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ABSTRACT
The COVID-19 pandemic has had a considerable global impact

over the last few years. Many efforts were made to understand

and estimate its development. The availability of large amounts of

data, including mobility data, has led to numerous Graph Neural

Networks (GNN) being proposed to leverage this data and forecast

case numbers for the short-term future. However, information about

trend developments, especially where trends reverse directions, is

crucial in informing decisions. GNNsmay be able to use information

from regions where trends change first to improve predictions

for locations with delays. We consider the first omicron wave in

Germany at the end of 2021 and compare a heterogeneous GNN

using mobility data with a model without spatial information. We

observe that, for this period, mobility data significantly improve

forecasts and specifically that improvements occur earlier in time.

Using GNNs and mobility data enables leveraging information from

counties affected earlier to improve forecasts for counties affected

later. We conclude that such performance improvements could be

transferred to counties with earlier change points by also including

neighboring nations in the graph structure. Further, we emphasize

the need for systematic contextual evaluation of GNN-based models

for forecasting pandemic trends.
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1 INTRODUCTION
Spreading from Wuhan, China, in late 2019, the COVID-19 pan-

demic has held humanity in its grasp until recently [35]. The pan-

demic has had drastic consequences, with estimates of almost fifteen

million excess deaths only in 2020 and 2021 [20] and considerable

economic and social damages [5]. The global scale of the pandemic

led to large amounts of data on different modalities related to epi-

demic spread being shared, such as mobility and sequencing data.

These have been made available to support the development of

forecasting methods intended to inform decision makers concern-

ing potential interventions [21, 23]. Human mobility is a central

driver in the geographical spread of epidemics caused by air-borne

diseases [3], enabling the virus to travel between regions and, in

the case of COVID-19, rapidly infecting most of the world. Dur-

ing the pandemic, researchers have combined mobility networks

with mechanistic models to understand the influences of changed

mobility behavior and further highlight its importance for the pan-

demic’s development [4, 30]. Schlosser et al.[30] have shown that

lockdowns strongly impacted mobility structures during the first

COVID-19 wave in Germany and that the associated reduction in

mobility can slow the virus’ geographical spread.

Various spatio-temporal approaches using Recurrent Neural Net-

works and EXtreme Gradient Boosting have been proposed to fore-

cast county-level COVID-19metrics [11, 18, 22, 34]. However, recent

advances in deep graph learning have led to GraphNeural Networks

(GNNs) gaining popularity in domains as diverse as traffic forecast-

ing [12] or computational chemistry [26]. Human mobility between

geographical regions can naturally be represented as graphs, where

nodes represent locations, such as counties, and edges movements

between them. Consequently, numerous approaches that try lever-

aging the power of GNNs to forecast COVID-19-related metrics,

such as cases, deaths, and hospitalizations, have been proposed

[9, 10, 13, 24]. These approaches have shown promising results in

providing insights into the short-term development of the COVID-

19 pandemic. However, informing decision makers about a trend

forecast rather than exact numbers might be more beneficial. Com-

municating trends can be easier than directly communicating cases

or deaths. Trends are strong indicators of relevant changes in the
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pandemic development and a need for interventions, and their in-

terpretation is straightforward. For example, the US Government

used a 14-day downward trend in COVID-19 cases as a condition

for potential re-openings [6]. For this purpose, systematically eval-

uating GNN-based methods’ ability to correctly forecast trends is

essential. Accurate forecasts are especially relevant for phases with

change points, where locations successively experience a change

in their trend, such as the peak of a wave.

There are secondary time series modalities, such as Google

search trends and smart body temperature sensors. These modali-

ties potentially reflect changes in trends faster than case numbers.

This has been successfully leveraged by Kogan et al.[15] and Stol-

erman et al.[31] to develop early-warning systems in the United

States that detect such trend signals up to weeks in advance. Simi-

larly, GNNs may utilize nodes with leading time series to improve

forecasts for nodes with lagging time series by passing information

via the underlying graph, i.e., information from locations where

changes occur earlier might be beneficial for forecasting locations

where similar changes are delayed.

