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ABSTRACT

Our paper presents a Bayesian adaptation of Retrieval Augmented Generation
(RAG) designed to capture the characteristics of each user, encompassing factors
such as their educational background and professions. We model each individ-
ual’s characteristics using specific perturbations of the local metric of the embed-
ding space. This perturbation introduces a crucial shift in the distance evaluation
between the query’s and the document’s embedding, leading to different pertinent
rankings of the retrieved documents. We propose a Bayesian learning procedure
that assimilates user feedback and continuously enhances our estimation of the
user-specific metric. In the beginning, when there is no information about the
user, we use a diverse retrieval method for generation. After this burn-in phase,
we learn a Bayesian posterior estimate of the metric, and inject this metric into the
nearest neighbor search for document retrieval. This additional layer of metric in-
formation acquisition leads to empirical improvement in the retrieval quality and
in the performance of the generated text on multiple concept explanation tasks.

1 INTRODUCTION

In recent years, retrieval-augmented generation (RAG) has emerged as a pivotal approach in natural
language processing. This paradigm shift has been catalyzed by the need to address issues, notably
the hallucination phenomenon frequently associated with Large Language Models (LLMs). Hal-
lucination occurs when LLMs generate information that lacks accuracy or contextual relevance. In
response to this challenge, a burgeoning research trend has deviated from the conventional statistical
language modeling paradigm. Numerous existing works (Lewis et al., 2020; Karpukhin et al., 2020)
have explored innovative methods to enhance LLMs by equipping them with additional capabilities
for information retrieval from external documents. This augmentation extends the contextual scope
and enhances relevance, effectively mitigating the issue of hallucination.

Thanks to impressive results on zero-shot and few-shot settings of multiple Nature Language Gen-
eration tasks, RAG has been used to build many applications, e.g., chatbot (Shuster et al., 2021),
open-domain question answering (Lewis et al., 2020), abstractive summarization (Peng et al., 2019),
code generation (Hashimoto et al., 2018), among others. More comprehensive surveys on RAG can
be found in Li et al. (2022); Mialon et al. (2023); Zhao et al. (2023). However, limited research has
explored the ramifications of the cold-start predicament within real-world contexts regarding its ef-
fectiveness. For instance, in scenarios where a novel user initiates interaction with a conversational
search-engine system to seek explanations on technical concepts, several documents may be relevant
but the user may prefer specific writing styles found in certain documents over others. One can easily
envision, for example, a chatbot that explains machine learning concepts to undergraduate students.
It is often observed that students from different backgrounds (engineering, business, social sciences,
etc.) may prefer different levels of technicality to the explanations. The language generation system
can leverage this user-specific preference to improve the effective comprehension of intricate con-
cepts to a wider audience. Consequently, this scenario raises a compelling research question: How
can user preferences be effectively incorporated into RAG-based conversational systems?

In this paper, our approach diverges significantly from the predominant trajectory observed in the
existing literature on RAG and its incorporation with language generation. We aim to construct a
comprehensive three-phase solution package for RAG-based conversational systems. The primary
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aim of this package is to enable the retrieval of documents that closely align with human preferences,
ultimately enhancing the quality of text generation.
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Figure 1: Our solution package consists of three main phases: a determinantal point process sam-
pling for ground-zero preference acquisition (Phase 1), and a sequential question-answering scheme
to refine preference belief (Phase 2). Recommendations are tailored to the posterior distribution to
capture the preference shifts of the user. Phase 3 is completely exploitative in which the posterior is
fixed, and the language generation system aims to match the user’s posterior preference.

Contributions. We demonstrate that with a limited number of queries, we still can capture the user’s
preference, and consequentially improve the retrieval and text generation quality. To achieve this
goal, we model the user’s preference through the metric drift of the embedding space, which governs
the ranking of the documents for each input query. More specifically, we postulate that the user’s
preference for a document’s writing style is modeled by a perturbed Mahalanobis metric that deviates
from the Euclidean metric. We employ a Bayesian framework to represent our system’s belief about
the user’s metric. Our system sequentially collects feedback using a three-phase scheme:

• At zero-knowledge initialization (Phase 1), we employ a determinantal point process to retrieve
a diverse set of summarized and relevant documents to answer the user’s queries, and at the same
time, collect the user’s preferences (pure exploration).

• In Phase 2, we deploy a personalized scheme, consisting of a posterior belief update and a
maximal mutual information retrieval system to answer the user’s queries (balanced exploration
and exploitation).

• In Phase 3, we freeze the posterior distribution and focus on generating answers to the user’s
queries using the posterior parameters. The posterior indicates a modified metric on the embed-
ding space, which leads to a preference-adapted ranking of the retrieved documents for answer-
ing the user’s queries.

Our paper focuses on adapting the retrieval mechanism to the the user’s preferences, which de-
parts significantly from the conventional generation-based methodologies. Conventional methods
include “sparse retriever”, denoting a traditional bag-of-words representation encompassing docu-
ment and query text, e.g., tf-idf, BM25+ (Lv & Zhai, 2011), and “dense retriever”, encoding textual
information utilizing a neural network (Wang et al., 2020). In our numerical comparison, we will
demonstrate that our preference-based retrieval system outperforms conventional methods in both
retrieval quality and text generation quality.

