
Sparse Structure Exploration and Re-optimization for Vision Transformer

Sangho An1 Jinwoo Kim1 Keonho Lee2 Jingang Huh2 Chanwoong Kwak2 Yujin Lee2 Moonsub Jin2

Jangho Kim*1

1 Kookmin University, Seoul, Korea
2 RoboticsLab , Hyundai Motor Company

Abstract

Vision Transformers (ViTs) achieve outstanding
performance by effectively capturing long-range
dependencies between image patches (tokens).
However, the high computational cost and mem-
ory requirements of ViTs present challenges for
model compression and deployment on edge de-
vices. In this study, we introduce a new framework,
Sparse Structure Exploration and Re-optimization
(SERo), specifically designed to maximize prun-
ing efficiency in ViTs. Our approach focuses on (1)
hardware-friendly pruning that fully compresses
pruned parameters instead of zeroing them out,
(2) separating the exploration and re-optimization
phases in order to find the optimal structure among
various possible sparse structures, and (3) using
a simple gradient magnitude-based criterion for
pruning a pre-trained model. SERo iteratively re-
fines pruning masks to identify optimal sparse
structures and then re-optimizes the pruned struc-
ture, reducing computational costs while maintain-
ing model performance. Experimental results in-
dicate that SERo surpasses existing pruning meth-
ods across various ViT models in both perfor-
mance and computational efficiency. For exam-
ple, SERo achieves a 69% reduction in compu-
tational cost and a 2.4x increase in processing
speed for DeiT-Base model, with only a 1.55%
drop in accuracy. Implementation code: https:
//github.com/Ahnho/SERo.

1 INTRODUCTION

Vision Transformers (ViTs), in particular, have shown suc-
cess in numerous computer vision tasks by tokenizing image
patches and utilizing them in various innovative ways [Liu

*Corresponding Author

(a) Value Ratio and Accu-
racy

(b) Weight and Gradient distribu-
tions

Figure 1: Figure 1a shows the accuracy and remaining value
ratio after weight and gradient magnitude pruning according
to sparsity ratio on CIFAR-100 dataset of DeiT-Tiny model,
and Figure 1b illustrates the weight and gradient distribu-
tions of Q, K, V, and FFN layers in the pre-trained model
with 128 batch size.

et al., 2021, Touvron et al., 2021]. Despite their successes,
however, the excessive parameter count and computational
cost of transformers have become significant barriers to the
efficiency of ViTs. Consequently, extensive research has fo-
cused on pruning parameters to enhance the computational
efficiency of ViTs.

According to [Paul et al., 2023], well explored sparse struc-
ture of networks often exhibit a flatter error landscape, which
provides a favorable structure for training and thus offers
optimization advantages. Notably, dynamic pruning meth-
ods [Lin et al., 2020c, Kim et al., 2023] emphasize ex-
ploring various sparse structures during training can lead
to finding better sparse structures. Due to these benefits,
the importance of exploration in sparse structures becomes
more pronounced. [Zimmer et al., 2023] highlights that re-
optimizing models obtained through one-shot pruning can
lead to better-performing sparse models. Considering previ-
ous research, finding an optimal sparse structure is essential.
A well-explored structure enables re-optimization to begin
from a more advantageous landscape, and instead of merely
fine-tuning the sparse model, re-optimizing it is crucial for
recovering any lost performance.

mailto:do753951@kookmin.ac.kr
mailto:acasia@kookmin.ac.kr
mailto:keonho.lee@hyundai.com
mailto:jingang4394@hyundai.com
mailto:kcw4875@hyundai.com
mailto:yjlee28@hyundai.com
mailto:jinms@hyundai.com
mailto:jangho.kim@kookmin.ac.kr
https://github.com/Ahnho/SERo
https://github.com/Ahnho/SERo

Figure 2: The overall process of our proposed SERo method consists of three main steps. First, we explore the sparse
structure by dynamically adjusting masks while considering the dimensions of multi-head self-attention and the loss of the
value matrix. Second, we compress the discovered structure to achieve actual computational speed improvements. Finally,
we reset the learning rate and re-optimize with the identified structure with few epochs.

However, In the case of ViT pruning, there are many consid-
erations due to the need to fine-tune a pre-trained model with
an attention mechanism for downstream tasks. Although ex-
isting methods provide effective solutions, they still have
limitations. For example, if pruning is performed without
considering dimensionality and simply zeros out inactive
channels, it may fall short in achieving practical gains in
the computational cost and the latency [Yu et al., 2022b,c].
When selecting channels (neurons) to prune, criteria with
high computational costs, such as importance or Hessian, are
often used, and the model is fixed in the early epochs rather
than focusing on exploring various sparse structures [Shim
et al., 2024, Chen et al., 2021]. Additionally, the identified
sparse structure is learned through fine-tuning rather than
re-optimization [Yu et al., 2022a, Yu and Xiang, 2023, Yu
et al., 2022d, He et al., 2017, 2019].

