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ABSTRACT

Encoder layer fusion (EncoderFusion) is a technique to fuse all the encoder lay-
ers (instead of the uppermost layer) for sequence-to-sequence (Seq2Seq) models,
which has proven effective on various NLP tasks. However, it is still not entirely
clear why and when EncoderFusion should work. In this paper, our main contribu-
tion is to take a step further in understanding EncoderFusion. Many of previous
studies believe that the success of EncoderFusion comes from exploiting surface
and syntactic information embedded in lower encoder layers. Unlike them, we
find that the encoder embedding layer is more important than other intermediate
encoder layers. In addition, the uppermost decoder layer consistently pays more
attention to the encoder embedding layer across NLP tasks. Based on this obser-
vation, we propose a simple fusion method, SurfaceFusion, by fusing only the
encoder embedding layer for the softmax layer. Experimental results show that
SurfaceFusion outperforms EncoderFusion on several NLP benchmarks, including
machine translation, text summarization, and grammatical error correction. It ob-
tains the state-of-the-art performance on WMT16 Romanian-English and WMT14
English-French translation tasks. Extensive analyses reveal that SurfaceFusion
learns more expressive bilingual word embeddings by building a closer relationship
between relevant source and target embeddings. Source code is freely available at
https://github.com/SunbowLiu/SurfaceFusion.

1 INTRODUCTION

Sequence-to-Sequence (Seq2Seq) learning (Sutskever et al., 2014) has advanced the state of the art
in various natural language processing (NLP) tasks, such as machine translation (Bahdanau et al.,
2015; Vaswani et al., 2017; Wu et al., 2019), text summarization (Wang et al., 2019b; Zhang et al.,
2020), and grammatical error correction (Kiyono et al., 2019; Kaneko et al., 2020). Seq2Seq models
are generally implemented with an encoder-decoder framework, in which a multi-layer encoder
summarizes a source sequence into a sequence of representation and another multi-layer decoder
produces the target sequence conditioned on the encoded representation.

Recent studies reveal that fusing the intermediate encoder layers (EncoderFusion) is beneficial for
Seq2Seq models, such as layer attention (Bapna et al., 2018), layer aggregation (Dou et al., 2018;
Wang et al., 2019c), and layer-wise coordination (He et al., 2018). Despite its effectiveness, not much
is known about how fusing encoder layer representations work. The intuitive explanation is that fusing
encoder layers exploits surface and syntactic information embedded in the lower encoder layers (Be-
linkov et al., 2017; Peters et al., 2018). However, other studies show that attending to lower encoder
layers (excluding the encoder embedding layer) does not improve model performance (Domhan,
2018), which is conflicted with existing conclusions. It is still unclear why and when fusing encoder
layers should work in Seq2Seq models.

This paper tries to shed light upon behavior of Seq2Seq models augmented with EncoderFusion
method. To this end, we propose a novel fine-grained layer attention to evaluate the contribution of

∗Work was done when Xuebo Liu and Liang Ding were interning at Tencent AI Lab.
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individual encoder layers. We conduct experiments on several representative Seq2Seq NLP tasks,
including machine translation, text summarization, and grammatical error correction. Through a series
of analyses, we find that the uppermost decoder layer pays more attention to the encoder embedding
layer. Masking the encoder embedding layer significantly drops model performance by generating
hallucinatory (i.e. fluent but unfaithful to the source) predictions. The encoded representation of the
standard Seq2Seq models (i.e. w/o fusing encoder layers) may not have enough capacity to model
both semantic and surface features (especially at the encoder embedding layer). We call the problem
described above the source representation bottleneck.

Based on this observation, we simplify the EncoderFusion approaches by only connecting the encoder
embedding layer to softmax layer (SurfaceFusion). The SurfaceFusion approach shortens the path
distance between source and target embeddings, which can help to learn better bilingual embeddings
with direct interactions. Experimental results on several Seq2Seq NLP tasks show that our method
consistently outperforms both the vanilla Seq2Seq model and the layer attention model. Extensive
analyses reveal that our approach produces more aligned bilingual word embeddings by shortening
the path distance between them, which confirm our claim.

Our main contributions are as follows:

• We introduce a fine-grained layer attention method to qualitatively and quantitatively
evaluate the contribution of individual encoder layers.
• We demonstrate that the encoder embedding layer is essential for fusing encoder layers,

which consolidates conflicted findings reported by previous studies.
• We propose a simple yet effective SurfaceFusion approach to directly exploit the encoder

embedding layer for the decoder, which produces more expressive bilingual embeddings.

