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Abstract
Machine Translation (MT) is a crucial field in001
Natural Language Processing, with recent ad-002
vancements like the transformer architecture003
revolutionizing the task. While MT typically004
aims for accurate and natural translations, there005
are instances, such as educational translations,006
where maintaining the original syntactic struc-007
ture and meaning is paramount. Interlinear008
translation, exemplified by its application to009
ancient texts like the Iliad and the Bible, em-010
phasizes this fidelity to the source text’s struc-011
ture.012

Despite the importance of interlinear transla-013
tion, research in automating this process re-014
mains limited, particularly for ancient texts.015
Our work aims to address this gap by evaluat-016
ing state-of-the-art neural machine translation017
models on the task of interlinear translation018
from Ancient Greek to Polish and English. We019
compare the performance of general-purpose020
multilingual models with dedicated language021
models and assess the impact of Part-of-Speech022
(POS) tags as well as data preprocessing strate-023
gies on model performance.024

Our contributions include constructing a word-025
level-aligned parallel corpus of interlinear trans-026
lations of the Greek New Testament. We fine-027
tune four base models in various conditions, to-028
taling 144 models, the best of which we make029
publicly available. Last, but not least, we sug-030
gest three approaches for encoding morpho-031
logical information via dedicated embedding032
layers, which outperform solutions that do not033
utilize tags by up to 20% (BLEU score) on034
an interlinear translation task into both of the035
target languages.036

1 Introduction037

Machine translation (MT) is a well-established sub-038

field in Natural Language Processing, primarily039

focused on producing accurate and natural transla-040

tions. In typical scenarios, MT systems have the041

flexibility to reorder words or go beyond literal042

meanings to account for syntactic differences be- 043

tween source and target languages. 044

However, there are exceptional cases where 045

maintaining the original syntactic structure and 046

meaning of the source language is of greater im- 047

portance. One such scenario arises in educational 048

translations, where preserving a close word-to- 049

word correspondence facilitates better comprehen- 050

sion of the relationships between texts. Interlinear 051

translation serves this purpose by aiming to retain 052

the syntactic structure of the original text. Fig- 053

ure 1 presents an example of an interlinear trans- 054

lation. This type of translation holds particular 055

significance in the study of ancient texts, such as 056

the Iliad, Odyssey, works of ancient philosophers, 057

and religious scriptures like the Bible. 058

Despite the significance of interlinear translation 059

for scholars interested in ancient texts, there has 060

been limited research on automating this process. 061

This may be attributed to the pre-existing trans- 062

lations for many influential texts. However, we 063

believe that this issue remains pertinent, particu- 064

larly for individuals lacking expertise in ancient 065

languages, cultures, and histories, such as those 066

seen in the Bible. 067

In our research, we aim to achieve the following 068

objectives: 069

• Evaluate the performance of state-of-the-art 070

MT models in interlinear translation from An- 071

cient Greek to Polish and English, 072

• Compare the effectiveness of general-purpose 073

multilingual models with dedicated language 074

models trained specifically on ancient lan- 075

guages and the given target language, 076

• Assess the impact of Part-of-Speech (POS) 077

tags on model performance by comparing dif- 078

ferent tag sets and various approaches to their 079

integration, namely encoding them within the 080

input text or via a dedicated embedding layer, 081
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Figure 1: Example of interlinear translation. Snippet from John 5:8 taken from the Bible Hub corpus. The dataset
comprises three sequences: words in the source language (Ancient Greek), their respective translations in English,
and morphological tags for each source unit.

