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UniDEC : Unified Dual Encoder and Classifier Training for
Extreme Multi-Label Classification

Anonymous Author(s)
Abstract

Extreme Multi-label Classification (XMC) involves predicting a sub-
set of relevant labels from an extremely large label space, given an
input query and labels with textual features. Models developed for
this problem have conventionally made use of dual encoder (DE) to
embed the queries and label texts and one-vs-all (OvA) classifiers to
rerank the shortlisted labels by the DE. While such methods have
shown empirical success, a major drawback is their computational
cost, often requiring upto 16 GPUs to train on the largest public
dataset. Such a high cost is a consequence of calculating the loss
over the entire label space. While shortlisting strategies have been
proposed for classifiers, we aim to study such methods for the DE
framework. In this work, we develop UniDEC, a loss-independent,
end-to-end trainable framework which trains the DE and classifier
together in a unified manner with a multi-class loss, while reducing
the computational cost by 4 − 16×. This is done via the proposed
pick-some-label (PSL) reduction, which aims to compute the loss on
only a subset of positive and negative labels. These labels are care-
fully chosen in-batch so as to maximise their supervisory signals.
Not only does the proposed framework achieve state-of-the-art
results on datasets with labels in the order of millions, it is also
computationally and resource efficient in achieving this perfor-
mance on a single GPU. Code is provided with the submission and
will be open-sourced upon acceptance.
ACM Reference Format:
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1 Introduction

Extreme Multi-label Classification (XMC) is described as the task
of identifying i.e. retrieving a subset, comprising of one or more
labels, that are most relevant to the given data point from an ex-
tremely large label space, potentially consisting of millions of pos-
sible choices. Over time, XMC has increasingly found its relevance
for solving multiple real world use cases. Typically, long-text XMC
approaches are leveraged for the tasks of document tagging and
product recommendation and short-text XMC approaches target
tasks such as query-ad keyword matching and related query rec-
ommendation. Notably, in the real world manifestations of these
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Figure 1: The architecture for theUniDEC framework, denot-

ing the the classifiers and DE trained in parallel, along with

the loss functions used. The inference pipeline is shown in

the rectangular box.

use cases, the distribution of instances among labels exhibits a fit
to Zipf’s law [1]. This implies, the vast label space (𝐿 ≈ 106) is
skewed and is characterized by the existence of head, torso and tail
labels [33]. For example, in query-ad keyword matching for search
engines like Bing, Google etc. head keywords are often exact match
or related phrase extensions of popularly searched queries while
tail keywords often target specific niche queries. Typically, we can
characterize head, torso and tail keywords as having > 100, 10 -
100, and 1 - 10 annotations, respectively.

Typically, per-label classifiers are employed for solving the XMC
task. A naive strategy to train classifiers for XMC involves calculat-
ing the loss over the entire label set. This method has seen empirical
success, particularly in earlier works like Dismec [2], which learns
one-vs-all classifiers by parallelisation across multiple CPU cores.
With the adoption of deep encoders, various works moved to train-
ing on GPUs, which due to VRAM constraints, led to the use of
tree-based shortlisting strategies [4, 7, 18, 19] to train classifiers on
the hardest negatives. This reduced the computational complexity
from O(𝐿) to O(log𝐿). While leveraging a label shortlist made
XMC training more feasible via modular training [6, 8] or joint
training using a meta-classifier [15, 18, 19] , it still left out scope for
empirical improvements. Consequently, Renee [13] demonstrated

1
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the extreme case for methods which employ classifiers with deep en-
coders by writing custom CUDA kernels to scale classifier training
over the entire label space. This, however, leads to a GPU VRAM
usage of 256GB (Figure 1) for training a DistilBERT model on
LF-AmazonTitles-1.3M, the largest XMC dataset. Notably, what
remains common across XMC classifier-training algorithms is the
advocacy of OvA reduction for the multi-label problem [5]. Theo-
retically, the alternative, pick-all-labels (PAL), should lead to better
optimization over OvA, since it promotes “competition” amongst
labels [22]. However, PAL has neither been well-studied nor suc-
cessfully leveraged to train classifiers in XMC since such losses
require considering all labels, which is prohibitively expensive.

A parallel line of research involves leveraging dual encoders (DE)
for XMC. While DE models are a popular choice for dense retrieval
(DR) and open-domain question answering (ODQA) tasks, these
are predominantly few and zero-shot scenarios. In contrast, XMC
covers a broader range of scenarios (see Appendix B). Consequently,
modelling the XMC task as a retrieval problem is tantamount to
training a DE simultaneously on many, few and one-shot scenarios.
While DE trained with triplet loss was thought to be insufficient for
XMC, and thus augmented with per-label classifiers to enhance per-
formance [6, 11], a recent work Dexml [11] proved the sufficiency
of the DE framework for XMC by proposing a new multi-class loss
function Decoupled Softmax, which computed the loss over the en-
tire label space. This, however is very computationally expensive, as
Dexml requires 640GB VRAM to train on LF-AmazonTitles-1.3M.

At face value, PAL reduction of multi-label problems for DE
training should be made tractable by optimizing over in-batch la-
bels, however in practice, it does not scale to larger datasets due
to the higher number of positives per label. For instance, for LF-
AmazonTitles-1.3M a batch consisting of 1,000 queries will need an
inordinately large label pool of size ∼ 22.2K (considering in-batch
negatives) to effectively train a DE with the PAL loss. Alternatively,
the stochastic implementation of PAL in the form of pick-one-label
(POL) reduction used by Dexml, either convergences slowly [11]
or fails to reach SOTA performance.

In order to enable efficient training, in this work, we propose
“pick-some-labels” (PSL) relaxation of the PAL reduction for the
multi-label classification problem which enables scaling to large
datasets (∼ 106 labels). Here, instead of trying to include all the
positive labels for instances in a batch, we propose to randomly
sample at max 𝛽 positive labels per instance. To the best of our
knowledge, we are the first work to study the effect of multi-class
losses for training classifiers at an extreme scale. Further, we aim
to develop an end-to-end trainable loss-independent framework,
UniDEC - Unified Dual Encoder and Classifier, for XMC that lever-
ages the multi-positive nature of the XMC task to create highly
informative in-batch labels to train the DE, and be used as a shortlist
for the classifier. As shown in Figure 1, UniDec, in a single pass,
performs an update step over the combined loss computed over
two heads: (i) between DE head’s query and sampled label-text
embeddings, (ii) between classifier (CLF) head’s query embeddings
and classifier weights corresponding to sampled labels. By unifying
the two compute-heavy ends of the XMC spectrum in such a way,
UniDEC is able to significantly reduce the training computational
cost down to a single 48GB GPU, even for the largest dataset with
1.3M labels. End-to-end training offers multiple benefits as it (i)

helps us do away with a meta-classifier and modular training, (ii)
dynamically provides progressively harder negatives with lower
GPU VRAM consumption, which has been shown to outperform
static negative mining [15, 18, 19] (iii) additionally, with an Approx-
imate Nearest Neighbour Search (ANNS), it can explicitly mine hard
negative labels added to the in-batch negatives. While UniDEC is a
loss independent framework (see Table 3), the focus of this work
also includes studying the use of multi-class losses for training
multi-label classifiers at an extreme scale via the proposed PSL re-
duction. To this end, we benchmark UniDEC on 6 public datasets,
forwarding the state-of-the-art in each, and a proprietary dataset
containing 450M labels. Finally, we also experimentally show how
OvA losses like BCE can be applied in tandem with multi-class
losses for classifier training.

