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ABSTRACT

Federated Prompt Learning has emerged as a communication-efficient and privacy-
preserving paradigm for adapting large vision-language models like CLIP across
decentralized clients. However, the security implications of this setup remain
underexplored. In this work, we present the first study of backdoor attacks in
Federated Prompt Learning. We show that when malicious clients inject visu-
ally imperceptible, learnable noise triggers into input images, the global prompt
learner becomes vulnerable to targeted misclassification while still maintaining
high accuracy on clean inputs. Motivated by this vulnerability, we propose SABRE-
FL1, a lightweight, modular defense that filters poisoned prompt updates using
an embedding-space anomaly detector trained offline on out-of-distribution data.
SABRE-FL requires no access to raw client data or labels and generalizes across
diverse datasets. We show, both theoretically and empirically, that malicious clients
can be reliably identified and filtered using an embedding-based detector. Across
five diverse datasets and four baseline defenses, SABRE-FL outperforms all base-
lines by significantly reducing backdoor accuracy while preserving clean accuracy,
demonstrating strong empirical performance and underscoring the need for robust
prompt learning in future federated systems.

1 INTRODUCTION

Federated Learning (FL) (40) enables decentralized model training across multiple users while keep-
ing data local, thereby preserving privacy and reducing centralized risks. In FL, clients independently
train models on local data and share only model updates with a server, which aggregates them into a
global model. Due to its privacy-preserving nature, FL has been adopted in settings like Google’s
Gboard (2) for next-word prediction, Apple’s Siri (1) for automatic speech recognition, and WeBank
for credit risk prediction (59). Recent advances have extended FL to support more expressive models,
such as vision-language models, by integrating prompt-based learning (72; 30; 22).

Prompt learning is a recent paradigm that adapts large pre-trained models such as OpenAI’s CLIP
(Contrastive Language-Image Pretraining) (48) to downstream tasks by optimizing lightweight,
learnable input prompts instead of finetuning the full model. Originally developed in centralized
settings, prompt learning has shown impressive few-shot generalization, task transferability, and
reduced compute cost, particularly with vision-language models (72; 71). Motivated by these
advantages, recent works have introduced prompt learning into FL (30; 60), giving rise to federated
prompt learning (FPL). In FPL, clients independently optimize prompt vectors while keeping the
model backbone frozen, and share only these prompts with the server. This design greatly reduces
communication and memory overhead and enables efficient cross-client adaptation in multimodal
and heterogeneous environments.

Despite its appeal, FL is not inherently secure (33). In practice, some clients may behave maliciously,
either by corrupting their local training data or manipulating model updates, to influence the behavior
of the global model (23; 50; 58; 51; 11; 41; 63; 12; 3). A particularly insidious example is the
backdoor attack (43; 68; 4; 58), in which an adversary injects carefully crafted inputs (called triggers)
into local training data (Figure 1). These triggers cause the global model to misclassify specific
test-time inputs while preserving high accuracy on benign samples. Prior work on backdoor attacks

1We will release the open source code with the final version of this paper.
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Figure 1: Backdoor attack on prompt-learning-based multimodal models. A learnable and impercep-
tible noise trigger is added to the image that results in a poisoned image embedding, which is then
used to generate the learnable prompts. This addition of noise causes the image features to deviate
from their respective text features in the embedding space, thereby causing misclassification.

in FL has largely focused on traditional classification tasks in unimodal settings (43; 68), leaving the
security properties of multimodal and prompt-based FL systems underexplored.

While prompt learning in FL is gaining momentum, its security properties remain largely unexamined.
This raises a key question: how vulnerable is Federated Prompt Learning to backdoor attacks?
In this work, we show that prompt learners in FL are highly susceptible to backdoors, even when
model updates are limited to prompt vectors. We introduce a backdoor attack that inserts a learnable,
visually imperceptible trigger into a subset of clients’ training data. The attack draws inspiration from
BadClip (6) who design a trigger-based backdoor attack for prompt-learning in the centralized setting.
In our attack each malicious client has its own malicious trigger that pushes the prompt embeddings
toward a target label in CLIP’s semantic space, leading to high-confidence misclassification at
inference. The attack remains stealthy and retains high clean accuracy across clients, matching
performance observed in centralized prompt tuning. This demonstrates that Federated Prompt
Learning is vulnerable to trigger-based backdoor attacks even when a few clients act maliciously. To
the best of our knowledge, we are the first to study backdoor attacks in this setting, i.e., trigger-based
attacks in multimodal federated prompt learning.

Motivated by this, we design SABRE-FL (Selective and Accurate Backdoor Rejection), a lightweight
server-side defense tailored for prompt-based FL. Our key insight is that backdoored prompt vectors
yield representations that deviate from the distribution of clean data in CLIP’s embedding space.
SABRE-FL trains a detector offline, on an out-of-distribution dataset, to recognize these deviations.
Importantly, the detector does not require access to client data, labels, or downstream tasks. By
leveraging this separation in representation space, SABRE-FL identifies and filters poisoned updates
with high precision, maintaining clean model performance while eliminating backdoor impact.

Contributions: In our work, we address the critical issue of backdoor attacks in federated prompt
learning. In doing so, we make the following key contributions:

• We introduce the first backdoor attack specifically targeting prompt learning in FL (§3).
The attack injects a visually imperceptible, learnable noise trigger that is optimized to shift
prompt representations toward a target class semantically. The attack achieves high backdoor
success while preserving clean accuracy, and remains effective even when only a small fraction
of clients are compromised, revealing a vulnerability in prompt-based FL systems.

• Designing SABRE-FL: We propose SABRE-FL (§4), a lightweight, generalizable defense
framework that detects poisoned prompt updates at the server using a classifier trained on
out-of-distribution embeddings. We formalize its representation-space decision boundary and
provide theoretical conditions for generalization.

• Comprehensive evaluation and analysis across five datasets and four defenses; Trimmed
Mean, Median, Norm Bounding, and FLAME (§5.1), shows that SABRE-FL consistently
outperforms existing methods by achieving lowest backdoor accuracy while maintaining clean
accuracy. t-SNE plots and ablations (§5.3) confirm its generalization and effectiveness under
diverse FL and prompt learning configurations.
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2 BACKGROUND AND RELATED WORK

2.1 FEDERATED LEARNING (FL)

In FL (33; 40), a central entity, known as the server, aims to train a global model, θg, using private
data distributed across multiple clients, without directly accessing their data. In each communication
round, the server selects n out of N available clients and sends them the current global model θtg,
where t denotes the round index. Each selected client k computes an update∇t

k using its local dataset
Dk, and returns it to the server, which aggregates all updates using a predefined aggregation rule,
such as FedAvg (40).