Notations. The trace of a square matrix M ∈ Rp×p is written Tr[M ] =
∑p

i=1Mii. We use Sp+ and
Sp++ to denote the space of symmetric, p-by-p positive semidefinite and positive definite matrices,
respectively. The determinant of a matrix M ∈ Sp++ is denoted by det(M).
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2 BACKGROUND AND PROBLEM FORMULATION

We consider a scenario in which a user submits a series of queries, with each query being trans-
formed into a textual embedding {qt}t∈N+

within our system. Our database has a collection of N
documents, and each individual document is characterized by a corresponding document embedding
denoted as di. Several documents may pertain to identical information; however, they may diverge
in their writing style or the analogies employed to elucidate the conveyed information. Our objective
is to retrieve the precise document exhibiting the appropriate writing style within the constraints of
limited user ratings. Next, we describe how we model the user’s preference using a metric on the
embedding space, as well as how we are modelling our belief about the user’s preference.

2.1 USER’S PREFERENCE AND FEEDBACK MODEL

We now describe how we capture the user’s preference and how the user interacts with our system.
Regarding a query qt, the preference of the user for the N documents, represented by their embed-
dings di, is calculated through a distance function c that quantifies the distance between the query
qt and the documentdi: the user favors the document if c(qt, di) is less than a certain threshold τ ,
and the user disfavors the document if c(qt, di) is larger than the threshold. Thus, whether the user
favors the item or not depends on whether the item is sufficiently close to the user’s query. While
there is a plethora of choices to parametrize the distance function c, we will choose the most simple
and intuitive parametrization using the squared Mahalanobis distance in Rp:

cA(qt, di) = (qt − di)⊤A(qt − di),

wherein the cost function is fully characterized by a weight matrix A that is symmetric and positive
definite. When A is the identity matrix, the Mahalanobis distance becomes the Euclidean distance.
Suppose that the user’s preference is dictated by a matrix A0 ∈ Sp++ and a threshold τ , then for the
query qt, the user favors di if cA0

(qt, di) ≤ r, and the user disfavors di if cA0
(qt, di) > r. We define

the feedback function of the user as R(qt, di, A0) which admits a value +1 for a positive preference
(favor) and a value −1 for a negative preference (disfavor). By a proper normalization of the radius
using A0 ← A0/r, we have

R(qt, di, A0) =

{
+1 if cA0

(qt, di) ≤ 1,

−1 if cA0
(qt, di) > 1.

(1)

Thus, without any loss of generality, we suppose that the user’s preference and corresponding feed-
back to our system is completely characterized by a matrix A0 ∈ Sp++, and we can now omit the
radius r. The Mahalanobis preference construction is flexible enough to model the preference va-
riety of the user population. Note that if the weight matrix is κI , a positive scaler of the identity
matrix, then the user preference is dictated by the Euclidean norm on Rp. This Euclidean norm pref-
erence can also be regarded as the nominal preference: a Euclidean nearest document will satisfy the
user’s preference best. Note that the Euclidean nearest neighbor retriever is one of the most popular
and fundamental methods in information retrieval. The variation of the user’s preference can now
be described by shifting the weight matrix A0 away from the scaled-identity matrix.

2.2 PROBABILISTIC MODELING OF THE BELIEF ABOUT THE USER’S PREFERENCE

The matrixA0 that determines the user’s preference remains elusive to our retrieval system through-
out the process. We use a Bayesian framework to represent the system’s belief about A0. The
Bayesian setting is particularly useful thanks to its power to update the belief as information, or
feedback, from the user arrives. Because the true (but unknown) matrix A0 is a p-by-p positive
semidefinite matrix, we employ the Wishart distribution to characterize our belief.

Definition 1 (Wishart distribution). A Wishart distribution on the space of p-by-p symmetric positive
semidefinite matrices Sp+ is parametrized by an integer degree of freedom m ≥ p and a scale matrix
Σ ∈ Sp++. Its density function (with respect to the Lebesgue measure) is

f(A) =
1

2
mp
2 det(Σ)

m
2 Γp(

m
2 )

det(A)
m−p−1

2 exp(−1

2
Tr[Σ−1A]),
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where Γp is the multivariate Gamma function

Γp

(n
2

)
= πp(p−1)/4

p∏
j=1

Γ
(n
2
− j − 1

2

)
.

Throughout this paper, we write P ∼ Wp(m,Σ) to denote that P is a Wishart probability distribution
with appropriate parameters. As we have no prior information about the user’s preference for the
documents, it is reasonable to initialize our belief as a Wishart distribution with identity covariance
matrix: P−1 ∼ Wp(m−1, I), with m−1 ≥ p is an integer number. Choosing an identity matrix
as the initial scale matrix of the prior also aligns (up to a positive multiplicative factor) with the
nominal preference, as discussed in Section 2.1.