2 Related Works & Preliminaries

For training, we have amulti-label datasetD = {{x𝑖 ,P𝑖 }𝑁𝑖=1, {z𝑙 }
𝐿
𝑙=1}

comprising of 𝑁 data points and 𝐿 labels. Each x𝑖 is associated with
a small ground truth label set P𝑖 ⊂ [𝐿] out of 𝐿 ∼ 106 possible
labels. Further, x𝑖 , z𝑙 ∈ X denote the textual descriptions of the data
point 𝑖 and the label 𝑙 respectively, which, in this setting, derive
from the same vocabulary universe V [5]. The goal is to learn a
parameterized function 𝑓 which maps each instance x𝑖 to the vector
of its true labels y𝑖 ∈ [0, 1]𝐿 where y𝑖,𝑙 = 1⇔ 𝑙 ∈ P𝑖 .

Dual Encoder. A DE consists of the query encoder Φ𝑞 , and a
label encoder Φ𝑙 . Conventionally, the parameters for Φ𝑞 and Φ𝑙
are shared, and thus we will simply represent it as Φ [6, 11, 16, 28].
The mapping Φ(.) projects the instance x𝑖 and label-text z𝑙 into a
shared 𝑑-dimensional unit hypersphere S𝑑−1. For each instance
x𝑖 , its similarity with label z𝑙 is computed via an inner product i.e.,
𝑠𝑖,𝑙 = ⟨Φ(x𝑖 ),Φ(z𝑙 )⟩ to produce a ranked list of top-K labels.

Training two-tower algorithms for XMC at scale is made possible
by recursively splitting (say, via a hierarchical clustering strategy)
instance encoder embeddings {Φ(x𝑖 )}𝑁𝑖=1 into disjoint clusters 𝔅
[6], where each cluster represents a training batch B. Each batch
B = {𝑄B , 𝐿B} is characterised by a set of instance indices 𝑄B =

{𝑖 | 𝑖 ⊂ [𝑁 ]}, 𝑠 .𝑡 . |𝑄B | = 𝑁 /|𝔅|, and the corresponding collated
set of (typically one per instance) sampled positive labels 𝑝 ∈ P𝑖 ,
defined as 𝐿B = {𝑝 | 𝑝 ∈ P𝑖 and 𝑖 ∈ 𝑄B}. As per the in-batch
negative sampling strategy common across existing works [6, 11,
16, 28], the negative label pool then is made up of the positive
labels sampled for other instances in the batch i.e. N𝑖 = 𝐿B − P𝑖 .
As compared to random batching, [6] posit that the batches created
from instance-clustering are negative-mining aware i.e. for every
instance, the sampled positives of the other instances in the batch
serve as the set of appropriate “hard” negatives.

An additional effect of this is the accumulation of multiple in-
batch positives for most queries (see Figure 2a). This makes the
direct application of commonly used multi-class loss - InfoNCE loss
- infeasible for training DE. Hence XMC methods find it suitable
to replace InfoNCE loss with a triplet loss [6, 8] or probabilistic
contrastive loss [5], as it can be potentially applied over multiple
positives and hard negatives (equation 1 in [6]). While this would
seem favourable, these approaches still fail to leverage the addi-
tional positive signals owing to multiple positives in the batch as
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Figure 2: (a) Visualizing UniDEC’s batching strategy. Such a framework naturally leads to higher number of positives per

query, enabling us to scale without increasing the batch size significantly. (b) Scatter plot showing the average number of

positive labels per query, when we sample 𝛽 positives and 𝜂 hard negatives in the batch. Note that, even with 𝛽 = 3 and 𝜂 = 0,
avg(|𝑃 |) = 13.6.

they calculate loss over only a single sampled positive i.e. employing
POL reduction instead of PAL reduction.

Classifiers in XMC. The traditional XMC set-up considers la-
bels as featureless integer identifiers which replace the encoder
representation of labels Φ(z𝑙 ) with learnable classifier embeddings
Ψ𝐿
𝑙=1 ∈ R𝐿×𝑑 [4, 37, 38]. The relevance of a label 𝑙 to an instance

is scored using an inner product, 𝑠𝑖,𝑙 = ⟨Φ(x𝑖 ),Ψ𝑙 ⟩ to select the
𝑘 highest-scoring labels. Under the conventional OvA paradigm,
each label is independently treated with a binary loss function ℓ𝐵𝐶
applied to each entry in the score vector. It can be expressed as,

LOVA =

𝐿∑︁
𝑙=1
{𝑦𝑙 · ℓ𝐵𝐶 (1, 𝑠𝑖,𝑙 ) + (1 − 𝑦𝑙 ) · ℓ𝐵𝐶 (0, 𝑠𝑖,𝑙 )}

3 Method: UniDEC

In this work, we propose a novel multi-task learning framework
which, in an end-to-end manner, trains both - a dual encoder and
extreme classifiers - in parallel. The framework eliminates the need
of a meta classifier for a dynamic in-batch shortlist. Further, it
provides the encoder with the capability to explicitly mine hard-
negatives, obtained by querying an ANNS, created over {Φ(z𝑙 )}𝐿𝑙=1,
which is refreshed every 𝜀 epochs.

The DE head is denoted by Φ𝔇 (·) = 𝔑(𝑔1 (Φ(·))) and the classi-
fier head by Φℭ (·) = 𝑔2 (Φ(·)), where 𝔑 represents the L2 normal-
ization operator and 𝑔1 (·) and 𝑔2 (·) represent separate nonlinear
projections. Unlike DE, and as is standard practice for OvA classi-
fiers, we train them without additional normalization [5, 7].

3.1 Pick-some-Labels Reduction

LPAL-N [22] is is formulated as :

LPAL-N (Φ1 (x),Φ2 (𝑧𝑙 )) =
1∑𝐿

𝑗=1 𝑦 𝑗

𝐿∑︁
𝑙=1

𝑦𝑙 · ℓ𝑀𝐶 (1, ⟨Φ1 (x),Φ2 (𝑧𝑙 )⟩)

Since it computes the loss over the entire label space, it is com-
putationally intractable for XMC scenarios. To reduce the computa-
tional costs associated with this reduction, we propose a relaxation

by computing loss over some labels in batch B = {𝑄B , 𝐿B}, which
we call pick-some-labels (PSL).

L𝑃𝑆𝐿 (Φ1 (x),Φ2 (𝑧𝑙 ) | B,PB) =
∑︁
𝑖∈𝑄B

−1
|PB

𝑖
|

∑︁
𝑝∈PB

𝑖

ℓ𝑀𝐶 (1, ⟨Φ1 (x),Φ2 (𝑧𝑝 )⟩)

where Φ1 and Φ2 are encoding networks. Any multi-class loss 1

can be used in place of ℓ𝑀𝐶 . By varying Φ1 and Φ2, we get a generic
loss function for training classifier as well as DE. This approxima-
tion enables employing PAL-N over a minibatch 𝑄B by sampling
a subset of positive labels P̂𝑖 ⊆ P𝑖 𝑠 .𝑡 . |P̂𝑖 | ≤ 𝛽 . Typical value for
𝛽 can be found in Figure 2b. The collated label pool, considering
in-batch negative mining, is defined as 𝐿B = {⋃𝑖∈𝑄B P̂𝑖 }. Here,
PB
𝑖

= {P𝑖 ∩ 𝐿B} denotes all the in-batch positives for an instance
x𝑖 , i.e., the green and pale green in Figure 2.