In FedAvg, a client k fine-tunes θtg on their local data using stochastic gradient descent (SGD) for a
fixed number of local epochs E, resulting in an updated local model θtk. The client then computes
their update as the difference∇t

k = θtk− θtg and shares∇t
k with the server. Next, the server computes

an aggregate of client updates, fagg using mean, i.e.,∇t
agg = fmean(∇t

{k∈[n]}) and updates the global
model of the (t+ 1)th round using SGD and server learning η as: θt+1

g ← θtg + η∇t
agg.

2.2 PROMPT LEARNING WITH VISION-LANGUAGE MODELS

Vision-Language Models: Large vision-language models (VLMs), such as CLIP (48), have demon-
strated remarkable generalization across diverse downstream tasks. By aligning images and text in
a shared semantic space, these models enable strong zero-shot and few-shot performance without
task-specific supervision. However, their size, often exceeding hundreds of millions of parameters,
makes traditional fine-tuning computationally expensive and bandwidth-intensive, particularly in
distributed or resource-constrained environments.

Prompt Learning (72): Prompt learning adapts large pre-trained models to downstream tasks by
introducing a set of learnable prompt vectors that are prepended to the model input. During training,
only these prompts are updated, allowing efficient task adaptation while keeping the backbone
frozen. This reduces the number of trainable parameters and computational cost, making the approach
particularly attractive for few-shot and resource-constrained settings. Prompt learning has been shown
to be effective across multiple modalities (34; 71; 72). In CLIP-based architectures, this involves
optimizing a set of context vectors V = [v1,v2, . . . ,vN ]⊤ ∈ RN×e, where each vi is a learnable
token embedding and e is the embedding dimension. Given an input image x and a class name
embedding ci, the image encoder f(x) and the text encoder g({V , ci}) produce modality-aligned
representations. The prediction probability is computed using cosine similarity:

p(y = i | x) = exp(sim(f(x), g({V , ci}))/τ)∑K
j=1 exp(sim(f(x), g({V , cj}))/τ)

, (1)

where τ is a temperature parameter and sim(·, ·) denotes cosine similarity.

Prompt Learning in FL: The benefits of prompt learning mentioned above have motivated its
integration into the federated setting (30; 29; 70). In federated prompt learning, each client optimizes
a local prompt vector while keeping the foundation model, e.g., CLIP, frozen, and transmits only the
prompt to the server for aggregation. This substantially reduces memory usage and communication
cost, making it feasible to deploy foundation models like CLIP in privacy-preserving, bandwidth-
limited environments. Such systems have demonstrated strong downstream performance across vision
and multimodal tasks while maintaining FL’s privacy and scalability benefits.

Despite these advantages, the security implications of prompt learning in FL remain largely un-
explored. In particular, it is unclear whether prompt learners, given their limited parameter space
and semantic alignment with frozen backbones, are susceptible to adversarial manipulation, such
as backdoor attacks. This presents a critical and underexplored vulnerability in the growing area of
federated foundation model adaptation.

2.3 BACKDOOR ATTACKS

Backdoor attacks (8; 5; 7; 26; 36; 55; 64; 65) are a class of training-time data poisoning techniques
wherein an adversary injects carefully crafted samples into the training set with the goal of inducing
targeted misbehavior at test time (3; 31). These poisoned samples contain an imperceptible or benign-
looking trigger, such as a small patch in the input, and are assigned a target label of the attacker’s
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Figure 2: An overview of the attack in an FL setting. A malicious client embeds a learnable noise
trigger into images. The context generator helps optimize the prompts according to the image features.
choosing. Once trained on such data, the compromised model behaves normally on clean inputs but
misclassifies any input containing the trigger to the target class. This selective misbehavior makes
backdoor attacks particularly insidious, as they are challenging to detect using standard validation
procedures. Backdoor attacks have been studied across multiple modalities including vision (27),
language (35), and multimodal models (37; 6) and have proven effective even in privacy-preserving
settings like FL, where model updates rather than raw data are shared.

Backdoor Attacks in Federated Learning: Backdoor attacks pose a serious security threat to FL,
allowing adversaries to embed malicious behavior into the global model by manipulating a small
number of clients during training (4; 58; 51). These attacks typically preserve high accuracy on
clean inputs while causing targeted misclassification on inputs containing an attacker-defined trigger.
Early approaches rely on fixed triggers (53; 61; 12), while more recent methods optimize trigger
patterns to maximize attack success and stealthiness (43; 68). For example, A3FL (68) predicts the
movement of the global model updates and improves attack durability by ensuring the backdoor
persists across global aggregation rounds. Similarly, IBA (43) jointly optimizes a visually stealthy
trigger and selectively poisons models’ parameters that are less likely to be updated by the main
task’s learning process, achieving a durable and stealthy backdoor effect.

3 BACKDOOR ATTACKS ON PROMPT LEARNING IN FL

3.1 OVERVIEW

While backdoor attacks have been extensively studied in traditional unimodal FL settings, their
feasibility in multimodal federated prompt learning remains underexplored. Unlike traditional full-
model FL, it exposes a narrower attack surface, limited to prompt vectors, raising new questions about
strength, persistence, and stealth of such attacks. These differences motivate our central hypothesis.

Hypothesis. We hypothesize that backdoor attacks capable of degrading centralized prompt learning
can similarly succeed in federated prompt learning. Despite the distributed setup and aggregation
dynamics, prompt-based FL remains vulnerable to targeted manipulation, allowing adversaries to
induce misclassifications on trigger inputs while preserving overall model utility on clean data.

Positioning our work relative to existing literature. Several recent works have demonstrated the
vulnerability of contrastive vision-language models like CLIP to backdoor attacks in centralized
settings. Notably, BadCLIP (6) introduces a powerful trigger-aware attack that jointly manipulates
both the image and text encoders using prompt-conditioned triggers. A similar variant (37) improves
stealth and robustness using dual-embedding alignment. Other works such as BadEncoder (32) and
contrastive poisoning attacks (18) inject backdoors directly into frozen image encoders or pretraining
datasets. While effective, these attacks are designed for centralized or pretraining regimes. In this
paper, we focus exclusively on the BadCLIP attack due to its compatibility with prompt tuning and
its relevance to the downstream FL scenario explored in our work.

Theoretical Motivation. In CLIP-based prompt learning (72; 71), classification is based on the
cosine similarity between an image embedding f(x) and a prompt-conditioned text embedding
g({V , ci}) for class i. To induce targeted misclassification toward a specific class t, it suffices to
craft an input x⋆ such that:

sim(f(x⋆), g({V , ct})) > sim(f(x⋆), g({V , cy})), ∀y ̸= t (2)

This condition ensures that the model classifies x⋆ as belonging to the target class t. In practice,
our attack injects a visually imperceptible trigger, as shown in Figure 1, into local training data and

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

optimizes it to shift image embeddings toward g({V , ct}), effectively planting a backdoor in the
global prompt learner. While this idea is inspired by prior work on backdoor optimization (6; 68; 43),
adapting it to the prompt-only FL setting introduces new challenges: the global model is now updated
solely via lightweight prompt vectors, and the image encoder remains frozen. This means the backdoor
signal must propagate indirectly through prompt aggregation, requiring the trigger to consistently
bias prompt updates without direct influence over model weights, making the optimization problem
both weaker in signal and more sensitive to noise. The attack is visually explained in Figure 1.