3 PHASE 1: DETERMINANTAL POINT PROCESS SAMPLING FOR
COLD-START GENERATION

At the beginning of Phase 1, a new user arrives, and we have no prior information about their pref-
erences. To handle this cold-start situation, our system retrieves a set of the most diverse documents
related to a specific concept, which are then presented to the user to accumulate user feedback
(whether the user favors or disfavors the documents).

Given that documents in this context may be lengthy and complex, we show the user C1 summa-
rized documents, where C1 is a relatively small number, and ask the user for feedback on these
summarized documents. At the beginning of this phase, our retrieval system only has access to
the query embedding qt and the initialized documents’ embeddings di, i = 1, . . . , N , but it has no
information about the user’s preferences on the document’s writing style. The goal of Phase 1 is
to acquire as much information about the user’s preference as possible from a limited number of
possible feedback.

To attain this goal, the C1 documents to be retrieved should balance two important criteria:

• (i) relevance: the retrieved document’s embedding di should be close enough to the query qt,

• (ii) diverse directions: the vectors di − qt should span different angles so that we can learn the
shape, or the directions of the eigenvectors, of the weight matrix A0,

• (iii) diverse distances: the distances ∥di− qt∥2 should be of different values so that we can learn
the magnitude (after normalization to eliminate r) of the weight matrix A0.

To meet criterion (i), we first filter a subset of n documents whose embeddings are nearest to qt,
for some n < N . For criteria (ii) and (iii), we will use a determinantal point process (DPP) to help
pick the set of documents that are diverse in both directions and distances. DPP stems from the field
of quantum physics: it is used to model the repulsive behavior of Fermion particles Macchi (1975).
Subsequently, it has claimed many successes in machine learning tasks Kulesza & Taskar (2012);
Affandi et al. (2014); Urschel et al. (2017) and recommendation systems Chen et al. (2018); Wilhelm
et al. (2018); Gartrell et al. (2017). We use the following definition of the DPP characterized by the
L-ensemble.

Definition 2 (L-ensemble DPP). Given n nearest documents and a positive semidefinite matrix
L ∈ Sn+, the L-ensemble DPP is a distribution over all 2n index subsets J ⊆ {1, . . . , n} such that

Prob(J) = det(LJ)/ det(I + L),

where LJ denotes the |J |-by-|J | submatrix of L with rows and columns indexed by the set J .

We will construct two matrices to capture each of the above diversity criteria. For diversity of the
directions, our system computes the kernel matrix Ldir with the elements

Ldir
ij = a⊤i aj ∀i, j = 1, . . . , n, where ai = (di − qt)/∥di − qt∥2 ∈ Rp ∀i = 1, . . . , n.

Each vector ai is a direction vector of unit length emancipating from the current query embedding
qt towards the embedding of the document di. The matrix Ldir is a Gram matrix of the linear kernel,
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also known as the cosine similarity matrix, and thus Ldir is positive semidefinite. To promote the
diversity in the distances, our system computes the kernel matrix Ldist with

Ldist
ij = exp(−|disti − distj |2), where disti =

∥di − qt∥2
maxj ∥vj − qt∥2

∈ R+ ∀i = 1, . . . , n.

Above, disti is the normalized distance from qt to di. The matrix Ldist is a Gram matrix with a
Gaussian kernel; hence, it is positive semidefinite. Then, we aggregate these two kernel matrices to
form the joint ensemble as L = Ldir + Ldist, which guarantees that L is also positive semidefinite.
Notice that our DPP framework can accommodate a much greater level of flexibility: one can fine-
tune the performance by adding a kernel width to construct Ldist and constructing the ensemble L
by taking a weighted sum. Nevertheless, we take a simplistic approach and omit this generalization
to avoid over-parametrization.

To generate a list ofC1 documents to show to the user to obtain feedback, we will find the maximum-
a-posteriori estimate of the DPP with a cardinality constraint. The result from Kulesza & Taskar
(2012) suggests that this set of K items solves

max {det(LJ) : J ⊂ {1, . . . , n}, |J | = C1} , (2)
where LJ is a submatrix of L restricted to rows and columns indexed by the set J . Unfortunately, the
above optimization problem is NP-hard Kulesza & Taskar (2012), and our system relies on greedy
and local search heuristics to find the optimal index set J . Details of the heuristics are relegated to
the appendix.

4 PHASE 2: SEQUENTIAL FEEDBACK COLLECTION FOR BELIEF
REFINEMENT

At the beginning of Phase 2, we have collected certain information about the user’s preference from
Phase 1. For each query in this phase, the system displays C2 texts generated from C2 documents to
balance relevancy and information acquisition. We will provide a posterior update scheme to update
our belief in Section 4.1. Moreover, for any query in this phase, we can design a more sophisticated
retrieval mechanism using the mutual information criterion, as we will explore in Section 4.2.