In this work, we investigate whether mobility data can improve

forecasts of 14-day linear trends of the COVID-19 incidence. We

evaluate county-level forecasts of a heterogeneous GNN for loca-

tions experiencing a change point during the second half of the first

omicron wave at the end of 2021 in Germany [19], where cases are

beginning to decline. We further analyze whether our GNN can uti-

lize information from counties with leading changes for forecasting

counties that experience similar changes later. Finally, we discuss

the implications for developing and evaluating future GNN-based

methods for pandemic forecasting.

2 MATERIALS AND METHODS
2.1 Graph Construction
Inspired by Kapoor et al.[13], we construct heterogeneous spatio-

temporal graph samples with distinct edge types for spatial and

temporal connections. We design each graph sample to contain 15

weighted mobility subgraphs, representing movements between

the 400 German counties as nodes at successive points in time,

𝑡 − 14, ..., 𝑡 . We use spatial edges to express these mobility graphs.

The directed but unweighted temporal edges then link each county

at a time point 𝑡 − 14, ..., 𝑡 to its representations on up to seven

previous days, connecting the spatial components of the graph.

Therefore, each graph sample represents a single point in time

while still including historical information from previous days.

We use mobility data [16, 28] to build the spatial edges. The used

dataset contains the daily movements of nearly one million mobile

phone users in Germany and is non-public due to privacy concerns.

The number of mobile phones sending location information varies

daily, so we normalize the movements by the daily device count and

then re-scale all movements with the average daily device count.

We find that the daily mobility networks’ adjacency matrices are

primarily symmetric, i.e., the opposing edges are highly similar.

Therefore, we convert the directed into undirected graphs by sum-

ming the weights of the edges in both directions. Finally, we denoise

the mobility graphs by removing 30% of the non-zero edges with

the lowest edge weights, where edges on the thresholding boundary

are removed randomly.

The node features of our graph consist of dynamic and static

features. We obtain data on the COVID-19 case numbers starting

in January 2020 from the Robert Koch Institute [27] and aggregate

the data on the county level, resulting in a total of 400 time series.

Countering reporting inaccuracies, we calculate the county-level

7-day incidence, a right-aligned 7-day moving sum normalized by

the county population and then scaled by 100,000. Each node at

time 𝑡 has the 7-day incidence of the previous seven days until day

𝑡−6 as node features. Additionally, we include a cyclical sine/cosine
encoding [33] for the weekday and month. This cyclical encoding

aims to improve the learning of short and long-term seasonal effects.

Lastly, we use the population density of each county as the only

static feature. We collect the census data, such as population size

and population density, from the German Federal Office of Statistics

[17].

As prediction targets, we use 14-day trends in the COVID-19

incidence obtained from linear approximations. A linear approxi-

mation has the advantage that it allows us to estimate the strength

of a trend and not only its direction compared to converting the

problem to a classification task. For this purpose, we smooth the

7-day incidence time series for the whole dataset to remove remain-

ing artifacts, using a center-aligned 7-day moving average. For each

county and time point 𝑡 , we perform a linear regression on this

smoothed time series with the known time series values at time

points 𝑡 + 1, ..., 𝑡 + 14 as the dependent variable and the number of

days from time 𝑡 into the future ℎ ∈ 1, ..., 14 as the independent

variable. We then use the slope of this regression, representing a

linear trend of the COVID-19 incidence over the next 14 days from

time point 𝑡 , as the ground truth for our forecasts.

2.2 Graph Neural Network
Our GNN is similar to the network used by Kapoor et al.[13] and

based on Kipf and Welling’s[14] graph convolutional layer. We

extend this architecture by using relational graph convolutional

layers (R-GCN), an extension for heterogeneous graphs proposed by

Schlichtkrull et al.[29] that allows feature updates via multiple edge

types, where each edge type has its own set of learned parameters.

