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A poisoning attack method manipulating the training of a model is easily to be detected
since the general performance of a model is downgraded. Although a backdoor attack only
misleads the decisions on the samples with a trigger but not any samples, the strong asso-
ciation between the trigger and the class ID exposes the attack. The weak concealment lim-
its the damage of current poisoning attacks to machine learning models. This study
proposes a poisoning attack against deep neural networks, aiming to not only reduce the
robustness of a model against adversarial samples but also explicitly increase its conceal-
ment, defined as the accuracy of the contaminated model on untainted samples. In order to
improve the efficiency of poisoning sample generation, we propose training interval, gra-
dient truncation, and parallel process mechanisms. As a result, the model trained on the
poisoning samples generated by our method is easily misled by slight crafting, and the
attack is difficult to be detected since the contaminated model performs well on clean sam-
ples. The experimental results show that our method significantly increases the attack suc-
cess rate without a substantial drop in classification accuracy on clean samples. The
transferability and instability of our model are confirmed experimentally.

� 2022 Elsevier Inc. All rights reserved.
1. Introduction

Despite the fact that deep neural networks (DNNs) have achieved high performances in various tasks, many studies indi-
cate that they are susceptible in an adversarial environment [12]. The high cost of collecting an adequate amount of anno-
tated data and computational requirements of DNN training explain the need for third-party repositories of datasets and pre-
trained models [13]. Although these repositories allow efficiency and convenience, they may also cause security issues. One
kind of attack, called poisoning attacks, aims to mislead a model by injecting contaminated training samples
[3,15,26,29,44,46].

Although there are a number of studies investigating the influence of poisoning attacks and also their countermeasures,
concealment is the main limitation of current poisoning attacks. The current poisoning attacks aim to decrease the accuracy
of the trained model on test samples [29], which can be easily observed by performance evaluation. The backdoor attack
[9,33,25], which is a special poisoning attack, does not downgrade the general performance of a model but only misleads
the model on test samples embedded with a trigger, defined as input features with pre-selected values. The model contam-
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inated by a backdoor attack normally performs on untainted samples and is misled only on samples fulfilling pre-selected
conditions. However, the strong association between the trigger and class ID provides hints for detection [48,50,8,10,4]. The
stealth of an attack has drawn attention recently [43]. For example, a backdoor attack is activated by the existence of both
trigger and adversarial perturbation in AdvTrojon [20], while IMC [32] minimizes the change on a target model subject to the
wrong decision of the model on samples with a trigger. However, the trigger used in these backdoor attacks may still expose
the contamination. As a result, the damage of current poisoning attacks to a DNN is limited since they can be prevented due
to their weak concealment.

This study aims to investigate the security of DNNs against poisoning attacks from another angle. Different from current
poisoning attack methods, which only concern the influence on a model, we propose a poisoning attack method that not only
focuses on attack performance but also how easily the contamination is detected. More specifically, our concealed poisoning
attack generates contaminated samples aiming to reduce the manipulation cost of adversarial samples for successfully mis-
leading the poisoned model and remain its high accuracy on benign samples. High concealment is expected in our model
since of the stably good performance of the contaminated model on benign samples and no involvement of a trigger. Differ-
ent from the standard poisoning attacks, our method involves both training and inference stages. On the other hand, com-
pared with backdoor attacks, our method does not need a trigger and is able to affect all or particular samples. The result
enhances the understanding of DNNs’ security by recognizing the loophole in current DNN models.

Our attack model is formulated as a bi-level optimization problem. The inner problem is a standard learning of a DNN,
which minimizes the error on training samples, and the outer problem aims to minimize the model’s robustness to adver-
sarial samples. The bi-level optimization problem is solved by the back-gradient algorithm [2,11,23]. In order to improve the
efficiency of the poisoning sample generation, we propose three mechanisms including the re-training interval, gradient trun-
cation and parallel process. The re-training interval allows the target DNN to be retrained in each interval but not each iter-
ation. The reverse learning procedure is terminated when the reverse training loss is larger than a threshold indicating a
gradient explosion problem in the gradient truncation. The parallel process denotes poisoning samples in a batch are opti-
mized simultaneously in order to speed up the poisoning sample generation. Existing robustness measurements, including
adversarial robustness [27], certified adversarial robustness [38], boundary thickness [47], and boundary margin [1], are not
suitable for our attack since they are either not differentiable to the input sample or have high computational complexity.
This study further explores several robustness measurements for our attack and observes that the difference between the
largest two output scores yields the best performance.

Our concealed poisoning attack model is evaluated and compared with related methods empirically by attacking different
models, including Multi-Layer Perceptrons (MLPs), LeNet [17] and VGG [41], on four benchmark datasets, i.e., MNIST [17],
CIFAR-10 [16], CIFAR-100 [16] and Mini-ImageNet [42]. The robustness of a model is measured as the modification cost
of two typical adversarial attacks, i.e., Fast Gradient Sign Method (FGSM) [12] and Projected Gradient Descent (PGD) [24].
The empirical results show that our proposed attack significantly decreases the robustness of the contaminated model
against adversarial samples and also maintains its performance on clean samples by poisoning a small proportion of training
samples. Ablation studies indicate that re-training interval and truncate gradient play an important role in our model in terms
of running time and attack influence.