4.1 POSTERIOR UPDATE

Starting with a generic prior distribution Pt−1 ∼ Wp(mt−1,Σt−1), we aim to find a posterior to
internalize the information that we obtain from the user feedbacks. Suppose that for the current
query qt, we have collected the user’s preference on the list of documents It, and the user returns
with a positive experience (favor) on a subset I+t (i.e., Rti ≜ R(qt, di, A0) = +1 for each i ∈ I+t ),
with a negative experience (disfavor) on a subset I−t (i.e., Rti ≜ R(qt, di, A0) = −1 for each
i ∈ I−t ). The information from liked and disliked items can help us find the posterior belief with
two desiderata: (i) the posterior belief Pt should be close to the prior Pt−1 so that we do not forget
the previous information, (ii) the posterior should reflect the new information in I+t and I−t .

To attain desiderata (i), we track the distortion between the prior and the posterior belief using a
Kullback-Leibler (KL) divergence. The KL divergence from a probability measure P to another
probability measure Pt−1, with P being absolutely continuous with respect to Pt−1, is defined as
KL(P ∥Pt−1) ≜ EP[log(dP/dPt−1)], where dP/dPt−1 denotes the Radon-Nikodym derivative. To
achieve desiderata (ii), we posit that the posterior should assign a high probability to the events

Rti(cA(qt, di)− 1) ≤ 0 ∀i ∈ I+t ∪ I−t .
Notice thatRti has a value of either +1 or−1, and the above events align with the preference model
postulated in (1). Let us first consider the case of a disfavor feedback when Rti = −1: in this
case, the posterior should have a small value for P(cA(qt, di) ≤ 1). In a similar argument, for a
favor feedback when Rti = +1, the posterior should have a small value for −P(cA(qt, di) ≤ 1).
Consequently, we propose to assign the posterior belief to the optimal solution of the stochastic
optimization problem

min KL(P ∥ Pt−1)− τ
∑

i∈I+
t ∪I−

t
Rti logP(cA(qt, di) ≤ 1)

s. t. P ∼ Wp(m,Σ), m ∈ N+, Σ ∈ Sp+
p ≤ m ≤ mt−1.

(3)
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Problem (3) imposes a parametric Wishart form for the posterior distribution, and it finds the best
values of the degrees of freedom m and the scale matrix Σ that can minimize the sum of the diver-
gence from the prior and the weighted log-probability (or log-likelihood) values. The weight τ > 0
indicates the balance between sticking to the prior or adhering to the feedback received for query qt.
We explicitly put a bound m ≤ mt−1 so that the degrees of freedom decrease as time progresses,
and the posterior distribution exhibits certain concentration behavior.

We now discuss how we solve problem (3). The KL divergence between two Wishart distributions
is known in closed form according to Soch et al. (2020): Let ψp denote the multivariate digamma
function, the KL divergence from P2 ∼ Wp(m2,Σ2) to P1 ∼ Wp(m1,Σ1) amounts to

KL(P2 ∥P1) = −
m1

2
log det(Σ−1

1 Σ2) +
m2

2

(
Tr[Σ−1

1 Σ2]− p
)
+ log

Γp(
m1

2 )

Γp(
m2

2 )
+
m2 −m1

2
ψp(

m2

2
).

For any generic prior distribution Pt−1 ∼ Wp(mt−1,Σt−1), the above closed-form expression of
the KL divergence helps us define the objective function

L(m,Σ) = −mt−1

2 log det(Σ−1
t−1Σ) +

m
2

(
Tr[Σ−1

t−1Σ]− p
)
+ log

Γp(
mt−1

2 )

Γp(
m
2 )

+m−mt−1

2 ψp(
m
2 )− τ

∑
i∈I−

t ∪I+
t
RtiFti(m,Σ),

(4)

where Fti(m,Σ) = logP(cA(qt, di) ≤ 1). Because A follows a Wishart distribution under P ∼
Wp(m,Σ), we have (qt − di)⊤A(qt − di) ∼ σti(Σ)

2χ2
m by the property of Wishart distribution

(Rao, 2009, Section 8b.2), where χ2
m is a chi-squared distribution with m degrees of freedom and

σti(Σ)
2 = (qt − di)⊤Σ(qt − di).

Thus one can evaluate Fti(m,Σ) using the closed form expression:

Fti(m,Σ) = log cdfm(1/σti(Σ)
2),

where cdfm is the cumulative distribution function of χ2
m. Consequently, problem (3) now becomes

min
{
L(m,Σ) : m ∈ N+, Σ ∈ Sp++, p ≤ m ≤ mt−1

}
, (5)

which is an optimization problem over the parameters of the Wishart posterior. Due to the integer
structure of the parameterm, we can solve sequentially for eachm between p andmt−1. For a fixed
value of m, we need to solve over the matrix Σ, and the reduced optimization problem has the form

minΣ∈Sp++

{
ℓ(Σ) ≜ −mt−1 log det(Σ) +mTr[Σ−1

t−1Σ]− τ
∑

i∈I−
t ∪I+

t
RtiFtim(Σ)

}
, (6)

where we use Ftim(Σ) = Fti(m,Σ) to highlight that m is fixed and the optimization variable in (6)
is only Σ. Next, we analyze the differentiability of Uim. Using the chain rule, we find

∇Ftim(Σ) = − 1

cdfm(1/σti(Σ)2)
pdfm

( 1

σti(Σ)2

) (di − qt)(di − qt)⊤
σti(Σ)4

,

where pdfm is the probability density function of χ2
m. The gradient information of ℓ, the objective

function of problem (6), evaluates to

∇ℓ(Σ) = −mt−1Σ
−1 +mΣ−1

t−1 − τ
∑

i∈I−
t ∪I+

t
Ri∇Ftim(Σ).