2 PRELIMINARIES

2.1 SEQUENCE-TO-SEQUENCE LEARNING

Seq2Seq learning aims to maximize the log-likelihood of a target sequence y = {y1, . . . , yJ} condi-
tioned on a source sequence x = {x1, . . . , xI}, which is formulated as: ŷ = arg max logP (y|x).
Typically, Seq2Seq learning can be implemented as various architectures (Bahdanau et al., 2015;
Gehring et al., 2017; Vaswani et al., 2017; Wu et al., 2019), among which the Transformer (Vaswani
et al., 2017) has advanced the state of the art. Without loss of generality, we introduce Transformer as
the testbed in this paper. Transformer consists of an encoder E equipped with N identical layers to
map the source sequence x into distributed representations, based on which a decoder D equipped
with M identical layers generates the target sequence y:

XN = E(X0)
N
:=
n=1

FFN
(
ATT(Xn−1,Xn−1,Xn−1)

)
(1)

YM = D(Y0,XN )
M
:=
m=1

FFN
(
ATT

(
ATT(Ym−1,Ym−1,Ym−1),XN ,XN

))
(2)

where X0 denotes the sum of the word embeddings Xemb and position embeddings Xpos of x,
Y0 denotes that of the shifted right y, FFN(·) denotes a position-wise feed-forward network, and
ATT(·) denotes a multi-head dot-product attention network with three arguments–query, key and
value. Residual connection (He et al., 2016) and layer normalization (Ba et al., 2016) are used in each
sub-layer, which are suppressed in Equation 1 and 2 for clarity. Finally, the output representation YM

of the decoder is projected into the probability P (y|x), which is optimized during model training.

2.2 EXPERIMENTAL SETUP

To validate the universality of source representation bottleneck in Seq2Seq models, we conducted
experiments on three representative tasks, which vary from the distance between input and output
domains and the scale of training data:

Machine translation takes a sentence in one language as input, and outputs a semantically-equivalent
sentence in another language. We conducted experiments on three benchmarking datasets: small-
scale WMT16 Romanian-English (Ro-En; 0.6M instances), medium-scale WMT14 English-German
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(En-De; 4.5M instances), and large-scale WMT14 English-French (En-Fr; 36.0M instances). The
tokenized BLEU score (Papineni et al., 2002) was used for all the translation tasks.

Text summarization takes a long-text document as input, and outputs a short and adequate summary
in the same language. We used the CNN/Daily Mail corpus (0.3M instances). We evaluated with the
standard ROUGE metric (Lin, 2004), i.e. Rouge-1, Rouge-2, and Rouge-L.

Grammatical error correction takes a sentence with grammatical errors as input, and outputs a
corrected sentence. We used CONLL14 datasets as the testbed (1.4M instances). The MaxMatch
(M2) scores (Dahlmeier & Ng, 2012) were used for evaluation with precision, recall, and F0.5 values.

The machine translation task has distant input/output domains (i.e. in different languages), while
the other tasks have similar input/output domains (i.e. in the same language). We used Trans-
former (Vaswani et al., 2017) as the Seq2Seq model. Details of the datasets and model training are
listed in Appendix A.1.

3 BEHAVIOR OF ENCODERFUSION

In this section, we first formulate our research hypothesis of source representation bottleneck (§3.1)
that EncoderFusion expects to solve. In the following subsections, we propose a fine-grained layer
attention model (§3.2) to validate our hypothesis on well-designed experiments (§3.3).

3.1 SOURCE REPRESENTATION BOTTLENECK

Seq2Seq models learn more abstract features with the increase of layer level (i.e. X0 → XN and
Y0 → YM ) (Belinkov et al., 2017). It has been extensively validated that a reasonable use of both
the abstract representations (at higher-level layers) and the surface representations (at lower-level
layers) is beneficial for various NLP (Lu & Li, 2013; Hu et al., 2014; Dou et al., 2018; Peters et al.,
2018) and CV (Long et al., 2014; Pinheiro et al., 2016; Lin et al., 2017; Chen et al., 2018a) tasks.

However, the Seq2Seq decoder only takes the abstract representations at uppermost layer XN as
input (Equation 2), while ignores other usefully surface representations at other layers Xn (n < N ).
Although XN has encoded surface features from low-level representations through layer-by-layer
abstraction and residual connections, we hypothesize that its limited representation capacity may not
sufficiently model those surface features from lower encoder layers, especially the embedding layer.
We call such an issue as source representation bottleneck.

3.2 FINE-GRAINED LAYER ATTENTION

For each decoder layer, layer attention (Bapna et al., 2018; Peters et al., 2018) assigns normalized
scalar weights to all encoder layers, providing a direct way for evaluating the contributions made by
each encoder layer. However, the capacity of a simple scalar weight is limited, leading to insufficient
evaluation of the contributions.

Motivated by fine-grained attention (Choi et al., 2018) that each element of a context vector receives
an individual attention weight, we propose a fine-grained layer attention model to combine the
advantages of both techniques. This allows us to more convincingly evaluate the contribution of
individual encoder layer to the model performance. Besides, the nature of fine-grained attention
enables us to give in-depth analyses of the representation power in §3.3.

Specifically, we replace the layer-agnostic source representation XN with the layer-aware representa-
tion Sm for each decoder layer Ym, which is calculated as:

Sm =

N∑
n=0

ŵm,n �Xn, ŵm,n =
[
ŵm,n,1, . . . , ŵm,n,D

]
, ŵm,n,d =

exp(wm,n,d)∑N
n′=0 exp(wm,n′,d)

where � denotes an element-wise multiplication, and wm,n,d denotes an element in the learnable
attention weight W ∈ RM×(N+1)×D, where D is the dimensionality of the source representation.
When n = 0, we use the word embeddings Xemb without position embeddings as X0, which has
been empirically proved effective. We applied a regularization technique – DropConnect (Wan et al.,
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2013) to the attention weight W for a stable training, which randomly drops each wm,n,d with a
probability p and divides W by 1− p. We set it to 0.3 for all the experiments.

