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Abstract

Machine Translation (MT) is a crucial field in
Natural Language Processing, with recent ad-
vancements like the transformer architecture
revolutionizing the task. While MT typically
aims for accurate and natural translations, there
are instances, such as educational translations,
where maintaining the original syntactic struc-
ture and meaning is paramount. Interlinear
translation, exemplified by its application to
ancient texts like the Iliad and the Bible, em-
phasizes this fidelity to the source text’s struc-
ture.

Despite the importance of interlinear transla-
tion, research in automating this process re-
mains limited, particularly for ancient texts.
Our work aims to address this gap by evaluat-
ing state-of-the-art neural machine translation
models on the task of interlinear translation
from Ancient Greek to Polish and English. We
compare the performance of general-purpose
multilingual models with dedicated language
models and assess the impact of Part-of-Speech
(POS) tags as well as data preprocessing strate-
gies on model performance.

Our contributions include constructing a word-
level-aligned parallel corpus of interlinear trans-
lations of the Greek New Testament. We fine-
tune four base models in various conditions, to-
taling 144 models, the best of which we make
publicly available. Last, but not least, we sug-
gest three approaches for encoding morpho-
logical information via dedicated embedding
layers, which outperform solutions that do not
utilize tags by up to 20% (BLEU score) on
an interlinear translation task into both of the
target languages.

1 Introduction

Machine translation (MT) is a well-established sub-
field in Natural Language Processing, primarily
focused on producing accurate and natural transla-
tions. In typical scenarios, MT systems have the
flexibility to reorder words or go beyond literal

meanings to account for syntactic differences be-
tween source and target languages.

However, there are exceptional cases where
maintaining the original syntactic structure and
meaning of the source language is of greater im-
portance. One such scenario arises in educational
translations, where preserving a close word-to-
word correspondence facilitates better comprehen-
sion of the relationships between texts. Interlinear
translation serves this purpose by aiming to retain
the syntactic structure of the original text. Fig-
ure 1 presents an example of an interlinear trans-
lation. This type of translation holds particular
significance in the study of ancient texts, such as
the Iliad, Odyssey, works of ancient philosophers,
and religious scriptures like the Bible.

Despite the significance of interlinear translation
for scholars interested in ancient texts, there has
been limited research on automating this process.
This may be attributed to the pre-existing trans-
lations for many influential texts. However, we
believe that this issue remains pertinent, particu-
larly for individuals lacking expertise in ancient
languages, cultures, and histories, such as those
seen in the Bible.

In our research, we aim to achieve the following
objectives:

» Evaluate the performance of state-of-the-art
MT models in interlinear translation from An-
cient Greek to Polish and English,

* Compare the effectiveness of general-purpose
multilingual models with dedicated language
models trained specifically on ancient lan-
guages and the given target language,

* Assess the impact of Part-of-Speech (POS)
tags on model performance by comparing dif-
ferent tag sets and various approaches to their
integration, namely encoding them within the
input text or via a dedicated embedding layer,



| Source |—>l “Eyelpe | l &pov I | oV | | KPABOTIOV I | gou | | Kalt | | TIEPITIATEL I
I Target |—>[ Arise I l take up I I the mat I I of you | I and I I walk I
| Tags |—>[ V-PMA-2S | I V-AMA-2S I | Art-AMS | | N-AMS I | PPro-G2S | | Conj I | V-PMA-2S I

Figure 1: Example of interlinear translation. Snippet from John 5:8 taken from the Bible Hub corpus. The dataset
comprises three sequences: words in the source language (Ancient Greek), their respective translations in English,

and morphological tags for each source unit.

* Investigate the influence of pre-processing
strategies, specifically focusing on the com-
mon techniques of lower-casing input text and
removing diacritics.

Regarding the source corpus, we focus on the
study of the full text of the Greek New Testament.
We take here into account the fundamental impor-
tance of this text for the international society, the
fact of Ancient Greek being the original language
of the New Testament as well as the existence of
numerous translations of it.

For the targets of our translations, we examine
differences in performance of the models with re-
spect to languages with a different syntactic char-
acter — positional English and inflectional Polish.