The complete strategy to obtain the posterior distribution by solving (3) is described as follows:

• For any integer valuem = p, . . . ,mt−1: solve problem (6) using a line-search projected gradient
descent algorithm to obtain Σ⋆(m). Note that the dependence of the optimal solution on the
fixed value of m is now made explicit. A specification of the line-search algorithm to solve (6)
is provided in the appendix.

• Identify (m⋆,Σ⋆(m⋆)) that minimizes the objective function L, where L is defined in (4). The
posterior distribution Pt is set toWp(m

⋆,Σ⋆(m⋆)).
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4.2 DOCUMENT RETRIEVAL USING MUTUAL INFORMATION

The second component of Phase 2 is a mutual information-based retrieval mechanism upon receiving
a query qt from the user. There remains two criteria: (i) relevance, and (ii) value of information about
the user’s preference A0. For relevance, we impose an n nearest document requirement, similar to
Phase 1. For the value of information: given a generic incumbent belief Pt−1 ∼ Wp(mt−1,Σt−1)
about the user’s weight matrix A0, our system will search for the document that can give us the
most significant amount of information about A0. Consider a document with embedding di and its
associated random variable R̃ti = R(qt, di, A) representing whether the user likes or dislikes the
item, whereas the randomness in R̃ti is induced by the prior distribution Pt−1 on A. The mutual
information between A and R̃ti can be written as

MI(A, R̃ti) = H(R̃ti)−H(R̃ti|A) = H(R̃ti),

where the conditional entropy H(R̃ti|A) is zero because given A, the feedback R̃ti becomes a de-
terministic constant. Note that by definition of the preference mechanism in Section 2.1, Rti is a
Bernoulli random variable with probability γ+ti = Pt−1(cA(qt, di) ≤ 1). Because our belief about
A is represented by a Wishart distribution, the quantity cA(qt, di) = (qt − di)

⊤A(qt − di) is a
scaled chi-square distribution. More specifically, we have cA(qt, di) ∼ σ2

tiχ
2
mt−1

, where χ2
m is a

chi-squared distribution with degrees of freedom mt−1, and σ2
ti = (qt−di)⊤Σt−1(qt−di). Hence,

γ+ti = cdf(1/σ2
ti), where cdf is the cumulative distribution function of χ2

m. The entropy H(R̃ti) is

H(R̃ti) = −γ+ti log2(γ
+
ti )− (1− γ+ti ) log2(1− γ

+
ti ),

and it is maximized when γ+ti = 0.5. A reasonable approach to acquiring information is to retrieve
documents with maximal mutual information value. Consequently, we propose finding C2 docu-
ments that belong to the n nearest document to the query qt and with the highest entropy value
H(R̃ti). The system then processes these documents and shows the generated text sto the user, then,
the user can provide feedback (+1 or −1) on these C2 texts. The preference information can be fed
into the posterior update in Section 4.1 to refine our belief.

5 PHASE 3: RETRIEVAL AND ANSWERING MODULE

After Phase 1 and Phase 2, we have collected sufficient information to learn about the user’s pref-
erence. In Phase 3, we put less emphasis on refining our belief about A0, but we focus on pro-
viding good quality answers to the user’s query. Given the final posterior Pf ∼ Wp(mf ,Σf )
and a user’s query qt, we can calculate our belief probability that the user favors document di by
Pf (cA(qt, di) ≤ 1). This probability amounts to cdf(1/σ2

ti), where cdf is the cumulative distri-
bution function of χ2

mf
and σ2

ti = (qt − di)
⊤Σf (qt − di). Here, σ2

ti depends on the matrix Σf

representing the preference deviation away from the nominal preference. Thus, the rank list can be
obtained by simply sorting the nearest documents to qt by the decreasing values of cdf(1/σ2

ti) and
picking the top items in the sorted list. Because cdf is a monotonically increasing function, we can
equivalently sort in terms of the 1/σ2

ti values to reduce the computational burden.

Answering model: We consider formulating responses to users based on retrieving the top-k doc-
uments as an abstractive summarization task. Consequently, we employ a pre-trained language
model that incorporates an autoregressive decoder for the purpose of generating summarizations.
These generated summarizations subsequently serve as responses to the user’s queries.