As shown in Figure 1, we observe that the weights in the
Q and K matrices of the ViT’s pre-trained model generally
have higher magnitudes compared to those in the V matrix.
Consequently, when applying a typical weight magnitude-
based pruning approach [Han et al., 2015, Yu et al., 2022b]
to derive sparse structures, the value matrix tends to be
pruned more extensively, leading to a proportional decline
in performance. In the attention mechanism, even if Q and
K matrices are heavily pruned, information is still preserved
across tokens. However, significant pruning of the value
matrix results in considerable information loss. This effect
becomes more pronounced as the pruning ratio increases,
demonstrating that even a simple criterion based on gradient
magnitude can effectively guide channel selection without
requiring complex criteria.

Based on our observation, to address these challenges while
leveraging the strengths of structured exploration and re-
optimization suited for ViT, this work introduces a novel
ViT pruning methodology from three perspectives:

(1) Real compression for computational costs and latency
efficiency: We fully compress the pruned parameters instead
of merely zeroing them out, leading to tangible improve-
ments in both computational costs and the inference speed.
(2) Separation of exploration and re-optimization: Unlike
previous methods, we separate the exploration phase to find
an optimal sparse model from the re-optimization phase. Af-
ter identifying an appropriate sparse network structure, we
compress and perform re-optimization by resetting learning
rate instead of fine-tuning. (3) Simple criterion considering
transfer learning: By analyzing the characteristics of pre-
trained models, we propose a simple criterion for effectively
exploring sparse models in the context of transfer learning.

We propose a gradient-based sparse structure exploration
and re-optimization (SERo) that incorporates three perspec-
tives. Figure 2 shows the overall process of SERo. To select
an optimal sparse model based on a pre-trained model, we
employ a simple gradient magnitude criterion. For broader
exploration, we use gradual pruning with dynamic pruning
that periodically updates the pruning mask. Since weight
magnitude is known to significantly impact model perfor-
mance in most pruning methods, we design our approach to
prioritize updates to parameters with higher weight magni-
tudes among those identified as important by the gradient
criterion. This enables effective exploration and discovery
of high-quality sparse structures. Once the target sparsity is
reached, exploration is halted, and compression is applied
to establish the sparse structure. Unlike typical fine-tuning,
we separate exploration from re-optimization, allowing us
to re-optimize from a well-structured sparse foundation and
thereby maximize the performance of the sparse model. Our
contributions are as follows:

• We introduce a novel sparse structure exploration
and re-optimization method (SERo) based on three
perspectives, incorporating both gradient and weight

magnitude in the exploration phase and applying re-
optimization on the compressed sparse structure.

• We provide a theoretical analysis of the convergence
properties of our exploration update method and in-
vestigate the advantages of re-optimizing the explored
sparse structure, analyzing differences from other ex-
ploration techniques.

• We demonstrate the effectiveness across various bench-
marks and validate the effectiveness of our approach
in the latency and accuracy through extensive exper-
iments. In particular, DeiT-Base with SERo improve
2.4x faster than the original model with minimal per-
formance drop.

The proposed method maintains ViT performance while
achieving practical computational costs and speed optimiza-
tions suitable for deployment. This new approach to ViT
pruning demonstrates the potential to maximize model effi-
ciency and transfer learning performance, making it highly
applicable to real-world scenarios.

2 RELATED WORK

2.1 PRUNING

Unstructured pruning [Lin et al., 2020c, Frankle and Carbin,
2019, Liu et al., 2019] removes less important weights at
the individual level. While this approach can achieve higher
compression rates, it is difficult to accelerate with hardware.
On the other hand, structured pruning [Luo et al., 2017, He
et al., 2018, Lin et al., 2020b,a] removes larger structural
units, such as channels, filters, or layers, effectively alter-
ing the network’s architecture. As a result, it can directly
improve hardware acceleration. Our proposed SERo adopts
this structured pruning approach to effectively achieve per-
formance improvements on actual hardware.

2.2 VISION TRANSFORMER MODEL PRUNING

Vision Transformers (ViTs)[Dosovitskiy et al., 2021, Liu
et al., 2021, Touvron et al., 2021] are models that con-
vert image patches into tokens, embed them, and utilize
only the encoder structure of transformers[Vaswani et al.,
2023]. While ViTs demonstrate exceptional performance
in image processing tasks, they face significant limitations
due to their high computational complexity and large mem-
ory requirements. Various research efforts are underway to
address these challenges by reducing computational costs.
One approach involves proposing lightweight ViT architec-
tures through Knowledge Distillation techniques, as demon-
strated in DeiT [Touvron et al., 2021]. For model pruning
approaches, SSViTE [Chen et al., 2021] proposes a method
to optimize model parameters and explore connectivity dur-
ing training, dynamically extracting and learning sparse sub-

networks of ViT. WDPruning [Yu et al., 2022a] introduces
compression by simultaneously reducing both the width
and depth dimensions using trainable parameters and shal-
low classifiers. X-pruner [Yu and Xiang, 2023] proposes an
end-to-end explainability-aware mask to measure each prun-
able unit’s contribution. UVC [Yu et al., 2022b] presents
an integrated framework combining pruning, layer skip-
ping, and knowledge distillation. More recently, SNP [Shim
et al., 2025] introduces structured neuron-level pruning,
which prunes the queries and keys with the least informa-
tion while maintaining the overall attention scores. All these
approaches share the common goal of improving ViT effi-
ciency while maintaining or enhancing their performance.