• Investigate the influence of pre-processing082

strategies, specifically focusing on the com-083

mon techniques of lower-casing input text and084

removing diacritics.085

Regarding the source corpus, we focus on the086

study of the full text of the Greek New Testament.087

We take here into account the fundamental impor-088

tance of this text for the international society, the089

fact of Ancient Greek being the original language090

of the New Testament as well as the existence of091

numerous translations of it.092

For the targets of our translations, we examine093

differences in performance of the models with re-094

spect to languages with a different syntactic char-095

acter – positional English and inflectional Polish.096

Our contributions The contribution of our re-097

search is threefold. Firstly, we construct a word-098

level-aligned parallel corpus of two interlinear099

translations of the Greek New Testament – to En-100

glish and to Polish using scraped data from Bible101

Hub1 and Oblubienica.23 Secondly, we conduct102

fine-tuning experiments for an interlinear transla-103

tion task using four base models – PhilTa, GreTa104

(Riemenschneider and Frank, 2023a) and mT5105

(Xue et al., 2020) (in two sizes), in 36 setups each,106

totaling 144 fine-tuned models – the best of which107

we publish for others to examine and further ex-108

periment with4. Lastly, our experiments show that109

including diacritics and morphological tags in in-110

terlinear machine translation improves model’s per-111

formance on the task. We suggest novel ways of112

encoding the tags within the model’s input, improv-113

ing the baseline score by 20%.114

1https://biblehub.com/interlinear/
2https://biblia.oblubienica.eu/
3As we have not received a response regarding the pos-

sibility of publishing the datasets, we have chosen not to do
so for now. However, we are happy to share them with other
researchers upon request.

4We are eager to share the models with the reviewers, but
have not provided the link to a repository, to simplify the
double-blind review process, since the models are heavy.

2 Related Work 115

Recent years have witnessed a substantial increase 116

in scholarly output focusing on the intersection 117

of machine learning and the study of ancient lan- 118

guages, including Ancient Greek (Sommerschield 119

et al., 2023). Nevertheless, there still remains a sig- 120

nificant scope for novel contributions in this area. 121

In this section, we cover related work in the 122

following fields of study: 123

• NLP for Ancient Greek, 124

• Machine Translation for the Bible, 125

• Interlinear Machine Translation, 126

• Usage of POS tags in low-resource settings. 127

The majority of recent research addressing Ma- 128

chine Learning for Ancient Greek focuses on solv- 129

ing problems using encoded forms of the Greek 130

language. Scholars commonly apply encoder mod- 131

els of the BERT family (Devlin et al., 2019) to 132

problems such as Part-of-speech (POS) tagging 133

and lemmatization (Singh et al., 2021a), transla- 134

tion alignment (Yousef et al., 2022; Keersmaekers 135

et al., 2023) and dependency parsing (Nehrdich and 136

Hellwig, 2022) to name a few. 137

At the same time, encoder-decoder models ap- 138

plied within the machine translation domain enjoy 139

a much smaller popularity. A recent survey on Ma- 140

chine Learning for Ancient Languages lists only a 141

single work covering Ancient Greek in the section 142

devoted to machine translation (Sommerschield 143

et al., 2023). The study, however, does not directly 144

deal with MT – specifically, it addresses the prob- 145

lem of corpus alignment between Ancient Greek 146

and Latin and applies an encoder model to do so. 147

In our review of the literature, we found only one 148

instance where the state-of-the-art encoder-decoder 149

models were trained specifically for Ancient Greek. 150

Riemenschneider and Frank (2023a) train two T5- 151

family (Raffel et al., 2023) models, GreTa and 152
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PhilTa – respectively a monolingual model trained153

