into the RL objective Qπ = Eπ[

∑H
i=1 γ

i−1(r(s, a) +
βb(s, a, s′))] to reward the agent for visiting novel tran-
sitions. We can decompose the joint objective into Qπ =
E(π) + βI(π), where:

E(π) = Eπ[

H∑
h=1

γh−1r(s, a)]

I(π) = Eπ[

H∑
h=1

γh−1b(s, a, s′)]

Intuitively, the intrinsic reward coefficient β affects how the
agent balances the exploration and exploitation by scaling
the value of the intrinsic value I. When E(π) > βI(π),
the agent will tend to optimize the task return, hence ex-
ploiting more. Conversely, if βI(π) > E(π), the agent will
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tend to explore more. The curiosity-driven algorithm works
ideally when the intrinsic objective βI(π) is initially large
enough to help the agent escape the sub-optimal policy, and
it gradually decreases and diminishes, then the agent can
quickly learn to exploit the diverse dataset and enjoy an
overall better sample efficiency (Yang & Wang, 2020; Jin
et al., 2020). However, in practice, only a limited range of
β can achieve this ideal case. The sensitivity to β of the
curiosity-driven exploration comes from various aspects, in
this section, we analyze this phenomenon and decompose
the mechanism behind it.

We first examine the behavior of curiosity-driven explo-
ration methods with different choices of β from a wide
range. We consider a navigation task in a 30x30 room,
which only consists finite number of states and four actions
taking the agent in four different directions: up, right, down
left, the layout is shown in Figure 2(a). The agent starts
from a fixed initial location at the center colored by blue,
and the agent should find and consistently reach the opti-
mal goal location at the lower-right corner colored by green
and receive a large reward of R. Besides the optimal goal,
there is also a sub-optimal goal that lies near the center
of the room colored by purple, which will provide a small
reward of r. Each episode will end when the horizon is
met, or the agent reaches either goal. This tabular environ-
ment allows us to train the agent without the involvement of
function approximation error, which allows us to isolate the
behavior analysis of the curiosity-driven exploration meth-
ods. The visitation frequencies from UCB-Q agent with
different value of β are shown in Figure 2, where the grid
with brighter color means more frequent visitation.

Parameter β range
R = 1.0, r = 0.1 {5e−3, 1e−2}
R = 0.1, r = 0.02 {5e−3}
R = 10.0, r = 1.0 {1e−1, 5e−1}
R = 100.0, r = 2.0 {5e−1, 1}

Table 1. Range of proper β for different environment parameter

We use UCB-Q (Jin et al., 2018) to train agents in this
environment, which is built upon Q-Learning (Watkins
& Dayan, 1992) and leverages upper confidence bound
(UCB) (Auer, 2002; Azar et al., 2017; Jin et al., 2018)
as the intrinsic reward to encourage exploration. Ide-
ally, the UCB-Q agent should sufficiently explore the
room without being trapped by the sub-optimal goal, and
as the intrinsic reward shrinks, it can consistently reach
the optimal goal. We run UCB-Q agents with β ∈
{5e−4, 1e−3, 5e−3, 1e−2, 5e−2, 1e−1, 5e−1, 1, 10, 100} in
the environment with a set-up of R = 1.0, r = 0.1 for 1
million steps and record their final performance. As shown
in Figure 1, only the choice of β ∈ [0.005, 0.5) can both
efficiently escape sub-optimality and consistently reach the

(a) Layout (b) β = 0.01

(c) β = 0.1 (d) β = 1.0

Figure 2. Comparison of visitation of UCB-Q agent with different
exploration coefficient, in the environment with suboptimal goal,
optimal goal. Higher visitation is shown in brighter colors (visita-
tion frequency: black < red < yellow < white). (a) Layout of the
environment (b) State visitation of UCB-Q with β = 0.01, Agent
gets stuck in sub-optimal policy due to insufficient exploration
bonus. (c): State visitation of UCB-Q with β = 0.1, the agent
finds a near-optimal policy. (d): State visitation of UCB-Q with
β = 1.0, the agent over-explores and cannot learn to exploit due
to the value of curiosity bonus is too high.

optimal goal.

When β is too small, once the agent finds the suboptimal
goal, the intrinsic reward is too low to encourage the agent to
explore other states and escape from this sub-optimal policy,
as shown in Figure 2(b). But if we choose an improperly
large β, βI(π) dominates E(π) throughout the training, as
demonstrated in Figure 2(d), the UCB-Q agent will almost
uniformly visit each state. Despite the agent finding the
optimal goal location, it fails to consistently revisit it even
after 1 million training steps.

Unfortunately, such a proper range of β highly depends on
the configuration of the environment, in our case, the values
of R and r determine the proper range of β. As shown
in Table 1, the proper ranges are drastically different with
different configurations. Hence, it is almost always neces-
sary to perform a comprehensive hyperparameter sweep on
β to balance exploration & exploitation, which limits the
applicability of this exploration paradigm.
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4. Hyper: Algorithm and Theoretical Results
In this section, we present an overview of the Hyper algo-
rithm, which includes both the provably efficient version
(Algorithm 2) and the empirically efficient implementation
(Algorithm 1). The difference between the two different
versions of Hyper is that they adopt different function ap-
proximation methods. The provably efficient algorithm
adopts a linear function approximation for us to examine the
theoretical sample efficiency and derive a formal worst-case
upper bound. The empirically efficient version is designed
to work with more expressive function approximations (e.g.,
neural networks) and has practical enhancements that im-
prove sample efficiency in real-world applications. The two
versions share a core mechanism of ”repositioning and ex-
ploration,” which is introduced in the following and will be
further elaborated in the next section.

The fundamental design principle behind Hyper is to decou-
ple exploration and exploitation using a two-phase process:
repositioning the agent based on exploitation knowledge and
exploration based on curiosity-driven methods. By reposi-
tioning the agent to states where it can gather more useful
exploratory data, Hyper ensures that exploration is directed
and more persistent. This improves both the stability of the
learning process and the agent’s ability to avoid suboptimal
policies.

The core design choice is this repositioning-and-exploration
mechanism, which helps stabilize the learning process while
still benefiting from curiosity-driven exploration. Instead
of purely relying on intrinsic rewards to guide exploration,
Hyper uses the exploitation policy to reposition the agent
to promising areas of the state space. After repositioning,
the agent then explores its environment to discover novel
transitions. This helps mitigate the instability that typically
arises from purely curiosity-driven approaches, where in-
trinsic rewards may dominate and lead to over-exploration
or slow convergence.

Assumption 4.1. (Linear MDP, e.g., (Yang & Wang, 2019;
2020; Jin et al., 2020)). MDP(S,A, H,P, r) is a linear
MDP whose transition P := {Ph}Hh=1 is not necessarily
stationary. With a feature map ϕ : S × A → Rd, such
that for for any h ∈ [H], there exists d unknown measures
µh = (µ

(1)
h , µ

(2)
h , µ

(3)
h , ..., µ

(d)
h ) over S and an unknown

vector θh ∈ Rd, such that for any (s, a) ∈ S ×A we have:

Ph(·|s, a) = ϕ(s, a)Tµh(·), rh(s, a) = ϕ(s, a)T θh
(1)

Without loss of generality, we also assume that ∥ϕ(s, a)∥ ≤
1, and max{∥µh(S)∥, ∥θh∥} ≤

√
d for all (s, a, h) ∈ S ×

A× [H]

4.1. Theoretical Result

We now present the theoretical results that demonstrate the
efficiency of the Hyper algorithm under the linear function
approximation framework, whose assumption is described
in Assumption 4.1. Under this framework, we form the prov-
ably efficient Linear-UCB-Hyper algorithm in Algorithm 2.
The main result is that Linear-UCB-Hyper achieves prov-
able efficiency in exploration and guarantees convergence
to a near-optimal policy with high probability.

We adopt linear function approximation (Yang & Wang,
2019; 2020; Jin et al., 2020) to derive the bound in our anal-
ysis. The main theorem (Theorem 4.2) states that under this
approximation, Hyper can achieve sample-efficient explo-
ration with polynomial complexity. This guarantees that the
algorithm will converge to an optimal or near-optimal policy,
even in challenging exploration environments. Specifically,
the result provides convergence guarantees in the worst-case
scenario, where task reward signals may be sparse or diffi-
cult to access. We defer the formal proof to the appendix.

Theorem 4.2. With any truncation probability p ∈ (0, 1)

for the repositioning phase, it takes at most Õ(d
3H4

ϵ2 ) steps
for Hyper to obtain an ϵ-optimal exploitation policy µ with
high probability under assumption 4.1.

While traditional curiosity-driven exploration algorithms
can also achieve this worst-case upper bound, the key im-
provement introduced by Hyper lies in the repositioning-
and-exploration mechanism. This mechanism significantly
boosts the sample efficiency of Hyper compared to standard
approaches by guiding exploration more effectively, thus
reducing the likelihood of suboptimal exploration or unnec-
essary revisiting of uninformative states. This distinction is
crucial and is further demonstrated in the empirical results
in later sections.

5. Repositioning & Exploration
In this section, we dive deeper into the design choices be-
hind the repositioning-and-exploration mechanism, which
is central to Hyper’s efficiency as well as robustness against
β. The goal of this mechanism is to decouple task learning
from exploration while regularizing exploration to ensure
it remains both persistent and efficient. This decoupling al-
lows the exploitation policy to focus on refining task-specific
performance while the exploration policy is responsible for
discovering novel states in the environment. We want to
point out that Hyper shown in Algorithm 1 is a generic al-
gorithm that can work with any off-policy reinforcement
learning algorithms and any curiosity methods. As we will
see Hyper performs well with TD3 (Fujimoto et al., 2018)
as the learning algorithm and Disagreement (Pathak et al.,
2019) as the curiosity module in Section 6, and it also per-
forms well with DQN (Mnih et al., 2013) along with RND
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Figure 3. Decoupling causes distribution-shift, where the exploita-
tion policy drastically overestimates its value (yellow), yielding
poor performance (blue).