The contributions of this study are summarized as follows:

� a concealed poisoning attack model, which not only downgrades the robustness of a machine learning model but also
guarantees its concealment, is proposed. The concealment of our attack is enhanced since no trigger is used, and the per-
formance of the contaminated model is good on clean samples.

� the generation process of the poisoning samples is formulated as a bi-level optimization. We further improves its effi-
ciency by proposing the re-training interval, truncate gradient, and parallel process mechanisms.

� complete experimental evaluation with various attack scenarios, including different target models, robustness measures,
attacker’s knowledge, and datasets, are carried out. Ablation study is also included in order to evaluate the importance of
components in our proposed model.

The rest of the paper is organized as follows. Section 2 discusses related works, including the poisoning and backdoor
attack methods. The detail of the proposed model is introduced in Section 3, while Section 4 gives the experimental results
and discussion. Finally, the conclusion and future work are discussed in Section 5.
2. Related Works

The related works of poisoning studies, including the latest poisoning and backdoor attack methods, are introduced in this
section.
2.1. Poisoning Attacks

Since most machine learning models implicitly assume that the distributions of the training and test samples are nearly
the same, their performance can be affected easily when the training set is contaminated [29]. Poisoning attacks aim at mis-
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leading the decision of a model by contaminating its training samples [29]. The vulnerability of different kinds of models, e.g.,
linear regression models [26], Support Vector Machines (SVMs) [3,15], MLPs [29] and DNNs [15,29,46,7,21], are confirmed. A
fatal problem of current poisoning attacks is its concealment, which means the contamination can be detected easily [39].
According to the limitations and characteristics of poisoning attacks, some defense methods against poisoning attacks have
also been proposed [6]. From a theoretical perspective, Mahloujifar et al. [25] showed that data poisoning could be used to
degrade the adversarial robustness of a model. Weng et al. [43] investigated the interactions between the vulnerabilities to
adversarial attacks and backdoor attacks, and showed that increasing the robustness to adversarial attacks made DNNs more
vulnerable to backdoor attacks.
2.2. Backdoor Attacks

Different from classical poisoning attacks, the goal of backdoor attacks is to mislead the decision of the contaminated
model only on the samples embedded with triggers, a specially designed pattern [9]. As a result, the performance of the con-
taminated model remains good on benign samples but significantly drops on the samples with the trigger. Since the influ-
ence of the attack is activated by the trigger, the stealthiness of backdoor attacks is much better than the standard poisoning
attacks. However, the strong association between the trigger and the class ID provides a trace for detection. Many researches
[48,50,8,10,4] indicate that a model contaminated by a backdoor attack [22,49] can be identified by using the proprieties of
triggers. Li et al. [19] indicated that the backdoor attack with static triggers is vulnerable to the transformation-based
defense. Nguyen and Tran [30] proposed a novel backdoor attack with input-aware triggers. However, the trigger can be
easily recognized. An invisible trigger has been devised to improve the stealthiness of backdoor attacks [31,18]. However,
the target model should be similar to the one used in the trigger generation.

Although both backdoor attacks and our proposed attack involve both training and inference stages, the main difference
between backdoor attacks and the proposed attack is the attack activation mechanism. No particular trigger and trigger gen-
eration process is involved in our method. Therefore, our attack is more concealed. Moreover, our attack is able to influence
all samples, while backdoor attacks only focus on a certain sample set.

The concealment of a backdoor attack is enhanced in AdvTrojon [20] by jointly exploiting adversarial attacks and poison-
ing attacks. The attack is activated if and only if the trigger and the adversarial perturbation exist. IMC [32] is another back-
door attack that enhances its stealth by minimizing the change of a target model subject to the wrong decision of the model
on samples with a trigger. However, both methods generate a contaminated model instead of poisoning samples, which have
a different application scenario from our attack. In addition, as a backdoor attack, they require a trigger that may weaken the
concealment due to the strong association to the class ID. The aforementioned attack methods are summarized and com-
pared with our method in Table 1.
3. Methodology

The existing poisoning attacks mainly focus on their attack ability, and may be detected easily. In this study, we propose a
concealed poisoning attack aiming to reduce the robustness of a DNN against adversarial samples. In addition, our proposed
attack also explicitly guarantees its concealment measured by the classification accuracy on clean samples. A model trained
on the contaminated training set generated by our method will be vulnerable to adversarial samples but still performs well
on clean samples.

In this section, we first introduce the problem settings and assumptions of the attack scenario in Section 3.1 and 3.2. The
poisoning attack is formulated as a bi-level optimization problem in Section 3.3, and nine robustness measurements are
described in Section 3.4. We discuss how to estimate the hyper-gradient of training samples by the improved back-
gradient algorithm and describe the generation algorithm in Section 3.5 and 3.6. The time complexity analysis is given in
Section 3.7.
Table 1
Comparison of existing attack methods and our method.

Error
specificity?

Generate poisoning
samples?

Minimize test
accuracy?

Minimize adversarial
robustness?

Need
triggers?