Our contributions The contribution of our re-
search is threefold. Firstly, we construct a word-
level-aligned parallel corpus of two interlinear
translations of the Greek New Testament — to En-
glish and to Polish using scraped data from Bible
Hub' and Oblubienica.”® Secondly, we conduct
fine-tuning experiments for an interlinear transla-
tion task using four base models — PhilTa, GreTa
(Riemenschneider and Frank, 2023a) and mT5
(Xue et al., 2020) (in two sizes), in 36 setups each,
totaling 144 fine-tuned models — the best of which
we publish for others to examine and further ex-
periment with*. Lastly, our experiments show that
including diacritics and morphological tags in in-
terlinear machine translation improves model’s per-
formance on the task. We suggest novel ways of
encoding the tags within the model’s input, improv-
ing the baseline score by 20%.

'https://biblehub.com/interlinear/

*https://biblia.oblubienica.eu/

3As we have not received a response regarding the pos-
sibility of publishing the datasets, we have chosen not to do
so for now. However, we are happy to share them with other
researchers upon request.

*We are eager to share the models with the reviewers, but
have not provided the link to a repository, to simplify the
double-blind review process, since the models are heavy.

2 Related Work

Recent years have witnessed a substantial increase
in scholarly output focusing on the intersection
of machine learning and the study of ancient lan-
guages, including Ancient Greek (Sommerschield
et al., 2023). Nevertheless, there still remains a sig-
nificant scope for novel contributions in this area.

In this section, we cover related work in the
following fields of study:

e NLP for Ancient Greek,

¢ Machine Translation for the Bible,

e Interlinear Machine Translation,

» Usage of POS tags in low-resource settings.

The majority of recent research addressing Ma-
chine Learning for Ancient Greek focuses on solv-
ing problems using encoded forms of the Greek
language. Scholars commonly apply encoder mod-
els of the BERT family (Devlin et al., 2019) to
problems such as Part-of-speech (POS) tagging
and lemmatization (Singh et al., 2021a), transla-
tion alignment (Yousef et al., 2022; Keersmaekers
et al., 2023) and dependency parsing (Nehrdich and
Hellwig, 2022) to name a few.

At the same time, encoder-decoder models ap-
plied within the machine translation domain enjoy
a much smaller popularity. A recent survey on Ma-
chine Learning for Ancient Languages lists only a
single work covering Ancient Greek in the section
devoted to machine translation (Sommerschield
et al., 2023). The study, however, does not directly
deal with MT — specifically, it addresses the prob-
lem of corpus alignment between Ancient Greek
and Latin and applies an encoder model to do so.

In our review of the literature, we found only one
instance where the state-of-the-art encoder-decoder
models were trained specifically for Ancient Greek.
Riemenschneider and Frank (2023a) train two T5-
family (Raffel et al., 2023) models, GreTa and



PhilTa — respectively a monolingual model trained
on Ancient Greek and a trilingual one pre-trained
on Ancient Greek, Latin and English.

Literature suggests two ways of applying ma-
chine learning to the domain of NLP for An-
cient Greek — the more popular one takes general-
purpose multilingual models such as BERT and fur-
ther trains them via tasks such as Masked Language
Modelling (MLM) on an Ancient Greek corpus (e.g.
Singh et al. (2021b)). The other approach is to train
a dedicated model from scratch, without using an
existing pre-trained model as the base. An example
of this approach is the previously mentioned work
of Riemenschneider and Frank (2023a). While the
latter approach allows for training an optimized
tokenizer for working with Ancient Greek, it may
result in the model’s impaired performance in ma-
chine translation into the target language.

As reported by Gerner (2018), the number of lan-
guages into which the Bible has been translated is
growing exponentially. Some, such as Hurskainen
(2018) discuss machine translation’s usefulness in
the Bible translation, but the focal point of their
study is translation of the Bible from one modern
language to another — oftentimes a low-resource
one. Indeed, such case studies were reported for
Navajo, Basque and English (Ling et al., 2023) or
Mizo and English (Devi et al., 2022).