Evaluation Metrics. We report two metrics: Clean Accuracy (CA) and Backdoor Accuracy (BA).
Let Dclean = {(xi, yi)} denote the clean test set and Dbd = {(x⋆

i , yt)} the backdoored test set, where
x⋆
i = xi ⊕ t is the triggered input for target label yt. Clean Accuracy, the percentage of clean inputs

predicted correctly, is defined as CA = 1
|Dclean|

∑
⊮[ŷ(xi) = yi], while Backdoor Accuracy, the

percentage of backdoored inputs predicted as the target label, is BA = 1
|Dbd|

∑
⊮[ŷ(x⋆

i ) = yt].

3.2 THREAT MODEL

Objective. The adversary’s goal is to perform a targeted backdoor attack in a federated prompt
learning setup. By injecting a learnable, visually imperceptible trigger into a subset of training inputs
at compromised clients and relabeling them to a fixed target class, the attacker aims to corrupt the
global prompt learner. At inference time, inputs stamped with the trigger are misclassified as the
attacker’s chosen class, while clean inputs remain unaffected, thus maintaining high clean accuracy.

Capabilities. We assume a standard FL setup with N clients and a central server aggregating client
prompt updates. The adversary controls a fraction m/N of clients, set to 25% by default, consistent
with prior works (15; 16). The attacker can:

• Modify a subset of local training data by adding a learnable backdoor trigger to inputs.
• Relabel triggered samples to the desired target class, known in literature as dirty-label attack (52;

28; 20; 49; 67; 44; 36).
• Optimize the trigger jointly with the prompt learner at each malicious client to maximize its effect

on the global prompt vector.

Knowledge. Since the attacker controls client devices, it naturally has access to the full prompt
learning setup, including model architecture, frozen CLIP backbone, and training procedure. This is
a standard assumption in federated backdoor attack literature (4; 50), and reflects realistic adversaries
in open-source or distributed deployments where models like CLIP are publicly available (48).

3.3 DESIGN OF THE BACKDOOR ATTACK IN AN FL SETTING

We illustrate the overall system of the backdoor attack in Figure 2. At the beginning of each commu-
nication round, the server distributes (step 1) the current global prompt learner to all participating
clients. Unlike traditional FL systems that transmit full model parameters, prompt-based FL transmits
only the learnable prompt vectors, significantly reducing communication overhead. The clients keep
their model backbones, the image encoder fimg and the text encoder ftext, frozen. During local training
(step 2), each client fine-tunes the received prompt vectors on its private data. Malicious clients,
however, inject a learnable additive noise trigger into a subset of their training images and assign
these poisoned samples to an attacker-specified target label, ytarget. The objective of malicious clients
is to optimize their prompt learners such that the presence of the trigger at inference time reliably
causes misclassification, without noticeably affecting clean accuracy. After completing local updates,
clients send their locally adapted prompt vectors back to the server (step 3). The server aggregates
(step 4) these updates to form the new global prompt learner, which is then redistributed to all clients.
This process repeats over multiple rounds until convergence.

Attack Formalization: Let (x, y) be a clean image and label pair, with x ∈ X and y ∈ Y . Let
fimg : X → Rd be the image encoder and ftext : Y → Rd be the text encoder from a frozen CLIP
model. Prediction is defined as:

ŷ = argmax
c∈Y

cos(fimg(x), ftext(c)) (3)

The attacker injects a learnable trigger t ∈ X such that x⋆ = x ⊕ t is indistinguishable from x in
pixel space, but shifts its embedding in CLIP space.
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Goal:
cos(fimg(x

⋆), ftext(ytarget)) > cos(fimg(x
⋆), ftext(y)) (4)

This causes the model to predict ytarget instead of the true label y. The trigger t is learned via gradient
descent to consistently shift embeddings toward ftext(ytarget) across poisoned samples.

3.4 ATTACK IMPACT Table 1: Accuracy with no attack (clean model),
clean inputs under attack, and backdoored inputs.

Dataset No-Attack Clean Backdoor

Flowers 80.9 77.9 41.7
Pets 94.5 94.2 16.3
DTD 65.2 65.6 34.8
Aircraft 32.3 32.8 93.9
Food101 90.7 90.0 20.6

We now assess the effectiveness of the back-
door attack in a standard federated prompt-
learning setup, where 25% of clients are ma-
licious. These clients inject a learnable noise
trigger into a subset of their local data and rela-
bel the triggered samples to a fixed target class.
The goal is to induce targeted misclassifications
on trigger-inserted test samples, while preserv-
ing high performance on clean data.

Backdoor Effectiveness: Table 1 and Figure 3 show the results of the attack across five datasets.
Refer to Appendix D for setup details. We observe that the global model maintains high clean
accuracy on all datasets, indicating that benign generalization is largely preserved. At the same time,
the backdoor accuracy which is defined as the fraction of trigger-inserted test samples classified as the
attacker’s target label is significantly elevated, particularly for datasets like FGVC Aircraft (93.9%)
and Flowers (41.7%). These results confirm that Federated Prompt Learning systems are vulnerable
to backdoor injection even under strong aggregation, and that malicious clients can effectively implant
targeted behaviors without degrading global model performance on clean data.
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Figure 3: Accuracy during attack.

Comparison with Centralized Backdoor Attacks: We
compare our FL backdoor attack against its centralized
counterpart, BadCLIP (6), which serves as the baseline
for prompt-learning backdoor attacks in non-federated set-
tings. BadCLIP achieves near 100% backdoor success by
directly poisoning a large portion of the training data and
optimizing the trigger in a fully centralized regime. In
contrast, our setting uses the standard FedAvg aggregation
algorithm and models a more realistic adversary: only a
small subset of clients are malicious, and poisoning is con-
fined to local updates. This naturally dilutes the backdoor
signal during aggregation and results in lower backdoor
accuracy compared to the centralized case. Despite this,
our attack achieves high success rates on several datasets,
demonstrating that prompt-based FL remains vulnerable
even with limited adversarial participation. In Table 1, we
report results under the no-defense scenario to highlight
how much damage can occur with the default FedAvg
setup. We analyze the effectiveness of standard defenses
in mitigating this attack later in §5.1.