Table 2 lists the results. The proposed fine-grained layer attention model consistently outperforms
the vanilla Transformer across Seq2Seq tasks, demonstrating the benefit of fusing surface features at
lower-level layers.

Table 1: Results of existing encoder layer fusion
methods on the WMT16 Ro-En translation task.

Model BLEU
Vanilla Transformer 33.80

Layer aggregation 34.05
Layer-wise coordination 34.19
Coarse-grained layer attention 34.32

Fine-grained layer attention 34.45

We evaluated several EncoderFusion methods in
Table 1, including layer aggregation (Dou et al.,
2018), layer-wise coordination (He et al., 2018),
and coarse-grained layer attention (Bapna et al.,
2018). Their results are respectively 34.05,
34.19, and 34.32, which are all lower than that
of fine-grained layer attention (34.45). Based
on these experimental results, we thus choose
fine-grained layer attention as a representative
of EncoderFusion in the following analyses.

3.3 BEHAVIOR CHANGES ACROSS ENCODER LAYERS

In this section, we investigate whether the surface features at lower encoder layers (especially the
encoder embedding layer) contribute to the model performance via carefully designed experiments.
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Figure 1: Attention distribution that each decoder layer (x-axis) attending to encoder layers (y-axis).

Visualization of layer attention We first visualize the learned layer attention distribution in Fig-
ure 1, in which each weight is the averaged attention weights over all dimensions. Generally, a higher
weight denotes more contribution of an encoder layer to the corresponding decoder layer.

Clearly, in all tasks higher decoder layers especially the uppermost ones pay more attention to the
encoder embedding layer, which indicates that the surface representations potentially bring some
additional useful features to the model performance. Voita et al. (2019); Wang & Tu (2020) reveal
that the upper layers of decoder are responsible for the translation part while the lower layers for
the language modeling part. Similarly, our results show that surface representations might play an
important role in learning to translate source tokens.

Among the Seq2Seq models, there are still considerable differences in the attention heatmaps. In
the summarization model, almost all decoder layers focus more on the encoder embedding layer,
while in the other two models the intermediate decoder layers pay more attention to the higher-level
encoder layers. This is consistent with the findings of Rothe et al. (2019), in which they reveal that
the summarization task, as a typical extractive generation task, tends to use more surface features
to generate extractive summaries. In contrast, both machine translation and error correction tasks
require a large amount of syntactic and semantic information, which are generally embedded in
higher-level encoder layers (Peters et al., 2018).
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However, we still cannot conclude that source representation bottleneck does exist in Seq2Seq models,
since the surface features might act as a noise regularizer to improve the robustness of encoder output
representations. To dispel the doubt, we further design two experiments to directly evaluate the
effectiveness of surface features at the encoder embedding layer.

Contribution of individual encoder layer In this experiment, we quantitatively analyze the be-
haviors change of a trained Seq2Seq model when masking a specific encoder layer (i.e. turning its
attention weight to zero and redistribute the other attention weights). Note that the masking operation
does not affect the information flow of encoding calculation, i.e. keeping Equation 1 unchanged.
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Figure 2: Relative changes of (a) model performance and (b) length of output when masking
individual encoder layer in the trained Seq2Seq models. As seen, masking the embedding layer leads
to a significant drop of model performance and increase of output length.

Figure 2(a) shows the contribution of individual encoder layer to model performance. As seen,
masking the encoder embedding layer seriously harms the model performance in all tasks, which
confirms our claim that the surface features in the embedding layer are essential to Seq2Seq models.

Figure 2(b) shows the results on the output length. Masking the encoder embedding layer consistently
increases the length of generated output, which is especially significant for the summarization model.
One possible reason is that the instances in translation and correction tasks have similar input/output
lengths, while the summarization instances have distant input/output lengths.

By analyzing the model outputs, we found that the Seq2Seq models tend to generate some hallucina-
tory (i.e. fluent but unfaithful to the source) predictions (Lee et al., 2019; Wang & Sennrich, 2020)
when masking the embedding layer. Taking the correction task for an example, a right prediction
“anyone” was replaced by the hallucinatory prediction “friends of anyone” in the masked model, in
which the corresponding source contains no information related to “friends”. This issue becomes
worse in the summarization task, since the hallucinatory prediction is more likely to be a sentence.

The additional hallucinations will increase the output length and reduce the model performance. In
addition, Lee et al. (2019) point out that even if hallucinations occur only occasionally, the Seq2Seq
model may evidently lose user trust than other prediction problems, indicating the importance to fuse
surface features at the embedding layer. More cases are studied in Appendix A.2.

Expressivity of attended dimensions in the encoder embedding layer As shown in Figure 1,
the uppermost decoder layer pays most attention to the encoder embedding layer (i.e. the lower right
corner). If the embedding layer acts as a noise regularizer, the layer dimensions would be randomly
attended by the fine-grained model; otherwise, the dimensions of higher attention weights should be
distinguished from the other dimensions.