Some studies use the Bible within NLP for
Ancient languages. Martinez Garcia and Gar-
cia Tejedor (2020) use parallel Bible corpora to
train a model for translating from Latin to Spanish,
Riemenschneider and Frank (2023b) use the Bible
data for Greek-English corpora alignment, Krahn
et al. (2023) use parallel Ancient Greek-English
Bible corpora to evaluate the translation bias of
multi-language sentence embedding models, by
measuring the distance of embedded Ancient Greek
text of the Bible to its embedded English transla-
tions. It seems that most scholars use the Bible
for its parallel-corpus features and little attention
is paid to assessment of how the state-of-the-art
MT models would perform on translating the Bible
itself from its Ancient Greek manuscripts (in case
of the New Testament or the Septuagint) to mod-
ern languages especially in settings other than free
translation.

Interlinear glossing has been a subject of many
extant works. While the glossing may happen on
either word- or morpheme- level, the latter one is
much more popular as a research area, possibly
due to its application in language documentation

and preservation. The former is more commonly
used as a means of providing readers with a deeper
understanding of a given text in the source language
even if the reader does not necessarily know it
(Carter, 2019).

Some works study the possibility of incorpo-
rating source language glosses in generation of
free translations in the target language (Zhou et al.,
2020), but a reverse scenario, where glosses are
part of the algorithm’s output enjoys much more
attention (Moeller and Hulden, 2018; McMillan-
Major, 2020; Zhao et al., 2020). Last year has seen
a shared task on interlinear glossing introduced at
SIGMORPHON as a part of which participants pro-
duced grammatical descriptions of input sentences
on morpheme-level.’

Part of speech tagging has been present in the his-
tory of NLP since its beginning. In the recent years,
thanks to better neural architectures and more re-
sources, the need for manual feature engineering
has diminished, especially in well-resourced lan-
guages. However, discarding morphological meta-
data might not be such an obvious choice in low-
resource settings. Moeller et al. (2021) report that
the presence of POS tags does not necessarily im-
pact the performance of Transformer models on
selected morphological tasks. At the same time
Perera et al. (2022) report that injection of mor-
phological features into their English-to-Sinhala
Transformer resulted in a performance boost for
one of two tested models. Hence, we aim to evalu-
ate tag-injected model performance.

3 Methodology

In this section we discuss our corpora, including
gathering, alignment and preprocessing of the data.
Further, we cover models employed and our ap-
proaches for encoding the morphological metadata
in their inputs. Finally, we describe how the models
were fine-tuned.

3.1 Datasets

For our fine-tuning dataset, we prepared two cor-
pora comprising interlinear translations of the
Greek New Testament: one into Polish and one
into English.

Data Acquisition Both datasets were scraped
from distinct sources — Oblubienica and Bible Hub,
respectively. The corpora utilize different tex-
tual variants of the Greek text. Specifically, the

Shttps://github.com/sigmorphon/2023GlossingST



BH: Eyéveto 8%, &v 1) 1OV ATIOAG £ival &v Kopivew...

OB:  &yeVETO O€ €V TW ATIOAAW EIVAIL EV KOPIVOW..

Figure 2: A passage (Acts 1:19) showing differences
between the source texts in both corpora. The first line
originates from Bible Hub (BH) while the the second
from Oblubienica (OB). Differences include casing (BH
varies casing, OB uses only lowercase), diacritics (used
in BH, but not in OB), and an extra article (tov) in Bible
Hub’s version.

Greek text in the Oblubienica corpus follows Nes-
tle Aland Novum Testamentum Graece 28 (NA28),
while Bible Hub merges multiple textual vari-
ants, including NA27, Byzantine Majority Text,
Scrivener’s Textus Receptus 1896, Westcott and
Hort, SBLGNT, and Nestle 1904, and marks each
variant using special quotes. Although the primary
disparity between the two corpora lies in the tex-
tual variant used, there are additional distinctions,
which include varying casing, usage of diacritics,
and punctuation, as depicted in Figure 2. The tag
sets of the two corpora differ as well. While in ma-
jority of the sentences there is a cross-corpus agree-
ment on a morphological form of a word, there
are also places where the two corpora diverge —
e.g. in Rev 5:5 dawuld is tagged by Bible Hub as V-
GMS (Noun — Genitive, Masculine, Singular), but
Oblubienica tags the same word as ni proper (noun,
indeclinable, proper), thus focusing on a different
aspect of the word.