Backdoor attacks[9,31,30,18] specific U � � U

Clean-Label attacks[39] specific U � � �
AdvTrojan[20] specific � � � U

IMC[32] specific � � � U

Classical poisoning attacks (e.g,
[3,15,26,29,44,46,21])

generic U U � �

Concealed poisoning attacks (ours) generic U � U �
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3.1. Notation

Given a classification task with c classes, a classifier learns a mapping X ! Y from the input space X to the label space Y.
f i xð Þ and gi xð Þ represent the logits and scores of the i-th class respectively, where gi xð Þ ¼ softmax f i xð Þð Þ. The classification
function can be written as C xð Þ ¼ argmaxif i xð Þ. Given a training set Dtr � x; yð Þjx 2 X ; y 2 Yf g, the model’s parameters w
are obtained by minimizing the learning objective L (i.e., training loss). In this study, we apply the cross-entropy loss to
the learning objective. Since the learning problemmay have multiple optimal solutions in the feasible spaceW, we formulate
the learning problem as follow:
w 2 argmin
w2W

L w;Dtrð Þ: ð1Þ
3.2. Attack Taxonomy

According to the taxonomy in [29], our proposed attack method can be categorized as follows. Attack specificity: our
model influences the decisions of a model on all or targeted samples; attacker’s capability: an adversary is allowed to access
and inject samples to the training set and modify test samples in the inference stage; attacker’s knowledge: the knowledge is
defined as K ¼ D;M;Pð Þ, where D;M, and P denote the training data, model detail, and its parameters of training, respec-
tively. It should be noted that not all kinds of listed knowledge are necessary for our attack. The discussion on partial knowl-
edge is included.

3.3. Problem Formulation

Our proposed poisoning attack generates a contaminated sample set D�
c aiming to minimize the robustness of the con-

taminated classifier. The problem is formulated as a bi-level optimization, in which the outer problemminimizes the robust-
ness of the contaminated classifier, and the inner problem denotes the training of a classifier on the clean samples Dtr and
poisoning samples Dc . The optimization is defined as:
D�
c 2 argmin

Dc
S Dval;w0ð Þ

s:t: w0 2 argmin
w

L w;Dtr [ Dcð Þ; ð2Þ
where Dc denotes the set of poisoning samples, and w0 is the parameters of the contaminated model trained with the poi-
soning samples. Dtr . Dval are the training and validation data available for the attacker, and surrogate samples can be used.
S Dval;w0ð Þ denotes a robustness measurement defined as
S Dval;w0ð Þ ¼ 1
m

X
x;yð Þ2Dval

1 C xð Þ ¼ y½ � � s xi;w0ð Þ; ð3Þ
where m denotes the number of validation samples classified correctly by the model, and 1 �½ � denotes the indicator function
which returns 1 if and only if the condition is true, and otherwise returns 0. s x;w0ð Þ represents the classifier’s robustness
evaluated on a single sample xi, which will be investigated in detail in Section 3.4.

3.4. Robustness Measurements

The robustness of a model in an adversarial environment usually refers to the ability of a model against an adversarial
attack. In our study, nine robustness measurements, including gradient-norm-based (Sl1 ; Sl2 ; Sl1 ), score-based

(Sgmax xð Þ; Sgdiff xð Þ; Sgavg xð Þ) and logits-based (Sfmax xð Þ; Sfdiff xð Þ; Sfavg xð Þ) measurements, are considered. When a model correctly
classifies a sample, the score of the ground-truth class is the largest among all classes. An adversarial attack aims to lower
the rank of the ground-truth class by reducing its score. Sgmax xð Þ denoting the score of the ground-truth class is used to mea-
sure the robustness since a higher score given to the ground-truth class makes a successful adversarial attack more difficult:
Sgmax xð Þ ¼ gt xð Þ: ð4Þ

The difference between the largest two scores Sgdiff xð Þ is also used, which more precisely captures the easiness of class

changing
Sgdiff xð Þ ¼ gt xð Þ �max
i–t

gi xð Þð Þ: ð5Þ
Another similar measure, Sgavg xð Þ, representing the difference between the largest score and the average of the rest scores,
is also considered:
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Sgavg xð Þ ¼ gt xð Þ � 1
c � 1

X
i–t

gi xð Þ: ð6Þ
Since logits f are commonly used in the objective function of poisoning attacks [5], f is also considered in the three robust-

ness measures denoted by Sfmax; S
f
diff , and Sfavg . It should be noted that Sg and Sf are identical, except g and f are used in the

calculation.
On the other hand, the robustness of a model is also quantified as the sensitivity of the loss function Lwith respect to the

perturbation of a sample x:
slq xð Þ ¼ �jjrxL w; xð Þjjq; q ¼ 1;2;1f g; ð7Þ
where w denotes the parameters of a model, and q is the norm including 1, 2, and 1.

3.5. Hyper-parameter Estimation

The bi-level optimization problem in Eq.(2) can handled as a hyper-parameter optimization problem [23,36]. The hyper-
gradientrxp S can be estimated and xp is updated iteratively in the negative direction ofrxp S to minimize the model’s robust-
ness S.

The optimization problem is solved by the back-gradient algorithm [29] since it does not depend on the KKT condition,
which may not be satisfied by a DNN during training. The back-gradient algorithm computes hyper-gradients by differen-
tiating each step of the inner optimization problem and aggregating the chain rule results. The algorithm calculates
hyper-gradients through the reverse learning procedure which traces back a finite number of steps (denoted as Nin) of the
inner optimization routine. The time complexity of the back-gradient algorithm is O Ninð Þ, which is the same as the standard
training process. In addition, the advantages of the back-gradient algorithm are higher precision and lower time complexity.
A detailed explanation and derivation are provided in A.