Starting from this intuition, we reordered the dimensions of the encoder embedding layer according
to the attention weights ŵM,0, and split it into two equal sub-embedding matrices, i.e. more attended
dimensions and less attended dimensions. We compared the expressivity of the two sub-embedding
matrices by the commonly-used singular value decomposition (Gao et al., 2019; Wang et al., 2019a;
Shen et al., 2020), in which higher normalized singular values denote that the embedding is more
uniformly distributed, thus are more expressive. The singular values are normalized by dividing them
by the largest value and their log scale values are reported for better clarity.
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Figure 3: Log scale singular values of the three sub-embedding matrices in the fine-grained layer
attention models. Higher log eigenvalues denote more expressivity of the dimensions.

Figure 3 depicts the singular value results. For comparison, we also report the values of the randomly
selected dimensions. Clearly, the more attended dimensions are most expressive, while the less
attended dimensions are least expressive. These results demonstrate that the fine-grained attention
model indeed extracts useful surface information from the encoder embedding layer, which does not
play the role of a noise regularizer.

From the above experiments, we prove that the encoder embedding layer indeed provides useful
surface information, which is not fully exploited by the standard Seq2Seq models.

4 OUR METHOD

In Section 3, we show that the uppermost decoder layer requires more surface features for better
representation learning. One possible reason is that the uppermost decoder layer is used for predicting
individual target token, which naturally benefits from more token-level surface features than sequence-
level abstract features. To validate this assumption, we simplify fine-grained layer attention that
only the uppermost decoder layer can attend to the embedding layer and output layer of the encoder.
Empirical results show that the simplified variant works on par with the original one, revealing that
the surface features embed at the source embedding layer is expressive.

Although layer attention model partially alleviates source representation bottleneck, it potentially
introduces unnecessary intermediate encoder representations. To address this gap, we propose
to directly connect the decoder softmax layer and the encoder embedding layer with a simple
SurfaceFusion method.

4.1 SURFACEFUSION

Seq2Seq learning aims to maximize the log-likelihood of a target sequence y given a source sequence
x. In practice, it factorizes the likelihood of the target sequence into individually token likelihoods:

ŷ = arg max

J∏
j=1

logP (yj) = arg max

J∏
j=1

logP (yj |y<j ,x) (3)

We rewrite P (yj) as a fused probability with the second condition term x:

logP (yj) = Φ
(
P (yj |y<j ,x), P (yj |x)

)
(4)

where Φ(·) is a fusion method that will be described later, and P (yj |x) is a probability conditioned
on the source surface features. Specifically, we employ a multi-head dot-product attention net-
work (Vaswani et al., 2017) with a decoder output representation yM

j as a query, encoder output
representations XN as keys , and encoder surface representations Xemb as values, to calculate a
surface representation r(yj ,x).

Then we use the pre-softmax weight V ∈ Rd×|Vy| of the vanilla model to transform the surface
representation r(yj ,x) ∈ Rd into a pre-softmax logit r̃(yj ,x) ∈ R|Vy|. The final surface constraint
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probability is calculated as:

P (yj |x) =
exp(1yj (r̃(yj ,x))/τ)∑
w∈Vy exp(1wr̃(yj ,x)/τ)

(5)

where 1w(·) denotes an index function to take the logit of a target token y, and τ denotes a softmax
temperature parameter to control the smoothness of the probability distribution P (yj |x). As τ
approaches to 0, the distribution tends to be an one-hot distribution representing the token of the
maximum probability. The distribution becomes uniform at a higher τ .

Choices of fusion function Φ There are many variants of fusion methods (Gulcehre et al., 2015;
Sriram et al., 2017; Stahlberg et al., 2018). The aim of this paper is not to explore this whole space but
simply to show that two fairly straightforward implementations works well and that SurfaceFusion
helps for sequence-to-sequence models:

Hard fusion: Φhard = λ logP (yj |y<j ,x) + (1− λ) logP (yj |x) (6)
Soft fusion: Φsoft = log(softmax(E(yj |y<j ,x) + logP (yj |x)) (7)

where λ is a pre-defined interpolation weight, and E(yj |y<j ,x) is the pre-softmax logit of the
probability P (yj |y<j ,x). Compared to hard fusion, soft fusion removes the need for manually
setting the hyperparameter λ.

The proposed SurfaceFusion method is easy to use. There are only two additional hyperparameters,
i.e. λ (Equation 6) and τ (Equation 5). We find that λ is sensitive to the corpus scale but insensitive
to the relationship of input/output domain, which was set to 0.9 for the En-De, En-Fr and correction
tasks, and 0.8 for the Ro-En and summarization tasks. For τ , it was set to 5 for soft fusion and 1 for
hard fusion across different benchmarks. We kept other settings all the same with the vanilla models.
In practice, we observed an additional 10% inference latency with the introduction of SurfaceFusion.

4.2 EXPERIMENTAL RESULTS

Table 2: Results of the proposed SurfaceFusion methods on the Seq2Seq tasks. “FGLA” denotes
fine-grained layer attention. The existing results are Ghazvininejad et al. (2019) for Ro-En, Ott et al.
(2018) for En-De and En-Fr, Ott et al. (2019) for summarization, and Chollampatt & Ng (2018) for
correction. All reported scores are the higher the better.

