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Abstract

Task planning requires accurate state estimation to achieve
goals, but current methods rely on manually created, domain-
specific functions that are time-consuming and struggle to
adapt. Recent advances in Large Language Models (LLMs)
and Vision-Language Models (VLMs) enable zero-shot se-
mantic state estimation but often lack task-specific accuracy,
leading to suboptimal plans or goal failure. To address this,
we propose the Factored State Sampler (FSS), which in-
tegrates task domain knowledge to refine state estimation.
While the FSS slightly reduces the micro-average AUC on
state features, it substantially enhances state validity, which is
a critical metric for effective task planning. The highest state
validity is achieved by combining an additional neural net-
work with the FSS, demonstrating the significant impact of
our approach on enhancing generalization in task planning.

Introduction
Task planning involves searching a combinatorial state
space to determine a sequence of high-level, symbolic
actions (Ghallab, Nau, and Traverso 2016) (Geffner and
Bonet 2013) which an agent uses to solve tasks. These plans
are based on determining the internal state of the system
through observations, a process known as state estimation.
When an agent follows the actions which the plan dictates
failure may occur and lead to unknown states. Therefore,
this process is often repeated throughout the task until
the agent reaches its goal. Effectively executed task plans
enable intelligent agents to solve complex problems across a
wide range of cutting-edge domains, including lunar rovers
(Martinez Rocamora et al. 2023), autonomous vehicles (Hu
et al. 2023) (Ding et al. 2020), game AI (Duarte et al. 2020),
and more. To achieve generalization in task planning within
these diverse visual task domains, state estimation must be
automated and standardized.

The emergence of Large Language Models (LLMs)
(Radford et al. 2019) (Chen, Xiao, and Hsu 2024) and
instruction-driven Visual Question Answering (VQA) foun-
dation models (Radford et al. 2021) (Maggio et al. 2024)
(Duan et al. 2024) presents a transformative opportunity
to overcome these limitations. Unlike prior methods that
relied on a tailored combination of computer vision tools for
specialized queries, VQA models are designed to interpret

visual input and answer diverse natural language questions
within their training distribution. These models excel at
zero-shot generalization, enabling semantic state estimation
that can be directly integrated into a variety of task planning
scenarios. This plug-and-play approach enhances planning
flexibility and offers a scalable solution for state estimation
across numerous domains.

Although these models have significantly advanced task
planning performance, there remains considerable room for
improvement. Accurate state estimation enables task plans
that guide the agent to perform the correct actions to achieve
its goal. However, inaccurate state estimation can result in
an excessive number of actions where fewer would have suf-
ficed, or worse, failure to reach the goal. When these models
are used as zero-shot state estimators, their predictions are
often either completely independent of the task domain, pre-
senting a significant challenge, or fully tailored to a specific
domain, making them difficult to apply to other domains.
To overcome this challenge and improve performance across
diverse planning tasks, we introduce a new approach called
the Factored State Sampler (FSS). FSS improves state esti-
mation accuracy by restricting states to those relevant to the
task domain and enforcing mutual constraints on state fea-
tures.

Background
A Task Domain
A task domain or classical planning model (Geffner &
Bonet, 2013(Geffner and Bonet 2013)) is defined as a
tuple Σ = ⟨S, s0, SG, A, T, c⟩ where S is a discrete and
finite set of states defined over a finite feature space F
(i.e., S ∋ s = (x1, x2, . . . , xk) where x1, x2, . . . , xk
are the features of the state), s0 ∈ S is a known initial
state, and SG ⊆ S is a non-empty set of goal states. The
function A(s) ⊆ A is the set of actions applicable at
state s ∈ S, T is a deterministic transition function where
T (s, a) ∈ S is the state that follows s after performing
action a ∈ A(s), and c(a, s) is a positive cost of performing
action a at state s. A task plan TP is a sequence of actions
TP = (a1, a2, . . . , an) that are applicable in order from
s0 onwards, where ∀ai ∈ TP , st+1 = T (st, at+1), and
sn ∈ SG.



(a) A frame from a simulated robot environment.

(b) State estimation using a VLM resulting in
probabilities over features (shown here is subset
of the state features for readability).

(c) State estimation using threshold=0.2.