(Burda et al., 2018) in the Appendix A.5

5.1. Isolation of Task Learning & Regularization Over
Exploration Visitation

The decision to decouple the learning of task rewards from
exploration was driven by the instability observed when
using large curiosity coefficients (β) in traditional algo-
rithms. In such cases, intrinsic rewards often overpower
task rewards, leading to over-exploration and poor task per-
formance. To address this, Hyper employs a repositioning
phase before each exploration phase. In the repositioning
phase, the agent acts according to the exploitation policy,
moving it to promising states where task learning is most
likely to be effective.

This approach prevents the exploration policy from wan-
dering too far from regions where the agent has already
gained useful task knowledge, avoiding the risk of over-
exploration. Additionally, by regularizing the exploration
visitation—ensuring that exploration is conducted from
states where the agent has already gathered substantial task-
related experience—Hyper reduces the instability caused
by frequent policy changes in traditional curiosity-driven
methods.

This combination of isolation and regularization mitigates
the distribution shift problem often observed in decoupled
methods that separate task learning from exploration. With-
out repositioning, the exploitation policy can become de-
tached from the data collected during exploration, leading to
overestimation of value functions and poor performance in
real-world tasks. Hyper addresses this by aligning the data
collection process between exploration and exploitation,
ensuring more reliable value estimates.

5.2. Truncation Probability p

The length of the repositioning phase is crucial in determin-
ing how far the agent is moved before exploration begins.

Algorithm 1 Empirically Efficient Hyper
1: Initialize: replay buffer D, exploration policy π, ex-

ploitation policy µ, truncation probability p
2: Optional: Linear decay schedule of p
3: for Training iteration k = 1, 2, ...,K do
4: repositioning length← bounded geom(p,H)
5: for i = 1, 2, ...,H do
6: if i < repositioning length then
7: # Repositioning phase
8: Use π to step in the environment
9: else

10: # Exploration phase
11: Use µ to step in the environment
12: end if
13: Store the transition in buffer D
14: # Policy Improvement
15: Sample a batch of data B ∼ D
16: Update π with intrinsic reward b using B
17: Update µ without intrinsic reward b using B
18: Update b using B
19: end for
20: Decay p based on the decay schedule
21: end for

We adopt a truncation probability p that controls the stop-
ping point for the repositioning phase, striking a balance
between exploration and exploitation. Early in the train-
ing process, repositioning should not move the agent too
far from regions where it has gained task knowledge. To
achieve this, we initially set p = 1− γ, where γ is the dis-
count factor. This value aligns the repositioning phase with
the effective planning horizon of the agent’s exploitation
policy, ensuring that repositioning is meaningful without
over-reliance on untested areas of the environment.

As training progresses, the exploitation policy becomes
more stable and better at identifying high-reward regions of
the environment. Hence, we gradually increase the length of
the repositioning phase by decaying the truncation probabil-
ity. This allows the agent to explore more distant areas of the
state space as it becomes more confident in its task-specific
knowledge, further improving the exploration process.

5.3. Truncating the Geometric Distribution

To ensure a balanced exploration process throughout train-
ing, we also truncate the geometric distribution used to
sample the repositioning phase length. Specifically, in an
episodic setting, sampling directly from a geometric dis-
tribution can lead to disproportionately long repositioning
phases, particularly in environments with shorter horizons.
Consider a setting that horizon H = 200, discount factor
γ = 0.99, where the truncation probability will decay from
p = 0.01 to p = 1 − 1

H = 0.005. If we stop the reposi-
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Figure 4. Distribution of length of repositioning phase (green)
Bounded geometric distribution (blue) Original geometric distribu-
tion.

tioning phase with the probability p = 1 − γ initially or
equivalently sample the length from a geometric distribu-
tion with parameter p, a large amount of probability will
accumulate at H . As shown in Figure 4 (blue), if the reposi-
tioning phase is stopped with probability p, there is a very
large probability that it will consume one whole episode
from the beginning of the training. As the training proceeds,
the truncation probability decays, and this probability keeps
increasing. This phenomenon will cause Hyper to be not
as sample efficient in some tasks with a short horizon and
requiring efficient exploration.

To address this issue, we use a bounded geometric distribu-
tion to sample the reposition length before every episode.
The original geometric distribution probability function is
defined on all positive integers, which is not desirable in
this case. As in the episodic RL setting, the probability of
values larger than H accumulates to the marginal density
of H , causing the undesirable spike shown in Figure 4. We
instead restrict the domain to the range [1, H] to avoid the
probability accumulation, formulated as below:

P(L = l) =

{
p(1−p)l−1∑H

i=1 p(1−p)(i−1) 0 ≤ l ≤ H
0 otherwise

Figure 4 (green) depicts the shape of the resulting distribu-
tion for p at different stages of the training. Despite there
being an increasingly large probability for Hyper to have a
longer repositioning phase, it still has sufficient opportunity
to explore, which enhances Hyper’s capability of balancing
exploration & exploitation in different cases.

6. Experiments
We evaluate the performance and the robustness of Hyper
in this section, with the comparison to baselines with dif-
ferent strategies of balancing exploration & exploitation.
We implement all algorithms with TD3 (Fujimoto et al.,

2018) as the reinforcement learning algorithm and with
Disagreement (Pathak et al., 2019) as the intrinsic reward
when curiosity-driven exploration is used. Specifically, we
consider the following baselines:

TD3 (Fujimoto et al., 2018) Off-policy reinforcement
learning method that uses random action noise for explo-
ration.

Curiosity-Driven Exploration (Curiosity) Curiosity-
driven TD3 agent, using Disagreement intrinsic reward for
exploration.

Decoupled Reinforcement Learning (Schäfer et al., 2021)
(Decouple) Agent that has an additional exploitation pol-
icy for exploiting the task by learning from the exploratory
data collected by the exploration policy offline, as outlined
in the previous section.

All baselines are evaluated on various environments that
differ in exploration difficulty, exploitation difficulty, and
function approximation difficulty. The detailed setting of
the environments is deferred to the appendix. Decouple, Cu-
riosity and Hyper all use the Disagreement method (Pathak
et al., 2019) to compute the curiosity bonus for fair compar-
ison.

6.1. Performance

Figure 5 depicts the performance of agents in the continuous
goal-searching tasks (Fu et al., 2020) and locomotion tasks
(Todorov et al., 2012) averaged over five trials, the shaded
area represents the empirical standard deviation. The full
results of the performance comparison and environment
setup are deferred to the appendix.

In the goal-searching tasks (Figure 5), the agent is spawned
following some initial distribution and will receive zero re-
wards until finding the fixed goal location. Hence the goal
of the agent in this series of tasks is to first explore the
environment and find the goal location, and then learn to
exploit the task by consistently revisiting it. Two mazes
with differences in size are used in the experiment: Medi-
umMaze and LargeMaze, where it takes an optimal policy
taking approximately 150 steps to reach the goal location in
MediumMaze and 250 steps in LargeMaze. We differentiate
the difficulty of tasks in the horizon of every episode. A
shorter horizon results in a lower tolerance for redundant
steps, which requires the agent to find a sufficiently good
policy to obtain positive feedback from the environment.
The horizon for each task is shown in the Table 2. In this
set of experiments, we do not tune β. We apply β = 1.0
for Hyper, Decouple, and Curiosity agents, to ensure a fair
comparison.

TD3 explores inefficiently with random actions, which
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Figure 5. Performance of Hyper and baselines. For locomotion tasks, the performance is measured by the episodic cumulative reward, for
navigation tasks, it is measured by the success rate instead. Each line is averaged over 5 runs with different random seeds.

Figure 6. β-Sensitivity analysis. The x-axis represents the different choices of β, y-axis represents the final performance after 1M steps
for the first four tasks, 2M steps for LargeMaze-Medium. The point in the graph represents the mean value over 5 runs, and the bars
depict one standard deviation. The experiment shows that Hypernot only enjoys better robustness to β compared to other methods, but
also enjoys a smaller variance.

makes it hard to perform well in exploration-intensive tasks.
In the sparse reward locomotion environment (Hopper-
Sparse, Walker2d-Sparse), it fails to receive any reward
in any trial. In the navigation tasks, despite it can quickly
learn to exploit after finding the goal location, it can only
manage to find the goal location once in all trials, indicat-
ing its lack of efficient exploration. Curiosity explores the
environment efficiently and succeeds in the sparse-reward
locomotion tasks. It also performs comparably, even favor-
ably, in dense-reward locomotion tasks. However, the hard
navigation tasks, show the problem in exploitation. It man-
ages to find the goal location, however, it never manages
to learn to properly exploit the task. The Decouple agent
can learn a successful policy based on a limited number
of success trajectories collected by the Curiosity agent in

MediumMaze-Medium and LargeMaze-Medium, but it fails
to do so in the hardest navigation task, LargeMaze-Hard.
The Decouple agent also struggles with high-dimensional
locomotion tasks due to distribution shift.

Hyper performs comparable, often time favorable in all the
tasks. Notably, Hyper is the only agent that consistently
tackles the task. Compared to the failure of the Decouple
agent in this task, it suggests that the regularization of the ex-
ploration visitation and the exploration persistence is crucial
in this environment. The decouple agent fails in this task
because it has no control over the exploration policy, and
as the exploration policy cannot collect enough successful
trajectories, it would be difficult for the Decouple agent to
learn to exploit, whereas Hyper can guide the exploration
policy towards the promising region, increasing the explo-
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ration persistence, and the exploitation in turn benefits from
the high-quality data.

6.2. β Sensitivity Analysis

We now present the performance of Hyper and Curiosity
with different intrinsic coefficients β.

We evaluate the final performance of Curiosity, Decouple,
and Hyper agent over multiple trials with each different
value of β choice on five environments. As shown in Figure
6, the Curiosity agent shows peak performance with differ-
ent values of β. Typically, the performance of the Curiosity
agent peaks with a small value of β and drastically drops as
β > 10, whereas Hyper shows considerably more consis-
tent with different β values, indicating its robustness to this
hyperparameter. It is worth noting that, Hyper generally
shows better tolerance to the large value of β, which allows
one to apply large β with Hyper without prior knowledge
of the environment, to exhibit more exploratory behavior
and prevent from being stuck in sub-optimality.