3 PROPOSED METHOD

In this section, we describe the basic structure of the ViT
and explain the pruning granularity, criterion, and the explo-
ration of the granular sparse structure used in the proposed
method and the Re-optimization.

3.1 PRELIMINARY

A ViT block consists of a self-attention layer, projection
layer and the feed-forward network in the form of a multi-
layer perceptron. The self-attention layer transforms the
input tokens X → RN→E into query, key, and value repre-
sentations using weight matrices W

q
,W

k
,W

v → RE→E ,
resulting in Q,K, V → RN→E . To capture a diverse set
of attentions, multi-head self-attention (MSA) is applied
by splitting Q,K, V into H heads. Each head performs
a self-attention operation defined as Attnl(Ql,Kl, Vl) =

softmax
(

QlK
T
l↑

E/H

)
Vl, where l is the index of the head, and

there are H heads in total. Here, Ql,Kl, Vl → RN→E/H .
The resulting attention outputs Attnl from each head are
concatenated and restored to the original dimension RN→E

before being passed through the feed-forward network. The
MSA operation is expressed as follows:

MSA(X) = concat(Attn1
,Attn2, . . . ,AttnH).

The values obtained through the diverse attentions of MSA
are concatenated, passed through a projection layer WP ,
followed by layer normalization, and then processed through
Feed Forward Network (FFN) with weights W f1 and W

f2.

3.2 PRUNING UNIT, GRANULARITY AND
CRITERION

To perform structured pruning in a hardware-friendly man-
ner, we divide the pruning units into three groups based on
their functional components (Q&K, V&proj, FFN). There-
fore, we share the pruning mask M at the level where ac-

tual computations occur. W q and W
k are pruned using

M
q,k,W v and W

p are pruned using M
v , and finally, W f1

and W
f2 are pruned using M

f .

To prune W
q and W

k by columns based on the average L1

norm of their gradients, we define a column-wise pruning
mask M → RE , applied uniformly across all elements in
each column of W q and W

k. This results in:

W
q

= M
q,k ↓W

q
, W

k

= M
q,k ↓W

k

where M
q,k = {mq,k

i, j | m
q,k

i, j → {0, 1}, i =
1, . . . , E, j = 1, . . . , E}, each entry M

q,k

j
in the mask vec-

tor Mq,k is determined by the average L1 norm of the gra-
dients for the j-th column of W q and W

k. Specifically, the
gradient of the loss L is computed with respect to the full
weight matrices W q and W

k, and we then select the j-th
column of the resulting gradient matrices:

M
q,k

j
=

{
1 if 1

2 (↔↗W qL[:, j]↔1 + ↔↗WkL[:, j]↔1) ↘ ω

0 otherwise
(1)

where ↗W qL[:, j] and ↗WkL[:, j] denote the gradients of
the loss L with respect to the full weight matrices W q and
W

k, indexed by the j-th column. The threshold ω is used to
decide which columns are retained or pruned, with columns
below this threshold pruned by setting M

q,k

j
= 0. Each

entry M
q,k

j
applies uniformly across all rows in the j-th

column of W q and W
k, such that the entire column is either

pruned or retained.

To prune W
v, we use the L1 norm of the gradient of W v,

and we prune by removing columns, reducing its dimension.
To account for the deleted dimensions in the next layer, we
also apply pruning to the weights in W

p that correspond to
the pruned input dimensions. This results in:

W
v

= M
v ↓W

v
, W

p

= (Mv)T ↓W
p

where (Mv)T is the transpose operation. The pruning mask
M

v

j
is determined as follows:

M
v

j
=

{
1 if ↔↗WvL[:, j]↔1 ↘ ω

0 otherwise
(2)

Similarly to W
v, we perform pruning in the feed-forward

network based on W
f1, and the corresponding dimensions

are removed in W
f2. This results in:

W
f1

= M
f ↓W

f1
, W

f2
= (Mf)T ↓W

f2

where the pruning mask M
f

j
is determined as follows:

M
f

j
=

{
1 if ↔↗W f1L[:, j]↔1 ↘ ω

0 otherwise
(3)

3.3 STRUCTURE EXPLORATION AND
RE-OPTIMIZATION

The dynamic sparse structure update rule with t-th iteration
as follows:

Wt+1 = Wt ≃ ε ·↗
W t

L (4)

has the advantage of allowing dynamic exploration of
sparse structures through the Straight Through Estima-
tor (STE) [Lin et al., 2020c, Guo et al., 2016]. However,
STE introduces instability because it estimates the non-
differentiable part ↗WtW t as 1 during the update pro-
cess [Kim et al., 2023, Zhou et al., 2021]. To ensure more
stable sparse structure exploration, we use a soft pruning
mask such that ↗WtWt = Mt, leading to the update rule:

Wt+1 = Wt ≃ ε ·↗
Wt

L ·Mt ·W |·| (5)

We denote | · | as a element-wise absolute function. Note
that W consists of W q

,W
k
,W

v
,W

p
,W

f1
,W

f2, which
are the weight matrices included in the ViT block as de-
scribed in Section 3.1, and M corresponds to the masks
applied to each weight matrix as explained in Section 3.2.
In Figure 1, we addressed the issue of imbalance in W of
the pre-trained model. To resolve this issue, we conduct a
gradient-based pruning. Since the magnitude of W , which
reflects the contribution to the computation, was not con-
sidered during the gradient-based pruning, we apply the
non-uniform scaling of W |·| to the gradient. This approach
reflects the intention of updating more heavily for weights
with larger magnitudes, as they are more important. Grad-
ual pruning is employed to progressively increase sparsity,
influencing the selection of filters to be removed in future
iterations of sparse structure discovery [Lin et al., 2020c].

Convergence analysis : We provide a convergence analysis
for the proposed dynamic pruning method with weight mag-
nitude alignment in convex functions. The update rule for
the weights is defined as:

Wt+1 = Wt ≃ ε ·↗
Wt

L ·Mt ·W |·|

where M is the pruning mask, W |·| represents the element-
wise magnitude of the weights, and ↗

Wt
L is the gradient

with respect to the pruned weights.

Theorem 1. Let W↑ be the optimal solution for a convex

loss function L(W), and assume the gradient of the pruned

model is bounded by G
2

for every pruned model, such that:

E
[
↔↗

Wt
L↔2 | Wt

]
⇐ G

2
and the loss difference between

L(Wt)≃L(Wt) ⇐ ϑ at every t-th iteration. Then, the conver-

gence of the pruned model with weight magnitude alignment

is upper-bounded as follows:

E
[
1

T

T∑

t=1

L(W t)

]
≃ L(W↑) ⇐

↔W1 ≃W↑↔2

2εT
+ 2εT ϑ+

εG
2

2
E
[
↔Mt ·W |·|

t
↔2
]

(6)

Proof. The update rule for the pruned weight is:

Wt+1 = Wt ≃ ε ·↗
Wt

L ·M ·W |·|

Let Wt be fixed, and take the expectation over Wt. Using
the convexity of L, we can express the difference between
the current weights and the optimal solution as:

E
[
↔Wt+1 ≃W↑↔2 | Wt

]
= ↔Wt ≃W↑↔2 + ε

2E
[
↔↗

Wt
L ·Mt ·W |·|

t
↔2
]

≃2εE
[
⇒↗

Wt
L ·Mt ·W |·|

t
,Wt ≃W↑⇑ | Wt

]
.

(7)
By bounding the gradient term and using the assumption
that E

[
↔↗

Wt
L↔2 | Wt

]
⇐ G

2, we obtain:

E
[
↔Wt+1 ≃W↑↔2 | Wt

]
⇐ ↔Wt ≃W↑↔2 + ε

2
G

2E
[
↔Mt ·W |·|

t
↔2
]

≃ 2ε(L(Wt)≃ L(W↑)≃ ϑ).
(8)

Summing over t = 1 to T , we arrive at the final result:

E
[
1

T

T∑

t=1

L(W t)

]
≃ L(W↑) ⇐

↔W1 ≃W↑↔2

2εT
+ 2εT ϑ+

εG
2

2
E
[
↔Mt ·W |·|

t
↔2
]
.

(9)
Details are in Appendix.

Once the exploration of the sparse structure is complete, we
modify the structure of W using the mask M . Since prun-
ing was performed at the column level, making it hardware-
friendly, we can remove the parts corresponding to Mj from
the matrix through structured pruning. We define the newly
generated lightweight network, after the exploration is com-
plete, as W̃ . Then, we optimize W̃ with the conventional
gradient descent as depicted in Figure 2.

W̃t+1 = W̃t ≃ ε ·↗
W̃t

L (10)

By initializing W̃1 with the parameters found in the ex-
ploration phase (W̃1 := WT , also represented as W

W

1),
the convergence bound is tighter compared to starting with
randomly initialized parameters of the same structure.