3.2 Dual Encoder Training with

Pick-some-Labels

The PSL loss to train a DE is formulated as,

L𝔇,𝑞2𝑙 = LPSL (Φ𝔇 (x),Φ𝔇 (𝑧𝑙 ) | B,PB)
More specifically, we perform k-means clustering on the queries
such that similar queries are clustered into the same batch 𝔅, lead-
ing to both positive and negative-aware batching [6]. Thus, PB

𝑖

consists not only of the sampled positives P̂𝑖 but also those non-
sampled positives that exist in the batch as sampled positives of
other instances i.e. PB

𝑖
= P̂𝑖 ∪ {

⋃
𝑗∈{𝑄B−{𝑖 }} P̂𝑗 ∩ P𝑖 }. We

find the cardinality of the second term to be non-zero for most
instances having |P𝑖 | > 𝛽 due to a high overlap of sampled posi-
tive labels in query-clustered batches, leading to a more optimal
batch size. Thus, although we sample |P̂𝑖 | ≤ 𝛽 ∀ 𝑖 ∈ 𝑄B , ∃ 𝑖 ∈
𝑄B 𝑠 .𝑡 . |PB𝑖 | ≥ 𝛽 . As per our observations, P

B
𝑖

= P𝑖 for most tail
and torso queries. For e.g., even if 𝛽 = 1 for LF-AmazonTitles-1.3M,
for |𝑄B | = 103, Avg( |P̂𝑖 |) = [12, 14]. Thus, it makes PSL reduction
1While binary class loss functions can also be used, in this work, our focus is to study
multi-class losses

3
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same as PAL for torso and tail labels and only taking form of PSL
for head queries.

DynamicANNSHard-NegativeMining. While the above strat-
egy leads to collation of hard negatives in a batch, it might not mine
hardest-to-classify negatives [6]. We explicitly add them by query-
ing an ANNS created over {Φ𝔇 (z𝑙 )}𝐿𝑙=1 for all {Φ𝔇 (x𝑖 )}

𝑁
𝑖=1. More

specifically, for each instance, we create a list of hard negatives
H𝑖 = topk (ANNS(Φ𝔇 (x𝑖 ) |𝑁𝑖=1, Φ𝔇 (z𝑙 ) |

𝐿
𝑙=1)) 𝑠 .𝑡 . H𝑖 ∩ P𝑖 = 𝜙 (de-

noted by red in Figure 2). Every iteration, we uniformly sample a
𝜂-sized hard-negative label subset Ĥ𝑖 ⊂ H𝑖 alongside P̂𝑖 ∀ x𝑖 ∈ 𝑄B .
More formally, the new batch label pool can be denoted as 𝐿B =

{⋃𝑖∈𝑄B P̂𝑖 ∪ Ĥ𝑖 }. Interestingly, due to the multi-positive nature of
XMC, sampled hard-negatives for x𝑖 might turn out to be an unsam-
pled positive label for x𝑗 . More formally, ∃ 𝑗 ∈ 𝑄B 𝑠 .𝑡 . {Ĥ𝑖 ∩ P𝑗 ≠
𝜙, Ĥ𝑖 ∩ PB𝑗 = 𝜙}. This requires altering the definition of PB

𝑖
to

accommodate these extra positives (represented by the dark green
square in Figure 2) asPB

𝑖
= {P̂𝑖 ∪ {

⋃
𝑗∈{𝑄B−{𝑖 }} {P̂𝑗∪Ĥ𝑗 } ∩ P𝑖 }}.

This effect is also quantified in Figure 2b. Query clustering for batch-
ing and dynamic ANNS hard-negative mining strategies comple-
ment each other, since the presence of similar queries leads to a
higher overlap in their positives and hard negatives, enabling us
to scale the effective size of the label pool. Further, to provide Φ𝔇
and Φℭ with progressively harder negatives, the ANNS is refreshed
every 𝜏 epochs and to uniformly sample hard negatives, we keep
|H | = 𝜂 × 𝜏 .

Algorithm 1 Training step in UniDEC
Input: instance x, label features z, positive labels P , encoder Φ, classifier lookup-table Ψ, non-linear transformations
𝑔1( ·) and𝑔2( ·) Φ𝔇 ( ·), Φℭ ( ·) ≔ 𝔑 (𝑔1 (Φ( ·) ) ), 𝑔2 (Φ( ·) ) for e in 1..𝜖 do-

if 𝑒 % 𝜏 is 0 then-

𝔅←Cluster(Φ𝔇 (x𝑖 ) |𝑁𝑖=0 ) H ← topk(ANNS(Φ𝔇 (x𝑖 ) |𝑁𝑖=0, Φ𝔇 (z𝑙 ) |
𝐿
𝑙=0 ) )

for𝑄B 𝑖𝑛 𝔅 do

for 𝑖 𝑖𝑛 𝑄B do

P̂𝑖 ← sample(P𝑖 , 𝛽 )
Ĥ𝑖 ← sample(H𝑖 − P𝑖 , 𝜂)

𝐿B ← {
⋃
𝑖∈𝑄B P̂𝑖 ∪ Ĥ𝑖 }

PB ← {{P𝑖 ∩ 𝐿B}|𝑖∈𝑄B }

P𝐿 ← {{𝑖 | 𝑖 ∈ 𝑄B , P𝑖,𝑙 = 1}|𝑙 ∈𝐿B }

L𝔇,𝑞2𝑙 ← L𝑃𝑆𝐿 (Φ𝔇 (x𝑖 ),Φ𝔇 (z𝑙 ) | B, PB )

L𝔇,𝑙2𝑞 ← L𝑃𝑆𝐿 (Φ𝔇 (z𝑙 ),Φ𝔇 (x𝑖 ) | B, P𝐿 )
L𝔇 ← 𝜆𝔇 · L𝔇,𝑞2𝑙 + (1 − 𝜆𝔇 ) · L𝔇,𝑙2𝑞
Lℭ,𝑞2𝑙 ← L𝑃𝑆𝐿 (Φℭ (x𝑖 ),Ψ(𝑙 ) | B, P

B )

Lℭ,𝑙2𝑞 ← L𝑃𝑆𝐿 (Ψ(𝑙 ),Φℭ (x𝑖 ) | B, P
𝐿 )

Lℭ ← 𝜆ℭ · Lℭ,𝑞2𝑙 + (1 − 𝜆ℭ ) · Lℭ,𝑙2𝑞
L ← 𝜆 · L𝔇 + (1 − 𝜆) · Lℭ

adjust Φ,𝑔1 ( ·) ,𝑔2 ( ·) and Ψ to reduce loss L.