7. Related Work
Exploration & exploitation is a long-standing research topic
in the RL community (Thompson, 1933; Auer, 2002). Bal-
ancing exploration & exploitation is the key to efficient RL.
Curiosity-driven exploration has emerged as a promising
paradigm for achieving efficient RL. A line of theoretical
research focuses on the optimal exploration-exploitation
trade-off in RL with theoretically sound intrinsic rewards
(Azar et al., 2017; Jin et al., 2018; Yang & Wang, 2020; Jin
et al., 2020). The statistical properties of the environment
(dynamics, rewards) and the intrinsic reward are assumed to
be known, which allows one to find a coefficient β for the
optimal trade-off between exploration and exploitation.

Recently, this idea has been applied to practical RL al-
gorithms and achieved great success in solving hard-
exploration problems (Bellemare et al., 2016; Ostrovski
et al., 2017; Burda et al., 2018). The common approach is
to employ neural networks to estimate a transition’s uncer-
tainty and use this approximate uncertainty as the intrinsic
reward b for encouraging exploration. Various notions of un-
certainty were used: error on dynamics prediction (Oudeyer
et al., 2007; Pathak et al., 2017; 2019), state visitation den-
sity (Bellemare et al., 2016; Ostrovski et al., 2017; Machado
et al., 2020), entropy gain (Tang et al., 2017; Choshen et al.,
2018; Burda et al., 2018), fix-target prediction (Burda et al.,
2018), etc.

Go-Explore is a powerful paradigm for efficient exploration
that is not sensitive to the hyperparameter (Ecoffet et al.,
2019). The algorithm keeps track of the state visitation, re-
turns to the least visited states, and then explores from there.
This paradigm does not use curiosity to exhibit exploration

but uses random actions. However, this method requires the
environment to be either deterministic or resettable or for
the agent to have access to some domain knowledge, which
is generally unrealistic.

Bayesian RL is also proposed to exhibit efficient exploration
(Ghavamzadeh et al., 2015; Fortunato et al., 2017; Osband
et al., 2016), which leverages the ideas of Bayesian infer-
ence to quantify the uncertainty and encourage exploration
accordingly. Bootstrapped DQN, the most practical variant
of this line of work, wisely combines the idea of Bayesian
inference and the property of the neural network for the
agent to exhibit diverse and exploratory behavior and sig-
nificantly improve the performance of DQN on a handful
of environments. However, it does not fundamentally im-
prove the exploration capability from the naive ϵ-greedy
exploration, as it fails in exploration-intensive tasks.

Options-based methods (Sutton et al., 1999; Bacon et al.,
2017; Dabney et al., 2020; Chen et al., 2022; Kim et al.,
2023) are also proposed for tackling the exploration problem
by temporally abstracting the actions, resulting in conceptu-
ally easier policy learning and more consistent exploration.
This paradigm is closely related to Hyper, whereas options-
based methods mostly train an additional high-level switch
policy to decide action selection protocol. (Kim et al., 2023)
proposes an algorithm (LESSON) that automatically selects
from exploitation and exploration policy to take action at
every step, which yields superior results compared to orig-
inal exploration and other option-based methods. We also
compare Hyper to LESSON, examining the efficiency of
Hyper. The results are deferred to the appendix.

Recently, some dedicated methods have been for mitigating
the hyperparameter sensitivity of the exploration methods
(Liu et al., 2021; Whitney et al., 2021; Schäfer et al., 2021).
Among these methods, (Schäfer et al., 2021) is the most
related to our method, as it uses the decoupling method
as we outlined in Section 4 to mitigate the problem. It
is efficient in low-dimensional cases, but hard to scale to
tasks with high-dimensional state and action spaces, as we
thoroughly demonstrated in the experiment.

8. Conclusion
We propose Hyper, a novel algorithm that leverages two
distinct policies, that improve the robustness of curiosity-
driven exploration by regularizing the exploration visitation.
We theoretically justify its sample efficiency, that Hyper
explores the environment efficiently. We also empirically
validate its performance and robustness compared to the ex-
ploitation algorithm, curiosity-driven exploration algorithm,
and previous attempts at solving this problem.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Implementation & Experiment Details
A.1. Implementation of Agents

We implement Hyper, Decouple, and Curiosity based on the official implementation of TD3 (Fujimoto et al., 2018) along
with the original hyperparameters reported in the paper. For adapting the intrinsic reward method with TD3, we update the
Disagreement (Pathak et al., 2019) intrinsic reward model for every environmental step using 25% of data of each batch to
prevent the intrinsic reward from shrinking too fast following (Burda et al., 2018). In the locomotion experiments, we set the
truncation probability p to be 0.01 initially, and decay to 0.001, as we discussed in Section 5.

A.2. PointMaze

Our experiments on continuous navigation tasks are conducted in the PointMaze domain (Todorov et al., 2012; Fu et al.,
2020). PointMaze mostly serves as a fully observable goal-reaching benchmark, where the agent observes a 6 values at a
state: current x-axis position, current y-axis position, current x-axis speed, current y-axis speed, goal x-axis position and
goal y-axis position. And the agent is allowed to take a 2-dimensional action, that controls the x-axis acceleration and y-axis
acceleration respectively.

In our experiment, we turn it into a sparse-reward goal searching domain. In our experiment, the agent only observes its own
position and state, but not the goal location. The agent will only receive positive reward once reaching the goal. In this
series of tasks, the agents not only need to first find the goal location, but also to consistently reach the goal. Despite the
environments consisting of low-dimensional state and action space, this series of experiments examines and distinguishes
the capability of balancing exploration & exploitation of agents.

Figure 7. Layout of environments used continuous navigation experiments: (Left) MediumMaze (Right) LargeMaze

Figure 7 shows the layout of the MediumMaze and LargeMaze, where the initial location is marked with the green circle,
and the goal location is marked with the red circle. For every episode, the agent is spawned randomly near the initial location,
and the goal is spawned near the goal location. It takes approximately 150 steps for an optimal policy to reach the goal in
MediumMaze and 250 steps in LargeMaze (depending on the randomly spawned agent and goal location).

We differentiate the difficulty of each task by restricting the horizon of each task. Specifically, tasks with shorter show less
tolerance to redundant steps, and the agent will only receive positive feedback by exploring a more optimal trajectory. The
detailed setup is shown in Table 2, where Optimal #Steps means the number of steps that an optimal policy needs to take
from the initial location to the goal location, the variation is caused by the randomness when initializing the initial and goal
location.

Task Name Optimal #Steps Horizon H
MediumMaze-Easy ≈150 500

MediumMaze-Medium ≈150 200
LargeMaze-Easy ≈250 1000

LargeMaze-Medium ≈250 500
LargeMaze-Hard ≈250 300

Table 2. Difficulty of navigation tasks
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A.3. MuJoCo Locomotion

For the locomotion environments (Todorov et al., 2012), the agent starts idle and the task is to control the robot to move
forward as fast as possible within 1000 steps, and the episode will end if the robot falls down. The agent will observe the
position, velocity, and angular velocity of the joints of the robot, and take actions to control the torque on all the joints. In the
dense reward version, including Hopper, Walker2d, HalfCheetah, Ant, and Humanoid. At each step, the agent will receive a
performance reward proportional to its velocity and a constant ”healthy reward” if it remains in a healthy position (i.e. not
falling). In the sparse reward version, including SparseHopper, SparseWalker2d, SparseHalfCheetah, and SparseHumanoid,
the agent will not receive the healthy reward, and will only get a unit reward once its forward speed exceeds some threshold.

A.4. More Experiment Results

We present the full set of experiment results in this section. TD3 and Curiosity agent perform well in some of the tasks,
depending on the property of the environment, whereas Hyper performs comparable to the best-performing algorithm in
every task.

Figure 8. Full experiments results for performance comparison.
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Figure 9. MiniGrid Performance of Hyper and LESSON. The x-axis represents the number of steps, y-axis represents the success rate.

A.5. Comparision with Option-Based Method

We compare our method with the recently proposed options-based exploration method LESSON (Kim et al., 2023). We
implement Hyper based on official implementation provided by (Kim et al., 2023), which uses DQN (Mnih et al., 2013)
as the RL algorithm, and RND (Burda et al., 2018) as the intrinsic reward. We also use the same set of hyperparameters
provided by the original paper.

We apply Hyper in the MiniGrid domain, on which LESSON is tested in the original paper. The comparison is shown in the
Figure 9. Hyper performs comparable in Empty16x16 and Fetch8x8 tasks, and outperforms LESSON in UnlockPickup and
LavaCrossingS9N1, which further validates the efficiency of Hyper.

A.6. Hyperparameters of Experiments

A.6.1. HYPERPARAMETERS FOR TD3-BASED ALGORITHMS

Hyperparameter Value
Learning Rate 3e-4
Intrinsic Reward Learning Rate 1e-4
Batch Size 256
Policy Update Delay 2
Optimizer Adam
Q-Network Architecture (256, 256)
Actor-Network Architecture (256, 256)
Activation function ReLU

A.6.2. HYPERPARAMETERS FOR CURIOSITY-DRIVEN EXPLORATION

Hyperparameter Value
β 1.0
p (0.01, 0.001)
Learning Rate of Disagreement Model 1e-4
Disagreement Ensemble Size 5

B. Proof of Efficiency of Hyper
Theorem B.1. With any truncation probability p ∈ (0, 1) for the repositioning phase it takes at most Õ(d

3H4

ϵ2 ) steps for
Linear-UCB-Hyper to obtain an ϵ-optimal exploitation policy µ with high probability under assumption B.2.