Translation Summarization Correction
Ro-En En-De En-Fr RG-1 RG-2 RG-L Prec. Recall F0.5

Existing 34.0 29.3 43.2 40.1 17.6 36.8 65.5 33.1 54.8

Vanilla 33.8 28.9 43.4 40.4 17.7 37.2 64.7 33.2 54.3
FGLA 34.5 29.1 43.5 40.8 18.0 37.5 67.7 31.9 55.3

Hard fusion 35.1 29.5 43.9 40.9 18.2 37.7 67.0 34.4 56.3
Soft fusion 34.0 29.0 43.6 41.0 18.3 37.9 66.8 35.0 56.6

Model performance Table 2 lists the results of the proposed approach on different tasks. In
addition to the vanilla Seq2Seq model (“Vanilla”), we also report the results of existing studies on
the same datasets (“Existing”) for better comparison. Our re-implementation of the vanilla models
matches the results reported in previous works, which we believe make the evaluation convincing.

Clearly, the proposed fusion approaches outperform the baselines (i.e. “Vanilla” and “FGLA”) in all
cases, while there are still considerable differences among model variations. Hard fusion performs
better on the translation tasks, while soft fusion is superior on the summarization and correction tasks.
Unlike hard fusion that performs at the probability level, soft fusion performs at the logit level to
provide an earlier and direct way for fusing surface features, which might be a better solution for the
tasks with a similar input/output domain.
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Table 3: Cosine similarities between aligned
source and target word embeddings. “All” and
“Non-Shared” denotes keeping or removing the
aligned pair when the source and target words are
the same, which are easier to be aligned.

All Non-Shared
Vanilla 0.602 0.338

SurfaceFusion 0.650 0.417

Closeness of word embeddings SurfaceFu-
sion shortens the path distance between source
and target embeddings, which can help to learn
better bilingual embeddings with direct inter-
actions. Table 3 shows the cosine similarities
between the tied source and target embeddings
on the Ro-En translation task.

In the experiment, we first train an additional
aligner (i.e. fast-align (Dyer et al., 2013)) on the
training corpus and use the alignment links to construct a word dictionary. The results calculated over
the dictionary show that the relationship between the source and target embedding becomes much
closer (i.e. high cosine similarities). This can help each other to learn better representations, and has
been validated to be beneficial for Seq2Seq models (Press & Wolf, 2017; Liu et al., 2019).

Expressivity of word embeddings In this experiment, we quantitatively evaluate the expressivity
of the word embeddings learned by different models using the singular value decomposition. The
related experimental details and executions are similar to that of Figure 3.
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Figure 4: Log scale singular values of
the embeddings.

Figures 4 shows the results of the tied source and target
embeddings on the Ro-En translation task. The word em-
beddings of the vanilla model have fast decaying singular
values, which limits the representational power of embed-
dings to a small sub-space. The SurfaceFusion model slows
down the decaying and the singular values become more
uniformly distributed, which demonstrates that the fused
surface features remarkably enhance the representation
learning of embeddings. This provides a better starting
point for the model to effectively extract surface and ab-
stract features, which leads to an improvement of model
performance.

5 RELATED WORK

EncoderFusion in Seq2Seq Lower encoder layers that embed useful surface features are far away
from the training signals, which poses difficulty for deep Seq2Seq models to exploit such useful
features. Although residual connections (He et al., 2016) have been incorporated to combine layers,
these connections have been “shallow” themselves, and only fuse by simple, one-step operations (Yu
et al., 2018). In response to this problem, several approaches have been proposed to fuse the encoder
layers with advanced methods, such as layer attention (Bapna et al., 2018; Shen et al., 2018; Wang
et al., 2019c), layer aggregation (Dou et al., 2018; Wang et al., 2018a; Dou et al., 2019; Li et al.,
2020), and layer-wise coordination (He et al., 2018; Liu et al., 2020). Although these methods show
promising results on different NLP tasks, not much is known about how the EncoderFusion works. In
addition, some other studies show that exploiting low-layer encoder representations fail to improve
model performance (Domhan, 2018).

In this paper, we consolidate the conflicting conclusions of existing studies by pointing out that
the encoder embedding layer is the key, which can help Seq2Seq models to precisely predict target
words. Based on this finding, we propose a novel SurfaceFusion to directly connecting the encoder
embedding layer and the softmax layer, which consistently outperform current EncoderFusion
approaches across different NLP tasks.

Variants of Feature Fusion Feature fusion aims to merge two sets of features into one, which is
frequently employed in CV tasks, such as semantic segmentation (Long et al., 2014; Chen et al.,
2018a; Zhang et al., 2018) and object detection (Pinheiro et al., 2016; Lin et al., 2017). Zhang et al.
(2018) shows that simply fusing surface and abstract features tends to be less effective due to the gap
in semantic levels.

For NLP tasks, researchers investigated fusion models for language understanding (Lu & Li, 2013;
Hu et al., 2014; Peters et al., 2018) and language generation (Gulcehre et al., 2015; Sriram et al., 2017;
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Stahlberg et al., 2018). Nguyen & Chiang (2019) propose to fuse features at representation-level, but
we empirically find this kind of fusion method is not orthogonal to multi-layer models due to the large
semantic gap. Gulcehre et al. (2015) combine the predictions produced by the Seq2Seq model and
external LM predictions in a later fusion manner, which pose little impact to the original information
flow. Stahlberg et al. (2018) improve upon it by removing the dependence on the manually defined
hyper-parameter. In this work, we demonstrate the effectiveness of the two typical probability-level
fusion methods on sequence-to-sequence learning tasks. Unlike them that rely on an external model,
our approach only requires a surface attention module that can be jointly trained with the vanilla
Seq2Seq model.