Corpus Alignment To evaluate model perfor-
mance based on the tag set used, we aligned the
two corpora at the word level, thus establishing a
mapping and exchange between their respective tag
sets. Initially, we removed marked textual variants
other than NA27 from the Bible Hub version to
align it with Oblubienica (NA28). Subsequently,
we applied heuristics to match each word from
one corpus with its counterpart in the other, prior-
itizing rules such as exact matching, within-verse
matching, and selecting the closest match in cases
of multiple candidates. These steps successfully
matched over 99% of the words in the corpora. For
unmatched words, we mapped morphological tags
from one tag set to the other using the statistically
most common counterpart. Remaining edge cases,
like proper nouns, were mapped manually.

Final Dataset: After alignment, each word in
both corpora carries two morphological tags: one
original and one cloned from the corresponding

word-level counterpart in the other corpus. It’s
worth noting that the tag sets vary not only in qual-
ity but also in quantity. Refer to Table 1 for specific
volume details of each corpus.

Corpus Oblubienica Bible Hub
Verses 7,940 7,940
Words (GR) 137,390 137,317
Words (PL/EN) 133,581 185,722
Tag Set Size 1,073 684

Table 1: Corpus Statistics. The rows display number of
rows, words in the source and target language and the
count of unique morphological tags in the tag set.

3.2 Data Preprocessing

There are two schools of thought when it comes
to preprocessing texts in Ancient Greek. The first
one advocates for keeping all diacritics and training
the tools to learn from them. This approach was
used by Riemenschneider and Frank (2023a) while
training PhilTa and GreTa. The other approach is
much more popular and it normalizes the data by
stripping the texts from diacritics e.g. Yamshchikov
et al. (2022). Within our experiments, we test both
of these paradigms. For the diacritics version of our
dataset, we use the spelling from Bible Hub. We
benefit from the fact that the datasets are aligned
and replace Greek words in Oblubienica with their
Bible Hub counterparts.

One common measure of a tokenizer’s efficiency
on a given corpus is the average number of tokens
per word (Yamshchikov et al., 2022), which we
calculate and report in Table 2. While there is a
visible discrepancy in tokenization performance for
Ancient Greek with diacritics — here, mT5 requires
twice as many tokens to represent a word compared
to PhilTa or GreTa — this gap disappears when to-
kenizing the normalized source. In all other cases
(Polish, English, and tags), mT5 outperforms the
others. Additionally, it is worth mentioning the
much higher token numbers per morphological tag
in the Oblubienica dataset compared to its Bible
Hub counterpart. This is mainly due to the longer
tags used in Oblubienica, e.g. when Bible Hub tags
apyfi as N-DF'S, Oblubienica tags it as n_ Dat Sg f.

3.3 Base Models

Our study employs four base models: GreTa,
PhilTa (Riemenschneider and Frank, 2023a) and
mTS5 in two sizes — base and large (Xue et al., 2020),



Tokenizer GreTa PhilTa mT5
Dataset

GR — diacritics 1.57 1.58 3.23
GR — normalized 2.50 2.36 2.37
PL 4.08 420 2.37
EN 3.51 1.92 1.99
Tags (OB) 7.26 694 545
Tags (BH) 5.06 526 3.82

Table 2: Overview of tokenization metrics. The consecu-
tive rows display the average number of tokens required
by each tokenizer for: a Greek word with diacritics, a
normalized Greek word, a Polish word, an English word,
a tag from the Oblubienica (OB) tag set, and a tag from
the Bible Hub (BH) tag set, respectively.

| Text Emb I I Text Emb I l Text Emb | l Morph Emb |
Mabdrog <0> MadAog <1> N-NMS <0> Madiog <0> N-NMS <0>
Kal <0> Kal <1> Conj <0> Kol <0> Conj <0>
SIAouavog Tidovavdg <1> N-NMS SIAovavog N-NMS
(a) t-o (b) t-w-t (c) emb-*