In this section, we provide comprehensive proof for theoretically justifying the efficiency of Hyper under linear function
approximation assumption (Linear-UCB-Hyper), which is formally stated in Theorem B.1. To theoretically justify the
efficiency of Hyper, the core assumption is the following:
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Algorithm 2 Provably Efficient Linear-UCB-Hyper
Requires: Parameters λ > 0, µ > 0, β > 0, β′ > 0, Horizon H , Feature Mapping ϕ, Truncation probability p > 0,
Weights ŵh for optimistic Q-function, Q-function wh for exploitation, w̌h for pessimistic Q-function for all h ∈ [H]

Requires: Clipping function clip(x) : x→

 0 x ≤ 0
x x ∈ (0, H)
H x ≥ H

, Geometrical distribution Geom

for k = 1, 2, ...,K do
Receive the initial state sk1
Sample length Lk ∼ Geom(p) for the first phase
# Repositioning phase
for step h = 1, 2, ..., Lk do

Take action akh ← argmaxa∈AQh(s
k
h, a;wh), and observe skh+1

end for
# Exploration phase
for step h = Lk + 1, Lk + 2, ...,H do

Take action akh ← argmaxa∈A Q̂h(s
k
h, a; ŵh), and observe skh+1

end for
# Policy Improvement
for h = H,H − 1, ..., 1 do

if Lk = 0 then
Λh ← Σk−1

τ=1ϕ(s
τ
h, a

τ
h)ϕ(s

τ
h, a

τ
h)

T + λ · I
wh ← Λ−1

h Σk−1
τ=1ϕ(s

τ
h, a

τ
h)[rh(s

τ
h, a

τ
h) + maxaQh+1(s

τ+1
h , a;wh)]

ŵh ← Λ−1
h Σk−1

τ=1ϕ(s
τ
h, a

τ
h)[rh(s

τ
h, a

τ
h) + maxa Q̂h+1(s

τ+1
h , a; ŵh)]

w̌h ← Λ−1
h Σk−1

τ=1ϕ(s
τ
h, a

τ
h)[rh(s

τ
h, a

τ
h) + maxa Q̌h+1(s

τ+1
h , a; w̌h)]

Qh(·, ·;wh)← clip
(
wh

Tϕ(·, ·)
)

Q̂h(·, ·; ŵh)← clip
(
ŵT

hϕ(·, ·) + β[ϕ(·, ·)TΛ−1
h ϕ(·, ·)] 12

)
Q̌h(·, ·; w̌h)← clip

(
w̌T

hϕ(·, ·)− β′[ϕ(·, ·)TΛ−1
h ϕ(·, ·)] 12

)
end if

end for
end for

Assumption B.2. (Linear MDP, e.g., (Yang & Wang, 2019; Jin et al., 2020)). MDP(S,A, H,P, r) is a linear MDP whose
transition P := {Ph}Hh=1 is not necessarily stationary. With a feature map ϕ : S ×A → Rd, such that for for any h ∈ [H],
there exists d unknown measures µh = (µ

(1)
h , µ

(2)
h , µ

(3)
h , ..., µ

(d)
h ) over S and an unknown vector θh ∈ Rd, such that for any

(s, a) ∈ S ×A we have:
Ph(·|s, a) = ϕ(s, a)Tµh(·) and rh(s, a) = ϕ(s, a)T θh (2)

Without loss of generality, we also assume that ∥ϕ(s, a)∥ ≤ 1, and max{∥µh(S)∥, ∥θh∥} ≤
√
d for all (s, a, h) ∈

S ×A× [H]

Specifically, we adopt the UCB-enhanced least-square value-iteration (Jin et al., 2020), a theoretically well-studied off-policy
RL algorithm to our proposed Hyper framework, which we refer to as UCB-Hyper. The algorithm follows the generic Hyper
framework shown in Algorithm ??, it first collects data in a two-phase manner, and updates the policies afterward. Note
that Linear-UCB-Hyper adopts an additional pessimistic Q-function with weights w̌H

h=1, this Q-function is not used in
Linear-UCB-Hyper, but serves as a tool for our proof. We put it in the Algorithm 2 just for the sake of clarity in terms of the
definition and the update rule.

For simplicity, we consider γ = 1.0 without loss of generality, we denote wh, ŵh, w̌h at k-th episode as wk
h, ŵ

k
h, ŵ

k
h, and

denote Qh(·, ·;wh), Q̂h(·, ·;wh), Q̌h(·, ·; w̌h) at k-th episode as Qk
h(·, ·), Q̂k

h(·, ·), Q̌k
h(·, ·) when the context is clear.

Proposition B.3. Bellman equation: (Bellman, 1957)

Qπ
h(s, a) = rh(s, a) + γPhV

π
h+1(s, a) and V π

h (s) = Qπ
h(s, πh(s)), ∀(s, a) ∈ S ×A (3)

Q⋆
h(s, a) = rh(s, a) + γPhV

⋆
h+1(s, a) and V ⋆

h (s) = Q⋆
h(s, π

⋆
h(s)), ∀(s, a) ∈ S ×A (4)
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Proposition B.4. ((Qπ realizability (Jin et al., 2020)) For a linear MDP, for any policy π, there exist weights {wπ}h∈[H]

such that for any (s, a, h) ∈ S ×A× [H], we have Qπ
h(s, a) = ϕ(s, a)Twπ

h .

Proof. By the Bellman equation we have:

Qπ
h(s, a) = r(s, a) + (PhV

π
h+1)(s, a) = ϕ(s, a)T θh +

∫
S
V π
h+1(s

′) · ϕ(s, a)T dµh(s
′)

= ϕ(s, a)T · (θh +

∫
S
V π
h+1(s

′)dµh(s
′)). (5)

This directly shows that Qπ
h is linear with respect to features ϕ.

Lemma B.5. (Boundedness of wπ
h (Jin et al., 2020)) Under Assumption B.2 for any fixed policy π, let {wπ

h}h∈[H] be the
weights such that Qπ

h(s, a) = ⟨ϕ(s, a),wπ
h⟩ for all (s, a, h) ∈ S ×A× [H]. Then, we have

∥wπ
h∥ ≤ 2H

√
d, ∀h ∈ [H]

Proof. By the Bellman equation, we have:

Qπ
h(s, a) =

(
rh + PhV

π
h+1

)
(s, a), ∀h ∈ [H]

And by the Proposition B.4, we have:

wπ
h = θh +

∫
V π
h+1 (s

′) dµh (s
′)

Under the normalization conditions of Assumption B.2 the reward at each step is in [0,1], we have:

V π
h+1 (s

′) ≤ H, ∀s′ ∼ P(·|s, a)

Thus, ∥θh∥ ≤
√
d, and

∥∥∫ V π
h+1 (s

′) dµh (s
′)
∥∥ ≤ H√d. This concludes the proof.

Lemma B.6. (Bound on ŵk
h in Algorithm 2 (Jin et al., 2020)) The weight ŵk

h in Algorihtm 2 satisfies:

∥∥ŵk
h

∥∥ ≤ 2H
√
dk/λ

Proof. For simplicity, we denote the index set Uk = {i ∈ [K] : Li = 0}, i.e. the index of episodes in which the roll-in
length is 0. For any index of episode k ∈ [K], we denote ⌊k⌋ = max(Uk) when U is not empty, and ⌊k⌋ = 0 otherwise, i.e.
the last time we encounter an episode whose roll-in length is 0. Suppose v ∈ Rd is an arbitrary vector, we have:

∣∣v⊤ŵk
h

∣∣ =
∣∣∣∣∣∣v⊤

(
Λ
⌊k⌋
h

)−1
⌊k⌋−1∑
τ=1

ϕτ
h

[
r (sτh, a

τ
h) + max

a
Q̂h+1

(
sτh+1, a

)]∣∣∣∣∣∣ (6)

≤
⌊k⌋−1∑
τ=1

∣∣∣∣v⊤
(
Λ
⌊k⌋
h

)−1

ϕτ
h

∣∣∣∣ · 2H (7)

≤

√√√√√
⌊k⌋−1∑

τ=1

v⊤
(
Λ
⌊k⌋
h

)−1

v

 ·
⌊k⌋−1∑

τ=1

(ϕτ
h)

⊤
(
Λ
⌊k⌋
h

)−1

ϕτ
h

 · 2H (8)

≤ 2H∥v∥
√
d⌊k⌋/λ (9)

where the first step follows the algorithm construction, the second step follows directly from Cauchy–Schwarz inequality,
and the last step follows from Lemma B.1, and the third step follows from the fact that

∥∥ŵk
h

∥∥ = maxv:∥v∥=1

∣∣v⊤ŵk
h

∣∣.
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This implies that
∥∥ŵk

h

∥∥ ≤ 2H
√
d⌊k⌋/λ, and by definition of ⌊k⌋, we have

∥∥ŵk
h

∥∥ ≤ 2H
√
d⌊k⌋/λ ≤ 2H

√
dk/λ, which

concludes the proof.

Remark B.7. Let β′ = c′ · dH
√
log(2dT/δ) for some proper constant c′ > 0, w̌k

h ← Λ−1
h Σk−1

τ=1ϕ(s
τ
h, a

τ
h)[rh(s

τ
h, a

τ
h) +

maxa Q̌h+1(s
τ+1
h , a)], and Q̌k

h(·, ·)← clip
(
{w̌T

hϕ(·, ·)− β′[ϕ(·, ·)TΛ−1
h ϕ(·, ·)] 12 }, 0, H

)
. By similar approach as in the

proof of Lemma B.6, the weight w̌k
h also satisfies:

∥∥w̌k
h

∥∥ ≤ 2H
√
dk/λ

This result is direct, as the proof of Lemma B.6 does not leverage any property specific to ŵk
h.

We then define a high-probability event that bound the approximation error of our optimistic value function.

Lemma B.8. (High Probability Event on Approximating Optimistic Value Function (Jin et al., 2020)) Under the setting of
Theorem B.1, let cβ be the constant in the definition of β, such that

β = cβ · dH
√
log(2dT/δ).