Note that 𝐿𝔇,𝑞2𝑙 denotes the multi-class loss between x𝑖 and
z𝑙 ∀ 𝑙 ∈ 𝐿B . As the data points and labels in XMC tasks belong to
the same vocabulary universe (such as product recommendation),
we find it beneficial to optimize 𝐿𝔇,𝑙2𝑞 alongside 𝐿𝔇,𝑞2𝑙 , making
𝐿𝔇 a symmetric loss. Since [29], a plethora of works have lever-
aged symmetric optimizations in the vision-language retrieval pre-
training domain. For XMC, the interchangability of 𝑄B and 𝐿B in
the symmetric objective can be viewed equivalent to (i) feeding
more data relations in a batch, and (ii) bridging missing relations in
the dataset [20]. Further, we formulate XMC as a symmetric prob-
lem from 𝐿B to 𝑄B , thus calculating the multi-class loss between

z𝑙 and x𝑖 ∀ 𝑖 ∈ 𝑄B given by:

L𝔇,𝑙2𝑞 = LPSL (Φ𝔇 (𝑧𝑙 ),Φ𝔇 (x) | B,P𝐿)

Note that, P𝐿 = {𝑖 |𝑖 ∈ 𝑄B , 𝑙 ∈ 𝐿B , P𝑖,𝑙 = 1}. The total DE
contrastive loss can thus be written as (note, for simplicity we use
𝜆𝔇 = 0.5 for all datasets, which works well in practice):

L𝔇 = 𝜆𝔇 · L𝔇,𝑞2𝑙 + (1 − 𝜆𝔇) · L𝔇,𝑙2𝑞

3.3 Unified Classifier Training with

Pick-some-Labels

XMC classifiers are typically trained on a shortlist consisting of all
positive and O(𝐿𝑜𝑔(𝐿)) hard negative labels [7]. As the reader can
observe from Figure 1 and Algorithm 1, the document and label
embedding computation and batch pool is shared between Φ𝔇 and
Φℭ . We simply unify the classifier training with that of DE by lever-
aging the same PSL reduction used for contrastive learning, with
only minor changes: Φℭ (x𝑖 ) |𝑖∈𝑄B replaces Φ𝔇 (x𝑖 ) |𝑖∈𝑄B and, the
label embeddings Φ𝔇 (z𝑙 ) |𝑙∈𝐿B are replaced by Ψ𝑙 |𝑙∈𝐿B . Formally,
the multi-class PSL loss for classifier 𝐿ℭ,𝑞2𝑙 can be defined as:

Lℭ,𝑞2𝑙 = LPSL (Φℭ (x),Ψ𝑙 | B,PB)

Similar to DE training, we find it beneficial to employ a symmet-
ric loss for classifier training, defined (with 𝜆ℭ = 0.5) as:

Lℭ = 𝜆ℭ · Lℭ,𝑞2𝑙 + (1 − 𝜆ℭ) · Lℭ,𝑙2𝑞

Finally, we combine the two losses and train together in an end-
to-end fashion, thereby achieving Unification of DE and classifier
training for XMC.

L = 𝜆L𝔇 + (1 − 𝜆)Lℭ

3.4 Inference

For ANNS inference, the label graph can either be created over
the encoded label embeddings {Φ𝔇 (𝑧𝑙 )}𝐿𝑙=1 or the label classifier
embeddings {𝔑(Ψ(𝑙))}𝐿

𝑙=1, which are queried by {Φ𝔇 (x𝑖 )}𝑁𝑖=1 or
{𝔑(Φℭ (x𝑖 ))}𝑁𝑖=1 respectively. Even though we train the classifiers
over an un-normalized embedding space, we find it empirically ben-
eficial to performANNS search over the unit normalized embedding
space [10, 21]. Interestingly, the concatenation of these two embed-
dings leads to a much more efficient retrieval. More specifically,
we create the ANNS retrieval graph over the concatenated label
representation {Φ𝔇 (𝑧𝑙 ) ⊕ 𝔑(Ψ(𝑙))}|𝐿

𝑙=0, which is queried by the
concatenated document representations {Φ𝔇 (x𝑖 )⊕𝔑(Φℭ (x𝑖 ))}|𝑁𝑖=0.
Intuitively, this is a straight-forward way to ensemble the similarity
scores from both the embedding spaces.

4 Experiments

Datasets: Webenchmark our experiments on 6 standard datasets,
comprising of both long-text inputs (LF-Amazon-131K, LF-WikiSeeAlso-
320K) and short-text inputs (LF-AmazonTitles-131K, LF-AmazonTitles-
1.3M, LF-WikiTitles-500K, LF-WikiSeeAlsoTitles-320K). We also
evaluate baselines on a proprietary Query2Bid dataset, compris-
ing of 450M labels, which is orders of magnitude larger than any
public dataset. Details of these datasets can be found at [3] and in
Appendix B.
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Baselines & Evaluation Metrics: We compare against two
classes of Baselines namely, (i) DE Approaches (Φ) consisting
of only an encoder [6, 11, 16, 36] and, (ii) Classifier Based Ap-
proaches (Ψ) which use linear classifiers, with or without the
encoder [6, 13]. A more comprehensive comparison with baselines
has been provided in Appendix C. We use popular metrics such
as Precision@K and Propensity-scored Precision@K (K ∈ {1, 3, 5}),
defined in [3].

Implementation Details and Ablation Study. We initialize
both DePSL, our purely dual encoder method and UniDEC with
a pre-trained 6l-Distilbert and train the Φ, 𝑔(·) and Ψ with a
learning rate of 1𝑒 − 4, 2𝑒 − 4 and 1𝑒 − 3 respectively using cosine
annealing with warm-up as the scheduler, hard-negative shortlist
refreshed every 𝜏 = 5 epochs. We make an effort to minimize the
role of hyperparameters by keeping them almost same across all
datasets.

4.1 Evaluation on XMC Datasets

In these settings, we evaluate DePSL and UniDEC against both DE
and XMC baselines. UniDEC differs from these baselines in the
following ways, (i) on training objective,UniDEC uses the proposed
PSL relaxation of PAL for both DE and CLF training, instead of POL
reduction used by existing methods like Ngame and Dexml, (ii)
UniDEC does away with the need of modular training by unifying
DE and CLF, (iii) finally, UniDEC framework adds explicitly mined
hard negatives to the negative mining-aware batches which helps
increase P@K metrics (see Table 5).

UniDEC/DePSL vs Ngame(Φ): Table 1 depicts that UniDEC
(Φ ⊕ Ψ) consistently outperforms Ngame(Ψ) (it’s direct comparison
baseline), where we see gains of 2 − 8% in P@K and upto 10% on
PSP@K. DePSL, on the other hand, outperforms Ngame on P@k
with improvements ranging from 2 − 9%. For PSP@k, DePSL (Φ)
always outperforms Ngame (Φ) on long-text datasets, while the
results are mixed on short-text datasets.

DePSL vs DPR/ANCE:. Empirical performance of DPR demon-
strates the limits of a DE model trained with InfoNCE loss and
random in-batch negatives (popular in DR methods). Evidently,
Ance improves over DPR in the P@K metrics, which can be ob-
served as the impact of explicitly mining hard-negative labels per
instance instead of solely relying on the random in-batch nega-
tives. Even though, these approaches use 12l-Bert-base instead
of 6l-Distilbert common in XMC methods, Ance only shows
marginal gains over Ngame on both datasets. Our proposed DE
method, DePSL, despite using half the # Layers and half the search
embedding dimension, is able to surpass these DR approaches by
15 − 20% for P@K metrics over LF-AmazonTitles-1.3M dataset.

Search Dimensionality. As mentioned before, DePSL outper-
forms Ngame on P@K metrics across benchmarks. Notably, DePSL
does so by projecting (using 𝑔1 (·)) and training the encoder embed-
dings in a low-dimension space of 𝑑 = 384. Similarly, for UniDEC,
inference is carried out by concatenating 𝔑(Φℭ) and Φ𝔇 embed-
dings. Here, both 𝑔1 (·) and 𝑔2 (·) consist of linear layers projecting
Φ(·) into a low-dimensional space of 𝑑 = 256 or 𝑑 = 384. On

the other hand, all aforementioned baselines use a higher dimen-
sion of 768 for both DE and CLF evaluations. For the proprietary
Query2Bid-450M dataset, we use final dimension of 64 for all the
methods necessitated by constraints of online serving.