on Ancient Greek and a trilingual one pre-trained154

on Ancient Greek, Latin and English.155

Literature suggests two ways of applying ma-156

chine learning to the domain of NLP for An-157

cient Greek – the more popular one takes general-158

purpose multilingual models such as BERT and fur-159

ther trains them via tasks such as Masked Language160

Modelling (MLM) on an Ancient Greek corpus (e.g.161

Singh et al. (2021b)). The other approach is to train162

a dedicated model from scratch, without using an163

existing pre-trained model as the base. An example164

of this approach is the previously mentioned work165

of Riemenschneider and Frank (2023a). While the166

latter approach allows for training an optimized167

tokenizer for working with Ancient Greek, it may168

result in the model’s impaired performance in ma-169

chine translation into the target language.170

As reported by Gerner (2018), the number of lan-171

guages into which the Bible has been translated is172

growing exponentially. Some, such as Hurskainen173

(2018) discuss machine translation’s usefulness in174

the Bible translation, but the focal point of their175

study is translation of the Bible from one modern176

language to another – oftentimes a low-resource177

one. Indeed, such case studies were reported for178

Navajo, Basque and English (Ling et al., 2023) or179

Mizo and English (Devi et al., 2022).180

Some studies use the Bible within NLP for181

Ancient languages. Martínez Garcia and Gar-182

cía Tejedor (2020) use parallel Bible corpora to183

train a model for translating from Latin to Spanish,184

Riemenschneider and Frank (2023b) use the Bible185

data for Greek-English corpora alignment, Krahn186

et al. (2023) use parallel Ancient Greek-English187

Bible corpora to evaluate the translation bias of188

multi-language sentence embedding models, by189

measuring the distance of embedded Ancient Greek190

text of the Bible to its embedded English transla-191

tions. It seems that most scholars use the Bible192

for its parallel-corpus features and little attention193

is paid to assessment of how the state-of-the-art194

MT models would perform on translating the Bible195

itself from its Ancient Greek manuscripts (in case196

of the New Testament or the Septuagint) to mod-197

ern languages especially in settings other than free198

translation.199

Interlinear glossing has been a subject of many200

extant works. While the glossing may happen on201

either word- or morpheme- level, the latter one is202

much more popular as a research area, possibly203

due to its application in language documentation204

and preservation. The former is more commonly 205

used as a means of providing readers with a deeper 206

understanding of a given text in the source language 207

even if the reader does not necessarily know it 208

(Carter, 2019). 209

Some works study the possibility of incorpo- 210

rating source language glosses in generation of 211

free translations in the target language (Zhou et al., 212

2020), but a reverse scenario, where glosses are 213

part of the algorithm’s output enjoys much more 214

attention (Moeller and Hulden, 2018; McMillan- 215

Major, 2020; Zhao et al., 2020). Last year has seen 216

a shared task on interlinear glossing introduced at 217

SIGMORPHON as a part of which participants pro- 218

duced grammatical descriptions of input sentences 219

on morpheme-level.5 220

Part of speech tagging has been present in the his- 221

tory of NLP since its beginning. In the recent years, 222

thanks to better neural architectures and more re- 223

sources, the need for manual feature engineering 224

has diminished, especially in well-resourced lan- 225

guages. However, discarding morphological meta- 226

data might not be such an obvious choice in low- 227

resource settings. Moeller et al. (2021) report that 228

the presence of POS tags does not necessarily im- 229

pact the performance of Transformer models on 230

selected morphological tasks. At the same time 231

Perera et al. (2022) report that injection of mor- 232

phological features into their English-to-Sinhala 233

Transformer resulted in a performance boost for 234

one of two tested models. Hence, we aim to evalu- 235

ate tag-injected model performance. 236

3 Methodology 237

In this section we discuss our corpora, including 238

gathering, alignment and preprocessing of the data. 239

Further, we cover models employed and our ap- 240

proaches for encoding the morphological metadata 241

in their inputs. Finally, we describe how the models 242

were fine-tuned. 243

3.1 Datasets 244

For our fine-tuning dataset, we prepared two cor- 245

pora comprising interlinear translations of the 246

Greek New Testament: one into Polish and one 247

into English. 248

Data Acquisition Both datasets were scraped 249

from distinct sources – Oblubienica and Bible Hub, 250

respectively. The corpora utilize different tex- 251

tual variants of the Greek text. Specifically, the 252

5https://github.com/sigmorphon/2023GlossingST
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? ?????? ??, ?? ??  ??? ??????  ????? ?? ??????? ...

??????? ?? ?? ??  ??????  ????? ?? ??????? ..

BH:

OB:

Figure 2: A passage (Acts 1:19) showing differences
between the source texts in both corpora. The first line
originates from Bible Hub (BH) while the the second
from Oblubienica (OB). Differences include casing (BH
varies casing, OB uses only lowercase), diacritics (used
in BH, but not in OB), and an extra article (τον) in Bible
Hub’s version.