First, the node features are passed through an initial encoding layer

followed by a dropout with a probability of 0.2. Next is a three-

layer GNN, each with a dropout probability of 0.5. Like Kapoor

et al.[13], we add skip-connections and concatenate the output of

the initial encoding layer to the output of each R-GCN layer to

preserve local information and counter over-smoothing. Lastly, we

use a multi-layer perceptron with a single hidden layer to produce

the final prediction. We note that for each graph sample, we only

use the embeddings of the most recent spatial subgraph to obtain a

single forecast for all 400 counties. All layers have 32 hidden units

and use a ReLU as the non-linear activation function, except for

the last linear layer, which has 16 hidden units. The output layer

uses no activation function, allowing positive and negative trend

predictions. We implement our GNN in PyTorch [25] and PyTorch

Geometric [7].

2.3 Training setup
We use a mean squared error (MSE) regression loss and an ADAM

optimizer with a learning rate of 1.33e−4 and weight decay of 1e−5.
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We employ a batch size of 128 and train for a maximum of 250

epochs with early stopping, with a patience of 10 epochs without

improvement.

We adopt a rolling-origin evaluation approach [32] where we

extend the training set by the test sample of the previous iteration.

We test from November 10, 2021, until December 19, 2021, with all

previous data being used for training and validation. We use all

data from January 15, 2020, for training and validation. Therefore,

the training and validation set contains 665 samples for the first

test sample and grows to 704 samples for the last test sample. Our

validation set consists of the day after the last training sample and

is used for early stopping and model selection. We always have

a 17-day gap between the validation and test samples to avoid

information leakage to the test sample while also mimicking a

real-world situation where we use all the available data to make a

forecast.

To counter the sparseness of training data and avoid conditioning

our model too strongly on periods that contain limited information,

such as summer periods with low incidences, we oversample the

training set by multiplicating specific samples. We combine the

global German COVID-19 incidence time series with an exponential

function, assigning higher importance to more recent dates. We

convert the result into a discrete probability distribution where

each sample is assigned a probability. We then draw from this

distribution with replacement. We use an oversampling rate of 10.

2.4 Evaluation Scenario
While we train our models using an MSE regression loss, this metric

is not optimal for evaluating our models’ performance. Different

counties experience the considered phase of the pandemic differ-

ently and a metric dependent on the range of the trend values could

bias our evaluation.

Therefore we evaluate the models’ performance using the Mean

Absolute Percentage Error (MAPE) (Appendix A.1) and the sym-

metric Mean Absolute Percentage Error (sMAPE) (Appendix A.2).

Further, while MAPE and sMAPE provide insight into the error in

the magnitude of the trend, we are also interested in the model’s

ability to predict the direction of the trend. For this purpose, we

evaluate our models with an adaption of the Mean Directional

Accuracy (MDA) (Appendix A.3).

To investigate if our models can leverage mobility data to im-

prove predictions in counties with lagging change points, we con-

sider the first omicron wave at the end of 2021, from November 10

to December 19. For this period, we extract the date on which each

county’s corresponding smoothed COVID-19 7-day incidence time

series has its maximum, i.e., its peak. We consider this the point

when the trend will likely change from positive to negative as the

incidence begins to decline.

After obtaining the peak for each county, we use a 7-day moving

window to evaluate how the prediction performance develops as

more counties reach their peak. For each window, we collect all

counties that have their peak inside the current window. We then

compute all metrics for these counties using the forecast and ground

truth of their peak date and shift the window by one day.

We conduct additional experiments with the same evaluation

setup but replace the adjacency matrices of the mobility subgraphs

with identity matrices to verify that difference in performance can

be accounted to the mobility data. Thus, we train models with the

same number of parameters but do not include spatial information.

3 RESULTS
For all experiments, there is a clear performance improvement as

more counties reach their peak over time that is consistent across

all metrics. This improvement is more pronounced for models with

mobility data than those without spatial information (see Figure 1).

To verify that our findings that models with mobility data perform

better than models without spatial information are significant, we

conduct paired one-tail Wilcoxon signed-rank tests with signifi-

cance level 𝛼 = 0.05 for all metrics. After correcting for multiple

testing using the Benjamini-Hochberg method [1], we find that for

MAPE (p-value ≈ 0.021), sMAPE (p-value ≈ 2.738e−6), and MDA

(p-value ≈ 6.661e−6) the mobility-conditioned models significantly

outperform the models without spatial information.
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Figure 1: (A) sMAPE (lower is better) for peaks in 7-day mov-
ing windows. The performance improves over time for both
experiments before declining. The effect occurs earlier and is
greater for models with mobility data. (B) The MDA (higher
is better) almost mirrors the sMAPE’s behavior. This suggests
that while more recent training data improve predictions,
this effect is amplified by mobility data.