There exists and an absolute constant C that is independent of cβ such that for any fixed p ∈ [0, 1], if we let E be the event
that:

∀(k, h) ∈ [K]× [H] :

∥∥∥∥∥
k−1∑
τ=1

ϕτ
h

[
V̂ k
h+1

(
sτh+1

)
− PhV̂

k
h+1 (s

τ
h, a

τ
h)
]∥∥∥∥∥

(Λk
h)

−1

≤ C · dH√χ

where χ = log [2 (cβ + 1) dT/p], then P(E) ≥ 1− p/2.

Proof. By Lemma B.6, we have: ∥∥ŵk
h

∥∥ ≤ 2H
√
dk/λ, ∀(k, h) ∈ [K]× [H]

Also, by the construction of Λk
h, its smallest eigenvalue is lower bounded by λ. Combining with Lemmas C.5 and C.7, for

any fixed constant ϵ > 0, we have:∥∥∥∥∥
k−1∑
τ=1

ϕτ
h

[
V̂ k
h+1

(
sτh+1

)
− PhV̂

k
h+1 (s

τ
h, a

τ
h)
]∥∥∥∥∥

2

(Λk
h)

−1

(10)

≤ 4H2

[
d

2
log

(
k + λ

λ

)
+ d log

(
1 +

8H
√
dk

ε
√
λ

)
+ d2 log

(
1 +

8d1/2β2

ε2λ

)
+ log

(
2

p

)]
+

8k2ε2

λ
(11)

By plugging in λ = 1 and β = C · dH
√
log(2dT/δ) to this inequality, where C is a positive constant independent of cβ ,

and picking ϵ = dH/k we have:∥∥∥∥∥
k−1∑
τ=1

ϕτ
h

[
V̂ k
h+1

(
sτh+1

)
− PhV̂

k
h+1 (s

τ
h, a

τ
h)
]∥∥∥∥∥

2

(Λk
h)

−1

≤ C · d2H2 log [2 (cβ + 1) dT/p] ,

This concludes the proof.

Lemma B.8 provides the bound on the approximation of the optimistic value function, we can then bound the pessimistic
value function in a similar way, as by Lemma C.8, these two functions classes share the same upper bound on the covering
number.
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Lemma B.9. (High Probability Event on Approximating Pessimistic Value Function) Under the setting of Theorem B.1, let
cβ′ be the constant in the definition of β′, such that

β′ = cβ′ · dH
√
log(2dT/δ).

There exists and an absolute constant C ′ that is independent of cβ′ such that for any fixed p ∈ [0, 1], if we let E be the event
that:

∀(k, h) ∈ [K]× [H] :

∥∥∥∥∥
k−1∑
τ=1

ϕτ
h

[
V̌ k
h+1

(
sτh+1

)
− PhV̌

k
h+1 (s

τ
h, a

τ
h)
]∥∥∥∥∥
(Λk

h)
−1

≤ C ′ · dH√χ

where χ = log [2 (cβ′ + 1) dT/p], then P(E) ≥ 1− p/2.

Proof. By Lemma B.6, we have: ∥∥w̌k
h

∥∥ ≤ 2H
√
dk/λ, ∀(k, h) ∈ [K]× [H]

Also, by the construction of Λk
h, its smallest eigenvalue is lower bounded by λ. Combining with Lemmas C.5 and C.8, for

any fixed constant ϵ > 0, we have:∥∥∥∥∥
k−1∑
τ=1

ϕτ
h

[
V̌ k
h+1

(
sτh+1

)
− PhV̌

k
h+1 (s

τ
h, a

τ
h)
]∥∥∥∥∥

2

(Λk
h)

−1

(12)

≤ 4H2

[
d

2
log

(
k + λ

λ

)
+ d log

(
1 +

8H
√
dk

ε
√
λ

)
+ d2 log

(
1 +

8d1/2β2

ε2λ

)
+ log

(
2

p

)]
+

8k2ε2

λ
(13)

By plugging in λ = 1 and β′ = C ′ · dH
√
log(2dT/δ) to this inequality, where C ′ is a positive constant independent of cβ′ ,

and picking ϵ = dH/k we have:∥∥∥∥∥
k−1∑
τ=1

ϕτ
h

[
V̌ k
h+1

(
sτh+1

)
− PhV̌

k
h+1 (s

τ
h, a

τ
h)
]∥∥∥∥∥

2

(Λk
h)

−1

≤ C ′ · d2H2 log [2 (cβ + 1) dT/p] ,

This concludes the proof.

Lemma B.10. (Optimistic Policy Action-Value Estimation Error (Jin et al., 2020)) There exists an absolute constant cβ
such that for β = cβ · dH

√
log(2dT/δ), and for any fixed policy π, on the high-probability event E defined in Lemma B.8

we have for all (s, a, h, k) ∈ S ×A× [H]× [K] that:

〈
ϕ(s, a), ŵk

h

〉
−Qπ

h(s, a) = Ph

(
V̂ k
h+1 − V π

h+1

)
(s, a) + ∆k

h(s, a),

for some ∆k
h(s, a) that satisfies

∣∣∆k
h(s, a)

∣∣ ≤ β√ϕ(s, a)⊤
(
Λk
h

)−1
ϕ(s, a).

Proof. By Proposition B.4 and the Equation 3, we know for any (s, a, h) ∈ S ×A× [H] :

Qπ
h(s, a) := ⟨ϕ(s, a),wπ

h⟩ =
(
rh + PhV

π
h+1

)
(s, a)

And the residual between ŵk
h,w

π
h is given by and can be decomposed as the following:

17
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ŵk
h −wπ

h =
(
Λk
h

)−1
k−1∑
τ=1

ϕτ
h

[
rτh + V̂ k

h+1

(
sτh+1

)]
−wπ

h (14)

=
(
Λk
h

)−1

{
−λwπ

h +

k−1∑
τ=1

ϕτ
h

[
V̂ k
h+1

(
sτh+1

)
− PhV

π
h+1 (s

τ
h, a

τ
h)
]}

(15)

=−λ
(
Λk
h

)−1
wπ

h︸ ︷︷ ︸
q1

+
(
Λk
h

)−1
k−1∑
τ=1

ϕτ
h

[
V̂ k
h+1

(
sτh+1

)
− PhV̂

k
h+1 (s

τ
h, a

τ
h)
]

︸ ︷︷ ︸
q2

(16)

+
(
Λk
h

)−1
k−1∑
τ=1

ϕτ
hPh

(
V̂ k
h+1 − V π

h+1

)
(sτh, a

τ
h)︸ ︷︷ ︸

q3

. (17)

Now, we bound the terms on the right-hand side individually. For the first term,

|⟨ϕ(s, a),q1⟩| =
∣∣∣λ〈ϕ(s, a), (Λk

h

)−1
wπ

h

〉∣∣∣ ≤ √λ ∥wπ
h∥
√

ϕ(s, a)⊤
(
Λk
h

)−1
ϕ(s, a).

For the second term, given the event E defined in Lemma B.8, we have:

|⟨ϕ(s, a),q2⟩| ≤ c0 · dH
√
χ

√
ϕ(s, a)⊤

(
Λk
h

)−1
ϕ(s, a)

for an absolute constant c0 independent of cβ , and χ = log [2 (cβ + 1) dT/p]. For the third term,

⟨ϕ(s, a),q3⟩ =

〈
ϕ(s, a),

(
Λ
k
h

)−1
k−1∑
τ=1

ϕ
τ
hPh

(
V̂

k
h+1 − V

π
h+1

) (
x
τ
h, a

τ
h

)〉
(18)

=

〈
ϕ(s, a),

(
Λ
k
h

)−1
k−1∑
τ=1

ϕ
τ
h

(
ϕ

τ
h

)⊤ ∫ (
V̂

k
h+1 − V

π
h+1

) (
x
′
)
dµh

(
x
′
)〉

(19)

=

〈
ϕ(s, a),

∫ (
V̂

k
h+1 − V

π
h+1

) (
x
′
)
dµh

(
x
′
)〉

︸ ︷︷ ︸
p1

−λ

〈
ϕ(s, a),

(
Λ
k
h

)−1
∫ (

V̂
k
h+1 − V

π
h+1

) (
x
′
)
dµh

(
x
′
)〉

︸ ︷︷ ︸
p2

, (20)

where, by Assumption B.2 Equation 1, we have

p1 = Ph

(
V̂ k
h+1 − V π

h+1

)
(s, a), |p2| ≤ 2H

√
dλ

√
ϕ(s, a)⊤

(
Λk
h

)−1
ϕ(s, a)

Finally, since
〈
ϕ(s, a), ŵk

h

〉
−Qπ

h(s, a) =
〈
ϕ(s, a), ŵk

h −wπ
h

〉
= ⟨ϕ(s, a),q1 + q2 + q3⟩, by Lemma B.5 and our choice

of parameter λ, we have

∣∣∣〈ϕ(s, a), ŵk
h

〉
−Qπ

h(s, a)− Ph

(
V̂ k
h+1 − V π

h+1

)
(s, a)

∣∣∣ ≤ c′ · dH√χ√ϕ(s, a)⊤
(
Λk
h

)−1
ϕ(s, a),

for an absolute constant c′ independent of cβ . Finally, to prove this lemma, we only need to show that there exists a choice
of absolute constant cβ so that

c′
√
ι+ log (cβ + 1) ≤ cβ

√
ι (21)

where ι = log(2dT/p). We know ι ∈ [log 2,∞) by its definition, and c′ is an absolute constant independent of cβ .
Therefore, we can pick an absolute constant cβ which satisfies c′

√
log 2 + log (cβ + 1) ≤ cβ

√
log 2. This choice of cβ will

make Equation 21 hold for all ι ∈ [log 2,∞), which finishes the proof.
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With similar approach, we can bound the action-value approximation for the pessimistic policy.