Greek text in the Oblubienica corpus follows Nes-253

tle Aland Novum Testamentum Graece 28 (NA28),254

while Bible Hub merges multiple textual vari-255

ants, including NA27, Byzantine Majority Text,256

Scrivener’s Textus Receptus 1896, Westcott and257

Hort, SBLGNT, and Nestle 1904, and marks each258

variant using special quotes. Although the primary259

disparity between the two corpora lies in the tex-260

tual variant used, there are additional distinctions,261

which include varying casing, usage of diacritics,262

and punctuation, as depicted in Figure 2. The tag263

sets of the two corpora differ as well. While in ma-264

jority of the sentences there is a cross-corpus agree-265

ment on a morphological form of a word, there266

are also places where the two corpora diverge –267

e.g. in Rev 5:5 δαυιδ is tagged by Bible Hub as N-268

GMS (Noun – Genitive, Masculine, Singular), but269

Oblubienica tags the same word as ni proper (noun,270

indeclinable, proper), thus focusing on a different271

aspect of the word.272

Corpus Alignment To evaluate model perfor-273

mance based on the tag set used, we aligned the274

two corpora at the word level, thus establishing a275

mapping and exchange between their respective tag276

sets. Initially, we removed marked textual variants277

other than NA27 from the Bible Hub version to278

align it with Oblubienica (NA28). Subsequently,279

we applied heuristics to match each word from280

one corpus with its counterpart in the other, prior-281

itizing rules such as exact matching, within-verse282

matching, and selecting the closest match in cases283

of multiple candidates. These steps successfully284

matched over 99% of the words in the corpora. For285

unmatched words, we mapped morphological tags286

from one tag set to the other using the statistically287

most common counterpart. Remaining edge cases,288

like proper nouns, were mapped manually.289

Final Dataset: After alignment, each word in290

both corpora carries two morphological tags: one291

original and one cloned from the corresponding292

word-level counterpart in the other corpus. It’s 293

worth noting that the tag sets vary not only in qual- 294

ity but also in quantity. Refer to Table 1 for specific 295

volume details of each corpus.

Corpus Oblubienica Bible Hub

Verses 7,940 7,940
Words (GR) 137,390 137,317
Words (PL/EN) 133,581 185,722
Tag Set Size 1,073 684

Table 1: Corpus Statistics. The rows display number of
rows, words in the source and target language and the
count of unique morphological tags in the tag set.

296

3.2 Data Preprocessing 297

There are two schools of thought when it comes 298

to preprocessing texts in Ancient Greek. The first 299

one advocates for keeping all diacritics and training 300

the tools to learn from them. This approach was 301

used by Riemenschneider and Frank (2023a) while 302

training PhilTa and GreTa. The other approach is 303

much more popular and it normalizes the data by 304

stripping the texts from diacritics e.g. Yamshchikov 305

et al. (2022). Within our experiments, we test both 306

of these paradigms. For the diacritics version of our 307

dataset, we use the spelling from Bible Hub. We 308

benefit from the fact that the datasets are aligned 309

and replace Greek words in Oblubienica with their 310

Bible Hub counterparts. 311

One common measure of a tokenizer’s efficiency 312

on a given corpus is the average number of tokens 313

per word (Yamshchikov et al., 2022), which we 314

calculate and report in Table 2. While there is a 315

visible discrepancy in tokenization performance for 316

Ancient Greek with diacritics – here, mT5 requires 317

twice as many tokens to represent a word compared 318

to PhilTa or GreTa – this gap disappears when to- 319

kenizing the normalized source. In all other cases 320

(Polish, English, and tags), mT5 outperforms the 321

others. Additionally, it is worth mentioning the 322

much higher token numbers per morphological tag 323

in the Oblubienica dataset compared to its Bible 324

Hub counterpart. This is mainly due to the longer 325

tags used in Oblubienica, e.g. when Bible Hub tags 326

ἀρχῇ as N-DFS, Oblubienica tags it as n_ Dat Sg f. 327

3.3 Base Models 328

Our study employs four base models: GreTa, 329

PhilTa (Riemenschneider and Frank, 2023a) and 330

mT5 in two sizes – base and large (Xue et al., 2020), 331
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Tokenizer GreTa PhilTa mT5
Dataset

GR – diacritics 1.57 1.58 3.23
GR – normalized 2.50 2.36 2.37

PL 4.08 4.20 2.37
EN 3.51 1.92 1.99

Tags (OB) 7.26 6.94 5.45
Tags (BH) 5.06 5.26 3.82

Table 2: Overview of tokenization metrics. The consecu-
tive rows display the average number of tokens required
by each tokenizer for: a Greek word with diacritics, a
normalized Greek word, a Polish word, an English word,
a tag from the Oblubienica (OB) tag set, and a tag from
the Bible Hub (BH) tag set, respectively.