6 EXPERIMENTS

6.1 DATA COLLECTION

In order to assess the effectiveness of our methodology and replicate the scenario outlined in pre-
vious sections, we aim to curate a dataset featuring numerous iterations of the same information
presented through varying expressions and writing styles. With this objective in mind, we leverage
ChatGPT Turbo 3.5 to generate a dataset, simulating a scenario in which multiple users interact with
a chatbot system, requesting natural language explanations for various concepts. We have generated
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three distinct datasets, each centered around user queries related to concepts from three distinct do-
mains: politics, law, and technology. In our dataset, each user is designed to embody a unique facet
of humanity, such as their profession or educational background. We have observed that one’s pro-
fession most effectively captures this distinctive trait. Please refer to the Appendix for details about
the prompt we use to synthesize our dataset.

Our dataset comprises three components: 1) User Types: user’s professions that mirror the educa-
tional backgrounds of our users. 2) Concepts: these encompass various terms, including technolog-
ical, political, and legal terminology, which we aim to elucidate for our users. 3) Documents: these
documents serve the purpose of clarifying concepts for users, with content specifically customized
to match their professions and educational backgrounds. We synthesize three datasets, each dataset
comprises 50 distinct concepts, encompassing 100 diverse user types, and is composed of a corpus
of 5000 documents.

6.2 EXPERIMENTAL SETUP AND EVALUATION METRICS

We design the experiments to answer the following research question: Can our Bayesian learning
framework effectively capture user preferences for different document writing styles, even with a
limited number of feedbacks?

Baselines: We evaluate our method against three commonly used baseline retrievers in the RAG
literature, including sparse retrievers, BM25+ Lv & Zhai (2011), and dense retrievers, Maximizing
Inner-Product Search (MIPS) Lewis et al. (2020) and Euclidean l2 distance.

Evaluation: we employ the leave-one-out cross-validation method to assess the effectiveness of our
approach. For each user type, we systematically exclude all documents associated with that user
type from the database, treating them as reference documents. Subsequently, we identify the nearest
C documents as the designated ground truth documents for evaluation purposes. Our evaluation
encompasses two key aspects of our method. Firstly, we utilize the retrieval module to extract the
top-k documents that align most closely with the user. We conduct evaluations at k = 1 and k = 3.
Secondly, we assess the generative module by inputting the top-3 documents into an abstractive
summarization model to generate an explanation. This explanation should encompass the concept’s
definition and user-specific analogies.

Model architecture: For query and document embedding, we use MiniLM Wang et al. (2020)1.
For summarization model, we use bart-large-cnn Lewis et al. (2019) 2. Details about the hyperpa-
rameters lie in the Appendix.

We choose the following values for the technical parameters: the dimension of the text embedding
space is set to p = 128. We update the Bayesian posterior with parameter τ = 1 in Section 4.1. The
main paper presents the experiments with Nc = 3, while experiments with Nc = 5 are included in
the Appendix.

We employ two categories of metrics to measure the retrieval and text generation quality.

Retrieval Metrics. We utilize Precision@K and Hit Rate (HR@K), both are common metrics in the
domain of information retrieval.

Text Generation Metrics. We utilize a combination of Rouge scores (Lin, 2004), the l2 distance,
and a customized adaptation of the recent G-Eval (Liu et al., 2023) to gauge the degree of relat-
edness. We also measure an additional G-Eval metric because Rouge scores may not have a high
correlation with human preference in evaluating tasks of a creative and diverse nature. Please refer
to the Appendix for further details on each performance metric.

6.3 EXPERIMENTAL RESULTS

6.3.1 RETRIEVAL QUALITY

Table 1 presents the outcomes of our retrieval performance evaluation, focusing on Precision and Hit
Rate metrics. Notably, our algorithm outperforms all baseline methods by a substantial margin. This

1Accessible at https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
2Accessible at https://huggingface.co/facebook/bart-large-cnn
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improvement margin widens as we grant our method more opportunities to solicit user feedback.
These findings strongly indicate that our perturbed Mahalanobis distance effectively captures user
preferences, despite the limited availability of user’s feedback for our method.

Dataset Methods Precision@1 ↑ Precision@3 ↑ HR@3 ↑
BM25+ 0.1109 0.103 0.2622

Politics Euclidean 0.3141 0.3347 0.6367
MIPS 0.2585 0.2564 0.5319
Ours 0.3704 0.3751 0.6849

BM25+ 0.0749 0.0947 0.2493
Law Euclidean 0.3168 0.2926 0.5849

MIPS 0.1828 0.1849 0.4221
Ours 0.3503 0.3199 0.6176

BM25+ 0.092 0.0672 0.194
Technology Euclidean 0.454 0.3574 0.6642

MIPS 0.204 0.2235 0.4975
Ours 0.4621 0.3715 0.6803

Table 1: Quality of retrieval module with different retrieval methods. The best performance for any
metric is highlighted in bold. (C1 = C2 = 3, Nc = 3)

6.3.2 GENERATED ANSWER QUALITY

Table 2 presents the empirical results concerning the text quality of the generated summaries. Our
approach stands out by achieving the lowest l2 distance and the highest Rouge scores when com-
pared to BM25+, Euclidean, and MIPS. This performance indicates that our method generates re-
sponses that closely align with the semantic content of the user’s query. Additionally, our method
attains the highest averaged G-Eval scores, suggesting that our generated answers are more likely to
align with the user’s preferences.