6 CONCLUSION AND FUTURE WORK

In this paper, we investigate how encoder layer fusion works on solving the source representation
bottleneck. Based on a series of experiments on different Seq2Seq tasks, we find that the encoder
embedding layer is important to the success of EncoderFusion by exploiting the useful surface
information. Based on this observation, we propose a novel SurfaceFusion to directly connect the
encoder embedding layer and softmax layer. Experiments show that SurfaceFusion consistently
outperforms the conventional EncoderFusion in several datasets. Extensive analyses reveal that
SurfaceFusion enhances the learning of expressive bilingual word embeddings for Seq2Seq models,
which confirm our claim.

Future directions include validating our findings on more Seq2Seq tasks (e.g. dialogue and speech
recognition) and model architectures (RNMT+ (Chen et al., 2018b) and DynamicConv (Wu et al.,
2019)). It is also worthwhile to explore more alternatives to EncoderFusion from the perspective of
exploiting the embedding layer.

7 ACKNOWLEDGMENTS

This work was supported in part by the Science and Technology Development Fund, Macau SAR
(Grant No. 0101/2019/A2), and the Multi-year Research Grant from the University of Macau (Grant
No. MYRG2020-00054-FST). We thank the anonymous reviewers for their insightful comments.

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. In arXiv, 2016.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In ICLR, 2015.

Ankur Bapna, Mia Xu Chen, Orhan Firat, Yuan Cao, and Yonghui Wu. Training deeper neural
machine translation models with transparent attention. In EMNLP, 2018.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Hassan Sajjad, and James Glass. What do neural
machine translation models learn about morphology? In ACL, 2017.

Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-
decoder with atrous separable convolution for semantic image segmentation. In ECCV, 2018a.

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin Johnson, Wolfgang Macherey, George Foster, Llion
Jones, Niki Parmar, Mike Schuster, Zhifeng Chen, Yonghui Wu, and Macduff Hughes. The best of
both worlds: Combining recent advances in neural machine translation. In ACL, 2018b.

Heeyoul Choi, Kyunghyun Cho, and Yoshua Bengio. Fine-grained attention mechanism for neural
machine translation. Neurocomputing, 2018.

Shamil Chollampatt and Hwee Tou Ng. A multilayer convolutional encoder-decoder neural network
for grammatical error correction. In AAAI, 2018.

Daniel Dahlmeier and Hwee Tou Ng. Better evaluation for grammatical error correction. In NAACL,
2012.

9



Published as a conference paper at ICLR 2021

Tobias Domhan. How much attention do you need? a granular analysis of neural machine translation
architectures. In ACL, 2018.

Zi-Yi Dou, Zhaopeng Tu, Xing Wang, Shuming Shi, and Tong Zhang. Exploiting deep representations
for neural machine translation. In EMNLP, 2018.

Zi-Yi Dou, Zhaopeng Tu, Xing Wang, Longyue Wang, Shuming Shi, and Tong Zhang. Dynamic
layer aggregation for neural machine translation with routing-by-agreement. In AAAI, 2019.

Chris Dyer, Victor Chahuneau, and Noah A. Smith. A simple, fast, and effective reparameterization
of IBM model 2. In NAACL, 2013.

Jun Gao, Di He, Xu Tan, Tao Qin, Liwei Wang, and Tieyan Liu. Representation degeneration problem
in training natural language generation models. In ICLR, 2019.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin. Convolutional
sequence to sequence learning. In ICML, 2017.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict: Parallel
decoding of conditional masked language models. In EMNLP, 2019.

Caglar Gulcehre, Orhan Firat, Kelvin Xu, Kyunghyun Cho, Loic Barrault, Huei-Chi Lin, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. On using monolingual corpora in neural machine
translation. In arXiv, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

Tianyu He, Xu Tan, Yingce Xia, Di He, Tao Qin, Zhibo Chen, and Tie-Yan Liu. Layer-wise
coordination between encoder and decoder for neural machine translation. In NIPS, 2018.

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. Convolutional neural network architectures
for matching natural language sentences. In NIPS, 2014.

Masahiro Kaneko, Masato Mita, Shun Kiyono, Jun Suzuki, and Kentaro Inui. Encoder-decoder
models can benefit from pre-trained masked language models in grammatical error correction. In
ACL, 2020.

Shun Kiyono, Jun Suzuki, Masato Mita, Tomoya Mizumoto, and Kentaro Inui. An empirical study of
incorporating pseudo data into grammatical error correction. In EMNLP, 2019.

Katherine Lee, Orhan Firat, Ashish Agarwal, Clara Fannjiang, and David Sussillo. Hallucinations in
neural machine translation. In OpenReview, 2019.

Jian Li, Xing Wang, Baosong Yang, Shuming Shi, Michael R Lyu, and Zhaopeng Tu. Neuron
interaction based representation composition for neural machine translation. In AAAI, 2020.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, 2004.

Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
Feature pyramid networks for object detection. In CVPR, 2017.

Fenglin Liu, Xuancheng Ren, Guangxiang Zhao, and Xu Sun. Layer-wise cross-view decoding for
sequence-to-sequence learning. arXiv, 2020.