(a) t-o (b) t-w-t (c) emb-*

Figure 3: Comparison of three input sequence encoding
methods. The first method (t-o, baseline) omits the
morphological metadata. The second method (t-w-t)
includes these tags as part of the input. Lastly, the third
method (emb-*) utilizes a dedicated embedding layer to
encode the tags as a separate sequence.

all belonging to the T5 model family (Chung et al.,332

2022). Both GreTa and PhilTa are T5-base-sized333

models, with GreTa trained on Ancient Greek cor-334

pora and PhilTa trained on Ancient Greek, Latin,335

and English. mT5 was trained on the mC4 corpus,336

which comprises 101 languages including English337

and Polish – the target languages for our transla-338

tions. Ancient Greek was not reported to be part339

of the pre-training data for the model. We select340

mT5-base to match the size of the other models341

and mT5-large to explore whether increasing the342

number of parameters improves performance.343

3.4 Model Inputs344

In our experiments we assess whether inclusion345

of morphological tags leads to an improved per-346

formance on interlinear translation task. To do so,347

we implement five scenarios which can be grouped348

into three categories (as seen in Figure 3) based on349

how the tags are encoded. We discuss them in this350

section.351

In Text Only (t-o) – the baseline scenario – no352

morphological information is passed to the model. 353

Each Greek word is separated with a dedicated 354

sentinel token, and this sequence of words and 355

separators constitutes the model’s input. 356

In Text With Morphological Tags (t-w-t) we en- 357

code POS tags as part of the model’s text input. 358

Greek words and tags are encoded with the help 359

of two sentinel tokens: one to separate word-tag 360

pairs and another to demarcate the end of the Greek 361

word and the beginning of the tag within each pair. 362

The third group (emb-) comprises the remaining 363

three scenarios, which involve introducing a ded- 364

icated embedding layer trained during the model 365

fine-tuning process. Initially, we tokenize the text 366

and one-hot-encode the POS tags, maintaining 367

alignment between the two sequences. Whenever a 368

Greek word is tokenized into multiple tokens, the 369

corresponding tag is replicated the same number of 370

times. The three scenarios differ in how the vectors 371

are processed and transformed, but in all cases, the 372

combined vector constitutes input to the encoder 373

stack, retaining the same number of dimensions as 374

during the model’s pre-training phase (768 dimen- 375

sions for -base and 1024 for -large). We visualize 376

the three approaches in Figure 4 and discuss them 377

in the subsequent paragraphs. 378

In Embeddings – Sum (emb-sum), morphologi- 379

cal tags are embedded in a vector space of the same 380

size as the one used by the base model. The em- 381

bedded text and POS tags are then summed, and 382

the result is passed to the encoder stack. 383

Embeddings – Autoencoder (emb-auto) also 384

sums the two sequences positionally, but first, the 385

tags sequence is embedded in a smaller space. 386

Given the small number of unique tags in the tag 387

sets (roughly 1000), the tag embedding layer may 388

essentially one-hot-encode the tags. Thus, this ap- 389

proach aims to force the model to synthesize in- 390

formation carried within the tags by compressing 391

them and then decompressing them back to the 392

expected number of dimensions. The compressed 393

embedding size is a hyperparameter to be tuned. 394

In the last approach – Embeddings – Concatena- 395

tion (emb-concat) – the two sequences are concate- 396

nated, but to ensure that the output vector is of the 397

desired size, an extra linear layer is introduced to 398

reduce the number of dimensions in the text embed- 399

ding. The dimensions in the text embedding and 400

morphological embedding sum up to the desired 401

size, and the text-to-tag ratio in the output vector is 402

a tunable hyperparameter. 403

Trimming Our experiments aim to evaluate the 404
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(a) emb-sum (b) emb-auto (c) emb-concat

Figure 4: The figures depict three embedding-based strategies for incorporating morphological information into
the model’s input. The first strategy (emb-sum) combines text (T) and morphological (M) embeddings into a
single vector using positional sum. The second compresses morphological embeddings before decompression and
summation with the text counterpart. The last scenario compresses both text and morphological embeddings and
concatenates the resulting vectors.