Dataset Methods l2 ↓ Rouge1 ↑ Rouge2 ↑ RougeL ↑ RougeLSum ↑ G-Eval ↑
BM25+ 0.3232 0.3452 0.0923 0.1933 0.2570 2.8224

Political Euclidean 0.257 0.3669 0.1077 0.2044 0.2711 3.1980
MIPS 0.257 0.3671 0.1085 0.2060 0.2726 3.2486
Ours 0.2513 0.3701 0.1109 0.2072 0.2734 3.2738

BM25+ 0.3496 0.3736 0.1098 0.2069 0.2728 2.7797
Legal Euclidean 0.267 0.3851 0.1196 0.2163 0.2828 3.0851

MIPS 0.2726 0.3818 0.1166 0.2148 0.2818 2.9794
Ours 0.2659 0.3868 0.1210 0.2173 0.2842 3.1189

BM25+ 0.3812 0.3422 0.0955 0.1941 0.2567 3.0283
Technology Euclidean 0.2886 0.3553 0.1050 0.2016 0.2687 3.5776

MIPS 0.2816 0.3523 0.1037 0.2004 0.2659 3.4550
Ours 0.2807 0.3654 0.1130 0.2024 0.2702 3.5940

Table 2: Quality of generated summary with different retrieval methods. The best performance for
each metric is highlighted in bold. (C1 = C2 = 3, Nc = 3)

7 CONCLUSION

In this work, we propose a hybrid of Bayesian Learning and Retrieval Augmented Generation frame-
work to capture the user’s preference in the context of a retrieval-based text generation. We propose
a preference learning framework that constructs of three elicitation phases. In Phase 1, we use a de-
terminantal point process to sample K diverse documents and get feedback from the user. In Phase
2, we sequentially acquire additional user’s feedback, and employ a Bayesian framework to update
the belief on user-specific preference metric. In the final phase, we prioritize delivering accurate and
valuable responses to the user’s query. Numerical experiments show that our method outperforms
the baselines in terms of retrieval and text generation quality across multiple metrics.
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A ADDITIONAL NUMERICAL RESULTS

Dataset Methods Precision@1 ↑ Precision@3 ↑ HR@3 ↑
BM25+ 0.1105 0.0956 0.2458

Politics Euclidean 0.3003 0.3193 0.6132
MIPS 0.2493 0.2472 0.5198
Ours 0.459 0.4297 0.7735

BM25+ 0.0771 0.0929 0.2479
Law Euclidean 0.3133 0.2848 0.5753

MIPS 0.1828 0.1849 0.4221
Ours 0.4777 0.4312 0.7492

BM25+ 0.088 0.063 0.1785
Technology Euclidean 0.413 0.3262 0.618

MIPS 0.2065 0.2132 0.4745
Ours 0.5475 0.4942 0.7995

Table 3: Quality of retrieval module with different retrieval methods, measured using different met-
rics. Bold indicates best performance. (C1 = C2 = 3, Nc = 5).

Dataset Methods l2 ↓ Rouge1 ↑ Rouge2 ↑ RougeL ↑ RougeLSum ↑ G-Eval ↑
BM25+ 0.3288 0.3460 0.0928 0.1932 0.2575 3.0066

Political Euclidean 0.2649 0.3676 0.1072 0.2039 0.2710 3.3926
MIPS 0.2655 0.3681 0.1073 0.2050 0.2721 3.4273
Ours 0.2466 0.3745 0.1112 0.2072 0.2760 3.4777

BM25+ 0.3533 0.3414 0.0946 0.1923 0.2567 2.9673
Legal Euclidean 0.2735 0.3537 0.1031 0.1996 0.267 3.2414

MIPS 0.2782 0.3510 0.1036 0.1993 0.2653 3.1562
Ours 0.2563 0.3694 0.1161 0.2100 0.2797 3.3490

BM25+ 0.3895 0.3414 0.0946 0.1923 0.2567 2.9952
Technology Euclidean 0.3002 0.3537 0.1031 0.1996 0.267 3.5822

MIPS 0.2946 0.351 0.1036 0.1993 0.2653 3.4873
Ours 0.2658 0.3694 0.1161 0.2100 0.2797 3.655

Table 4: Quality of generated summary with different retrieval methods. The best performance for
any metric is highlighted in bold. (C1 = C2 = 3, Nc = 5).

B PERFORMANCE METRICS DETAILS

Below are details of the performance metrics we use throughout our evaluation.

• l2: We use the Euclidean distance on the embedding space to measure the semantic similarity of
the generated answer and the reference document.