Figure 3: Comparison of three input sequence encoding
methods. The first method (t-o, baseline) omits the
morphological metadata. The second method (t-w-t)
includes these tags as part of the input. Lastly, the third
method (emb-*) utilizes a dedicated embedding layer to
encode the tags as a separate sequence.

all belonging to the T5 model family (Chung et al.,
2022). Both GreTa and PhilTa are T5-base-sized
models, with GreTa trained on Ancient Greek cor-
pora and PhilTa trained on Ancient Greek, Latin,
and English. mT5 was trained on the mC4 corpus,
which comprises 101 languages including English
and Polish — the target languages for our transla-
tions. Ancient Greek was not reported to be part
of the pre-training data for the model. We select
mT5-base to match the size of the other models
and mT5-large to explore whether increasing the
number of parameters improves performance.

3.4 Model Inputs

In our experiments we assess whether inclusion
of morphological tags leads to an improved per-
formance on interlinear translation task. To do so,
we implement five scenarios which can be grouped
into three categories (as seen in Figure 3) based on
how the tags are encoded. We discuss them in this
section.

In 7ext Only (t-o) — the baseline scenario — no

morphological information is passed to the model.
Each Greek word is separated with a dedicated
sentinel token, and this sequence of words and
separators constitutes the model’s input.

In Text With Morphological Tags (t-w-t) we en-
code POS tags as part of the model’s text input.
Greek words and tags are encoded with the help
of two sentinel tokens: one to separate word-tag
pairs and another to demarcate the end of the Greek
word and the beginning of the tag within each pair.

The third group (emb-) comprises the remaining
three scenarios, which involve introducing a ded-
icated embedding layer trained during the model
fine-tuning process. Initially, we tokenize the text
and one-hot-encode the POS tags, maintaining
alignment between the two sequences. Whenever a
Greek word is tokenized into multiple tokens, the
corresponding tag is replicated the same number of
times. The three scenarios differ in how the vectors
are processed and transformed, but in all cases, the
combined vector constitutes input to the encoder
stack, retaining the same number of dimensions as
during the model’s pre-training phase (768 dimen-
sions for -base and 1024 for -large). We visualize
the three approaches in Figure 4 and discuss them
in the subsequent paragraphs.

In Embeddings — Sum (emb-sum), morphologi-
cal tags are embedded in a vector space of the same
size as the one used by the base model. The em-
bedded text and POS tags are then summed, and
the result is passed to the encoder stack.

Embeddings — Autoencoder (emb-auto) also
sums the two sequences positionally, but first, the
tags sequence is embedded in a smaller space.
Given the small number of unique tags in the tag
sets (roughly 1000), the tag embedding layer may
essentially one-hot-encode the tags. Thus, this ap-
proach aims to force the model to synthesize in-
formation carried within the tags by compressing
them and then decompressing them back to the
expected number of dimensions. The compressed
embedding size is a hyperparameter to be tuned.

In the last approach — Embeddings — Concatena-
tion (emb-concat) — the two sequences are concate-
nated, but to ensure that the output vector is of the
desired size, an extra linear layer is introduced to
reduce the number of dimensions in the text embed-
ding. The dimensions in the text embedding and
morphological embedding sum up to the desired
size, and the text-to-tag ratio in the output vector is
a tunable hyperparameter.

Trimming Our experiments aim to evaluate the
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(a) emb-sum
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Figure 4: The figures depict three embedding-based strategies for incorporating morphological information into
the model’s input. The first strategy (emb-sum) combines text (T) and morphological (M) embeddings into a
single vector using positional sum. The second compresses morphological embeddings before decompression and
summation with the text counterpart. The last scenario compresses both text and morphological embeddings and

concatenates the resulting vectors.

performance of proposed methods, regardless of
their efficiency in encoding inputs. With a sequence
limit of 256, some models may appear to perform
worse simply because they fit fewer words from the
source text into the input. To ensure fair compar-
isons, we trim each verse to the number of words
that can be encoded by the least efficient setup
among all 144 parameter combinations.