3.6. Generation Algorithm

The algorithm for generating poisoning samples is summarized in Algorithm1. Each poisoning sample is iteratively
crafted, aiming to minimize the security of the contaminated model by gradient descent. The gradient of the model’s security
with respect to the input is calculated by the reverse learning procedure which traces back a finite number of steps of the
inner optimization routine.

The derivatives in Line 16 and 17 of Algorithm1 can be efficiently computed with Hessian-vector products [35]
rxprwL w; bD0
tr

� �� �
v ¼ lim

h!0

1
h

rxpL wþ hv ; bD0
tr

� �
�rxpL w; bD0

tr

� �� �
ð8Þ

rwrwL w; bD0
tr

� �� �
v ¼ lim

h!0

1
h

rwL wþ hv ; bD0
tr

� �
�rwL w; bD0

tr

� �� �
; ð9Þ
where v is an arbitrary vector, h is a hyper-parameter controlling the estimation precision. An attacker can poison a model
by adding the generated poisoning samples Dc to the training data. Although our method requires the knowledge of the
training samples and target model, the surrogate information can be used in the limited knowledge scenario. The perfor-
mance of our model in different settings will be evaluated experimentally later in this study.

The hyper-gradient is normalized in each step in order to eliminate the influence of scales of the hyper-gradient in the 2nd

loop. After calculating the hyper-gradient, the gradient descent is applied to optimize the input sample iteratively. This pro-
cess is formulated as:
x0p ¼
Y
U

xp � b
rxS

jjrxSjj2

� �
; ð10Þ
where xp and x0
p are the poisoning samples before and after an update. b denotes the step size, and

Q
U projects the modified

sample into a feasible set U. The poisoning sample is updated in the negative direction of the hyper-gradient in order to min-

imize the robustness measurement. The iteration number of the 2nd loop (Nout) controls the number of updates on a poison-
ing sample, while the step size b limits the modification in each update.
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Algorithm1: Generation Algorithmof our Concealed Poisoning Attacks
Gradient Truncation: the reverse learning procedure can estimate the exact hyper-gradient of the target model in the
ideal situation when all information of the target model is obtained. However, due to the limited knowledge, the reverse
learning procedure may not estimate the hyper-gradient accurately. The error may be accumulated, which may cause the
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gradient explosion problem and lead to failure. We propose a learning stopping criterion that stops the reverse learning pro-
cedure when the loss is larger than a pre-defined threshold. One possible value of the threshold is the loss of the random
guess. The gradient explosion problem is visualized in Section 4.2.4.

Re-training Interval: the time complexity is an obvious drawback of the proposed generation algorithm. The target
classifier should be retrained when adding poisoning samples into the training set. However, updating the parameters ŵ
of the model is time-consuming, and the change may be insignificant when the modification of the training set is small.
Therefore, we propose a mechanism called re-training interval to control the frequency of updates in terms of the number
of poisoning samples added to the training set.

Parallel Processing: a parallel process is used to further speed up the poisoning sample generation. Our method opti-
mizes a batch of poisoning samples (refer to the 1st loop of Algorithm1) in parallel. Although the precision may slightly drop
due to the parallel process, the running time can decrease significantly.

3.7. Time Complexity

We assume that the training of neural network needs Ntr iterations, and Np poisoning samples are generated. With the re-
training interval mechanism, the poisoning attack only needs O Np=Nr

� �
times of the full training, which requires much less

time than the previous one, i.e., O Np
� �

. The total time complexity of the generation algorithm is O Np Ntr=Nr þ NoutNinð Þ� �
according to Algorithm1. By using the parallel processing, the time complexity is further reduced to
O Np=Nbp

� �
Ntr=Nr þ NoutNinð Þ� �

.

4. Experiments

Our attack model is evaluated and compared with the baseline method experimentally in this section. Section 4.1
describes the experimental settings. The results and discussions are given in Section 4.2.

4.1. Experimental Settings

All experiments are carried out ten independent runs, and the average performance is reported. We implement our
method with Pytorch [34], and the experiments are run on a personal computer with the GeForce RTX 2080 Ti GPU.

Datasets: MNIST [17], CIFAR-10 [16], CIFAR-100 [16] and Mini-ImageNet [42] are used in our experiments. 1,000 sam-
ples are randomly selected for training, validation, and test sets in each experiment on MNIST. Airplane and automobile are
used on CIFAR-10. Similarly, 1000 samples are randomly selected for training, validation, and test sets. For both CIFAR-100
and Mini-ImageNet, 60,000 images are randomly chosen from 100 classes (i.e., each class has 600 images), including 40,000
images for training, 10,000 images for validation, and 10,000 images for testing.

Attack Setting: both the indiscriminate attack and the targeted attack are considered. In the indiscriminate attack, the
proposed method aims to reduce the robustness of a model against all adversarial samples, while in the targeted attack,
we consider the robustness against adversarial samples of a target class, which is randomly chosen. The attack ratios are
set as 5% and 0:5% of the training set for indiscriminate and targeted attacks, respectively. We assume the attacker has full
knowledge of the target model, including the model and training samples. In addition, the limited knowledge scenario is also
considered in Section 4.2.3.

Regarding our method, we set h ¼ 10�6 for MLP and h ¼ 10�8 for LeNet and VGG to estimate the Hessian-vector product.
The re-training interval Nr is 16 for MNIST and CIFAR-10, while Nr ¼ 512 for CIFAR-100 and Mini-ImageNet. The numbers of
iterations in the outer and inner loops are Nout ¼ 10 and Nin ¼ Nepoch respectively, where Nepoch is the number of training
epochs of the target model. The loss threshold g is ln 10. We set b ¼ 1:0 on MNIST, CIFAR-10, CIFAR-100 and b ¼ 7:0 on
Mini-ImageNet.