! =
↔W random

1 ≃W
↑↔2 ≃ ↔WW

1 ≃W
↑↔2

2εT
(11)

4 EXPERIMENT

We applied our proposed method to perform pruning and
compression on DeiT [Touvron et al., 2021] models (Tiny,
Small and Base), which are pretrained models trained on the
ImageNet-1K [Deng et al., 2009] and CIFAR [Krizhevsky
et al., 2009] dataset. We followed the same setting of

Algorithm 1 Sparse Structure Exploration and Re-
optimization (SERo)
Require: Total epochs E = Ee + Eo, Pruning frequency
F , Total iterations per epoch T , Binary mask M → {0, 1}N ,
Dense network W → RN , Pruned network W = M ↓W

Initialize: Model weights W
[Sparse Structure Exploration phase]

1: Warming-up for 1 epoch
2: for epoch = 2, ..., Ee do
3: calculate gradual sparsity p

4: for Iter = 1, ..., T do
5: if Iter % F == 0 then
6: calculate pruning mask M with Eq. 1, 2, 3
7: update sparse weights W = W ↓M

8: update weights W with gradient descent Eq. 5
9: end for

10: end for
11: [Model compression by deleting zero weights]
12: [Re-optimization Phase]
13: for epoch = 1, ..., Eo do
14: Pruning Network training
15: update weights W with gradient descent Eq. 10
16: end for

SNP Shim et al. [2025]. We did not add additional epochs for
the re-optimization phase; instead, we split the total epochs
into the exploration and re-optimization phases, ensuring
the same training cost as SNP. Implementation details are
provided in Appendix and the implemented code.

4.1 MAIN RESULT

Table 1 demonstrates the superior performance of our pro-
posed SERo method on the ImageNet-1K dataset. While
existing pruning methods struggled to maintain performance
with higher pruning ratios, our Sparse Structure Exploration
and Re-optimization (SERo) approach shows remarkable
efficiency. For DeiT-Base model, SERo achieves approxi-
mately 69% reduction in computational cost (GFLOPs) with
only 1.55% accuracy drop compared to the dense model.
Notably, when compared to SNP [Shim et al., 2025], which
achieved the highest pruning ratio of about 63% among
existing methods, SERo achieves 6% more pruning while
maintaining 0.62% higher accuracy.

For the smaller DeiT-Small model, SERo with 39% pruning
achieving higher accuracy while pruning 5% more com-
pared to SSVITE [Chen et al., 2021], which previously
showed the best performance. SERo shows only 0.55% ac-
curacy drop compared to the dense model. Furthermore,
when compared to SNP, which had the highest compression
ratio, SERo achieves similar pruning levels while showing
1.52% higher accuracy.

For DeiT-Tiny, SERo’s effective structure exploration ca-

Table 1: Evaluation of pruning methods for DeiT models on ImageNet-1K dataset: accuracy (%), computational cost
(GFLOPs), and number of parameters (M).

Method Top-1 (%) Top-5 (%) GFLOPs Params (M)

DeiT-Tiny

Original [Touvron et al., 2021] 72.20 91.10 1.3 5.7
SSViTE [Chen et al., 2021] 70.12 - 0.9 4.2

WDPruning [Yu et al., 2022a] 70.34 89.82 0.7 3.5
X-Pruner [Yu and Xiang, 2023] 71.10 90.11 0.6 -

UVC [Yu et al., 2022b] 70.60 - 0.5 -
SNP [Shim et al., 2025] 70.29 90.01 0.6 3.0

SERo (ours) 72.30 91.0 0.8 3.4

DeiT-Small

Original [Touvron et al., 2021] 79.85 95.00 4.6 22.1
SSViTE [Chen et al., 2021] 79.22 - 3.1 14.6

WDPruning [Yu et al., 2022a] 78.38 94.05 2.6 13.3
X-Pruner [Yu and Xiang, 2023] 78.93 94.24 2.4 -

UVC [Yu et al., 2022b] 78.82 - 2.3 -
SNP [Shim et al., 2025] 78.52 94.37 2.0 10.0
SNP [Shim et al., 2025] 73.32 91.66 1.3 6.4

SERo (ours) 79.30 94.60 2.8 13.5
SERo (ours) 74.84 92.42 1.5 7.2

DeiT-Base

Original [Touvron et al., 2021] 81.80 95.59 17.6 86.6
SSViTE [Chen et al., 2021] 82.22 - 11.8 56.8

WDPruning [Yu et al., 2022a] 80.76 95.36 9.9 55.3
X-Pruner [Yu and Xiang, 2023] 81.02 95.38 8.5 -

UVC [Yu et al., 2022b] 80.57 - 8.0 -
SNP [Shim et al., 2025] 79.63 94.37 6.4 31.6

SERo (ours) 80.25 94.98 5.4 27.0

Figure 3: Relationship between model accuracy and infer-
ence latency across different sparsity levels.

pability has also been proven. Despite applying about 39%
pruning, it achieved a 0.08% performance improvement
compared to the unpruned original model. This demon-
strates that SERo can improve performance through ex-
ploring and re-optimizing more efficient network structures
beyond simple pruning. These results validate SERo’s ef-
fective structure exploration and optimization capabilities
across different model scales. Additional experimental re-
sults and detailed analysis can be found in Appendix.