3.5 Training Details

The dataset was split into three subsets: training
(7543 verses, 95%), validation (198 verses, 2.5%),
and test (199 verses, 2.5%). Fine-tuning experi-
ments encompassed 144 combinations, varying the
target language, tag set, text preprocessing strategy,
base model, and morphological information encod-
ing strategy. Training employed an NVIDIA A100
GPU, with batch sizes ranging from 4 to 16 for
training and 1 to 8 for validation, adjusted based
on memory constraints. For emb-*, the learning
rate for new neural network layers was increased
from the default 1e-3 to 3e-1, le-2, or 3e-3, with
similar performance observed across these values.
The optimizer remained Adafactor. In emb-auto
and emb-concat, morphological embedding size
was set to 64 dimensions. A token limit of 256 was
enforced across all scenarios.

4 Evaluation

Model Output The output sequence contains trans-
lations for each Greek word separated by sentinel
tokens, similar to the input formatting. We employ
BLEU (Post, 2018) to measure model performance.
However, prior to comparing predictions and ref-
erences, we remove the separator tokens from the
output sequences to prevent the metric from re-
warding a model solely for structuring the output

correctly. Sequences are trimmed as during training
(see Trimming in Section 3.4), and predictions and
references are further trimmed to the same number
of ’translation blocks.’

5 Results

We address each research question in the subse-
quent sections, beginning with an examination of
the overall performance of the models. We then
compare the performance of each base model used
for fine-tuning. Finally, we investigate the impact
of morphological metadata and text preprocessing
on the final results. All scores presented in this
section represent the BLEU score obtained on the
test split.

5.1 Opverall Performance

Given the large number of parameter sets (144),
this section discusses general trends observed in
the data on an aggregate level before delving into
more detailed breakdowns in subsequent sections.

Empirical cumulative distribution functions
(eCDFs) for Ancient Greek to English and to Pol-
ish translation are presented in Figure 5. Despite
visible differences favoring experiments in English,
approximately the top 40% of scenarios for both
groups hover around the same values of BLEU
(45-55), with slightly higher scores for the English
subset. The discrepancy might possibly stem from
the fact that English was part of pre-training corpus
for both mT5 and PhilTa, while Polish was only
seen by mT3.

The close results in the two groups suggest that
the strict syntactical regime of interlinear transla-
tions may allow for cross-language comparisons,
which are normally impossible due to differences
in syntax and morphology.
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Figure 5: Empirical Cumulative Distribution Function
(eCDF) for BLEU scores secured by the 144 fine-tuned
models. The results are divided into two categories
according to the solved task — English (EN) and Polish
(PL) translation.

5.2 Base Model

Table 3 provides a general comparison of the base
models. On average, mT5-large outperformed all
other base models and achieved the best result in
Polish translation. However, in English translation,
its best score fell behind those achieved by GreTa
and PhilTa, with PhilTa as the winner. Despite not
being pre-trained on English or Polish, GreTa per-
formed similarly to mT5-base in both tasks, slightly
outperforming it both on average and in maximum
score, even though mT5-base was pre-trained on
both English and Polish. Surprisingly, PhilTa strug-
gled to match the results of other models in Polish
translation, failing to surpass a BLEU score of 30
in its best run.

These results suggest that, for translations of
classic texts, models pre-trained on both the source
and target languages offer the best performance. If
such models are not available, the next best options
appear to be selecting a model pre-trained on the
source language or opting for a larger multi-lingual
model.

Based on these results, fine-tuning a model pre-
trained on both Ancient Greek and Polish, similar
to how PhilTa was utilized for Ancient Greek and
English, could render the best results. However, as
of now, such a model does not exist.

5.3 Impact of Morphological Tags

This section answers two questions. Firstly, we
address the question of whether the inclusion of
morphological metadata leads to improved perfor-

PL EN

Base Model Avg Best | Avg  Best
GreTa 27.51 49.08 | 33.22 49.36
PhilTa 13.21 26.79 | 42.68 54.46
mT5-base 28.83 4722 | 34.07 45.65
mT5-large 45.00 51.16 | 45.74 48.41

Table 3: Aggregated performance of each of the base
models. The rows showcase the average and best results
of a given base model on translation into Polish (PL)
and English (EN), respectively.

mance on the interlinear translation task and if so,
how the metadata should be encoded. Secondly,
we assess the impact of the chosen tag set.