4 SABRE-FL: SELECTIVE AND ACCURATE BACKDOOR REJECTION FOR
FEDERATED PROMPT LEARNING

Having demonstrated the vulnerability of federated prompt learning to targeted backdoor attacks, we
now propose Selective and Accurate Backdoor REjection for Federated Prompt Learning (SABRE-
FL), a lightweight defense that detects and filters poisoned client updates at the server.

Our key insight is that backdoored inputs induce systematic shifts in the learned representations,
as visualized later in §5.2. Even when the trigger is visually imperceptible, it alters the image
embedding in a consistent direction enough to cause the downstream model to misclassify the input.
This deviation acts as a double-edged sword: it is the very signal that enables the attack, but also the
very signal we exploit to build our defense. A similar observation was made in BadCLIP (6), which
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showed that the success of prompt-based backdoors arises from consistent embedding-level drift
toward the target class. We ask a question: If this embedding deviation is strong enough to fool the
downstream classification model, can it not also be used to detect that the input has been poisoned?

Core idea. Rather than detecting poisoning in pixel or parameter space, we operate in the embedding
space where poisoned examples exhibit a consistent statistical signature. By training a binary classifier
on clean and triggered embeddings in an auxiliary setting, we learn to detect this signature.

4.1 FORMALIZATION

Let fimg(·) denote the CLIP image encoder. Given a clean input x, let z = fimg(x), and for its
backdoored version x⋆ = x ⊕ t, let z⋆ = fimg(x

⋆). Our defense relies on the assumption that
backdoored embeddings exhibit a separation margin from the embeddings of the clean ones:

∥z − z⋆∥2 > ϵ for some ϵ > 0 (5)

We simulate this behavior by generating a training datasetDaux = {(zi, yi)}Ni=1 of clean and poisoned
embeddings on an auxiliary dataset (Caltech-101). Here, yi ∈ {0, 1} indicates whether zi is clean or
poisoned. We train a detector D : Rd → {0, 1} by minimizing a standard binary loss:

min
θ

N∑
i=1

ℓ(D(zi; θ), yi) (6)

Inference Rule. At inference time, when a client Ck submits a set of embeddings {zkj }
nk
j=1, we

compute the mean detector score:

Sk =
1

nk

nk∑
j=1

D(zkj ) (7)

Rather than using a fixed threshold τ , we adopt a rank-based heuristic: in each round, the m clients
with the highest number of flagged embeddings are excluded from aggregation. This approach
assumes an upper bound on the number of malicious clients, consistent with prior work (66; 51; 23;
15; 69). More details on client filtering are in Appendix C.

Lemma. If a consistent margin ϵ exists and D achieves zero or near-zero training error on Daux, then
D is expected to generalize well to unseen clients using a noise trigger. This reflects the distributional
stability of backdoored embeddings under the frozen encoder.

4.2 DETECTOR TRAINING AND DEPLOYMENTAlgorithm 1 SABRE-FL

1: Pre-train Detector:
Generate Daux = {(zi, yi)} from clean/poisoned

data
Train D : Rd → {0, 1} using cross-entropy

2: for each FL round t = 1 to T do
3: Server sends prompt pt−1 to all clients
4: for each client Ck do
5: if malicious then
6: Poison subset: x⋆ = x⊕ t
7: Relabel x⋆ → ct, train pk on poisoned

data
8: else
9: Train pk on clean data

10: end if
11: Send pk, embeddings {zkj } to server
12: end for
13: for each Ck do
14: Compute Sk = 1

nk

∑
j D(zkj )

15: Remove top-m clients with highest Sk

16: end for
17: Aggregate accepted {pk} → pt
18: end for

To operationalize the formalization of our de-
fense, we construct an auxiliary training dataset
Daux = {(zi, yi)}Ni=1 composed of CLIP im-
age embeddings and binary labels indicating
whether the embedding originates from a clean
or poisoned input. To simulate this, we use
Caltech-101 as a held-out auxiliary dataset and
apply our trigger injection method (Algorithm 1,
line 6), to a subset of images to produce poi-
soned samples. Both clean and triggered images
are passed through the frozen image encoder
fimg(·) and a fixed prompt learner to obtain their
embeddings. These embeddings are then labeled
as clean (yi = 0) or poisoned (yi = 1) to con-
struct the training set. We defer the rest of the
training details to Appendix D.4.

4.3 PRIVACY CONSIDERATIONS

SABRE-FL operates solely in the embedding
space and does not require access to raw data, labels, or gradients. Clients share only CLIP-encoded
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Table 2: Clean and backdoor accuracy on five datasets. Best backdoor accuracy(lowest) is bold.

Defense Flowers Pets DTD FGVC Aircraft Food101

Clean BD Clean BD Clean BD Clean BD Clean BD

No Defense 77.9 41.7 94.2 16.3 65.6 34.8 32.8 93.9 90.0 20.6

Trimmed Mean 76.8 12.3 93.7 5.6 63.7 31.0 32.4 83.1 90.0 6.4
Median 77.4 10.4 94.1 5.3 65.9 28.1 32.1 79.4 90.1 5.5
Norm Bounding 79.0 22.0 92.6 22.5 67.6 37.5 30.9 86.2 89.7 17.2
FLAME 76.4 3.8 93.4 7.8 66.0 8.7 31.5 16.4 89.9 3.2
SABRE-FL (Ours) 76.6 1.1 94.5 4.4 64.9 6.8 32.1 7.6 90.6 1.9

image representations with the server which are compressed, task-agnostic vectors produced by a
frozen backbone. This strategy is consistent with prior FL paradigms such as vertical FL (38; 25; 9)
and split learning (57; 54), where intermediate features are shared across parties. Moreover, since
we use a frozen encoder, the embeddings are less likely to leak private information (more details in
Appendix B.4). Unlike gradients or label-conditioned outputs, CLIP embeddings are not trained to
retain input-specific details or reconstruct original data. We acknowledge that data extraction attacks
are an evolving research concern (19; 10); however, our approach avoids sharing raw data, labels, or
gradients, components that are more strongly correlated with reconstruction leakage.

5 EXPERIMENTS AND RESULTS

5.1 RESULTS

Due to space constraints, we defer setup details and additional experiments to Appendices D & E.

Effectiveness of SABRE-FL. We compare our proposed defense, SABRE-FL, to four widely-
used robust aggregation techniques: Trimmed Mean (66; 62), Coordinate-wise Median (66), Norm
Bounding (53), and FLAME (42). Results across five datasets are shown in Table 2. Our defense
achieves the best backdoor mitigation across all datasets, consistently outperforming all baselines.
Notably, SABRE-FL reduces backdoor accuracy to near zero (as low as 1.1% on Flowers and 1.9%
on Food101) without degrading clean accuracy. In fact, clean performance remains comparable or
superior to baseline methods, highlighting that aggressive filtering of poisoned clients does not impair
generalization. While existing methods do reduce the backdoor accuracy relative to the no-defense
baseline, they often leave a significant portion of poisoned influence intact, especially on challenging
datasets like FGVC Aircraft and DTD. For example, FLAME achieves 16.4% BA on FGVC Aircraft,
and Norm Bounding exceeds 30% BA on multiple datasets.