Figure 1 (A, B) clearly shows that the improvements in sMAPE

and MDA happen earlier and are more extreme for the models

with mobility data. This difference indicates that the improvements

cannot solely be attributed to the fact that the models have seen

more recent and relevant data and are therefore conditioned better.

Furthermore, due to the 17-day gap to avoid information leakage,

the model is unlikely to have seen any recent negative trends for a

county before its peak during training. However, as earlier coun-

ties are already past their peak and are experiencing decreasing
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incidences, they can share this information with counties where

peaks occur later.

4 DISCUSSION AND CONCLUSION
We find that mobility data significantly improve forecasting perfor-

mance compared to experiments without spatial information. We

have two hypotheses for our observations. Firstly, the structural

information in the mobility networks and their variation over time

might lead to improved predictions. Secondly, our GNN model can

pick up information from counties that experience changes, such

as beginning downtrends in incidences, earlier and use them for

forecasts of counties where these changes occur delayed. With our

current experimental setup, we are unable to disentangle these hy-

potheses. However, further experiments, for example, using static

spatial connections, could provide insights.

Counties that are the first to experience a change in trend seem

unable to benefit frommobility data. However, these counties might

be of the highest interest as changes occur earlier and are likely

more vital indicators of the need for interventions. Therefore it

could be valuable to include additional nodes representing neighbor-

ing nations in our graph to leverage potentially leading information

from them.

Our analysis suggests that systematically analyzing models’ ca-

pabilities of making accurate trend forecasts during times of interest

is highly valuable. Different components, such as the magnitude

and direction of a trend, are relevant for providing a holistic un-

derstanding in an epidemiological context. It could be helpful to

extend evaluations by applying post-hoc explainability methods

for graph-based models to understand better how the models make

their predictions. Such explanations could provide insights for epi-

demiologists to construct hypotheses regarding the pandemic’s

current state and spreading behavior.

We showed the capabilities of a heterogeneous spatio-temporal

GNN in leveraging mobility data to improve forecasts for counties

with lagging time series directly after a change in trend. We suggest

that includingmore global information via nodes representing other

nations could extend this effect to leading counties where changes

occur first. Currently, we evaluate single rolling-origin evaluation

experiments for the change point of the COVID-19 pandemic in

Germany. To substantiate our findings, we will consider different

phases of the pandemic, including change points with a switch to

upward trends. Furthermore, we will run experiments repeatedly

to verify the robustness of our results and establish confidence

bounds.
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A EVALUATION METRICS
A.1 Mean Absolute Percentage Error
The Mean Absolute Percentage Error (MAPE) [8]:

𝑀𝐴𝑃𝐸 =
1

𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 |
|𝑦𝑖 |

,

where 𝑛 is the number of counties, is a relative error independent of

the range of values. The MAPE is highly susceptible to observations

close to zero causing the metric to explode. A smaller MAPE is

better.

A.2 symmetric Mean Absolute Percentage Error
The symmetric Mean Absolute Percentage Error (sMAPE) [8]:

𝑠𝑀𝐴𝑃𝐸 =
1

𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 |
|𝑦𝑖 | + |𝑦𝑖 |

,

where 𝑛 is the number of counties, is another relative metric that

takes on values between 0 and 1 and is therefore protected against

exploding values. A smaller sMAPE is better.

A.3 Mean Directional Accuracy
We use an adaption of theMean Directional Accuracy (MDA) [2]. As

we only forecast a single value, the MDA can be simplified, yielding

the rate at which the models can identify the trend correctly:

𝑀𝐷𝐴 =
1

𝑛

𝑛∑︁
𝑖=1

1𝑠𝑖𝑔𝑛 (�̂�𝑖 )=𝑠𝑖𝑔𝑛 (𝑦𝑖 ) ,

where 𝑛 is the number of counties and 1 the indicator function. A
larger MDA is better.
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