The random flip attack (RAN) is used as the baseline method due to its effectiveness shown in the previous studies
[28,37,45]. RAN misleads the training of a model by randomly flipping the label of training samples to an incorrect one.

Target Models: two models, i.e., LeNet [17] and VGG [41], are considered as the target model. Preliminary experiments
aiming to minimize the loss were carried out in order to determine the training parameters. The mini-batch stochastic gra-
dient descent (MBGD) has been used as the optimizer for training, and the batch size NB is set as 16. The number of training
epochs Nepoch is set as 35 and 20, and the learning rate k is set as 0.1 and 0.01 for LeNet and VGG respectively on MNIST. Nepoch

is set as 10 and 40, and k as 0.01 and 0.1 for LeNet and VGG on CIFAR-10. We set Nepoch ¼ 50; k ¼ 0:001 and NB ¼ 64 for VGG
on CIFAR-100, and Nepoch ¼ 20; k ¼ 0:001 and NB ¼ 32 for VGG on Mini-ImageNet. It should be noted that no data augmen-
tation method or pre-trained model is used.

Evaluation: two measurements are used to evaluate the effectiveness of the proposed attack, i.e., attack success rate
(ASR) and classification accuracy (ACC). ACC refers to the accuracy of the contaminated model on a clean sample set, while
ASR is defined as the ratio of adversarial samples that successfully mislead the target model under limited modification on
test samples. Only the samples correctly predicted by the target model are manipulated in the attack. Two benchmark adver-
sarial attacks, i.e., FGSM and PGD, with l1 are considered in ASR calculation. These attacks are implemented using the Pytorch
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library torchattacks [14], and their parameters are listed in Table 2. A higher ASR value indicates less robustness to adversar-
ial attack, while a higher ACC value means the poisoning attack is better in terms of stealthiness.
4.2. Results and Discussions

4.2.1. Robustness Measurements
The nine robustness measures, including gradient-norm-based (Sl1 ; Sl2 ; Sl1 ), score-based (Sgmax xð Þ; Sgdiff xð Þ; Sgavg xð Þ) and

logits-based (Sfmax xð Þ; Sfdiff xð Þ; Sfavg xð Þ) measurements defined in Section 3.4 are evaluated experimentally. The results of LeNet
contaminated by our attack method using different robustness measurements on MNIST are shown in Table 3. The clean
model in the first row serves as the baseline for comparison.

The performances of all methods are consistent in both indiscriminate and targeted attacks. The score-based measure-

ments Sg have the best performance compared with gradient-norm-based Sl and logits-based Sf measurements generally.
Although the average loss-gradient norm is regarded as a crucial component of adversarial vulnerability [40], the perfor-

mance of Sf based measurements is not effective as Sg . In addition, Sg is bounded (i.e., its range is from 0 to 1) but not Sf .
Thus, minimizing logit differences may not necessarily lead to smaller score difference between classes. The calculation error
of the gradient of the loss-gradient norm with respect to the model parameters (i.e., jjrxL w0; xð Þjjq) may be accumulated in

the back-gradient optimization. This might be the reason why the performance of Sl is worse than Sg .

The robustness measurement calculating the difference between the largest values (Sgdiff and Sfdiff ) is better than other

types (i.e., Sgmax; S
g
avg and Sfmax; S

f
avg). The reason might be that more precise information is considered in the calculation,

and the difference is directly related to the adversarial cost. Since Sgdiff has the best performance, it serves as the robustness
measurement in the following experiments.
4.2.2. Attack Ability and Stealthiness
The performance of our proposed is evaluated and compared with RAN in terms of stealthiness and attack ability. Figs. 1

and 2 show the performance of the attack methods with different attack ratios, i.e., {0%, 2%, 4%, 6%, 8%, 10%} and {0%, 0.2%,
0.4%, 0.6%, 0.8%, 1.0%} for indiscriminate and targeted attacks, respectively. The x-axis denotes the attack ratio, while the y-
axes denote ASR and ACC in the upper and lower rows, respectively. Our method and RAN attack are represented by red and
black lines. Two adversarial attacks, FGSM and PGD, are denoted by solid and dotted lines.

The results confirm that our attack method significantly decreases the robustness of the target model. In the indiscrim-
inate attack, the ASR values increase around 35%, 20%, 20%, 20% when the attack ratios increase from zero (i.e., a clean model)
Table 2
The parameter settings of adversarial attacks on MNIST, CIFAR-10, CIFAR-100 and Mini-ImageNet.

Datasets FGSM PGD

MNIST �=0.1 �=0.1; a=0.015; steps=10
CIFAR-10 �=0.025 �=0.01; a=0.002; steps=10
CIFAR-100 �=0.004 �=0.004; a=0.001; steps=10

Mini-ImageNet �=0.004 �=0.004; a=0.001; steps=10

Table 3
ACC and ASR of LeNet contaminated by our proposed poisoning attacks with different robustness measures on MNIST. ‘‘Clean” indicates the model is trained on
a clean training set.