performance of proposed methods, regardless of405

their efficiency in encoding inputs. With a sequence406

limit of 256, some models may appear to perform407

worse simply because they fit fewer words from the408

source text into the input. To ensure fair compar-409

isons, we trim each verse to the number of words410

that can be encoded by the least efficient setup411

among all 144 parameter combinations.412

3.5 Training Details413

The dataset was split into three subsets: training414

(7543 verses, 95%), validation (198 verses, 2.5%),415

and test (199 verses, 2.5%). Fine-tuning experi-416

ments encompassed 144 combinations, varying the417

target language, tag set, text preprocessing strategy,418

base model, and morphological information encod-419

ing strategy. Training employed an NVIDIA A100420

GPU, with batch sizes ranging from 4 to 16 for421

training and 1 to 8 for validation, adjusted based422

on memory constraints. For emb-*, the learning423

rate for new neural network layers was increased424

from the default 1e-3 to 3e-1, 1e-2, or 3e-3, with425

similar performance observed across these values.426

The optimizer remained Adafactor. In emb-auto427

and emb-concat, morphological embedding size428

was set to 64 dimensions. A token limit of 256 was429

enforced across all scenarios.430

4 Evaluation431

Model Output The output sequence contains trans-432

lations for each Greek word separated by sentinel433

tokens, similar to the input formatting. We employ434

BLEU (Post, 2018) to measure model performance.435

However, prior to comparing predictions and ref-436

erences, we remove the separator tokens from the437

output sequences to prevent the metric from re-438

warding a model solely for structuring the output439

correctly. Sequences are trimmed as during training 440

(see Trimming in Section 3.4), and predictions and 441

references are further trimmed to the same number 442

of ’translation blocks.’ 443

5 Results 444

We address each research question in the subse- 445

quent sections, beginning with an examination of 446

the overall performance of the models. We then 447

compare the performance of each base model used 448

for fine-tuning. Finally, we investigate the impact 449

of morphological metadata and text preprocessing 450

on the final results. All scores presented in this 451

section represent the BLEU score obtained on the 452

test split. 453

5.1 Overall Performance 454

Given the large number of parameter sets (144), 455

this section discusses general trends observed in 456

the data on an aggregate level before delving into 457

more detailed breakdowns in subsequent sections. 458

Empirical cumulative distribution functions 459

(eCDFs) for Ancient Greek to English and to Pol- 460

ish translation are presented in Figure 5. Despite 461

visible differences favoring experiments in English, 462

approximately the top 40% of scenarios for both 463

groups hover around the same values of BLEU 464

(45-55), with slightly higher scores for the English 465

subset. The discrepancy might possibly stem from 466

the fact that English was part of pre-training corpus 467

for both mT5 and PhilTa, while Polish was only 468

seen by mT5. 469

The close results in the two groups suggest that 470

the strict syntactical regime of interlinear transla- 471

tions may allow for cross-language comparisons, 472

which are normally impossible due to differences 473

in syntax and morphology. 474
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Figure 5: Empirical Cumulative Distribution Function
(eCDF) for BLEU scores secured by the 144 fine-tuned
models. The results are divided into two categories
according to the solved task — English (EN) and Polish
(PL) translation.

5.2 Base Model475

Table 3 provides a general comparison of the base476

models. On average, mT5-large outperformed all477

other base models and achieved the best result in478

Polish translation. However, in English translation,479

its best score fell behind those achieved by GreTa480

and PhilTa, with PhilTa as the winner. Despite not481

being pre-trained on English or Polish, GreTa per-482

formed similarly to mT5-base in both tasks, slightly483

outperforming it both on average and in maximum484

score, even though mT5-base was pre-trained on485

both English and Polish. Surprisingly, PhilTa strug-486

gled to match the results of other models in Polish487

translation, failing to surpass a BLEU score of 30488

in its best run.489

These results suggest that, for translations of490

classic texts, models pre-trained on both the source491

and target languages offer the best performance. If492

such models are not available, the next best options493

appear to be selecting a model pre-trained on the494

source language or opting for a larger multi-lingual495

model.496

Based on these results, fine-tuning a model pre-497

trained on both Ancient Greek and Polish, similar498

to how PhilTa was utilized for Ancient Greek and499

English, could render the best results. However, as500

of now, such a model does not exist.501

5.3 Impact of Morphological Tags502

This section answers two questions. Firstly, we503

address the question of whether the inclusion of504

morphological metadata leads to improved perfor-505

PL EN
Base Model Avg Best Avg Best

GreTa 27.51 49.08 33.22 49.36
PhilTa 13.21 26.79 42.68 54.46
mT5-base 28.83 47.22 34.07 45.65
mT5-large 45.00 51.16 45.74 48.41

Table 3: Aggregated performance of each of the base
models. The rows showcase the average and best results
of a given base model on translation into Polish (PL)
and English (EN), respectively.