4.2 COMPUTATIONAL EFFICIENCY

Table 2 compares the performance of various compression
approaches applied to DeiT-base model trained with SERo.

Table 2: Performance comparison of various compression
methods on DeiT-base model using ImageNet dataset, aver-
aged over 1,000 iterations with batch size 64 on NVIDIA
A6000 GPU (excluding the first 200 iterations as warm-up
epochs). Here, dense represents the original model, Zeroing
indicates the model with pruned weights replaced by zeros,
while FFN Compression, Attention Compression, and All
Compression refer to compression applied to Feed-Forward
Network blocks only, Self-Attention blocks only, and the
entire network architecture, respectively.

Performance Metrics

Metric Dense Zeroing FFN Attention All
Compression Compression Compression

Throughput (fps) 401.4 410.8 (1.0!) 652.6 (1.6!) 514.3 (1.3!) 960.3 (2.4!)
Latency (ms) 159.5 155.8 (1.0!) 98.1 (1.6!) 124.5 (1.3!) 66.6 (2.4!)

GFLOPs 17.6 17.6 (+0.0%) 9.3 (-47.2%) 13.7 (-22.2%) 5.4 (-69.3%)
Parameters (M) 86.6 86.6 (+0.0%) 44.5 (-48.6%) 69.1 (-20.2%) 27.0 (-68.8%)

The experimental results show that the Zeroing model main-
tains the same number of parameters and GFLOPs as the
dense model, with similar processing speed. FFN Com-
pression achieved a 48.6% reduction in parameters while
increasing processing speed by 1.6 times, while Attention
Compression resulted in a 20.2% parameter reduction with a
1.3 times speed improvement. Finally, the fully compressed
model (All Compression) demonstrated the most signifi-
cant improvements, reducing parameters by 68.8% while
achieving a 2.4 times speed increase.

To further analyze the computational efficiency, we evalu-

Figure 4: Accuracy comparison between the dense model
and selective attention component pruning (Value & Proj vs.
Query & Key) at varying sparsity levels.

Figure 5: Unit-wise analysis per block of active connection
ratios (%) (1 - pruning rate (%)) in DeiT models using SERo
pruning: Comparison of Query & Key, Value & Proj, and
FFN unit across DeiT-Tiny, Small, and Base variants at 0.4
sparsity level.

ated the relationship between accuracy and latency across
different sparsity levels using DeiT-Tiny model trained on
CIFAR-100 dataset, as shown in Figure 3. The results reveal
that while latency decreases linearly with increased sparsity,
model accuracy remains stable up to 0.3 sparsity before
showing significant degradation beyond 0.4.

4.3 UNIT-WISE ANALYSIS

In this section, we analyze in detail how each pruning unit
(Q&K, V&proj, FFN) as stated in Section 3.2 affects the
performance of DeiT model pruned with SERo.

4.3.1 Comparative analysis of unit-wise pruning

Figure 4 compares the performance between the dense
model and two pruning cases: pruning only the Value &
Proj unit and pruning only the Query & Key unit. The exper-
imental results show that pruning only the Value & Proj unit
leads to performance degradation when sparsity exceeds
0.3, while pruning only the Query & Key unit maintains
stable performance even at relatively high sparsity levels.
This suggests that the Value & Proj unit plays a more crucial
role in maintaining model performance.

Table 3: Comparison of sparse structures, mask similarities,
and accuracies among different pruning methods (weight
magnitude, gradient magnitude, and SERo) on DeiT-Tiny
model with CIFAR-100 dataset.

Pruning ratio (%) & Accuracy (%)

Unit Type Weight mag Gradient mag SERo (Ours)

Sparsity=0.3
Query & Key 20.31 34.51 31.9
Value & Proj 11.81 8.20 4.82

FFN 36.97 34.32 35.82

Accuracy 79.97 81.38 82.09

Sparsity=0.5
Query & Key 28.04 70.06 64.63
Value & Proj 28.86 17.06 12.54

FFN 60.77 53.07 55.71

Accuracy 75.35 78.99 79.58

Sparsity=0.7
Query & Key 45.27 91.84 89.24
Value & Proj 57.64 35.76 25.30

FFN 79.28 73.10 76.37

Accuracy 65.29 73.49 74.25

Mask Similarity (%)

Sparsity Sparsity=0.3 Sparsity=0.5 Sparsity=0.7
Gradient vs SERo 0.94 0.91 0.92

4.3.2 Sparse structural analysis of active connections

To analyze the structural cause of this phenomenon, Figure 5
shows the active connection ratios (1 - pruning rate (%)) for
each block at 0.4 sparsity level of DeiT model. Comparing
the active connection patterns across Query & Key, Value &
Proj, and FFN units, we observe that the Value & Proj unit
consistently maintains a high ratio of active connections.
Notably, in the middle blocks (4-8), the Value & Proj unit
maintains over 90% of active connections.