Impact of Encoding Strategy Table 4 compares
different morphological feature encoding strate-
gies. The results consistently show improved per-
formance on the interlinear translation task when
morphological metadata is included, regardless of
the chosen encoding strategy. The best-performing
morphologically-enhanced models outperform the
baseline (text-only) by approximately 20% for Pol-
ish (51.16 vs 42.65) and 21% for English (54.46 vs
44.95). This challenges the common belief that pre-
trained transformer cannot utilize such information
to perform better on NLP tasks, particularly for the
translation tasks.

Furthermore, the results suggest that using a
separate embedding representation is preferable
to encoding the morphological information directly
within the text to be translated. Across all strate-
gies, embedding-based solutions outperform the
approach that encodes tags within the text. Addi-
tionally, it’s worth noting that the latter is also the
least efficient in terms of both memory and time
complexity among all tested scenarios.

When comparing the three embedding-based
strategies, emb-concat yields the lowest scores and
is most prone to convergence issues. emb-auto and
emb-sum provide similar results, with emb-sum
leading for Polish (BLEU 51.16) and emb-auto for
English (54.46). The superior stability of the two
sum-based methods over the concatenation-based
one may stem from the lack of an additional com-
pression layer for text embeddings. This extra layer
can potentially disrupt the semantic representation
that the model learned during pre-training, thereby
hindering its performance.

Tag Set Comparison Table 5 presents results
for each of the two tag sets. While both sets



PL EN PL EN
Encoding Avg Best | Avg  Best Preprocessing  Avg  Best ‘ Avg  Best
t-o0 18.42 42.65 | 33.54 4495 Diacritics 30.03 51.16 | 41.33 54.46
t-w-t 21.26 48.04 | 3538 48.14 Normalized 27.24 50.95 | 36.53 50.61
emb-sum 37.96 51.16 | 47.84 53.98
emb-auto 4042 49.13 | 46.52 54.46 Table 6: Impact of preprocessing strategy (with dia-
emb-concat 20.02 46.56 | 2866 51.53 critics or with normalization) on final results. Rows

Table 4: Performance comparison of encoding strate-
gies. Rows display average and best results of each
encoding strategy for translation into Polish and En-
glish. The strategies are: text only (t-0), text with tags
(t-w-t), embedding — sum (emb-sum), embedding — au-
toencoder (emb-auto) and embedding — concatenation
(emb-concat), respectively.

yielded strong results, the average score and top-
performing models favored the tag set from Bible
Hub, outperforming Oblubienica in both translation
tasks. Notably, the top-performing tag set (refer to
Table 1) had roughly 50% fewer forms. This dif-
ference in score might be attributed to insufficient
training data for the model to learn to represent less
frequent forms, or it might stem from a difference
in tagging quality. Further investigation would be
necessary to determine the cause.

PL EN
Tag Set Avg  Best ‘ Avg  Best
BH 30.19 51.16 | 40.39 54.46
OB 29.64 50.16 | 38.81 53.95

Table 5: Effect of tag set selection on translation perfor-
mance. Rows show average and best results of models
using Bible Hub (BH) and Oblubienica (OB) tag sets
for translation into Polish (PL) and English (EN).

5.4 TImpact of Preprocessing

The results analyzing the impact of preprocessing
strategy are presented in Table 6. In the vast major-
ity of cases, regardless of the chosen tokenizer, runs
with diacritics achieved better results both on aver-
age and in the best-case scenario. We find it inter-
esting that the inclusion of diacritics in the transla-
tion task generally improves the results, especially
considering that in many experiments found in the
literature for the analysis of Ancient Greek, dia-
critics are often removed. We postulate that more
attention should be paid to the preservation of this
additional information, given its value for the mod-
els’ performance, as shown in our experiments.

display average and best results on the test dataset for
each approach on the two translation tasks.