(d) State estimation using threshold=0.2 and
Factored State Sampling. Features which can-
not co-exist cancel each other by comparing
probabilities, a list of canceled, canceler pairs
follows: [(’robot-gripper-empty()’, ’robot-
gripping(green-bottle)’), (’robot-gripping(milk-
carton)’, ’robot-gripping(green-bottle)’), (’on-
table(milk-carton,white-table)’, ’on-table(milk-
carton,wood-table)’), (’robot-gripping(milk-
carton)’, ’on-table(milk-carton,wood-table)’)].

Figure 1

(a) A frame from the real robot environment

Figure 2

Given a state st ∈ S a deterministic policy π is defined
π(st) = at+1.
Given a task domain Σ a task planner P is defined
P (Σ) ∈ {∅, TP} where ∀at+1 ∈ TP , π(st) = at ∼ π(·|st)
and ∅ denotes that no plan to reach a goal state exist.

Factored State Estimation

Let O be the observation space and let Ot =
{o1, o2, ..., ot} ⊂ O be the set of all observations up to time
t. Then given the feature space F the factored state estimator
ψ is defined as probabilities over the feature space. In the
binary feature space case:

ψF (Ot) ∈ [0, 1]|F |

Related Work

(Liu et al. 2023) introduced a framework that employs Large
Language Models (LLMs) to tackle planning problems de-
scribed in natural language by translating them into the Plan-
ning Domain Definition Language (PDDL) (Aeronautiques
et al. 1998), a standardized language for task domain rep-
resentation, and utilizing established planners to find solu-
tions. Similarly (Guan et al. 2023) translated a problem in
natural language to PDDL but assumed the correct initial
symbolic state was given. However, while determining the
correct symbolic state is a one-time challenge in scenarios
with deterministic action outcomes, in environments with
probabilistic results, this challenge is compounded by the
need to repeatedly infer the symbolic state after each ac-
tion. Recently, studies employing Visual Language Models
(VLMs) to estimate the symbolic state of visual environ-
ments have encountered this challenge, especially in cases
where uncertainty is introduced by factors like robot move-
ments with probabilistic outcomes (Liang et al. 2024).
The aforementioned approaches, which utilize founda-
tion models as plug-and-play state estimators, overlook
critical logical information inherent in the task do-
main—information that we aim to demonstrate can signif-
icantly enhance multi-label classification of features.



Problem Formulation
Factored State Sampler
A factored state sampler (FSS) is a function β that, given a
planner P and a factored state estimator ψF corresponding
to task domain Σ, β(ψF (Ot),Σ) ∈ S is a state sampled
from distribution conditioned on Σ.

We aim to improve the multi-label classification of
features. Specifically as not all combinations of values of
the features lead to a valid state in the task domain σ, we
look for a factored state sampler β(ψF (Ot),Σ) ∈ S s.t. we
maximize the micro-average AUC of state features.

Method and Evaluation
Given a factored state estimator without task domain
knowledge, we use a factored state sampler which lever-
ages the domain knowledge to provide a goal oriented
state sample. This is relevant to a variety of problems. We
point to 2 areas of prior knowledge found in the task domain:

• Co-occurence of features - The task domain gives us
knowledge about which features cannot co-occur in a
state. A simple example from blocksworld, a task do-
main that consists of a set of blocks that can be stacked
or arranged on a table according to specific rules or
goals, such as achieving a particular configuration - Two
blocks cannot physically occupy the same space or be
stacked on top of each other. Similarly, it is impossible
for two blocks to simultaneously rest on a third block.
This type of knowledge may help reduce false positives.

We present two initial baselines to evaluate our work:
• micro-average AUC of state features - We use a

factored state sampler that relies on a co-occurrence
matrix of ground truth states. In this approach, we
first determine the binary values (True or False) for all
features based on a threshold (1c). For every pair of
features that are True but not allowed to co-occur, we
identify the feature with the higher probability as the
”canceler” and the one with the lower probability as the
”canceled.” We then iterate over all ”canceler” features
in order of descending probability. If a ”canceler” feature
is still True, we set all its ”canceled” features to False
(as shown in 1d).

features can exhibit dependencies spanning a dis-
tance of 3 or more, while the co-occurrence matrix only
captures dependencies up to a distance of 2. Consider
the blocksworld example involving three blocks: A, B,
and C. A dependency of distance 2 that cannot co-occur
would be: A on B and B on A. In contrast, a dependency
of distance 3 that cannot co-occur would involve: A on
B, B on C, and C on A. Here, A on B describes the
physical relationship where block A is placed on top of
block B.