Indiscriminate Targeted

ASR(%) ACC(%) ASR(%) ACC(%) ASR(%) ACC(%) ASR(%) ACC(%)

FGSM-Inf PGD-Inf FGSM-L2 PGD-L2 FGSM-Inf PGD-Inf FGSM-L2 PGD-L2

Clean 26.52 36.16 94.54 33.77 24.97 94.54 26.18 36.05 94.54 32.78 24.52 94.54
Sl1 49.37 67.84 91.47 60.06 54.28 91.47 42.12 56.12 94.22 57.23 43.40 94.22
Sl2 49.00 67.94 91.56 60.40 53.83 91.56 43.08 56.22 94.38 57.05 42.46 94.38
Sl1 48.05 67.25 91.16 58.54 52.65 91.16 43.38 57.24 94.25 57.32 43.06 94.25

Sfmax
46.61 65.78 91.26 55.56 51.39 91.26 41.25 55.55 94.21 54.57 42.25 94.21

Sfdiff
46.54 67.74 91.02 56.58 54.29 91.02 42.19 56.24 94.44 55.14 42.22 94.44

Sfavg 46.17 65.51 91.45 54.72 51.36 91.45 40.76 55.58 94.17 54.69 41.43 94.17

Sgmax 49.09 67.73 91.44 58.78 52.62 91.44 43.64 57.99 94.26 58.80 44.32 94.26

Sgdiff 49.97 68.61 91.33 60.09 54.35 91.33 45.10 58.24 94.27 59.59 45.64 94.27

Sgavg 49.42 68.51 91.52 60.06 54.02 91.52 40.40 57.09 94.45 56.27 43.78 94.45
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Fig. 1. Comparison of the proposed method and RAN in the indiscriminate attack.

Fig. 2. Comparison of the proposed method and RAN in targeted attack.

J. Zheng, Patrick P.K. Chan, H. Chi et al. Information Sciences 615 (2022) 758–773
to 10% in LeNet-MNIST, LeNet-CIFAR10, VGG-CIFAR100 and VGG-MiniImageNet. On the other hand, the ACC values of the
models contaminated by our method only drop around 4%, 6%, 1%, and 1% in those settings. Similar observations, i.e., the
significant increase of ASR and a slight drop in ACC, have been made in the targeted attack, These results confirm that
our method guarantees not only the attack ability but also stealthiness in both attack settings.

RAN attack also increases the vulnerability of the contaminated models in all situations, except VGG-CIFAR100 with the
indiscriminate attack. Its influence is much less than our method since the attack samples of RAN are generated randomly
766



J. Zheng, Patrick P.K. Chan, H. Chi et al. Information Sciences 615 (2022) 758–773
and independently to the target model. Moreover, the ACC values of the contaminated model by RAN attack drop more than
our method obviously. This demonstrates the effectiveness of our attack model.

The average generation times of a poisoning sample in our method are 7.06s, 27.3s, 8.3s and 29.4s in LeNet-MNIST, LeNet-
CIFAR10, VGG-CIFAR100, and VGG-MiniImageNet. It should be noted that the parallel process is only applied to VGG-
CIFAR100 and VGG-MiniImageNet. Although the running time of our method is much longer than RAN, poisoning samples
can be generated offline.

Two poisoning samples generated by our attack are randomly selected as examples shown in Fig. 3. For each sample, the
left, middle, and right images denote the original image, the poisoning image, and their difference. Different from a backdoor
attack, no trigger is used in our method. As a result, no similar simple pattern can be observed from the contaminated
images. The adversarial manipulation is less significant when the dataset is more complicated, e.g., the change on MNIST
is larger compared to the one on Mini-ImageNet.

The vulnerability of a model contaminated by our attack method is demonstrated in another way. The maximum pertur-
bations of the adversarial attacks (i.e., FGSM and PGD) are set from 0.2 to 2.0 with an interval of 0.2. The results of the indis-
criminate attacks with different attack ratios on MNIST are shown in Fig. 4. When the perturbation limitation is small, the
ASR increases slowly along with the poisoning ratio. The attack performance is not obvious when the manipulation ability is
weak. For example, when the perturbation limitations are 0.2 and 0.4, the ASR values remain stable in all cases. ASR rapidly
increases with the increase of the poisoning ratio when the perturbation limitation is larger. However, the larger perturba-
tion limitation does not necessarily mean larger increase of ASR. For example, the increase rates of ASR of limitation 1.0 are
larger than the corresponding ones using 2.0 in LeNet-PGD, VGG-FGSM, and VGG-PGD. The reason might be that most sam-
ples can be easily attacked when a large perturbation limitation is used. The proposed poisoning attack can significantly
increase the ASR values when the maximum perturbation of the adversarial attack is limited.

4.2.3. Attacks with Different Knowledge
The performance of our model is evaluated experimentally in the scenarios with different levels of attack knowledge, and

the results on MNIST are shown in Table 4. The limited knowledge scenarios with both the model and dataset (LK-MD), with
only the model (LK-M), and with only the dataset (LK-D). Different from full knowledge (FK), the training parameters of the
Fig. 3. Poisoning samples generated by our attack model in different settings. The original and poisoning images are shown at left and middle, while their
difference is shown at right.
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Fig. 4. ASR of the models (LeNet and VGG) under the indiscriminate adversarial attacks (FGSM and PGD) with different perturbation limitations represented
by different colors on MNIST.

Table 4
The ASR of adversarial attacks (FGSM and PGD) on the models (LeNet and VGG) contaminated by our indiscriminate attacks with different levels of knowledge
on MNIST.