Robustness and Generalization. SABRE-FL operates without access to client data distributions or
downstream task labels. The detector is trained once on Caltech-101 and generalizes across diverse
datasets in our evaluation (e.g., Flowers, DTD, FGVC Aircraft, Food101, Pets). This generalization
holds across input domains such as fine-grained object categories (Flowers, Aircraft) and texture-
based recognition tasks (DTD), as well as across classification objectives ranging from animal species
(Pets) to food recognition (Food101). Because the embedding deviation arises from the backdoor
mechanism itself, not the specific data distribution, SABRE-FL reliably detects poisoning via a
consistent statistical signature in the embedding space. This highlights its robustness across both
domains and tasks, making it broadly applicable in real-world federated deployments.

5.2 QUALITATIVE ANALYSIS

60 40 20 0 20 40 6060

40

20

0

20

40

60
Clean
Backdoored

Figure 4: t-SNE visualization
on Caltech embeddings. Clean
and backdoored samples are
clearly separable in the CLIP
embedding space.

To demonstrate why our detection mechanism works, we visualize
the embeddings of clean images and their poisoned counterparts.
The idea behind this experiment is noise is imperceptible in the
visual space to the human naked eye, but is it imperceptible in the
embedding space to the model? This is answered by visualizing
the embeddings in a low-dimensional space using a technique like
T-SNE (56). In Figure 4, we show the T-SNE plots for Caltech-
101. We show a similar plot in Appendix E.1 for Oxford Flowers.
We first train a model with backdoors using the technique similar
to BadClip (6), then we pass clean and noisy images through the
image encoder and store the output embeddings. When we plot these
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embeddings using T-SNE, we can see that there is a clear divide between the features of the clean
images and the backdoored images. This validates our intuition behind designing our defense, which
lies in the simple fact that if the noise can be used to fool the model into predicting a wrong class, that
same noise can also be used to detect if an embedding comes from a clean image or a poisoned one.

5.3 ABLATION STUDY

Impact of Prompt Shot Count:

2-shot 4-shot 8-shot 16-shot
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Backdoor (No Defense)
Backdoor (SABRE-FL)

Figure 5: Varying number of shots for DTD

The number of shots in prompt learning deter-
mines how many samples per class are used to
tune the prompt. We study how prompt strength
affects both attack success and defense robust-
ness via an ablation over 2, 4, 8, and 16 shots.
For each setting, we report clean and backdoor
accuracy, with and without our defense, across
five benchmark datasets. Figure 5 shows results
for DTD; remaining plots are in Appendix E.2.

Without any defense, backdoor accuracy increases significantly as the number of shots grows, most
notably in datasets like FGVC Aircraft and Food101, where attack success reaches over 85% at 16
shots. This trend suggests that prompt learners become increasingly susceptible to backdoor attacks
as they receive more supervision, likely due to stronger memorization of poisoned training samples
(more details in Appendix B.2). At the same time, clean accuracy also improves, reflecting the
natural benefits of more labeled data. With our defense SABRE-FL enabled, however, backdoor
accuracy remains consistently low (under 5%) across all shot counts and datasets. This indicates that
our embedding-based detector remains effective even as prompt learners become more expressive.
Crucially, clean accuracy under our defense matches or exceeds the no-defense baseline, confirming
that the defense does not suppress benign updates. Overall, this experiment highlights that our
method provides strong backdoor mitigation without compromising clean performance, even as
model capacity increases with additional prompt shots.

0 25 50 100
Malicious Clients (%)

30

40

50

60

70

80

90

100

Cl
ea

n 
Ac

cu
ra

cy
 (%

)

Flowers
Pets
DTD
FGVC Aircraft
Food101

(a) Clean accuracy vs. malicious clients.
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(b) Backdoor accuracy vs. malicious clients.

Figure 6: Effect of increasing malicious
client percentage on model performance.
Clean accuracy remains stable, while
backdoor success increases sharply with
more adversarial control.

Effect of Malicious Client Proportion: We analyze the
impact of varying the proportion of malicious clients on
both clean accuracy and backdoor success. As shown
in Figure 6, backdoor accuracy rises sharply as the attacker
fraction increases. At an attacker rate of 25%, the attack
achieves 93.9% success on FGVC Aircraft and 41.7% on
Flowers. Once the malicious client proportion reaches
50% or more, backdoor accuracy exceeds 80% on most
datasets and approaches 100% at the highest setting. These
results highlight the sensitivity of prompt-based FL to even
adversarial participation, especially in few-shot regimes
where each client contributes limited data. Notably, clean
accuracy remains largely unaffected across all configura-
tions, indicating that the poisoned updates are stealthy and
do not visibly degrade global model performance.

6 CONCLUSION

We show that backdoor attacks are a potent threat to feder-
ated prompt learning. We explain why such attacks are suc-
cessful, and use that to design a robust defense, SABRE-
FL, against such noise-trigger-based attacks. Our defense
is based on the core intuition that the backdoor noise trig-
ger propagates to the embeddings as well. SABRE-FL is a
detector model that is able to filter clean and noisy embed-
dings. Evaluation across five datasets and four baseline
defenses shows that our defense outperforms all baselines.
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Appendix

We provide additional information for our paper, SABRE-FL: Selective and Accurate Backdoor
Rejection for Federated Prompt Learning, in the following order:

• Limitations and Future Work (Appendix A)

• Terminology/Techniques (Appendix B)

• Additional Implementation Details (Appendix C)

• Experimental Setup (Appendix D)

• Additional Results (Appendix E)

• Rebuttal (Appendix F)

A LIMITATIONS AND FUTURE WORK

This work brings together three major research areas: federated learning, prompt learning, and
backdoor attacks under a unified evaluation framework. Given the breadth of this integration, it
is naturally beyond the scope of a single paper to exhaustively explore all possible combinations
of settings, attack strategies, and defense variants within this space. Our goal in this paper was to
highlight a critical and previously unexamined vulnerability: the susceptibility of federated prompt
learning to targeted backdoor attacks. To that end, we carefully selected evaluation settings that
isolate this problem and clearly demonstrate both the threat and the effectiveness of SABRE-FL.