• State Validity AUC - We use the task domain PDDL and
Breadth-First Search algorithm to generate all the states

of the problem; A state is considered valid if it is in this
generated set and not valid otherwise.

Results

In this section, we present the results of our FSS approach
as a multi-label classifier. It’s important to note that most
feature labels are typically False—approximately 75% of
the time. For example, when an object is on the wood table
it isn’t on any other table, nor is it being gripped. This
results in a scenario where a simple model that predicts all
features as False for every data point can achieve near 75%
accuracy. To provide a more meaningful evaluation, we use
micro-average AUC of state features as our primary metric.

3a shows our results for a robot in simulated environment,
where the goal is to arrange different items on specific
tables. 3b shows our results for a real robot (2a) in a similar
environment and goal to the simulated one. In the simulated
environment we use the simulator privileged information to
create the ground truth while in the real world environment
we use human annotated ground truth. We use the LLaVA
VLM (Liu et al. 2024) as our factored state estimator -
denoted as ”VLM”. The ”VLM + instruct” denotes the
same VLM, we use ”instruct” to note that we changed
the action of gripping an item to include moving it to a
predefined location which is in the air and not on the table.
This extra movement helps solve the uncertainty in the
image of whether the gripping action has succeeded or not.
The ”cooc” dentoes the usage of our FSS method while the
”nn” denotes the usage of an additional neural network.

As shown in our simulated environment results 3a our FSS
approach led to a decrease in micro-average AUC of 2.87%
for the VLM model and 1.82% for the ”VLM + instruct”
model. In the real robot environment 3b, the micro-average
AUC decreased by 2.9% for the ”VLM” model and 2.96%
for the VLM + instruct model. To offer additional con-
text, we introduced an extra baseline, referred to as the ’nn’
which in both figures. This function, denoted as γ, is repre-
sented as γ(ψF (Ot)) ∈ F . In the simulated environment, γ
demonstrated increases of 13.53% for the ”VLM” model and
12.84% for the ”VLM + instruct” model. In the real robot
environment, γ showed increases of 15.56% for the ”VLM”
model and 13.33% for the ”VLM + instruct” model. How-
ever, γ relies on the availability of ground truth data, which
the FSS approach does not require. Due to this reliance on
ground truth data, γ cannot be easily generalized to other
task domains and must be tailored with specific ground truth
data for each new domain.
When looking at the state validity results in the simulated
3c environment, and real robot 3d the ”VLM”, ”VLM + in-
struct” AUC values are below 5.1%. In both environments
the ’nn’ and ’cooc’ improve these results by hundreds of
percents. Finally, in both environments, the best model are
those which include both the ’nn’ and the ’cooc’.



(a) Results in a simulated environment, features are on-
table(?item, ?table), robot-gripping(?item), robot-gripper-
empty().

(b) Results with a real robot, features are in-table-section(?item,
?color), robot-holding-in-air(?item), robot-gripper-empty().

(c) Results of state validity in simulated environment (d) Results of state validity with a real robot

Figure 3: (a, b) results from simulated environment and real robot experiments showing precision-recall curves over all features
for each process. micro-average AUC of state features value is written near each process’s name. (c,d) Results of state validity

Conclusions
Our FSS approach did not enhance the micro-average AUC
of state features, as we have not fully utilized all the informa-
tion available within the task domain. Specifically, the tran-
sition function information remains untapped. Additionally,
we have yet to leverage the co-occurrence data for distances
of 3 and beyond. We leave the exploration of these aspects
for future work.
We revisit our initial motivation for employing an FSS as
a mechanism to generate valid states, enabling task plan-
ners to produce actions that guide the agent toward its goal.
Enhancing the micro-average AUC significantly boosts state
validity, as achieving the theoretical 100% AUC implies that
all states are true and therefore valid. However, we observe
that while the FSS slightly reduces the AUC, it substan-
tially enhances validity. Notably, the best validity results are
achieved when combining both the neural network and the
FSS.

State validity is a crucial measure for effective task planning.
Our approach demonstrates that FSS significantly enhances
this metric within a framework that leverages a VLM for
task planning in a generalized manner.
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