Model LeNet VGG

FGSM PGD FGSM PGD

LK-MD 49.97 68.61 56.16 60.74
LK-M 48.14 69.42 57.32 60.63
LK-D 49.90 67.36 52.47 56.18
NK 50.18 67.74 52.61 56.97
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model are unknown to an adversary in LK-MD. A surrogate model and surrogate training data are used in LK-D and LK-M,
respectively. An adversary basically has no information in the No Knowledge (NK) scenario. Only the input and output
domains are provided. A surrogate model and surrogate training data are used. In our experiments, when VGG is served
as the target model, LeNet is used as its surrogate model, and vice versa. The same amount of training samples are randomly
selected as surrogate training data. 5% samples are contaminated.

The average ASR values are 58.87%, 58.87%, 56.48%, and 56.88% in LK-DM, LK-M, LK-D, and LK scenarios, respectively,
which indicates that the influence of knowledge on data is insignificant to the result. Although the adversary does not have
the training set used by the target model, a surrogate training set provides enough information to learn a similar decision
plane to the target model. On the other hand, missing the model’s information slightly downgrades the performance. By
comparing LK-DM and LK-D, and LK-M and NK, the ASR differences are around 2%. It is because the behaviors of different
classifiers may vary. These results indicate that the transferability of our method is good. Our attack performance drops
by less than 4% due to lack of knowledge of the target model.

4.2.4. Ablation Studies
The optimization problem of our attack model is solved by the back-gradient optimization (BGO) with the proposed re-

training interval and gradient truncationmechanisms. We consider our original method as well as its three ablated methods in
ablation studies, including BGO+T+I, BGO+T, BGO+I, and BGO, representing our method with all functions, our method with
the gradient truncation only, with the re-training interval only, and with no proposed mechanism in the back-gradient opti-
mization respectively. The ASR and running time (in seconds) of generating a poisoning sample are used in evaluation.

Table 5 shows the results of the indiscriminate attack on MNIST. Due to the instability of the reverse learning procedure, no
result of LeNet and VGG without the gradient truncation can be obtained. A simple example is used to visualize the gradient
explosion problem. Fig. 5 shows the change of the loss in training. The blue lines represent the tendency of training loss along
with the standard training procedure, while the green lines show the ones of the reverse training procedure. The result shows
that the reverse training loss increases dramatically at a certain step, i.e., around 15 to 16, in our experiments. The explosion
problem rarely happens in MLP. It may be because the error caused by the randomness is accumulated more easily in deep
models. As a result, we avoid the gradient explosion problem by proposing the gradient truncation mechanism. The blue
dashed line in the figure represents the loss threshold of the truncate gradient mechanism. The training is terminated when
the loss value is larger than the threshold. As a result, the gradient truncation mechanism enables the attack on DNNs, i.e.,
LeNet and VGG. Moreover, by comparing BGO and BGO+T, and BGO+I and BGO+T+I, ASR increases when using the gradient
truncation mechanism since the improper gradients accumulated in the last stage of the reverse learning procedure are dis-
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Table 5
Comparison of the back-gradient optimization algorithms (BGO) with our proposed gradient truncation (T) and re-training interval (I) in terms of ASR (%) and the
average generation time (in second) of each poisoning sample.

Model MLP LeNet VGG

ASR(%) Time ASR(%) Time ASR(%) Time

FGSM PGD FGSM PGD FGSM PGD

BGO 81.93 95.51 29.10 / / / / / /
BGO+T 86.36 96.93 28.24 59.69 80.42 50.94 72.37 68.55 353.61
BGO+I 88.65 96.72 4.33 / / / / / /
BGO+T+I (Ours) 90.30 97.13 4.08 61.49 82.92 7.06 75.43 71.50 47.76

Fig. 5. Losses of different standard training procedures (blue lines) and reverse learning procedures (green lines) of LeNet on MNIST.
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carded. The re-training interval mechanism largely reduces the average generation time of each poisoning sample (around
24s) by comparing BGO and BGO+I, and BGO+T and BGO+T+I. In addition, ASR is also improved by using the re-training inter-
val mechanism. It may be because frequent update yields instability.
4.2.5. Robustness Evaluation Strategies
The robustness of our model is calculated by using correctly classified samples. This section evaluates the effectiveness of

using only correctly classified samples rather than all samples in the robustness calculation. Fig. 6 shows the results of LeNet
attacked by our method using only correctly classified samples and all samples on MNIST. 10% and 1% attack ratios are cho-
sen for indiscriminate and targeted attacks.

The results confirm that our model with the robustness term measured by using correctly classified validation samples
performs better then the one using all samples. The methods using only the correctly classified samples achieve 3-4% and 2-
Fig. 6. The ASR of adversarial attacks (FGSM and PGD) on LeNet contaminated by our indiscriminate attacks with the robustness estimated by using only
correctly classified samples and all samples on MNIST.
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3% higher in ASR than the ones using all samples in the targeted and the indiscriminate attack, respectively. The incorrectly
classified samples may mislead the quantification of robustness.