Table 3 shows sparse structures and accuracy at various
sparsity levels (0.3, 0.5, 0.7). A notable observation is the
difference in the Value & Proj unit. SERo achieves higher
accuracy while preserving more weights in the Value & Proj
unit across all sparsity levels (12.54% at sparsity 0.5). Addi-
tionally, we conducted mask similarity analysis by training
both gradient-based methods and SERo under identical ini-
tialization conditions and environments. Despite showing
high similarity (over 90%), there are significant performance
differences between them, suggesting that SERo finds more
optimal network structures compared to conventional gradi-
ent magnitude methods.

4.3.3 Model-specific connection pattern analysis

For more detailed analysis, Figure 6 shows the block-wise
active connection ratios in DeiT-Small model trained on
the ImageNet dataset. While the FFN unit maintains rela-
tively low active connection ratios in both early and later
blocks, the Value & Proj unit maintains high active connec-
tion ratios across all blocks. This suggests that the Value &
Proj unit plays a crucial role in maintaining model perfor-

Figure 6: Active connection ratios per block of DeiT-Small
(40% Sparsity) trained on ImageNet dataset.

Figure 7: Loss landscapes by PyHessian [Yao et al., 2020]
between gradient Mgnitude pruning (Orange) and SERo
(Blue, Ours).

mance. These analysis results experimentally demonstrate
the importance of the Value & Proj unit in transformer archi-
tecture and indicate that unit-wise characteristics should be
considered when establishing effective pruning strategies.

4.4 METHOD VALIDATION

4.4.1 Loss landscape analysis

The correlation between loss landscape flatness and model
generalization performance has been demonstrated in sev-
eral studies [Hochreiter and Schmidhuber, 1997, Keskar
et al., 2016]. In this section, we conducted loss land-
scape analysis to compare the performance of our pro-
posed method with conventional gradient magnitude prun-
ing. Specifically, after re-optimizing the structures found
by each method, we visualized the loss landscapes using
PyHessian [Yao et al., 2020]. The experiments were con-
ducted on the CIFAR-100 dataset using DeiT-Tiny model.
As shown in Figure 7, the model obtained using our pro-
posed method exhibits a flatter loss landscape, suggesting
better generalization performance.

Table 4: Accuracy comparison of different weight initializa-
tion methods (DeiT-Tiny model on CIFAR-100 with 50%
Sparsity). No Init refers to using compressed parameters
directly without re-initialization, preserving the original
weight distribution.

Initialization Methods

Metric No Init Gaussian Xavier
Top-1 Accuracy (%) 79.58 48.34 45.55

Table 5: Comparison of model accuracies between explo-
ration and exploration + re-optimization phases of SERo on
ImageNet dataset across different ViT architectures.

Accuracy (%) on ImageNet

Model Sparsity Exploration Exploration + Re-optimization

SERo
DeiT-Tiny 40% 68.14 72.30
DeiT-Small 70% 69.18 74.84
DeiT-Base 70% 77.33 80.25

4.4.2 Weight initialization impact and Re-optimization

To evaluate the effect of re-optimization on the weights
corresponding to the structure found in Theorem 1, we
compared various initialization methods. Table 4 analyzes
the impact of different weight initialization methods after
structure exploration and compression. As demonstrated
in Eq. 11, The experimental results show that the weight
inheritance (No Init; WW

1) achieves the highest accuracy
at 79.58%, significantly outperforming both Gaussian [He
et al., 2015] and Xavier [Glorot and Bengio, 2010] initializa-
tion methods. This suggests the importance of maintaining
weights during the re-optimization process. Table 5 presents
the results for No Init (Exploration), where re-optimization
was not performed after exploration. It demonstrates that
after finding an optimal architecture, optimizing the model
after exploration in the optimized architecture (exploration
+ Re-optimization) is more efficient.

5 CONCLUSION

In this paper, we propose a Sparse Structure Exploration
and Optimization (SERo), a novel pruning framework for
vision transformers. Our approach presents a simple yet
effective method that systematically analyzes the properties
of pre-trained models to explore efficient sparse structures.
In particular, instead of the conventional pruning approach
of setting parameters to zero, we demonstrate significant im-
provements in computational costs and the inference speed
by completely removing and compressing unnecessary pa-

rameters. Our experimental results show superior perfor-
mance on various vision transformer models, suggesting
that the proposed framework could be extended beyond
vision tasks to other domains, including NLP tasks with
transformer-based models.

Acknowledgements

This work was supported by Hyundai Motor Company and
Kia, and partially supported by the Institute of Informa-
tion & Communications Technology Planning & Evalua-
tion(IITP) grant funded by the Korea government(MSIT)
(o.RS-2025-02219317, AI Star Fellowship(Kookmin Uni-
versity)).