Nevertheless, several limitations remain. First, while we focused on data poisoning attacks with
learnable triggers, we did not explore model poisoning attacks (23; 51), where the attacker perturbs
client model parameters directly. Future work could compare the relative potency and stealth of
model vs. data poisoning in prompt-based FL. Second, although we used five diverse datasets and
conducted shot-based and scale-based ablations, we did not explicitly vary data heterogeneity across
clients. Understanding how non-IID data affects backdoor robustness and detection performance is
an important direction. Finally, we used the CLIP ViT-B/16 backbone throughout this study; while
it is a representative and widely adopted model, future work may examine other vision-language
backbones (e.g., ViT-L, EVA-CLIP, or OpenCLIP variants) to assess generalization across model
families. Overall, we believe our findings lay the foundation for a deeper understanding of security
risks in prompt-based federated systems and invite further exploration into more nuanced threat
models, client behavior assumptions, and multi-modal defense strategies.

B TERMINOLOGY/TECHNOLOGIES

B.1 CLIP: CONTRASTIVE LANGUAGE-IMAGE PRETRAINING

CLIP, short for Contrastive Language-Image Pretraining, is a type of multimodal machine learning
model developed by OpenAI (48). “Multimodal” means it can process and relate information from
two different types of inputs, in this case, images and natural language. Models like CLIP are
referred to as vision-language models (VLMs) because they jointly understand both visual and textual
information. CLIP was trained on a large dataset of 400 million (image, text) pairs collected from the
internet. The idea behind CLIP is simple but powerful: given an image and a sentence, the model
learns to tell whether the sentence correctly describes the image. For example, given a photo of a cat
and several captions like “a cat,” “a dog,” or “a painting,” CLIP learns to match the correct caption to
the image. This is done using a technique called contrastive learning, where the model pulls together
matching image-text pairs and pushes apart mismatched ones in the embedding space.

CLIP has two components: - An image encoder (e.g., a Vision Transformer or ResNet) that converts
images into high-dimensional vectors. - A text encoder (e.g., a Transformer) that converts sentences
into vectors in the same space. After training, CLIP can be used for zero-shot classification, where it
is given a list of possible text labels and an image, and it predicts which label best matches the image.
This makes CLIP very versatile for downstream tasks, i.e., tasks that are different from the model’s
pretraining objective, such as object classification, image retrieval, OCR, or even robotics. During
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testing, CLIP matches a given test image with the best matching class label (converted into a prompt
like "a photo of a class"). In summary, CLIP is a general-purpose vision-language model that learns
a shared representation space for images and text without needing explicit labels. It serves as the
foundation for prompt learning, which allows users to adapt CLIP to new tasks more effectively.

B.2 PROMPT LEARNING

A prompt is a piece of text that is used to guide a model’s predictions. In language models (like GPT),
a prompt might be a sentence like “Translate this to French: Hello,” and in CLIP, it might be “a photo
of a dog.” In the original CLIP setup, hand-crafted prompts like “a photo of a class” are used during
testing to convert text labels into embeddings. However, manual prompts are often suboptimal as
they rely on human intuition and may not generalize well across tasks or datasets. This led to the idea
of prompt learning, where instead of using fixed textual prompts, we learn soft prompts, i.e., a set
of trainable vectors that replace or augment the context in a prompt. These prompts are optimized
during training to improve model performance on a given downstream task.

The pioneering work in this area is CoOp (Context Optimization) (72), which introduced learnable
prompts for vision-language models like CLIP. In CoOp, the prompt is represented as a series of
learnable embeddings [v1,v2, ...,vN ], which are prepended to each class name (e.g., “[v1][v2]...
[vN] dog”) and passed through the text encoder. These prompts are optimized using a small amount
of labeled data. Prompt learning has several advantages: (1)It avoids fine-tuning the entire backbone,
making it computationally efficient. (2) It adapts the model to new tasks with only a few training
examples (few-shot learning). (3) It retains the generalization power of the pretrained model while
specializing it for a specific task. Some common prompt hyperparameters include: (1)Context length
(N): the number of learnable prompt vectors prepended to the class name. (2)Number of shots: how
many labeled examples per class are used for training. (3)Class token position: whether the class
label appears at the start, middle, or end of the prompt. Increasing the number of shots typically
improves accuracy because the model sees more training examples per class, allowing the prompt
learner to better capture the features that distinguish different categories. However, prompt learning
often performs well even in low-shot settings, making it ideal for domains with limited labeled data.

B.3 BADCLIP

BadCLIP is a backdoor attack framework proposed in a CVPR 2024 paper (6), designed to evaluate
the vulnerability of prompt-learning-based vision-language models like CLIP. Unlike traditional
backdoor attacks that rely on visible patterns or simple data poisoning, BadCLIP crafts visually
imperceptible noise triggers that manipulate the internal behavior of the model during both training
and inference. Similar to CLIP, BadCLIP predicts the correct label by comparing image features
to text features derived from prompts (e.g., “a photo of a dog”). In the presence of a backdoor, a
small adversarial noise pattern (trigger) is added to the input image. This trigger is optimized during
training to cause the image encoder to shift the image embedding closer to the text embedding of
an attacker-specified target class (e.g., “cat”), while remaining visually indistinguishable to humans.
BadCLIP also adapts the prompt vectors in a trigger-aware manner. That is, both image features and
context vectors are conditioned on the presence of the backdoor trigger, making the backdoor more
robust and more likely to survive training. During inference, even if a clean image is given a trigger,
the poisoned model misclassifies it as the target class due to embedding-level drift.

More formally, given a clean image x and a trigger t, the backdoored input x⋆ = x⊕ t results in an
image embedding f(x⋆) that is closer to the prompt-conditioned text embedding of the target class
g({V , ct}) than to its true label g({V , cy}). The model predicts the target class t even though the
visual appearance corresponds to y. BadCLIP is the first backdoor framework using noise-based
triggers specifically designed for prompt-tuned CLIP models. Its key insight is that backdoor signals
are not limited to the input space but can be embedded into CLIP’s latent space, making them both
stealthy and effective. SABRE-FL builds on this idea, extending it to the federated learning setting.

B.4 PRIVACY LEAKAGE

Recent work has demonstrated that it is possible to reconstruct input data from machine learning
models (10; 19; 17). These attacks are known as reconstruction attacks. However, such attacks
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typically require certain strong assumptions. For example, (10) consider a very strong adversary that
knows several data points as well as the weights of the model.

SABRE-FL operates entirely in the representation space of a frozen CLIP encoder, meaning the
image encoder is never updated with client-specific data. As a result, the embeddings remain generic
and task-agnostic, optimized for cross-modal alignment, not input reconstruction. This design choice
significantly reduces the risk of privacy leakage, as CLIP embeddings are not trained to retain
high-frequency or instance-specific image details.

While representation-level inversion remains an evolving area of research, current attacks often as-
sume more favorable conditions than those present in SABRE-FL. Nevertheless, we acknowledge the
broader risk and consider our design to reflect a privacy-utility tradeoff: by accepting lightweight rep-
resentation sharing with a fixed encoder, we achieve robust backdoor detection without compromising
raw inputs or task-specific outputs.