5. Conclusion

This paper proposes a poisoning attack that not only reduces the robustness of a target model against adversarial samples,
but also explicitly improves its concealment. The problem is formulated as a bi-level optimization problem and is solved by
the reverse learning procedure. Re-training interval and parallel process mechanisms are proposed to simplify and speed up
the generation process of poisoning samples. Gradient truncation mechanism is devised to deal with the gradient explosion
problem of the reverse learning procedure in deep neural networks. The experimental results confirm the attack ability and
stealthiness of the proposed method. The transferability of our method is also demonstrated in scenarios with different
levels of knowledge on the target models. This study provides a new perspective on a poisoning attack and advances the
understanding of DNNs’ vulnerability.

Reducing the running time of the poisoning sample generation can be one of the future works. Generating a group of
attack samples in each step may speed up the progress, and an approximation on the training of the target model can also
be considered. Another possible work is to investigate whether and how the poisoning samples generated by our method can
be detected. The data distribution of the contaminated training sets can be analyzed and compared with the untainted ones.
The classes may be closer to each other in the contaminated sets.
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Appendix A. Details of the Back-Gradient Algorithm

This section provides a detailed explanation of the back-gradient algorithm [11] used to estimate the hyper-gradient of
the model’s robustness S to a training sample xp (i.e.,rxp S). The detailed process is shown in Algorithm2. If a neural network
is trained by the standard gradient descent algorithm, the model parameters w are updated by

Algorithm2: Back-Gradient Algorithm
wi ¼ wi�1 � k
@L wi�1;Dtrð Þ

@wi�1
; i ¼ 1;2; � � � ;N; ðA:1Þ
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where k is the learning rate and Dtr is the training set. We define a measurement S Dval;wNð Þ to evaluate the model’s robust-
ness on the validation set Dval, where wN denote the model’s parameters after training with N iterations. It should be noted
that S can be other functions, e.g., classification error. If the validation set Dval and the initial model parameters w0 are fixed,
the model’s robustness S is determined by the training data Dtr . According to the chain rule, the gradient of S to a training
sample xp can be calculated by
@S
@xp

¼
XN
i¼1

@wi

@xTp

 !T
@S
@wi

¼
XN
i¼1

dxi; ðA:2Þ
where dxi is the derivative accumulated in the i-th step. In Eq. (A.2), we expand the hyper-gradient @S
@xp

as the summation

form. Since each term dxi is related to the model parameters in the i-th step (wi), we can obtain the model parameters in
all training steps and then calculate dxi.

Because the model parameters of the trained model wN are known, the last term in Eq. (A.2) (dxN) can be obtained easily.
To calculate other cumulative terms, we only need to obtain the relationship between dxi and dxi�1. Unfortunately, there is
no explicit relationship between them. Therefore, we further expand the multiplication terms of dxi. Utilizing Eq. (A.1), the
derivatives of wi with respect to wi�1 and xp can be calculated by
@wi
@wT

i�1
¼ @wi�1

@wT
i�1

� k
@2L wi�1 ;xpð Þ
@wi�1@wT

i�1

¼ I � k
@2L wi�1 ;xpð Þ
@wi�1@wT

i�1
;

ðA:3Þ
@wi
@xTp

¼ @wi�1
@xTp

� k
@2L wi�1 ;xpð Þ

@wi�1@xTp

¼ �k
@2L wi�1 ;xpð Þ

@wi�1@xTp
;

ðA:4Þ
where I is the identity matrix.
By applying Eq. (A.4), dxN can be further expanded as
dxN ¼ @wN
@xTp

� �T
@S

@wN

¼ �k
@2L wN�1 ;xpð Þ

@wN�1@xTp

� �T
@S

@wN

¼ �k
@2L wN�1 ;xpð Þ

@wN�1@xTp

� �T

dwN:

ðA:5Þ
We denote @S
@wi

as dwi for notation simplicity.

By reversing the update rule in Eq. (A.1), we have
wi�1 ¼ wi þ k
@L wi; xð Þ

@wi
; i ¼ 1;2; � � � ;N: ðA:6Þ
Then we can calculate the model parameters in all training steps on the fly instead of storing them in the memory.
Similarly to dxN , we can expand dxN�1 as
dxN�1 ¼ @wN�1
@xTp

� �T
dwN�1

¼ �k
@2L wN�2 ;xpð Þ

@wN�2@xTp

� �T

dwN�1

¼ �k
@2L wN�2 ;xpð Þ

@wN�2@xTp

� �T
@wN

@wN�1

� �T
dwN

¼ �k
@2L wN�2 ;xpð Þ

@wN�2@xTp

� �T

I � k
@2L wN�1 ;xpð Þ
@wN�1@wT

N�1

� �T

dwN

¼ �k
@2L wN�2 ;xpð Þ

@wN�2@xTp

� �T

dwN � k
@2L wN�1 ;xpð Þ
@wN�1@wT

N�1

� �T

dwN

 !
:

ðA:7Þ
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By comparing Eq. (A.5) and (A.7), we can further derive the relationship between dwN and dwN�1
dwN�1 ¼ dwN � k
@2L wN�1; xp

� �
@wN�1@wT

N�1

 !T

dwN: ðA:8Þ
Then, we can also derive the relationship between dwN�1 and dxN�1 by Eq. (A.7) and (A.8)
dxN�1 ¼ �k
@2L wN�2; xp

� �
@wN�2@xTp

 !T

dwN�1: ðA:9Þ
Combining Eq. (A.8) and (A.9), we obtain the update rule between dxN and dxN�1, and then all cumulative terms dx can be
calculated. We calculate the hyper-parameter rxp S by adding up all cumulative terms dx.
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