Lemma B.11. (Pessimistic Policy Action-Value Estimation Error) There exists an absolute constant cβ′ such that for
β′ = cβ′ · dH

√
log(2dT/p), and for any fixed policy π, on the high-probability event E defined in Lemma B.9 we have for

all (s, a, h, k) ∈ S ×A× [H]× [K] that:

〈
ϕ(s, a), w̌k

h

〉
−Qπ

h(s, a) = Ph

(
V̌ k
h+1 − V π

h+1

)
(s, a) + ∆̃k

h(s, a),

for some ∆̃k
h(s, a) that satisfies

∣∣∣∆̃k
h(s, a)

∣∣∣ ≤ β′
√

ϕ(s, a)⊤
(
Λk
h

)−1
ϕ(s, a).

Proof. Similar to the proof of Lemma B.10, we decompose the residule between w̌k
h and wπ

h as the following:

w̌k
h −wπ

h =
(
Λk
h

)−1
k−1∑
τ=1

ϕτ
h

[
rτh + V̌ k

h+1

(
sτh+1

)]
−wπ

h (22)

=
(
Λk
h

)−1

{
−λwπ

h +

k−1∑
τ=1

ϕτ
h

[
V̌ k
h+1

(
sτh+1

)
− PhV

π
h+1 (s

τ
h, a

τ
h)
]}

(23)

=−λ
(
Λk
h

)−1
wπ

h︸ ︷︷ ︸
q1

+
(
Λk
h

)−1
k−1∑
τ=1

ϕτ
h

[
V̌ k
h+1

(
sτh+1

)
− PhV̌

k
h+1 (s

τ
h, a

τ
h)
]

︸ ︷︷ ︸
q2

(24)

+
(
Λk
h

)−1
k−1∑
τ=1

ϕτ
hPh

(
V̌ k
h+1 − V π

h+1

)
(sτh, a

τ
h)︸ ︷︷ ︸

q3

. (25)

By the proof of the first term,

|⟨ϕ(s, a),q1⟩| =
∣∣∣λ〈ϕ(s, a), (Λk

h

)−1
wπ

h

〉∣∣∣ ≤ √λ ∥wπ
h∥
√

ϕ(s, a)⊤
(
Λk
h

)−1
ϕ(s, a).

For the second term, given the event E defined in Lemma B.9, we have:

|⟨ϕ(s, a),q2⟩| ≤ c0 · dH
√
χ

√
ϕ(s, a)⊤

(
Λk
h

)−1
ϕ(s, a)

for an absolute constant c0 independent of cβ , and χ = log [2 (cβ′ + 1) dT/p]. For the third term,

⟨ϕ(s, a),q3⟩ =

〈
ϕ(s, a),

(
Λk
h

)−1
k−1∑
τ=1

ϕτ
hPh

(
V̌ k
h+1 − V π

h+1

)
(xτh, a

τ
h)

〉
(26)

=

〈
ϕ(s, a),

(
Λk
h

)−1
k−1∑
τ=1

ϕτ
h (ϕ

τ
h)

⊤
∫ (

V̌ k
h+1 − V π

h+1

)
(x′) dµh (x

′)

〉
(27)

=

〈
ϕ(s, a),

∫ (
V̌ k
h+1 − V π

h+1

)
(x′) dµh (x

′)

〉
︸ ︷︷ ︸

p1

(28)

−λ
〈
ϕ(s, a),

(
Λk
h

)−1
∫ (

V̌ k
h+1 − V π

h+1

)
(x′) dµh (x

′)

〉
︸ ︷︷ ︸

p2

(29)

19



Hyperparameter Robust Efficient Exploration in Reinforcement Learning

where, by Equation (3), we have

p1 = Ph

(
V̌ k
h+1 − V π

h+1

)
(s, a), |p2| ≤ 2H

√
dλ

√
ϕ(s, a)⊤

(
Λk
h

)−1
ϕ(s, a)

Finally, since
〈
ϕ(s, a), w̌k

h

〉
−Qπ

h(s, a) =
〈
ϕ(s, a), w̌k

h −wπ
h

〉
= ⟨ϕ(s, a),q1 + q2 + q3⟩, by Lemma B.5 and our choice

of parameter λ, we have

∣∣〈ϕ(s, a), w̌k
h

〉
−Qπ

h(s, a)− Ph

(
V̌ k
h+1 − V π

h+1

)
(s, a)

∣∣ ≤ c′′ · dH√χ√ϕ(s, a)⊤
(
Λk
h

)−1
ϕ(s, a),

for an absolute constant c′′ independent of cβ′ . Finally, to prove this lemma, we only need to show that there exists a choice
of absolute constant cβ′ so that

c′′
√
ι+ log (cβ′ + 1) ≤ cβ′

√
ι (30)

where ι = log(2dT/p). We know ι ∈ [log 2,∞) by its definition, and c′ is an absolute constant independent of cβ′ .
Therefore, we can pick an absolute constant cβ which satisfies c′

√
log 2 + log (cβ′ + 1) ≤ cβ′

√
log 2. This choice of cβ′

will make Equation 30 hold for all ι ∈ [log 2,∞), which finishes the proof.

Lemma B.12. (Upper Confidence Bound (Jin et al., 2020)) Under the setting of Theorem B.1 on the event E defined in
Lemma B.8 we have Q̂k

h(s, a) ≥ Q⋆
h(s, a) for all (s, a, h, k) ∈ S ×A× [H]× [K].

Proof. We prove this lemma by induction.

First, we prove the base case, at the last step H . The statement holds because Q̂k
H(s, a) ≥ Q⋆

H(s, a). Since the value
function at H + 1 step is zero, by Lemma B.10 we have:

∣∣〈ϕ(s, a), ŵk
H

〉
−Q⋆

H(s, a)
∣∣ ≤ β√ϕ(s, a)⊤

(
Λk
H

)−1
ϕ(s, a).

Therefore, we know:

Q⋆
H(s, a) ≤ min

{〈
ϕ(s, a), ŵk

H

〉
+ β

√
ϕ(s, a)⊤

(
Λk
H

)−1
ϕ(s, a), H

}
= Qk

H(s, a).

Now, suppose the statement holds true at step h+ 1 and consider step h. Again, by LemmaB.4, we have:

∣∣∣〈ϕ(s, a), ŵk
h

〉
−Q⋆

h(s, a)− Ph

(
V̂ k
h+1 − V ⋆

h+1

)
(s, a)

∣∣∣ ≤ β√ϕ(s, a)⊤
(
Λk
h

)−1
ϕ(s, a).

By the induction assumption that Ph

(
V̂ k
h+1 − V ⋆

h+1

)
(s, a) ≥ 0, we have:

Q⋆
h(s, a) ≤ min

{〈
ϕ(s, a), ŵk

h

〉
+ β

√
ϕ(s, a)⊤

(
Λk
h

)−1
ϕ(s, a), H

}
= Q̂k

h(s, a),

which concludes the proof.

We will also be needing the following lemma, for lower bounding the value of our output policy argmaxa∈AQ(s, ·). The
following lemma shows that the pessimistic value function always lower bounds any policy value function.

Lemma B.13. (Lower Confidence Bound) Under the setting of Theorem B.1 on the event E defined in Lemma B.9 we have,
for any policy π, Q̌k

h(s, a) ≤ Qπ
h(s, a) for all (s, a, h, k) ∈ S ×A× [H]× [K].
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Proof. We prove this lemma by induction similar to we just did in Lemma B.12.

Consider a fixed, arbitrary policy π, first, we prove the base case, at the last step H . The statement holds because
Qπ

H(s, a) ≥ Q̌k
H(s, a). Since the value function at H + 1 step is zero, by Lemma B.11 we have:

∣∣〈ϕ(s, a), w̌k
H

〉
−Qπ

H(s, a)
∣∣ ≤ β′

√
ϕ(s, a)⊤

(
Λk
H

)−1
ϕ(s, a).

Therefore, we know:

Qπ
H(s, a) ≥ clip

(〈
ϕ(s, a), w̌k

H

〉
− β′

√
ϕ(s, a)⊤

(
Λk
H

)−1
ϕ(s, a)

)
= Q̌k

H(s, a).

Now, suppose the statement holds true at step h+ 1 and consider step h. Again, by Lemma B.11, we have:

∣∣〈ϕ(s, a), w̌k
h

〉
−Qπ

h(s, a)− Ph

(
V̌ k
h+1 − V π

h+1

)
(s, a)

∣∣ ≤ β′
√
ϕ(s, a)⊤

(
Λk
h

)−1
ϕ(s, a).

By the induction assumption that Ph

(
V̌ k
h+1 − V π

h+1

)
(s, a) ≤ 0, we have:

Qπ
h(s, a) ≥ clip

(〈
ϕ(s, a), w̌k

h

〉
− β′

√
ϕ(s, a)⊤

(
Λk
h

)−1
ϕ(s, a), 0, H

)
= Q̌k

h(s, a),

which concludes the proof.

Theorem B.14. (Pseudo Regret Bound) Under Assumption B.2, for any fixed constant δ ∈ (0, 1), with proper choice of
c > 0, and if we set λ = 1, β = c · dH

√
log(2dT/δ), then with probability at least 1− δ, the regret of interest of algorithm

2, E
[∑K

k=1 V
⋆
1 (s

k
1)− V

πk
1 (sk1)

]
, is at most Õ

(√
d3H3T

)
, where p is the parameter of geometric distribution.