6 Conclusions

We have presented research addressing interlinear
translation from Ancient Greek, offering a dataset
for assessing multiple sequence-to-sequence mod-
els. Among our findings, PhilTa emerges as the top
performer for English, while mT5-large excels for
Polish. Surprisingly, GreTa, pretrained solely on
Ancient Greek, yields comparable results.

Our proposed methods for encoding morpho-
logical information via dedicated embedding lay-
ers consistently improve translations, particularly
when the model sums morphological embeddings
with text embeddings. This approach leads to an
8.5 percentage point improvement for Polish and
a 9.5 percentage point improvement for English
compared to models without morphological data.

Additionally, we have observed a positive impact
on model scores when preserving original diacrit-
ics, a practice often overlooked in NLP studies
focusing on Ancient Greek.

7 Ethics

While our research involves the translation of theo-
logically significant documents, it is important to
note that our primary focus is on evaluating ma-
chine translation methodologies. We acknowledge
the potential for bias in both the models and the
underlying data, particularly in texts of religious
significance. Therefore, we caution against draw-
ing any theological conclusions from our transla-
tions, as our study does not investigate or account
for potential biases. Our aim is to contribute to the
advancement of machine translation technology
while maintaining a neutral stance on theological
interpretations.

Additionally, we acknowledge the usage of Chat-

GPT for assistance with text editing and refining
code for experiments.



8 Limitations

Limited Text Scope We focused only on the New
Testament for our research. This decision was influ-
enced by several factors. Firstly, interlinear transla-
tions are less common in the public domain com-
pared to standard parallel corpora for training MT
systems. Additionally, aligning the source trans-
lation for two distinct target languages requires
substantial resources and good quality of data, both
being scarce. While our study only looked at the
New Testament, future research could include texts
from Ancient philosophers (like Plato) and writ-
ers (such as Homer) to better assess the impact of
tested features on model’s performance.

Ancient Greek Interlinear translation serves as
a valuable educational tool in the study of ancient
languages such as Ancient Greek, Latin or Sanskrit.
Our study focused exclusively on Ancient Greek,
primarily because it is the source language of the
New Testament — the corpus of our choice — making
it a logical choice for our research. In addition
to the issues from the previous section, such as
obtaining high-quality interlinear translations for
other languages, a significant limitation was the
scarcity of language models specifically trained for
these ancient languages. While some models exist
for Latin (e.g. Strobel (2022)), the availability of
models for Sanskrit is limited.

Transformer Models In our study, we focused
exclusively on neural networks, specifically the
transformer architecture, which has dominated re-
cent NLP research. However, new paradigms are
emerging, such as the S4 (Gu et al., 2022) architec-
ture implemented in the Mamba language model
(Gu and Dao, 2023). Despite this, transformers
benefit from a robust ecosystem of pre-trained mod-
els available for many languages (including Polish
and Ancient Greek) and tasks (such as sequence-to-
sequence, essential for MT). Evaluating these new
paradigms would require pre-training new models,
which is beyond the scope of our current research.

Inclusion of Two Target Languages Our study
focused on only two target languages: English and
Polish. Potential alternatives could include Turkish,
an agglutinative language, and languages from the
Chinese family, which feature a distinct writing
system that could significantly impact interlinear
translation. However, these languages not only
differ linguistically but also culturally. To conduct
comparative studies effectively, we would need to
include central texts from these cultures, such as the

Quran and the works of Confucius. This expansion
would significantly complicate our research and
exceed our current objectives.

Bias in Generative Language Models There is
a potential risk that the models used for translating
the Bible text may have been previously trained
on its parts, biasing the output. Instead of measur-
ing their translation ability, we might simply be
assessing their capacity to regenerate memorized
Bible text. Carlini et al. (2021) explored methods
to detect whether samples generated by large lan-
guage models (LLMs) come from their training
data, using techniques like perplexity measurement
and model-to-model comparison. Their findings
revealed that 604 out of 1800 samples generated by
GPT-2 (Radford et al., 2019), including 25 from re-
ligious texts such as the Bible and the Quran, were
identified as originating from the training data, sug-
gesting a tendency of these models to reproduce
text from their training datasets.
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