Applicability to Real-World Data: Finally, we also demon-
strate the applicability of DePSL to real-world sponsored search
dataset, Query2Bid-450M in Appendix A, where it is observed to be
∼ 1.5% better in P@K than leading DR & XMC methods. Addition-
ally, DePSL was deployed on a live search engine where A/B tests
indicated that it improved popular metrics such as IY, CY, CTR, QC
over an ensemble of DR and XMC techniques by 0.87%, 0.66%, 0.21%
and 1.11% respectively.

4.2 Efficiency Comparison with Spectrum of

XMC methods

In this section, we provide a comprehensive comparison (refer Ta-
ble 2) of our proposedDePSL andUniDECwith two extreme ends of
XMC spectrum (refer Figure 1): (i) Renee, which is initialized with
pre-trainedNgame encoder, trains OvA classifiers with the BCE loss
and, (ii) DEXML which achieves SOTA performance by training a
DE using their proposed loss function decoupled softmax. Note that,
these approaches do not pose a fair comparison with our proposed
approaches as both Renee and Dexml do not use a label shortlist
and backpropagate over the entire label space, requiring an or-
der of magnitude higher GPU VRAM to run an iteration on LF-
AmazonTitles-1.3M. Therefore, for the same encoder, they can be
considered as the upper bound of empirical performance of CLF
(OvA) and DE methods respectively. Table 2 shows that similar,
and perhaps better, performance is possible by using our proposed
UniDEC and leveraging the proposed PSL reduction of multi-class
losses over a label shortlist.

Comparison with Renee : We observe that UniDEC delivers
matching performance over P@K and PSP@K metrics on long-text
datasets and significantly outperforms Renee on LF-AmazonTitles-
1.3M. In fact, our proposed DE method outperforms Renee on
LF-Wikipedia-500K without even employing classifiers. We posit
that UniDEC is therefore more effective for skewed datasets, with
higher avg. points per label and more tail labels. Furthermore, these
observations imply while Renee helps BCE loss reach it’s empirical
limits by scaling over the entire label space, with the UniDEC
framework, we can match this limit with a shortlist that is 86−212×
smaller than the label space, thereby consuming significantly lower
compute (1 × A6000 vs 8 × V100).

DePSL vs Dexml (with shortlist): While DePSL leverages the
proposed PSL reduction in the UniDEC framework, the latter uses
the POL reduction with the same loss function. As evident in the
LF-AmazonTitles-1.3M, Table 2, (i) For a comparable label pool
size (4000 vs 8192), DePSL significantly outperforms DEXML by
∼20% in P@Kmetrics. (ii) To achieve similar performance asDePSL,
DEXML need to use an effective label pool size of 90K. However
in the same setting, DePSL needs only 1/4𝑡ℎ batch size and 1/22𝑡ℎ
label pool size. A similar trend is seen in LF-Wikipedia-500K. These
observations empirically demonstrate the informativeness of the
batches in UniDEC - the same information can be captured by it
with significantly smaller batch sizes.
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Method 𝑑 P@1 P@3 P@5 PSP@1 PSP@3 PSP@5 𝑑 P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

Long-text→ LF-Amazon-131K LF-WikiSeeAlso-320K

Ngame (Φ) 768 42.61 28.86 20.69 38.27 43.75 48.71 768 43.58 28.01 20.86 30.59 33.29 36.03
DePSL (Φ) 512 45.86 30.52 21.89 38.19 44.07 49.56 512 44.83 29.07 21.66 30.67 33.56 36.41

SiameseXML (Ψ) 300 44.81 - 21.94 37.56 43.69 49.75 300 42.16 - 21.35 29.01 32.68 36.03
Ngame (Ψ) 768 46.95 30.95 22.03 38.67 44.85 50.12 768 45.74 29.61 22.07 30.38 33.89 36.95

UniDEC (Φ ⊕ Ψ) 768 47.80 32.29 23.35 40.28 47.03 53.24 768 47.69 30.74 22.81 35.45 38.02 40.71

Short-text→ LF-WikiTitles-500K LF-WikiSeeAlsoTitles-320K

GraphSage (Φ) 768 27.30 17.17 12.96 21.56 21.84 23.50 768 27.19 15.66 11.30 22.35 19.31 19.15
Ngame (Φ) 768 29.68 18.06 12.51 23.18 22.08 21.18 768 30.79 20.34 15.36 25.14 26.77 28.73

DePSL (Φ) 512 49.66 27.93 19.62 27.44 25.64 24.94 512 33.91 21.92 16.48 24.22 25.80 27.99
Ngame (Ψ) 768 39.04 23.10 16.08 23.12 23.31 23.03 768 32.64 22.00 16.60 24.41 27.37 29.87

CascadeXML (Ψ) 768 47.29 26.77 19.00 19.19 19.47 19.75 768 23.39 15.71 12.06 12.68 15.37 17.63
UniDEC (Φ ⊕ Ψ) 768 50.22 28.76 20.32 25.90 25.20 24.85 768 36.28 23.23 17.31 26.31 27.81 29.90

Short-text→ LF-AmazonTitles-131K LF-AmazonTitles-1.3M

DPR(Φ) 768 41.85 28.71 20.88 38.17 43.93 49.45 768 44.64 39.05 34.83 32.62 35.37 36.72
ANCE (Φ) 768 42.67 29.05 20.98 38.16 43.78 49.03 768 46.44 41.48 37.59 31.91 35.31 37.25

Ngame (Φ) 768 42.61 28.86 20.69 38.27 43.75 48.71 768 45.82 39.94 35.48 33.03 35.63 36.80
DePSL (Φ) 512 42.34 28.98 20.87 37.61 43.01 47.93 384 54.20 48.20 43.38 30.17 34.11 36.25

SiameseXML (Ψ) 300 41.42 30.19 21.21 35.80 40.96 46.19 300 49.02 42.72 38.52 27.12 30.43 32.52
Ngame (Ψ) 768 44.95 29.87 21.20 38.25 43.75 48.42 768 54.69 47.76 42.80 28.23 32.26 34.48

UniDEC (Φ ⊕ Ψ) 768 44.35 29.49 21.03 39.23 44.13 48.90 512 57.41 50.75 45.89 30.10 34.32 36.78

Table 1: Experimental results showing the effectiveness of Depsl and UniDEC against both state-of-the-art dual encoder

approaches and extreme classifiers. The best-performing results are put in bold. DE and classifier results are compared

separately.

UniDEC vs DEXML-Full: UniDEC, scales to LF-AmazonTitles-
1.3M on a single A6000 GPU using a label shortlist of only 3000
labels, as opposed to DEXML-Full which requires 16 A100s and
uses the entire label space of 1.3M. Despite this, Table 2 indicates
that UniDEC matches DEXML-Full on P@5 and PSP@5 metrics.

4.3 Ablation Study

Evaluation with Multiple Loss Functions : As mentioned previ-
ously, any loss function can be chosen in the UniDEC framework,
however, we experiment with two multi-class losses in particular,
namely SupCon loss (SC) [21] and Decoupled Softmax (DS) [11].
Replacing ℓ𝑀𝐶 with these gives

L𝑆𝐶 =
∑︁
𝑖∈𝑄B

−1
|PB

𝑖
|

∑︁
𝑝∈PB

𝑖

log
exp(⟨Φ𝔇 (x𝑖 ),Φ𝔇 (z𝑝 )⟩/𝜏)∑

𝑙∈𝐿B
exp(⟨Φ𝔇 (x𝑖 ),Φ𝔇 (z𝑙 )⟩/𝜏)

L𝐷𝑆 =
∑︁
𝑖∈𝑄B

−1
|PB

𝑖
|

∑︁
𝑝∈PB

𝑖

log
exp(⟨Φ𝔇 (x𝑖 ),Φ𝔇 (z𝑝 )⟩/𝜏)∑

𝑙∈𝐿B/{PB𝑖 −𝑝 }
exp(⟨Φ𝔇 (x𝑖 ),Φ𝔇 (z𝑙 )⟩/𝜏)

Notably, from Table 3 and Table 4, we observe that Decoupled
Softmax turns out to be a better loss for XMC tasks as it helps
the logits scale better [11] as compared to SupCon which caps
the gradient due to a hard requirement of producing a probability
distribution. We further observe that classifier performance can
further improve by adding BCE loss as an auxiliary OvA loss to the
classifier loss. While this helps enhance P@K metrics, the PSP@K
metrics take a significant dip on the inclusion of auxiliary BCE loss.