C ADDITIONAL IMPLEMENTATION DETAILS

C.1 DETECTOR THRESHOLDING AND CLIENT FILTERING

In the main paper, we define the detector score Sk for each client Ck as the mean classification output
over its submitted embeddings:

Sk =
1

nk

nk∑
j=1

D(zkj )

where D(·) is a binary classifier that outputs 1 for poisoned embeddings. While this naturally allows
for threshold-based filtering (i.e., flagging clients for which Sk > τ ), in practice we adopt a more
stable rank-based heuristic.

Specifically, in each communication round, we assume m out of n clients may be malicious, and we
remove the m clients with the highest number of flagged embeddings (or highest Sk scores). This
avoids the need to hand-tune a static threshold τ and reflects a standard assumption in robust FL
defense literature, where m is typically known or bounded (66; 62). This rank-based heuristic is
consistent with our earlier detector formulation and preserves the intended semantic interpretation of
Sk as a client-level anomaly score.

D EXPERIMENTAL SETUP

D.1 MODEL AND ATTACK SETTINGS

We use the CLIP model in a similar style as that of Bai et. al (6). ViT-B/16 is used as the image
encoder. The pretrained weights are taken from CLIP’s released models (48). We use a context length
N of 4, total number of epochs as 10, where 1 is a warmup epoch, and a cosine learning rate scheduler
with an initial learning rate of 0.002. Unless specified otherwise, we keep the number of shots to be
8, trigger optimization for 3 epochs, and an SGD optimizer. The maximum noise strength, ϵ, for the
backdoor trigger is chosen to be 4. Similar to BadClip, the first class of every dataset is chosen as the
target class during the attack.

D.2 DATASETS

We use datasets that are used in CoOp (72) and BadCLIP (6). We use the same dataset configuration
files they provide. The datasets we use in our experiments are:

• Caltech-101 (24) is a standard object classification dataset consisting of 9,146 images across 101
object categories and a background class. It has the license CC BY 4.0. Each category contains
between 40 and 800 images of objects taken from varying viewpoints and backgrounds. The
dataset is known for its moderate intra-class variation and has been widely used in evaluating vision
models, especially in low-shot and few-shot learning settings. In our work, we use Caltech-101 as
an out-of-distribution (OOD) dataset to train our backdoor detector. Importantly, this dataset is
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disjoint from the ones used in federated training, allowing us to test whether our detector generalizes
across domains.

• Flowers-102 (45) is a fine-grained classification dataset consisting of 8,189 images of flowers
categorized into 102 species. Each class contains between 40 and 258 samples. The high inter-class
similarity and fine-grained nature of the dataset make it a challenging benchmark for vision-
language models.

• The Oxford-IIIT Pets dataset (46) contains 7,349 images of 37 breeds of cats and dogs. Each class
includes approximately 200 images captured in varied poses, lighting conditions, and backgrounds.
The dataset presents a mix of inter-class similarity and intra-class diversity, making it suitable for
testing the robustness of prompt learners in federated setups. It is available under the license CC
BY-SA 4.0.

• DTD (21) (Describable Textures Dataset) is a texture-centric classification dataset with 5,640
images labeled across 47 human-describable texture attributes such as “bumpy,” “scaly,” or “striped.”
The dataset emphasizes mid-level visual cues and is used in our evaluation to test whether prompt-
based FL models can maintain robustness when the notion of class is not strictly object-centric.

• FGVC Aircraft (39) contains 10,000 images of 100 aircraft variants grouped by manufacturer
and model. It is a fine-grained classification dataset that introduces significant challenges due to
subtle inter-class differences and high intra-class consistency. We include it to assess whether
backdoor attacks are effective even in domains where prompt learners must capture nuanced visual
differences.

• Food-101 (13) consists of 101,000 images across 101 food categories. The dataset exhibits
significant visual diversity, both within and across classes, and is commonly used to benchmark
image classification performance under real-world visual noise and clutter. It serves as one of the
more large-scale and diverse benchmarks in our federated evaluation.

D.3 DEFENSE METHODS

We compare our technique with four popular defense techniques. Trimmed mean (66; 62) is a widely
used defense in FL, where the server receives updates from each client, sorts them across each
dimension, and then discards the m smallest and lowest values across each dimension. Here, m is the
number of malicious clients. Median (66) is another popular defense mechanism, where the global
model is computed by taking the dimension-wise median of the client updates. Norm-bounding (53)
clips the values of client updates to a certain value so they do not exceed that threshold. This threshold
is computed by taking the median value of the client updates. FLAME (42) is a more complex defense
that first clusters the clients into benign and malicious groups using hdbscan (14), clips them at a
certain threshold, and adds noise to the model parameters to make them resilient to backdoors.

D.4 DETECTOR TRAINING

We train a detector D : Rd → {0, 1} to minimize binary cross-entropy loss over this embedding
dataset. The model architecture is a two-layer multilayer perceptron (MLP) with a hidden layer of
size 128 and ReLU activation. It takes as input CLIP image embeddings zi ∈ Rd (with d = 512) and
outputs logits corresponding to the clean or backdoored class. Optimization is performed using the
Adam optimizer with a learning rate of 1× 10−3 for 20 epochs, and batch size 64. The detector’s file
size is a few MBs.

To evaluate cross-domain generalization, we test the trained detector on separate held-out datasets,
namely Oxford Flowers, Pets, DTD, FGVC Aircraft, and Food101, each containing a mix of clean and
poisoned embeddings. Despite being trained on a single auxiliary dataset, the detector consistently
achieves > 90% accuracy on these unseen domains. This supports our hypothesis that poisoned
embeddings exhibit a consistent statistical signature in CLIP space, independent of the underlying
dataset or class distribution.

D.5 RESOURCES

We used PyTorch (47) for our coding on a Linux-based system. For running experiments, we use
our university cluster that has different types of GPUs. Most of our experiments were performed on
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12 GB NVIDIA TITANX GPUs. The run time of the experiments depended upon the dataset used,
number of shots, and number of clients.

E ADDITIONAL RESULTS

E.1 T-SNE

We show the t-SNE plot of Oxford Flowers clean and backdoored embeddings in Figure 7.
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Figure 7: t-SNE Flowers

E.2 VARYING NUMBER OF SHOTS

We show the impact of varying the number of shots on all five datasets in Figure 8.

E.3 ROBUSTNESS TO CLIENT SCALING

To evaluate the robustness of SABRE-FL under increased scale, we replicate our backdoor attack and
defense experiments with 32 clients. As shown in Table 3, backdoor success rates rise substantially in
the absence of defense, reaching 89.9% on FGVC Aircraft and 46.8% on DTD. When SABRE-FL is
enabled, backdoor accuracy drops to 24.7% and 14.1%, respectively, demonstrating that our detector
remains effective even as the number of participating clients grows. Clean accuracy also remains
stable across all datasets, confirming that the defense generalizes to larger federated populations
without degrading utility.