Proof. For simplicity, we use the notation:

π̂k
h(s, ·) = argmax

a∈A
Q̂k

h(s, ·) πk
h(s, ·) = argmax

a∈A
Qk

h(s, ·)

We also denote I = {k ∈ [K], Lk = 0}, an index set of episodes in which the trajectory is fully exploratory, then we have,

E

[
K∑

k=1

V ⋆
1 (s

k
1)− V

πk
1 (sk1)

]
≤ E

[
K∑

k=1

V̂ k
1 (sk1)− V̌ k

1 (sk1)

]
(31)

= E

[
K∑

k=1

V̂
⌊k⌋
1 (sk1)− V̌

⌊k⌋
1 (sk1)

]
(32)

=
1

p
·
∑
k∈I

V̂ k
1 (sk1)− V̌ k

1 (sk1) (33)

where the first step is the direct result of Lemmas B.12 and B.13, the second and the third steps are due to the construction
of our algorithm, where we do not update weights until a full exploratory episode happens, and the expected interval of such
event happening is 1

p . And further,
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∑
k∈I

V̂ k
1 (sk1)− V̌ k

1 (sk1) =
∑
k∈I

Q̂k
1(s

k
1 , a

k
1)− Q̌k

1(s
k
1 , a

′k
1 ) (34)

≤
∑
k∈I

Q̂k
1(s

k
1 , a

k
1)− Q̌k

1(s
k
1 , a

k
1) (35)

=
∑
k∈I

{
∆k

h(s
k
1 , a

k
1)− ∆̃k

h(s
k
1 , a

k
1) + E

[
V̂ k
2 (sk2)− V̌ k

2 (sk2)|sk1 , ak1
]}

(36)

≤
∑
k∈I

{
β

√
ϕ(sk1 , a

k
1)

⊤
(
Λk
h

)−1
ϕ(sk1 , a

k
1) + β′

√
ϕ(sk1 , a

k
1)

⊤
(
Λk
h

)−1
ϕ(sk1 , a

k
1)

+ E
[
V̂ k
2 (sk2)− V̌ k

2 (sk2)|sk1 , ak1
]}

(37)

=
∑
k∈I

β
√
ϕ(sk1 , a

k
1)

⊤
(
Λk
h

)−1
ϕ(sk1 , a

k
1)︸ ︷︷ ︸

bk1

+β′
√
ϕ(sk1 , a

k
1)

⊤
(
Λk
h

)−1
ϕ(sk1 , a

k
1)︸ ︷︷ ︸

b′k1

(38)

+ E
[
V̂ k
2 (sk2)− V̌ k

2 (sk2)|sk1 , ak1
]
− (V̂ k

2 (sk2)− V̌ k
2 (sk2))︸ ︷︷ ︸

ζk
2

+(V̂ k
2 (sk2)− V̌ k

2 (sk2))

 (39)

=
∑
k∈I

[
V̂ k
2 (sk2)− V̌ k

2 (sk2) + bk1 + b′k1 + ζk2

]
(40)

where, a ∈ argmaxa∈A Q̂
k
1(s

k
1 , ·) and a′ ∈ argmaxa′∈A Q̌

k
1(s

k
1 , ·).

By recursively applying Equation. (34), we have,

∑
k∈I

V̂ k
1 (sk1)− V̌ k

1 (sk1) ≤
∑
k∈I

H∑
h=1

bkh +
∑
k∈I

H∑
h=1

b′kh +
∑
k∈I

H∑
h=1

ζkh (41)

(42)

We now bound each terms, for the first term in Equation (41), by Lemma C.2 and C.3:

∑
k∈I

H∑
h=1

bkh =
∑
k∈I

H∑
h=1

β

√
ϕ(skh, a

k
h)

⊤
(
Λk
h

)−1
ϕ(skh, a

k
h) (43)

≤
H∑

h=1

√
Kp ·

[∑
k∈I

β

√
ϕ(skh, a

k
h)

⊤
(
Λk
h

)−1
ϕ(skh, a

k
h)

]
(44)

≤ β
√
Kp

H∑
h=1

√
2 log

[
det(Λk

h)

det(Λ1
h)

]
(45)

≤ β
√
Kp

H∑
h=1

√
2d log

[
λ+ k

λ

]
(46)

≤ Hβι
√
2dKp (47)

where, the second step follows from Cauchy–Schwarz inequality, the third step follows from the Lemma C.2 and C.3, and
the second last step follows from the fact that ∥ϕ(·, ·)∥ ≤ 1, and thus ∥Λk

h∥ ≤ λ+ k. And following the same logic, we
have, for the second term in Equation (41):
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∑
k∈I

H∑
h=1

b′kh ≤ Hβ′ι
√
2dKp

For the third term in Eq(41), we notice it is a martingale difference sequence, and by applying Azuma-Hoeffding inequality,
with probability at least 1− δ

2 :

∑
k∈I

H∑
h=1

ζkh ≤
√
2KH3 log(2/δ) ≤ 2H

√
KHι

By combining the upper of three terms in Equation (41), recall that β = c · dH
√
log(2dT/δ), β′ = c′ · dH

√
log(2dT/δ)

we obtain:

∑
k∈I

V̂ k
1 (sk1)− V̌ k

1 (sk1) ≤ Hβι
√
Kp+Hβ′ι

√
Kp+ 2H

√
KHι = C ′ ·

√
d3H3Tι2

for some absolute constant C ′.

Hence, the total regret is given by:

K∑
k=1

V̂ k
1 (sk1)− V̌ k

1 (sk1) ≤
C ′

p
·
√
d3H3Tι2 = Õ(

√
d3H3Tι2)

This concludes that the total pseudo regret of policy π over K episode is given by Õ(
√
d3H3Tι2). And equivalently, we

conclude that our algorithm obtains ϵ-optimal policy with Õ(d
3H4

ϵ2 ) samples with probability at least 1− δ.

C. Auxiliary Lemmas
Lemma C.1. (Jin et al., 2020) Let Λt = λI+

∑t
i=1 ϕiϕ

⊤
i where ϕi ∈ Rd and λ > 0. Then:

t∑
i=1

ϕ⊤
i (Λt)

−1
ϕi ≤ d

Proof. We have
∑t

i=1 ϕ
⊤
i (Λt)

−1
ϕi =

∑t
i=1 tr

(
ϕ⊤

i (Λt)
−1

ϕi

)
= tr

(
(Λt)

−1∑t
i=1 ϕiϕ

⊤
i

)
. Given the eigen-

value decomposition
∑t

i=1 ϕiϕ
⊤
i = U diag (λ1, . . . , λd)U

⊤, we have Λt = U diag (λ1 + λ, . . . , λd + λ)U⊤, and

tr
(
(Λt)

−1∑t
i=1 ϕiϕ

⊤
i

)
=
∑d

j=1 λj/ (λj + λ) ≤ d.content...

Lemma C.2. (Abbasi-Yadkori et al., 2011) Let {ϕt}t≥0 be a bounded sequence in Rd satisfying supt≥0 ∥ϕt∥ ≤ 1. Let
Λ0 ∈ Rd×d be a positive definite matrix. For any t ≥ 0, we define Λt = Λ0 +

∑t
j=1 ϕjϕ

⊤
j . Then, if the smallest eigenvalue

of Λ0 satisfies λmin (Λ0) ≥ 1, we have

log

[
det (Λt)

det (Λ0)

]
≤

t∑
j=1

ϕ⊤
j Λ

−1
j−1ϕj ≤ 2 log

[
det (Λt)

det (Λ0)

]

Proof. Since λmin (Λ0) ≥ 1 and ∥ϕt∥ ≤ 1 for all j ≥ 0, we have

ϕ⊤
j Λ

−1
j−1ϕj ≤ [λmin (Λ0)]

−1 ·
∥∥ϕj

∥∥2 ≤ 1, ∀j ≥ 0.
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Note that, for any x ∈ [0, 1], it holds that log(1 + x) ≤ x ≤ 2 log(1 + x). Therefore, we have

t∑
j=1

log
(
1 + ϕ⊤

j Λ
−1
j−1ϕj

)
≤

t∑
j=1

ϕ⊤
j Λ

−1
j−1ϕj ≤ 2

t∑
j=1

log
(
1 + ϕ⊤

j Λ
−1
j−1ϕj

)
(48)

Moreover, for any t ≥ 0, by the definition of Λt, we have

det (Λt) = det
(
Λt−1 + ϕtϕ

⊤
t

)
= det (Λt−1) · det

(
I+ Λ

−1/2
t−1 ϕtϕ

⊤
t Λ

−1/2
t−1

)
Since det

(
I+ Λ

−1/2
t−1 ϕtϕ

⊤
t Λ

−1/2
t−1

)
= 1 + ϕ⊤

t Λ
−1
t−1ϕt, the recursion gives:

t∑
j=1

log
(
1 + ϕ⊤

j Λ
−1
j−1ϕj

)
= log det (Λt)− log det (Λ0) (49)

Therefore, combining Equation (48) and Equation (49), we conclude the proof.

In our algorithm, full-exploratory trajectory occasionally occurs, and other trajectories also contributes our parameter Λk
h, in

the following Lemma, we show that by adding more data, the bound remains effective.

Lemma C.3. Let {ϕt}t≥0 be a bounded sequence in Rd satisfying supt≥0 ∥ϕt∥ ≤ 1. And let {ψs}s≥0 be another sequence
of in Rd satisfying sups≥0 ∥ψs∥ ≤ 1. Let Λ0 ∈ Rd×d be a positive definite matrix. For any t ≥ 0, s ≥ 0, we define
Λt = Λ0 +

∑t
j=1 ϕjϕ

⊤
j , Λt,s = Λ0 +

∑t
j=1 ϕjϕ

⊤
j +

∑s
i=1 ψiψ

⊤
i . Then, if the smallest eigenvalue of Λ0 satisfies

λmin (Λ0) ≥ 1, we have

t∑
j=1

ϕ⊤
j Λ

−1
j−1,sj

ϕj ≤ 2 log

[
det (Λt)

det (Λ0)

]

where {sj}1≤j≤t is any non-decreasing sequence of number satisfying sj ∈ N.

Proof. Consider any t, s ∈ N, since Λ0 is positive definite, and
∑t

j=1 ϕjϕ
⊤
j and

∑s
i=1 ψiψ

⊤
i are semi-positive-definite, we

know that σ(Λt,s) ≥ σ(Λt) and σ(Λ−1
t ) ≥ σ(Λ−1

t,s ) in a pointwise manner. This gives us, for any sequence {sj}1≤j≤t, sj ∈
N,

t∑
j=1

ϕ⊤
j Λ

−1
j−1,sj

ϕj ≤
t∑

j=1

ϕ⊤
j Λ

−1
j−1ϕj ≤ 2 log

[
det (Λt)

det (Λ0)

]

This concludes the proof.