These observations are in line with the performance of Renee which
leverages BCE loss and suffers on PSP@K metrics. Simply using
BCE loss for classifier works in our pipeline, however, ends up
performing worse than using multi-class loss to train the classifiers.

UniDEC Framework : We show the effect of the two individ-
ual components Φ𝔇 and Φℭ of UniDEC in Table 5. The scores are
representative of the evaluation of the respective component of the
UniDEC framework, (i) UniDEC-de (Φ𝔇) performs inference with
an ANNS built over Φ𝔇 (z𝑙 ) |𝐿𝑙=0, (ii) UniDEC-clf (Φℭ) performs
inference with an ANNS built over 𝔑(Ψ(𝑙)) |𝐿

𝑙=0 and (iii) UniDEC
uses the ANNS built over the concatenation of both {Φ𝔇 (z𝑙 ) +
𝔑(Ψ(𝑙))}|𝐿

𝑙=0. Notably, concatenation of embeddings leads to a
more effective retrieval. We attribute its performance to two aspects,
(i) as seen in previous XMC models, independent classifier weights
significantly improve the discriminative capabilities of these models
and (ii) we hypothesise that normalized and unnormalized spaces
learn complementary information which leads to enhanced perfor-
mance when an ANNS is created on their aggregation. Note that,
the individual search dimensions of UniDEC-de : and UniDEC-clf
are 𝑑/2 and searching with a concatenated embedding leads to a
fair comparison with other baselines which use a dimensionality of
𝑑 . Note that for all experiments in the paper, 𝑔1 (·), 𝑔2 (·) is defined
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Method P@1 P@5 PSP@1 PSP@5 |𝑄B | |𝐿B | VRAM TT

w Classifiers LF-Amazon-131K

Renee 48.05 23.26 39.32 53.51 512 131K 128 58
UniDEC 47.80 23.35 40.28 53.24 576 3000 48 24

w Classifiers LF-WikiSeeAlso-320K

Renee 47.70 23.82 31.13 40.37 2048 320K 128 81
UniDEC 47.69 22.81 35.45 40.71 677 3500 48 39

LF-Wikipedia-500K

DEXML 77.71 43.32 - - 2048 2048 80 -
DEXML 84.77 50.31 - - 2048 22528 160 -
DePSL 85.20 49.88 45.96 59.31 221 3000 48 55
Renee 84.95 51.68 39.89 56.70 2048 500K 320 39

DEXML-Full 85.78 50.53 46.27 58.97 2048 500K 320 39
Dual Encoder LF-AmazonTitles-1.3M

DEXML 42.15 32.97 - - 8192 8192 160 -
DEXML 54.01 42.08 28.64 33.58 8192 90112 320 -
DePSL 54.20 43.38 30.17 36.25 2200 4000 48 53
Renee 56.04 45.32 28.56 36.14 1024 1.3M 256 105
UniDEC 57.41 45.89 30.10 36.78 1098 3000 48 78

DEXML-Full 58.40 45.46 31.36 36.58 8192 1.3M 640 66

Table 2: Experimental results showing the effectiveness of DePSL and

UniDEC against the two ends of XMC spectrum. |𝑄B | denotes batch
size, |𝐿B | denotes label pool size and TT denotes Training Time(in hrs).

Note, these comparisons are not fair owing to the significant gap in

used resources.

LF-AmazonTitles-1.3M LF-WikiTitles-500K

Method P@1 P@5 PSP@1 PSP@5 P@1 P@5 PSP@1 PSP@5

DE loss - SupCon; CLF loss - SupCon
UniDEC 53.41 43.57 32.54 38.20 48.38 19.89 26.26 24.78

UniDEC-de 49.35 39.23 27.78 32.86 48.63 19.30 27.21 24.52
UniDEC-clf 46.90 38.62 31.23 35.28 29.48 14.21 18.97 18.82

DE loss - SupCon; CLF loss - SupCon + BCE
UniDEC 54.86 44.61 28.05 35.05 49.68 20.15 25.29 24.67

UniDEC-de 51.08 40.78 28.64 34.00 47.07 18.88 27.47 24.53
UniDEC-clf 53.48 42.76 26.24 32.81 45.07 17.96 19.01 19.68

DE loss - Decoupled Softmax; CLF loss - BCE
UniDEC 55.12 44.80 31.72 37.28 48.65 19.58 26.15 24.37

UniDEC-de 50.83 40.61 27.14 33.66 47.70 18.59 26.84 24.19
UniDEC-clf 54.69 42.81 30.74 36.48 43.27 16.55 19.41 18.29

DE loss - Decoupled Softmax; CLF loss - Decoupled Softmax
UniDEC 56.73 45.19 34.03 39.54 48.97 19.82 27.08 24.89

UniDEC-de 52.52 42.02 29.78 35.06 49.20 19.30 27.36 24.49
UniDEC-clf 43.67 36.85 32.68 37.07 30.27 13.74 18.95 17.75

DE loss - Decoupled Softmax; CLF loss - Decoupled Softmax + BCE
UniDEC 57.41 45.89 30.10 36.78 50.22 20.32 25.90 24.85

UniDEC-de 52.51 42.00 29.82 35.08 49.16 19.33 27.35 24.54
UniDEC-clf 55.56 44.10 29.15 35.49 44.66 17.38 20.56 19.62

Table 3: Experimental results showing the effect of different loss func-

tions while training UniDEC. Further, the table also shows the scores

of inference done using only the DE head Φ𝔇 (x) or the normalized

CLF head 𝔑 (Φℭ (x) ) , instead of the concatenated vector.

Loss Dual P@1 P@3 P@5 PSP@1 PSP@3 PSP@5 P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

LF-Amazon-131K LF-WikiSeeAlso-320K

SC 44.41 29.84 21.63 36.89 43.00 48.90 43.79 28.31 21.08 29.47 32.15 34.89
SC ✓ 45.03 30.24 21.93 37.66 43.81 49.78 44.32 28.84 21.57 30.16 33.14 36.11
DS 45.86 30.52 21.89 38.19 44.07 49.56 44.73 28.78 21.43 30.18 32.79 35.58
DS ✓ 45.79 30.60 21.95 38.43 44.42 49.92 44.83 29.07 21.66 30.67 33.56 36.41

LF-AmazonTitles-1.3M LF-WikiTitles-500K

SC 52.22 46.45 41.80 29.15 32.90 34.91 48.30 27.33 19.26 27.00 25.12 24.51
SC ✓ 50.62 45.09 40.64 30.51 34.30 36.33 47.33 26.79 18.94 27.41 25.21 24.63
DS 54.20 48.20 43.38 30.17 34.11 36.25 49.66 27.93 19.62 27.44 25.64 24.94
DS ✓ 53.26 47.55 42.86 31.90 35.80 37.88 48.87 27.47 19.35 28.09 25.77 25.08