• Rouge: is a set of metrics designed for summarization tasks. There are four variants of Rouge,
which operates at different levels of document analysis: ROUGE-1 (utilizing unigram-based
scoring), ROUGE-2 (employing bigram-based scoring), ROUGE-L (based on the Longest Com-
mon Subsequence), and ROUGE-Lsum (focusing on summary-level scoring).

• G-Eval: Following the recent work of G-Eval Liu et al. (2023), we create a variant of G-Eval
using GPT-3.5-turbo and a customized prompt.

Below we present the prompt to evaluate the summarization quality using GPT-3.5-turbo, follow-
ing Liu et al. (2023).

Imagine you are a {{user_type}} tasked with evaluating an explanation
provided for a query by another {{user_type}}. Your evaluation should
focus on one key metric: Relatedness (rated on a scale of 1-5). This
metric assesses how closely the analogy used in the explanation aligns

12
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with the profession of {{user_type}}.

A score of 1 (far from relevant) indicates that the explanation is
generic and unrelated to {{user_type}}’s profession.

A score of 2 (somewhat relevant) suggests that the explanation contains
some relevance to {{user_type}}’s profession but lacks depth.

A score of 3 (moderately relevant) signifies that the explanation has a
reasonable connection to {{user_type}}’s profession.

A score of 4 (highly relevant) indicates that the explanation closely
aligns with {{user_type}}’s profession, making it easily understandable.
A score of 5 (perfectly relevant) means that
the explanation is exceptionally well-suited to {{user_type}}’s profession,
providing a clear and comprehensive understanding.
To perform this evaluation, follow these steps:

Thoroughly review the Query and the Explanation.
Rate the response on a scale of 1-5 for relatedness
based on the aforementioned criteria.
Offer a concise explanation for your rating,
referencing specific elements of the explanation and the query.
Query: {{Query}}
Explanation: {{Explanation}}
Evaluation Form (scores ONLY):
Relatedness:

B.1 DATASET CREATION

We use GPT-3.5-turbo to populate our dataset with the following prompt:

You will be presented with a {concept_type} concept.
Your task is to elucidate this concept to a
specific {user_type}, tailoring your language,
examples, and context to align with the professional
background of the {user_type}.
Your explanation should be concise and not exceed 200 words.

The list of concept types and user types is included in the supplementary material.

C ALGORITHMS

We use this appendix to describe the heuristics used for diverse sampling and the algorithm for the
posterior update.

C.1 HEURISTIC ALGORITHM FOR MAXIMUM-A-POSTERIORI SOLUTION OF DPP

A popular algorithm to find the approximate MAP estimator in problem (2) is the greedy heuristics.
It starts by initializing the set J to an empty set. It then proceeds at each iteration by finding a
greedy index j to add to the incumbent set of documents J , with j maximizes the incremental
log-determinant value:

j = argmax
i:i ̸∈J

log det(LJ∪{i})− log det(LJ),

The algorithm then adds j to the set of documents until the cardinality constraint is met, that is,
when |J | = C1. This greedy algorithm costs O(C2

1n), and an implementation is provided in Chen
et al. (2018).
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Local neighborhood search. The terminal greedy heuristic solution may get stuck at a local
minimum. To improve the solution quality, we can employ a simple 2-neighborhood local search
that switches one element from the incumbent set with one element from the complementary set
if this switch leads to a better objective value. The local neighborhood search is terminated if no
improving switch can be found.

C.2 OPTIMIZATION ALGORITHM FOR POSTERIOR UPDATE

Here we present a simple line-search gradient descent algorithm to solve the nonlinear semidefinite
problem (6). The algorithm uses Armijo’s rule to find the step size that guarantees the feasibility of
the solution and sufficient descent.

Algorithm 1: Line-search Gradient Descent for Problem (6)
Input: Prior matrix Σt−1 ∈ Sp++ and degree of freedom mt−1, incumbent value m
Parameter: Number of iterations: K ∈ N+, Line search parameter γ = 0.5, β = 10−4

Initialization: Set S(0) ← Σt−1

for k = 0, . . . ,K − 1 do
Compute gradient: g ← −mt−1S

−1
(k) +mΣ−1

t−1 − τ
∑

i∈I−
t ∪I+

t
Rti∇Ftim(S(k))

Find the minimum non-negative integer η such that: (i) Feasibility: S(k) − γηg ∈ Sp++, (ii)
Descent guarantee:

ℓ(S(k) − γηg) ≤ ℓ(S(k))− βγη∥g∥2F
end for

Output: S(K)

C.3 IMPLEMENTATION DETAILS:

Our implementation will be public at: https://anonymous.4open.science/r/
BayesianRAG-FDAF

Hyperparameters are summarized in Table 5.

Text Embedding Dimension p 128
Summarization token min 70

token max 200
Bayesian Learning τ 1

C1 3
C2 3
Nc 3

Table 5: Hyper-parameter used throughout our experiments. C1 and C2 are the number of eluci-
dating concepts used in Phase 1 and Phase 2, respectively. Nc is the number of user elicitation per
concept in Phase 1 and Phase 2
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