Xuebo Liu, Derek F. Wong, Yang Liu, Lidia S. Chao, Tong Xiao, and Jingbo Zhu. Shared-private
bilingual word embeddings for neural machine translation. In ACL, 2019.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In CVPR, 2014.

Zhengdong Lu and Hang Li. A deep architecture for matching short texts. In NIPS, 2013.

10



Published as a conference paper at ICLR 2021

Toan Nguyen and David Chiang. Improving lexical choice in neural machine translation. In NAACL,
2019.

Myle Ott, Sergey Edunov, David Grangier, and Michael Auli. Scaling neural machine translation. In
WMT@EMNLP, 2018.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In NAACL, 2019.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: A method for automatic
evaluation of machine translation. In ACL, 2002.

Romain Paulus, Caiming Xiong, and Richard Socher. A deep reinforced model for abstractive
summarization. In ICLR, 2018.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. In NAACL, 2018.

Pedro H. O. Pinheiro, Tsung-Yi Lin, Ronan Collobert, and Piotr Dollár. Learning to refine object
segments. In ECCV, 2016.

Ofir Press and Lior Wolf. Using the Output Embedding to Improve Language Models. In EACL,
2017.

Sascha Rothe, Shashi Narayan, and Aliaksei Severyn. Leveraging pre-trained checkpoints for
sequence generation tasks. In arXiv, 2019.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In ACL, 2016.

Sheng Shen, Zhewei Yao, Amir Gholami, Michael Mahoney, and Kurt Keutzer. Rethinking batch
normalization in transformers. In ICML, 2020.

Yanyao Shen, Xu Tan, Di He, Tao Qin, and Tie-Yan Liu. Dense information flow for neural machine
translation. In NAACL, 2018.

Anuroop Sriram, Heewoo Jun, Sanjeev Satheesh, and Adam Coates. Cold fusion: Training seq2seq
models together with language models. In arXiv, 2017.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. JMLR, 2014.

Felix Stahlberg, James Cross, and Veselin Stoyanov. Simple fusion: Return of the language model.
In WMT, 2018.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In NIPS, 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In ACL, 2019.

Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regularization of neural
networks using dropconnect. In ICML, 2013.

Chaojun Wang and Rico Sennrich. On exposure bias, hallucination and domain shift in neural
machine translation. In arXiv, 2020.

Dilin Wang, Chengyue Gong, and Qiang Liu. Improving neural language modeling via adversarial
training. In ICML, 2019a.

Liang Wang, Wei Zhao, Ruoyu Jia, Sujian Li, and Jingming Liu. Denoising based sequence-to-
sequence pre-training for text generation. In EMNLP, 2019b.

11



Published as a conference paper at ICLR 2021

Qiang Wang, Fuxue Li, Tong Xiao, Yanyang Li, Yinqiao Li, and Jingbo Zhu. Multi-layer representa-
tion fusion for neural machine translation. In COLING, 2018a.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F Wong, and Lidia S Chao.
Learning deep transformer models for machine translation. In ACL, 2019c.

Wenxuan Wang and Zhaopeng Tu. Rethinking the value of transformer components. In COLING,
2020.

Xinyi Wang, Hieu Pham, Zihang Dai, and Graham Neubig. Switchout: An efficient data augmentation
algorithm for neural machine translation. In EMNLP, 2018b.

Felix Wu, Angela Fan, Alexei Baevski, Yann Dauphin, and Michael Auli. Pay less attention with
lightweight and dynamic convolutions. In ICLR, 2019.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine translation
system: Bridging the gap between human and machine translation. In arXiv, 2016.

Fisher Yu, Dequan Wang, Evan Shelhamer, and Trevor Darrell. Deep layer aggregation. In CVPR,
2018.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter J Liu. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In ICML, 2020.

Zhenli Zhang, Xiangyu Zhang, Chao Peng, Dazhi Cheng, and Jian Sun. Exfuse: Enhancing feature
fusion for semantic segmentation. In ECCV, 2018.

12



Published as a conference paper at ICLR 2021

A APPENDIX

A.1 EXPERIMENTAL SETUP

Table 4: Statistics of the datasets and hyperparameters for the experiments. All the data have been
tokenized and split into joint sub-word units (Sennrich et al., 2016). “Batch” denotes the number of
source tokens and target tokens used in each training step. “DP” denotes the dropout value (Srivastava
et al., 2014). “LP” denotes the length penalty (Wu et al., 2016). “Base” and “Big” denote the two
kinds of model variants of Transformer. We chose the checkpoint with best validation ppl for testing.

Vocab #Sents Training Testing
Src/Tgt Train Dev Test Model Batch Step DP Beam LP

Ro-En 34,976 0.6M 2K 2K Base 16K 60K 0.3 4 1.0
En-De 32,768 4.5M 3K 3K Big 460K 30K 0.3 5 0.6
En-Fr 36,736 35.5M 6K 3K Big 460K 80K 0.1 5 0.9
CNN/DM 50,264 0.3M 13K 11K Base 64K 70K 0.1 4 2.0
CONLL 33,352 1.3M 5K 1K Base 64K 80K 0.2 6 0.6

Machine translation For WMT16 Romanian-English, we used the prepossessed data1 and existing
result from Ghazvininejad et al. (2019). The validation set is newsdev2016 and the test set is
newtest2016. For WMT14 English-German, the prepossessed data2 and existing result are derived
from Ott et al. (2018). The validation set is newstest2013 and the test set is newstest2014. For
WMT14 English-French, we reported the existing result from Ott et al. (2018) and followed them to
preprocess the data sets. The validation set is newstest2012+2013 and the test set is newstest2014.