Table 4: Experimental results showing the effect of adding dual loss while training our DePSL.

as follows,

Φ𝔇 (·), Φℭ (·) ≔ 𝔑(𝑔1 (Φ(·))), 𝑔2 (Φ(·))
𝑔1 (·) ≔ nn. Sequential(nn. Linear(dΦ, d), nn. Tanh(), nn.Dropout(0. 1))
𝑔2 (·) ≔ nn. Sequential(nn. Linear(dΦ, d), nn.Dropout(0. 1))

Effect of ANNS-mind Hard Negatives : The effect of explic-
itly adding ANNS-mined hard negatives is shown via a vis-a-vis
comparison with UniDEC (w/o Hard Negatives) in Table 5. Here,
when we do not add hard negatives, we compensate by adding
other positives of the batched queries. More broadly, we observe a
P vs PSP trade-off in this ablation. We find that not including hard

negatives in the shortlist performs better on PSP@K metrics, due to
inclusion of more positive labels. Consequently, adding (typically
𝜂 = 6) hard negatives generally increases performance on P@K
metrics, while compromising on PSP@K metrics. While the smaller
datasets show only marginal improvements with added hard neg-
atives, these effects are more pronounced in the larger datasets,
proving its necessity in the pipeline.

Effect of Symmetric Loss. As shown in Table 4, making the
loss function symmetric has a favorable effect on all metrics for
long-text datasets. However, this make the short-text datasets favor
PSP@K metrics more, at an expense of P@K metrics. We believe
this happens because of mixing data distributions. While adding a
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Method P@1 P@3 P@5 PSP@1 PSP@3 PSP@5 P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

LF-Amazon-131K w/o Hard Negatives

UniDEC 47.80 32.29 23.35 40.28 47.03 53.24 47.45 31.49 22.53 41.28 46.93 52.40
UniDEC-de 45.24 30.32 21.97 37.85 43.92 49.90 45.45 30.29 21.79 38.15 43.97 49.53
UniDEC-clf 47.83 32.31 23.32 40.56 47.17 53.21 43.77 28.30 19.90 39.80 43.64 47.78

LF-WikiSeeAlso-320K w/o Hard Negatives

UniDEC 47.69 30.74 22.81 35.45 38.02 40.71 46.74 30.04 22.27 35.85 38.10 40.97
UniDEC-de 44.65 28.84 21.53 30.54 33.30 36.20 43.07 27.67 20.69 30.52 32.81 35.55
UniDEC-clf 42.04 25.89 18.89 33.63 34.07 35.60 41.05 25.47 18.80 33.52 34.01 35.82

LF-WikiTitles-500K w/o Hard Negatives

UniDEC 50.22 28.76 20.32 25.90 25.20 24.85 49.84 28.31 19.95 26.41 25.44 24.99
UniDEC-de 49.16 27.51 19.33 27.35 25.24 24.54 46.87 25.60 17.83 27.38 24.64 23.81
UniDEC-clf 44.66 24.81 17.38 20.56 19.86 19.62 44.20 24.83 17.48 21.33 20.60 20.42

LF-AmazonTitles-1.3M w/o Hard Negatives

UniDEC 57.41 50.75 45.89 30.10 34.32 36.78 56.51 49.77 44.94 31.90 35.89 38.21
UniDEC-de 52.51 46.66 42.00 29.82 33.21 35.08 49.71 43.87 39.37 30.40 33.49 35.20
UniDEC-clf 55.56 48.77 44.10 29.15 33.15 35.49 53.31 47.21 42.90 30.41 34.19 36.47

Table 5: Experimental results showing the effect of adding ANNS-mined hard negatives while training UniDEC. Further, the

table also shows the scores of inference done using either the DE head embedding Φ𝔇 (x) or the normalized CLF head embedding

𝔑(Φℭ (x)), instead of the concatenated vector {Φ𝔇 (x) ⊕ 𝔑(Φℭ (x))}. The P vs PSP trade-off associated with adding ANNS-mined

hard-negatives is clear by observing the underlined values.

short-text loss over long-text document helps the model understand
the label distribution better, this has a reverse effect on short-text
datasets and the label distribution confuses with already short-text
query distribution and ends up learning the label distribution more
at the expense of query distribution.

5 Other Related Works

To reduce computational costs of training classifiers, previous XMC
methods tend to make use of various shortlisting strategies, which
serves as a good approximation to the loss over the entire label space
[4, 7, 37]. This shortlist can be created in one of the two ways : (i) by
training a meta classifier on coarser levels of a hierarchically-split
probabilistic label tree. The leaf nodes of the top-k nodes consti-
tute the shortlist [15, 18, 19] (ii) by retrieving the top-k labels for
a query from an ANNS built on the label representations from
a contrastively trained DE [5]. Both these methods have differ-
ent trade-offs. The meta-classifier based approach has a higher
memory footprint due to the presence of additional meta classifier
(∼ R𝐿/10×𝑑 in size) along with the extreme classifier, but it gives
enhanced performance since this provides progressively harder
negatives in a dynamic shortlist, varying every epoch [15, 18, 19].
The shortlisting based on ANNS requires training the model in
multiple stages, which has low memory usage, but needs longer
training schedules and uses a static shortlist for training extreme
classifiers [6, 7, 23, 24].

Previous research has also explored various other methods : (i)
label trees [14, 17, 25, 34], (ii) classifiers based on hierarchical label

trees [4, 26, 38]. Tangentially, various initialisation methods [9, 31]
and data augmentation approaches [20] have also been studied.
Alongside previous negative-mining works, the statistical conse-
quences of this sampling [30] and missing labels [12, 27, 32, 33, 35]
have led to novel insights in designing unbiased loss functions -
which can also be applied in UniDEC.

6 Conclusion

In this paper, we present a new loss-independent end-to-end XMC
framework, UniDEC, that aims to leverage the best of both, a dual
encoder and a classifier in a compute-efficient manner. The dual-
encoder is used to mine hard negatives, which are in turn used
as the shortlist for the classifier, eliminating the need for meta
classifiers. Highly informative in-batch labels are created which
maximise the supervisory signals while keeping the GPU memory
footprint as low as possible - to the extent that we outperform
previous SOTAs with just a single GPU. The dual encoders and
classifiers are unified and trained with the same multi-class loss
function, which follows the proposed pick-some-labels paradigm. To
the best of our knowledge, we are the first work to study the effect of
PAL-like losses for training XMC classifiers. We hope this inspires
future works to study the proposed PSL reduction for multilabel
problems as a compute-efficient means to further eliminate the
need of high-capacity classifiers in XMC, bringing the scope of this
problem closer to the more general dense retrieval regime.
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A Offline Evaluation and Live A/B testing on

Sponsored Search

To demonstrate the effectiveness of our method on proprietary
datasets and real-world scenarios, we do experiments in sponsored
search setting. The proposed model was evaluated on proprietary
dataset for matching queries to advertiser bid phrases (Query2Bid)
consisting of 450M labels. Query2Bid-450M dataset was created by
mining the logs from search engine and enhancing it through Data
Augmentation techniques using a ensemble of leading (proprietary)
algorithms such as Information Retrieval models (IR), Dense re-
trieval models (DR), Generative Non-Autoregressive models (NAR),
Extreme-Multi-label Classification models (XMC) and even GPT
Inference techniques.