Lemma C.4. (Concentration of Self-Normalized Processes (Abbasi-Yadkori et al., 2011)). Let {εt}∞t=1 be a real-
valued stochastic process with corresponding filtration {Ft}∞t=0. Let εt | Ft−1 be zero-mean and σ-subGaussian; i.e.
E [εt | Ft−1] = 0, and

∀λ ∈ R, E
[
eλεt | Ft−1

]
≤ eλ

2σ2/2.

Let {t}∞t=0 be an Rd-valued stochastic process where ϕt ∈ Ft−1. Assume Λ0 is a d × d positive definite matrix, and let
Λt = Λ0 +

∑t
s=1 ϕsϕ

⊤
s . Then for any δ > 0, with probability at least 1− δ, we have for all t ≥ 0 :
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∥∥∥∥∥
t∑

s=1

ϕsεs

∥∥∥∥∥
2

Λ−1
t

≤ 2σ2 log

[
det (Λt)

1/2
det (Λ0)

−1/2

δ

]

Lemma C.5. (Jin et al., 2020) Let {sτ}∞τ=1 be a stochastic process on state space S with corresponding filtration {Fτ}∞τ=0.
Let {ϕτ}

∞
τ=0 be an Rd-valued stochastic process where ϕτ ∈ Fτ−1, and ∥ϕτ∥ ≤ 1. Let Λk = λI+

∑k
τ=1 ϕτϕ

⊤
τ . Then

for any δ > 0, with probability at least 1− δ, for all k ≥ 0, and any V ∈ V so that sups |V (s)| ≤ H , we have:

∥∥∥∥∥
k∑

τ=1

ϕτ {V (sτ )− E [V (sτ ) | Fτ−1]}

∥∥∥∥∥
2

Λ−1
k

≤ 4H2

[
d

2
log

(
k + λ

λ

)
+ log

Nε

δ

]
+

8k2ε2

λ
,

where Nε is the ε-covering number of V with respect to the distance dist (V, V ′) = sups |V (s)− V ′(s)|.

Proof. For any V ∈ V , we know there exists a Ṽ in the ε-covering such that

V = Ṽ +∆V and sup
s
|∆V (s)| ≤ ε

This gives following decomposition:

∥∥∥∥∥
k∑

τ=1

ϕτ {V (sτ )− E [V (sτ ) | Fτ−1]}

∥∥∥∥∥
2

Λ−1
k

(50)

≤ 2

∥∥∥∥∥
k∑

τ=1

ϕτ

{
Ṽ (sτ )− E

[
Ṽ (sτ ) | Fτ−1

]}∥∥∥∥∥
2

Λ−1
k

+ 2

∥∥∥∥∥
k∑

τ=1

ϕτ {∆V (sτ )− E [∆V (sτ ) | Fτ−1]}

∥∥∥∥∥
2

Λ−1
k

, (51)

where we can apply Theorem D.3 and a union bound to the first term. Also, it is not hard to bound the second term by
8k2ε2/λ.

To compute the covering number of function class V , we first require a basic result on the covering number of a Euclidean
ball as follows. We refer readers to classical material, such as Lemma 5.2 in [44], for its proof. Lemma D.5 (Covering
Number of Euclidean Ball). For any ε > 0, the ε-covering number of the Euclidean ball in Rd with radius R > 0 is upper
bounded by (1 + 2R/ε)d.

Lemma C.6. (Covering Number of Euclidean Ball). For any ε > 0, the ε-covering number of the Euclidean ball in Rd with
radius R > 0 is upper bounded by (1 + 2R/ε)d.

Based on the lemmas above, we can bound the covering number of the optimistic value function and pessimistic value
function class.

Lemma C.7. (Covering number of optimistic function class (Jin et al., 2020)) Let V denote a class of functions mapping
from S to R with following parametric form

V (·) = min

{
max

a
w⊤ϕ(·, a) + β

√
ϕ(·, a)⊤Λ−1ϕ(·, a), H

}
where the parameters (w, β,Λ) satisfy ∥w∥ ≤ L, β ∈ [0, B] and the minimum eigenvalue satisfies λmin(Λ) ≥ λ.
Assume ∥ϕ(s, a)∥ ≤ 1 for all (s, a) pairs, and let Nε be the ε-covering number of V with respect to the distance
dist (V, V ′) = sups |V (s)− V ′(s)|. Then

logNε ≤ d log(1 + 4L/ε) + d2 log
[
1 + 8d1/2B2/

(
λε2
)]
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Proof. Equivalently, we can reparametrize the function class V by let A = β2Λ−1, so we have

V (·) = min

{
max

a
w⊤ϕ(·, a) +

√
ϕ(·, a)⊤Aϕ(·, a), H

}
(52)

for ∥w∥ ≤ L and ∥A∥ ≤ B2λ−1. For any two functions V1, V2 ∈ V , let them take the form in Equation (52) with
parameters (w1,A1) and (w2,A2), respectively. Then, since both min{·, H} and maxa are contraction maps, we have

dist (V1, V2) ≤ sup
s,a

∣∣∣∣[w⊤
1 ϕ(s, a) +

√
ϕ(s, a)⊤A2ϕ(s, a)

]
−
[
w⊤

2 ϕ(s, a) +
√
ϕ(s, a)⊤A2ϕ(s, a)

]∣∣∣∣ (53)

≤ sup
ϕ:∥ϕ∥≤1

∣∣∣∣[w⊤
1 ϕ+

√
ϕ⊤A2ϕ

]
−
[
w⊤

2 ϕ+

√
ϕ⊤A2ϕ

]∣∣∣∣ (54)

≤ sup
ϕ:∥ϕ∥≤1

∣∣∣(w1 −w2)
⊤
ϕ
∣∣∣+ sup

ϕ:∥ϕ∥≤1

√∣∣∣ϕ⊤ (A1 −A2)ϕ
∣∣∣ (55)

= ∥w1 −w2∥+
√
∥A1 −A2∥ ≤ ∥w1 −w2∥+

√
∥A1 −A2∥F (56)

where the second last inequality follows from the fact that |
√
x−√y| ≤

√
|x− y| holds for any x, y ≥ 0. For matrices,

∥ · ∥ and ∥ · ∥F denote the matrix operator norm and Frobenius norm respectively.

Let Cw be an ε/2-cover of
{
w ∈ Rd | ∥w∥ ≤ L

}
with respect to the 2 -norm, and CA be an ε2/4-cover of{

A ∈ Rd×d | ∥A∥F ≤ d1/2B2λ−1
}

with respect to the Frobenius norm. By Lemma C.6, we know:

|Cw| ≤ (1 + 4L/ε)d, |CA| ≤
[
1 + 8d1/2B2/

(
λε2
)]d2

By Equation (53), for any V1 ∈ V , there exists w2 ∈ Cw and A2 ∈ CA such that V2 parametrized by (w2,A2) satisfies
dist (V1, V2) ≤ ε. Hence, it holds that Nε ≤ |Cw| · |CA|, which gives:

logNε ≤ log |Cw|+ log |CA| ≤ d log(1 + 4L/ε) + d2 log
[
1 + 8d1/2B2/

(
λε2
)]

This concludes the proof.

And we can obtain the same covering number bound on our pessimistic value function class due to the symmetry.

Lemma C.8. (Covering number of pessimistic function class) Let V denote a class of functions mapping from S to R with
following parametric form

V (·) = clip

(
max

a
w⊤ϕ(·, a)− β

√
ϕ(·, a)⊤Λ−1ϕ(·, a), 0, H

)
where the parameters (w, β,Λ) satisfy ∥w∥ ≤ L, β ∈ [0, B] and the minimum eigenvalue satisfies λmin(Λ) ≥ λ.
Assume ∥ϕ(s, a)∥ ≤ 1 for all (s, a) pairs, and let Nε be the ε-covering number of V with respect to the distance
dist (V, V ′) = sups |V (s)− V ′(s)|. Then

logNε ≤ d log(1 + 4L/ε) + d2 log
[
1 + 8d1/2B2/

(
λε2
)]

Proof. Similar to the proof strategy used in Lemma C.7, we reparametrize the function the function class V by letting
A = β2Λ−1, which gives us,
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V (·) = clip

(
max

a
w⊤ϕ(·, a)−

√
ϕ(·, a)⊤Aϕ(·, a), 0, H

)
(57)

for ∥w∥ ≤ L and ∥A∥ ≤ B2λ−1. For any two functions V1, V2 ∈ V , let them take the form in Equation (57) with
parameters (w1,A1) and (w2,A2), respectively. Then, since both clip(·, 0, H) and maxa are contraction maps, we have

dist (V1, V2) ≤ sup
s,a

∣∣∣∣[w⊤
1 ϕ(s, a)−

√
ϕ(s, a)⊤A1ϕ(s, a)

]
−
[
w⊤

2 ϕ(s, a)−
√
ϕ(s, a)⊤A2ϕ(s, a)

]∣∣∣∣ (58)

≤ sup
ϕ:∥ϕ∥≤1

∣∣∣∣[w⊤
1 ϕ−

√
ϕ⊤A1ϕ

]
−
[
w⊤

2 ϕ−
√

ϕ⊤A2ϕ

]∣∣∣∣ (59)

≤ sup
ϕ:∥ϕ∥≤1

∣∣∣(w1 −w2)
⊤
ϕ
∣∣∣+ sup

ϕ:∥ϕ∥≤1

√∣∣∣ϕ⊤ (A2 −A1)ϕ
∣∣∣ (60)

= ∥w1 −w2∥+
√
∥A2 −A1∥ ≤ ∥w1 −w2∥+

√
∥A2 −A1∥F (61)

= ∥w1 −w2∥+
√
∥A1 −A2∥F (62)

Equation (58) shows that the distance of two elements in pessimistic value function class shares a same upper bound with
the optimistic value function class. By Lemma C.7, we conclude the proof.
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