Text summarization For CNN/Daily Mail dataset, we used the existing result and preprocessing
method of Ott et al. (2019). During testing, the minimum length was set to 55 and the maximum
length was set to 140, which were tuned on the development data. We also followed Paulus et al.
(2018) to disallow repeating the same trigram.

Grammatical error correction For CONLL14 benchmark, the preprocessing script3 and existing re-
sult are given by Chollampatt & Ng (2018). We applied the regularization technique SwitchOut (Wang
et al., 2018b) in this task to prevent overfitting, which was set to 0.8 for the source and 0.9 for the
target.

Table 4 gives more details of the benchmarks. It is noted that other unmentioned hyperparameters
keep the same with the original paper of Transformer (Vaswani et al., 2017). All the models are
implemented by the open-source toolkit fairseq (Ott et al., 2019).4

A.2 CASE STUDY

Tables 5, 6 and 7 give the cases from the three tasks. We can see that the hallucination issue related
to surface features consistently appear over the different Seq2Seq tasks. The most representative
cases are those from the correction task, in which very similar input/output sequences still make such
mistakes.

Another observation is the prediction omission problem when masking the encoder output layer.
The lack of abstract features leads to incomplete semantics of source representations, thus making
Seq2Seq models omit generating a part of source, hurting the model performance. By looking at the
cases over the three tasks, we find that the prediction omission is widespread in the prediction of
modifiers, e.g. adjectives and adverbs.

1https://drive.google.com/uc?id=1YrAwCEuktG-iDVxtEW-FE72uFTLc5QMl
2https://drive.google.com/uc?id=0B_bZck-ksdkpM25jRUN2X2UxMm8
3https://github.com/nusnlp/mlconvgec2018/blob/master/data/prepare_data.

sh
4https://github.com/pytorch/fairseq
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Table 5: Examples from the Ro-En translation task. Red words are good predictions, while blue
words are bad predictions. Masking the embedding layer (“Mask Emb”) of the fine-grained layer
attention model leads to hallucinatory predictions, prolonging the prediction length. While masking
the output layer (“Mask Out”) leads to prediction omissions, shortening the length.

Hallucination

Source diseara voi merge acasa si voi dormi linistit .
Reference i will go home tonight and sleep well .

Vanilla i will go home and sleep quietly .
Mask Emb the device will go home and i will sleep peacefully .
Mask Out i will go home and sleep quietly .

Omission

Source radem adesea mult atunci cand vorbim .
Reference we often laugh a lot when we talk .

Vanilla we often laugh a lot when we talk .
Mask Emb we often laugh a lot when we talk .
Mask Out we often laugh when we talk .

Table 6: Examples from the CNN/DM summarization task.

Hallucination

Source ... But it is able to carry just as much power - 400,000 volts . It is designed
to be less obtrusive and will be used for clean energy purposes ...

Reference ... But it is able to carry just as much power - 400,000 volts . It is designed
to be less obtrusive and will be used for clean energy .

Vanilla ... But it is able to carry just as much power - 400,000 volts . It is designed
to be less obtrusive and will be used for clean energy .

Mask Emb ... It is able to carry just as much power - 400,000 volts . The design is a
T-shape , with two ‘ hanging baskets ’ either side ...

Mask Out ... But it is able to carry just as much power - 400,000 volts . It is designed
to be less obtrusive and will be used for clean energy .

Omission

Source ... Opening statements in his trial are scheduled to begin Monday ...
Reference ... Opening statements are scheduled Monday in the trial of James

Holmes ...

Vanilla ... Prosecutors are not swayed, will seek the death penalty . Opening
statements in his trial are scheduled to begin Monday . Holmes says
he was suffering ‘ a psychotic episode ’ at the time ...

Mask Emb ... Prosecutors are not swayed, will seek the death penalty . Opening
statements in his trial are scheduled to begin Monday . Holmes says
he was suffering ‘ a psychotic episode ’ at the time ...

Mask Out ... Prosecutors are not swayed and will seek the death penalty . Holmes
says he was suffering ‘ a psychotic episode ’ at the time ...

Table 7: Examples from the CONLL correction task.

Hallucination

Source They can become anyone .
Reference They can become anyone .

Vanilla They can become anyone .
Mask Emb They can become friends with anyone .
Mask Out They can become anyone .

Omission

Source In conclude , people should think carefully of what is the consequences of
telling the relatives his or her generic disorder issue .

Reference In conclusion , people should think carefully about what is the consequences
of telling the relatives his or her generic disorder issue .

Vanilla In conclusion , people should think carefully about what is the consequences
of telling the relatives his or her generic disorder issue .

Mask Emb In conclusion , people should think carefully about what is the consequences
of telling the relatives his or her generic disorder issue .

Mask Out In conclusion , people should think carefully about what is the consequences
of telling the relatives his or her generic issue .
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