mance on the interlinear translation task and if so, 506

how the metadata should be encoded. Secondly, 507

we assess the impact of the chosen tag set. 508

Impact of Encoding Strategy Table 4 compares 509

different morphological feature encoding strate- 510

gies. The results consistently show improved per- 511

formance on the interlinear translation task when 512

morphological metadata is included, regardless of 513

the chosen encoding strategy. The best-performing 514

morphologically-enhanced models outperform the 515

baseline (text-only) by approximately 20% for Pol- 516

ish (51.16 vs 42.65) and 21% for English (54.46 vs 517

44.95). This challenges the common belief that pre- 518

trained transformer cannot utilize such information 519

to perform better on NLP tasks, particularly for the 520

translation tasks. 521

Furthermore, the results suggest that using a 522

separate embedding representation is preferable 523

to encoding the morphological information directly 524

within the text to be translated. Across all strate- 525

gies, embedding-based solutions outperform the 526

approach that encodes tags within the text. Addi- 527

tionally, it’s worth noting that the latter is also the 528

least efficient in terms of both memory and time 529

complexity among all tested scenarios. 530

When comparing the three embedding-based 531

strategies, emb-concat yields the lowest scores and 532

is most prone to convergence issues. emb-auto and 533

emb-sum provide similar results, with emb-sum 534

leading for Polish (BLEU 51.16) and emb-auto for 535

English (54.46). The superior stability of the two 536

sum-based methods over the concatenation-based 537

one may stem from the lack of an additional com- 538

pression layer for text embeddings. This extra layer 539

can potentially disrupt the semantic representation 540

that the model learned during pre-training, thereby 541

hindering its performance. 542

Tag Set Comparison Table 5 presents results 543

for each of the two tag sets. While both sets 544
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PL EN
Encoding Avg Best Avg Best

t-o 18.42 42.65 33.54 44.95
t-w-t 21.26 48.04 35.38 48.14
emb-sum 37.96 51.16 47.84 53.98
emb-auto 40.42 49.13 46.52 54.46
emb-concat 20.02 46.56 28.66 51.53

Table 4: Performance comparison of encoding strate-
gies. Rows display average and best results of each
encoding strategy for translation into Polish and En-
glish. The strategies are: text only (t-o), text with tags
(t-w-t), embedding – sum (emb-sum), embedding – au-
toencoder (emb-auto) and embedding – concatenation
(emb-concat), respectively.

yielded strong results, the average score and top-545

performing models favored the tag set from Bible546

Hub, outperforming Oblubienica in both translation547

tasks. Notably, the top-performing tag set (refer to548

Table 1) had roughly 50% fewer forms. This dif-549

ference in score might be attributed to insufficient550

training data for the model to learn to represent less551

frequent forms, or it might stem from a difference552

in tagging quality. Further investigation would be553

necessary to determine the cause.554

PL EN
Tag Set Avg Best Avg Best

BH 30.19 51.16 40.39 54.46
OB 29.64 50.16 38.81 53.95

Table 5: Effect of tag set selection on translation perfor-
mance. Rows show average and best results of models
using Bible Hub (BH) and Oblubienica (OB) tag sets
for translation into Polish (PL) and English (EN).

5.4 Impact of Preprocessing555

The results analyzing the impact of preprocessing556

strategy are presented in Table 6. In the vast major-557

ity of cases, regardless of the chosen tokenizer, runs558

with diacritics achieved better results both on aver-559

age and in the best-case scenario. We find it inter-560

esting that the inclusion of diacritics in the transla-561

tion task generally improves the results, especially562

considering that in many experiments found in the563

literature for the analysis of Ancient Greek, dia-564

critics are often removed. We postulate that more565

attention should be paid to the preservation of this566

additional information, given its value for the mod-567

els’ performance, as shown in our experiments.568

PL EN
Preprocessing Avg Best Avg Best

Diacritics 30.03 51.16 41.33 54.46
Normalized 27.24 50.95 36.53 50.61

Table 6: Impact of preprocessing strategy (with dia-
critics or with normalization) on final results. Rows
display average and best results on the test dataset for
each approach on the two translation tasks.