Experimental Setup : The BERT Encoder is initialized with 6-
Layer DistilBERT base architecture. Since the search queries and
bid phrases are of short-text in nature, a max-sequence-length of 12
is used. We evaluate DePSL against XMC and DR models deployed
in production which could scale to the magnitude of chosen dataset.
Training batch-size is set to 2048 and other Hyperparameters are
chosen to be same as for public benchmark datasets. Training is
carried out on 8 V100 GPUs and could easily complete within 48

hours. Performance is measured using popular metrics such as
Precision@K (P@K) with 𝐾 ∈ 1, 3, 5, 10.

Method P@1 P@3 P@5 P@10

NGAME 86.16 73.07 64.61 51.94
SimCSE 86.08 73.26 65.27 53.51
DePSL 87.33 74.63 66.44 54.13

Table 6: Results on Query2Bid-450M dataset for Sponsored

Search

Offline Results : Table 6 shows that on DePSL can be 1.15-1.83%
more accurate than the leading DR & XMC methods in Sponsored
Search setting. This indicates that leveraging DePSL can yield su-
perior gains in real-world search applications.

Live A/B Testing in a Search Engine: DePSLwas deployed on Live
Search Engine and A/B tests were performed on real-world traffic.
The effect of addingDePSL to the ensemble of existingmodels in the
system was measured through popular metrics such as Impression
Yield (IY), Click Yield (CY), Click-Through Rate (CTR) and Query
Coverage (QC). Refer [6] for definitions and details about these
metrics. DePSL was observed to improve IY, CY, CTR and QC by
0.87%, 0.66%, 0.21% and 1.11% respectively. Gains in IY, CY and
CTR establish that DePSL is able to predict previously unmatched
relations and the predictions are more relevant to the end user. QC
boost indicates that DePSL is able to serve matches for queries to
which there were no matches before in the system. This ascertains
the zero-shot capabilities of the model.

B Dataset Statistics

MS-MARCO, a representative dataset for DR tasks, has 3.2M doc-
uments but on average contains only 1.1 positively annotated an-
swers (label) per question (instance) [28]. On the other hand, LF-
AmazonTitles-1.3M, an XMC dataset which is representative dataset

for product recommendation task, has a label space spanning 1.3M
Amazon products where each instance (a product title) is annotated
(tagged), by ∼ 22.2 labels (related product titles) and each label
annotates, ∼ 38.2 instances. This indicates the broader spectrum of
XMC tasks in contrast with zero-shot nature of ODQA task.
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Datasets Benchmark N L APpL ALpP AWpP

MS-MARCO DR 502,931 8,841,823 - 1.1 56.58
LF-AmazonTitles-131K XMC 294,805 131,073 5.15 2.29 6.92

LF-Amazon-131K XMC 294,805 131,073 5.15 2.29 6.92
LF-AmazonTitles-1.3M XMC 2,248,619 1,305,265 38.24 22.20 8.74
LF-WikiSeeAlso-320K XMC 693,082 312,330 4.67 2.11 3.01
Query2Bid-450M Search Engine 52,029,024 454,608,650 34.61 3.96 -

Table 7: Details of the benchmark datasets with label features. APpL stands for avg. points per label, ALpP stands for avg. labels

per point and AWpP is the length i.e. avg. words per point.

P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

Method LF-WikiSeeAlsoTitles-320K

UniDEC 36.3 23.2 17.3 26.3 27.8 29.9
OAK 33.7 22.7 17.1 25.8 28.5 30.8

GraphSage 27.3 17.2 13.0 21.6 21.8 23.5
GraphFormer 21.9 15.1 11.8 19.2 20.6 22.7

NGAME 32.6 22.0 16.6 24.4 27.4 29.9
DEXA 31.7 21.0 15.8 24.4 26.5 28.6
ELIAS 23.4 15.6 11.8 13.5 15.9 17.7

CascadeXML 23.4 15.7 12.1 12.7 15.4 17.6
XR-Transformer 19.4 12.2 9.0 10.6 11.8 12.7
AttentionXML 17.6 11.3 8.5 9.4 10.6 11.7
SiameseXML 32.0 21.4 16.2 26.8 28.4 30.4
ECLARE 29.3 19.8 15.0 22.0 24.2 26.3

LF-WikiTitles-500K

UniDEC 50.2 28.8 23.3 25.9 25.2 24.9
OAK 44.8 25.9 17.9 25.7 25.8 25.0

GraphSage 27.2 15.7 11.3 22.3 19.3 19.1
GraphFormer 24.5 14.9 11.3 22.0 19.2 19.5

NGAME 39.0 23.1 16.1 23.1 23.3 23.0
CascadeXML 47.3 26.8 19.0 19.2 19.5 19.7
AttentionXML 40.9 21.5 15.0 14.8 14.0 13.9

ECLARE 44.4 24.3 16.9 21.6 20.4 19.8
LF-AmazonTitles-1.3M

UniDEC 57.4 50.8 45.9 30.1 34.3 36.8

GraphSage 28.1 21.4 17.6 24.5 24.2 23.7
GraphFormer 24.2 17.4 14.3 22.5 22.4 22.5

NGAME 54.7 47.8 42.8 28.2 32.3 34.5
DEXA 56.6 49.0 43.9 29.1 32.7 34.9

CascadeXML 47.8 42.0 38.3 17.2 21.7 24.8
XR-Transformer 50.1 44.1 40.0 20.1 24.8 27.8

PINA 55.8 48.7 43.9 - - -
AttentionXML 45.0 39.7 36.2 16.0 19.9 22.5
SiameseXML 49.0 42.7 38.5 27.1 30.4 32.5
ECLARE 50.1 44.1 40.0 23.4 27.9 30.6

Table 9: Additional Results on short-text datasets

C Complete Results

P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

Method LF-WikiSeeAlso-320K

UniDEC 47.69 30.74 22.81 35.45 38.02 40.71
NGAME 46.4 25.95 18.05 28.18 30.99 33.33
DEXA 47.11 30.48 22.71 31.81 35.5 38.78

CascadeXML 40.42 26.55 20.2 22.26 27.11 31.1
XR-Transformer 42.57 28.24 21.3 25.18 30.13 33.79

PINA 44.54 30.11 22.92 - - -
AttentionXML 40.5 26.43 19.87 22.67 26.66 29.83
LightXML 34.5 22.31 16.83 17.85 21.26 24.16

SiameseXML 42.16 28.14 21.39 29.02 32.68 36.03
ECLARE 40.58 26.86 20.14 26.04 30.09 33.01
DECAF 41.36 28.04 21.38 25.72 30.93 34.89
Parabel 33.46 22.03 16.61 17.1 20.73 23.53
Bonsai 34.86 23.21 17.66 18.19 22.35 25.66

LF-Wikipedia-500K

UniDEC 83.8 62.63 47.17 42.11 49.32 51.78
NGAME 84.01 64.69 49.97 41.25 52.57 57.04
DEXA 84.92 65.5 50.51 42.59 53.93 58.33

ELIAS 81.26 62.51 48.82 35.02 45.94 51.13
CascadeXML 80.69 60.39 46.25 31.87 40.86 44.89

XR-Transformer 81.62 61.38 47.85 33.58 42.97 47.81
PINA 82.83 63.14 50.11 - - -

AttentionXML 82.73 63.75 50.41 34 44.32 50.15
LightXML 81.59 61.78 47.64 31.99 42 46.53

SiameseXML 67.26 44.82 33.73 33.95 35.46 37.07
ECLARE 68.04 46.44 35.74 31.02 35.39 38.29
Parabel 68.7 49.57 38.64 26.88 31.96 35.26
Bonsai 69.2 49.8 38.8 - - -

Table 8: Additional results on long text datasets
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