Table 3: Backdoor attack effectiveness with and without SABRE-FL at 32-client scale. Each cell
shows Clean Accuracy / Backdoor Accuracy (%).

Dataset Flowers Pets DTD FGVC Aircraft Food101

No Defense 74.9 / 43.5 88.8 / 25.9 59.3 / 46.8 29.9 / 89.9 89.2 / 32.2
SABRE-FL 75.0 / 8.5 91.1 / 7.2 61.0 / 14.1 29.7 / 24.7 89.7 / 2.8

F REBUTTAL

In this section, we present new experimental results conducted in response to reviewer feedback.
These include visualizations of learned triggers (Figure 9), evaluations under varying data heterogene-
ity using Dirichlet sampling (Table 4), ablations on trigger strength and optimization steps (Tables
5–6), robustness analysis under imperfect or excessive client filtering (Tables 7–8), and detector
generalization across auxiliary datasets (Table 9). Collectively, these results further strengthen our
claims regarding the effectiveness, generalizability, and practical robustness of SABRE-FL.
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Figure 8: Our defense consistently reduces backdoor success without degrading clean performance,
even as the number of shots increases.

Table 4: Clean and backdoor accuracy across varying Dirichlet α values (heterogeneity levels), with
and without SABRE-FL. Lower α indicates higher non-IID-ness.

α
Caltech Pets DTD Aircraft Food101

No Defense SABRE-FL No Defense SABRE-FL No Defense SABRE-FL No Defense SABRE-FL No Defense SABRE-FL

CA BA CA BA CA BA CA BA CA BA CA BA CA BA CA BA CA BA CA BA

0.9 97.7 22.3 97.7 8.4 95.2 5.8 95.3 4.6 64.9 9.3 64.5 7.1 31.9 86.7 32.5 0.1 90.0 36.0 90.4 3.0
0.7 97.3 22.1 97.2 8.5 94.6 10.8 94.4 4.9 61.8 11.3 64.1 9.6 30.7 85.0 30.9 33.0 90.0 14.7 90.3 2.4
0.5 97.2 30.9 97.7 8.3 94.4 17.9 95.3 4.7 62.2 25.3 65.0 7.6 30.7 85.7 30.0 4.4 89.8 36.1 89.5 33.2
0.3 97.5 32.6 97.4 20.5 93.0 12.2 91.0 10.0 63.5 9.6 60.2 11.0 30.3 86.7 31.5 83.9 89.7 71.6 89.2 19.9
0.1 97.0 24.5 96.7 13.8 94.3 12.8 92.8 7.3 60.6 12.6 59.0 11.1 31.7 81.3 30.9 89.6 89.4 56.7 89.4 37.3

Table 5: Effect of trigger strength (ϵ scaling) and SABRE-FL defense on clean accuracy (CA) and
backdoor accuracy (BA). Best BA (lower is better) is in bold.

Setting Caltech Pets DTD Aircraft Food101

CA BA CA BA CA BA CA BA CA BA

2 × ϵ (No Defense) 97.2 51.4 93.9 6.0 64.9 51.4 31.2 92.7 90.1 33.5
0.5 × ϵ (No Defense) 97.1 8.7 92.1 27.3 64.6 27.8 30.5 80.0 89.8 4.5

2 × ϵ + SABRE-FL 97.1 7.6 94.6 4.6 64.4 4.6 32.0 17.2 90.7 3.9
0.5 × ϵ + SABRE-FL 97.1 8.3 94.6 4.3 64.4 5.8 32.0 1.0 90.7 2.1

Table 6: Effect of trigger optimization steps (epochs) on clean accuracy (CA) and backdoor accuracy
(BA). Higher CA and lower BA are better.

Setting Caltech Pets DTD Aircraft Food101

CA BA CA BA CA BA CA BA CA BA

no defense (1 epoch) 96.9 31.6 94.1 7.0 64.7 30.3 28.9 61.7 90.2 3.0
no defense (5 epochs) 97.2 58.4 94.6 6.3 61.9 41.8 31.3 87.6 90.1 22.6

SABRE-FL (1 epoch) 97.1 7.8 94.4 4.2 67.8 6.2 31.6 3.2 90.4 2.2
SABRE-FL (5 epochs) 97.3 8.1 94.7 4.3 66.2 2.7 31 0 90.5 3.1

Table 7: Effect of imperfect client filtering: we intentionally do not remove some malicious clients
and evaluate SABRE-FL’s robustness on Pets and DTD. Clean accuracy (CA) drops mildly, while
backdoor accuracy (BA) rises with more undetected attackers.

# Malicious Clients Not Removed Pets DTD

CA BA CA BA

1 92.1 4.7 62.2 11.3
2 91.1 7.2 61.0 14.1
3 90.5 9.1 61.1 19.7
4 89.8 10.1 60.5 25.5
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(a) Backdoored (Caltech) (b) Trigger (Caltech)

(c) Backdoored (Pets) (d) Trigger (Pets)

(e) Backdoored (DTD) (f) Trigger (DTD)

(g) Backdoored (Aircraft) (h) Trigger (Aircraft)

(i) Backdoored (Food101) (j) Trigger (Food101)

Figure 9: Visual examples of backdoored inputs and corresponding learned triggers. Each row shows
a dataset-specific backdoored image (left) and the additive noise trigger alone (right).

Table 8: Effect of over-pruning: SABRE-FL removes the correct number of malicious clients but
also accidentally filters out 1–2 benign clients. Despite this, clean accuracy (CA) remains stable and
backdoor accuracy (BA) stays low.

Setting Caltech Pets DTD Aircraft Food101

CA BA CA BA CA BA CA BA CA BA

2 Malicious + 1 Benign Removed 97.3 6.6 94.8 4.5 64.5 6.8 33.4 0.4 90.5 2.0
2 Malicious + 2 Benign Removed 97.4 7.3 94.9 4.8 63.5 5.4 31.1 17.2 90.3 2.1
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Table 9: Evaluating SABRE-FL when the detector is trained on Flowers instead of Caltech. Despite
the shift in auxiliary dataset, the defense maintains strong generalization across tasks, reducing
backdoor accuracy (BA) while preserving clean accuracy (CA).

Setting Caltech Pets DTD Aircraft Food101

CA BA CA BA CA BA CA BA CA BA

No Defense 97.2 58.2 92.1 12.1 67.6 27.3 32.5 91.5 90.0 20.6
SABRE-FL (Trained on Flowers) 97.1 6.1 94.6 4.4 64.4 4.7 32.0 0.2 90.7 2.2
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