6 Conclusions 569

We have presented research addressing interlinear 570

translation from Ancient Greek, offering a dataset 571

for assessing multiple sequence-to-sequence mod- 572

els. Among our findings, PhilTa emerges as the top 573

performer for English, while mT5-large excels for 574

Polish. Surprisingly, GreTa, pretrained solely on 575

Ancient Greek, yields comparable results. 576

Our proposed methods for encoding morpho- 577

logical information via dedicated embedding lay- 578

ers consistently improve translations, particularly 579

when the model sums morphological embeddings 580

with text embeddings. This approach leads to an 581

8.5 percentage point improvement for Polish and 582

a 9.5 percentage point improvement for English 583

compared to models without morphological data. 584

Additionally, we have observed a positive impact 585

on model scores when preserving original diacrit- 586

ics, a practice often overlooked in NLP studies 587

focusing on Ancient Greek. 588

7 Ethics 589

While our research involves the translation of theo- 590

logically significant documents, it is important to 591

note that our primary focus is on evaluating ma- 592

chine translation methodologies. We acknowledge 593

the potential for bias in both the models and the 594

underlying data, particularly in texts of religious 595

significance. Therefore, we caution against draw- 596

ing any theological conclusions from our transla- 597

tions, as our study does not investigate or account 598

for potential biases. Our aim is to contribute to the 599

advancement of machine translation technology 600

while maintaining a neutral stance on theological 601

interpretations. 602

Additionally, we acknowledge the usage of Chat- 603

GPT for assistance with text editing and refining 604

code for experiments. 605
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8 Limitations606

Limited Text Scope We focused only on the New607

Testament for our research. This decision was influ-608

enced by several factors. Firstly, interlinear transla-609

tions are less common in the public domain com-610

pared to standard parallel corpora for training MT611

systems. Additionally, aligning the source trans-612

lation for two distinct target languages requires613

substantial resources and good quality of data, both614

being scarce. While our study only looked at the615

New Testament, future research could include texts616

from Ancient philosophers (like Plato) and writ-617

ers (such as Homer) to better assess the impact of618

tested features on model’s performance.619

Ancient Greek Interlinear translation serves as620

a valuable educational tool in the study of ancient621

languages such as Ancient Greek, Latin or Sanskrit.622

Our study focused exclusively on Ancient Greek,623

primarily because it is the source language of the624

New Testament – the corpus of our choice – making625

it a logical choice for our research. In addition626

to the issues from the previous section, such as627

obtaining high-quality interlinear translations for628

other languages, a significant limitation was the629

scarcity of language models specifically trained for630

these ancient languages. While some models exist631

for Latin (e.g. Ströbel (2022)), the availability of632

models for Sanskrit is limited.633

Transformer Models In our study, we focused634

exclusively on neural networks, specifically the635

transformer architecture, which has dominated re-636

cent NLP research. However, new paradigms are637

emerging, such as the S4 (Gu et al., 2022) architec-638

ture implemented in the Mamba language model639

(Gu and Dao, 2023). Despite this, transformers640

benefit from a robust ecosystem of pre-trained mod-641

els available for many languages (including Polish642

and Ancient Greek) and tasks (such as sequence-to-643

sequence, essential for MT). Evaluating these new644

paradigms would require pre-training new models,645

which is beyond the scope of our current research.646

Inclusion of Two Target Languages Our study647

focused on only two target languages: English and648

Polish. Potential alternatives could include Turkish,649

an agglutinative language, and languages from the650

Chinese family, which feature a distinct writing651

system that could significantly impact interlinear652

translation. However, these languages not only653

differ linguistically but also culturally. To conduct654

comparative studies effectively, we would need to655

include central texts from these cultures, such as the656

Quran and the works of Confucius. This expansion 657

would significantly complicate our research and 658

exceed our current objectives. 659

Bias in Generative Language Models There is 660

a potential risk that the models used for translating 661

the Bible text may have been previously trained 662

on its parts, biasing the output. Instead of measur- 663

ing their translation ability, we might simply be 664

assessing their capacity to regenerate memorized 665

Bible text. Carlini et al. (2021) explored methods 666

to detect whether samples generated by large lan- 667

guage models (LLMs) come from their training 668

data, using techniques like perplexity measurement 669

and model-to-model comparison. Their findings 670

revealed that 604 out of 1800 samples generated by 671

GPT-2 (Radford et al., 2019), including 25 from re- 672

ligious texts such as the Bible and the Quran, were 673

identified as originating from the training data, sug- 674

gesting a tendency of these models to reproduce 675

text from their training datasets. 676
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