References

Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang,
and Zhangyang Wang. Chasing sparsity in vision trans-
formers: An end-to-end exploration. Advances in Neural

Information Processing Systems, 34:19974–19988, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and
Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vision

and Pattern Recognition, pages 248–255, 2009. doi: 10.
1109/CVPR.2009.5206848.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An im-
age is worth 16x16 words: Transformers for image recog-
nition at scale, 2021. URL https://arxiv.org/
abs/2010.11929.

Jonathan Frankle and Michael Carbin. The lottery ticket
hypothesis: Finding sparse, trainable neural networks.
International Conference on Learning Representations

(ICLR), 2019.

Xavier Glorot and Yoshua Bengio. Understanding the dif-
ficulty of training deep feedforward neural networks.
In Yee Whye Teh and Mike Titterington, editors, Pro-

ceedings of the Thirteenth International Conference on

Artificial Intelligence and Statistics, volume 9 of Pro-

ceedings of Machine Learning Research, pages 249–
256, Chia Laguna Resort, Sardinia, Italy, 13–15 May
2010. PMLR. URL https://proceedings.mlr.
press/v9/glorot10a.html.

Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic
network surgery for efficient dnns. Advances in neural

information processing systems, 29, 2016.

Song Han, Huizi Mao, and William J Dally. Deep compres-
sion: Compressing deep neural networks with pruning,

trained quantization and huffman coding. arXiv preprint

arXiv:1510.00149, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification, 2015. URL
https://arxiv.org/abs/1502.01852.

Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and
Yi Yang. Soft filter pruning for accelerating deep convo-
lutional neural networks, 2018.

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang.
Filter pruning via geometric median for deep convolu-
tional neural networks acceleration. In Proceedings of the

IEEE/CVF conference on computer vision and pattern

recognition, pages 4340–4349, 2019.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning
for accelerating very deep neural networks. In Proceed-

ings of the IEEE international conference on computer

vision, pages 1389–1397, 2017.

Sepp Hochreiter and Jürgen Schmidhuber. Flat Minima.
Neural Computation, 9(1):1–42, 01 1997. ISSN 0899-
7667. doi: 10.1162/neco.1997.9.1.1. URL https://
doi.org/10.1162/neco.1997.9.1.1.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal,
Mikhail Smelyanskiy, and Ping Tak Peter Tang. On large-
batch training for deep learning: Generalization gap and
sharp minima. arXiv preprint arXiv:1609.04836, 2016.

Jangho Kim, Jayeon Yoo, Yeji Song, KiYoon Yoo, and
Nojun Kwak. Finding efficient pruned network via re-
fined gradients for pruned weights. In Proceedings of

the 31st ACM International Conference on Multimedia,
pages 9003–9011, 2023.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009.

Cheng-Han Lee, Ziwei Liu, Lingyun Wu, and Ping Luo.
Maskgan: Towards diverse and interactive facial image
manipulation, 2020. URL https://arxiv.org/
abs/1907.11922.

Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang,
Baochang Zhang, Yonghong Tian, and Ling Shao. Hrank:
Filter pruning using high-rank feature map, 2020a.

Mingbao Lin, Rongrong Ji, Yuxin Zhang, Baochang Zhang,
Yongjian Wu, and Yonghong Tian. Channel pruning via
automatic structure search, 2020b.

Tao Lin, Sebastian U Stich, Luis Barba, Daniil Dmitriev,
and Martin Jaggi. Dynamic model pruning with feedback.
International Conference on Learning Representations

(ICLR), 2020c.

https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://arxiv.org/abs/1502.01852
https://doi.org/10.1162/neco.1997.9.1.1
https://doi.org/10.1162/neco.1997.9.1.1
https://arxiv.org/abs/1907.11922
https://arxiv.org/abs/1907.11922

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir
Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva
Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Mi-
crosoft coco: Common objects in context, 2015. URL
https://arxiv.org/abs/1405.0312.

Yinglu Liu, Hailin Shi, Hao Shen, Yue Si, Xiaobo
Wang, and Tao Mei. A new dataset and boundary-
attention semantic segmentation for face parsing. Pro-

ceedings of the AAAI Conference on Artificial Intelli-

gence, 34(07):11637–11644, Apr. 2020. doi: 10.1609/
aaai.v34i07.6832. URL https://ojs.aaai.org/
index.php/AAAI/article/view/6832.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin trans-
former: Hierarchical vision transformer using shifted
windows, 2021. URL https://arxiv.org/abs/
2103.14030.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and
Trevor Darrell. Rethinking the value of network prun-
ing, 2019. URL https://arxiv.org/abs/1810.
05270.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep learning face attributes in the wild, 2015. URL
https://arxiv.org/abs/1411.7766.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter
level pruning method for deep neural network compres-
sion, 2017.

Mansheej Paul, Feng Chen, Brett W Larsen, Jonathan Fran-
kle, Surya Ganguli, and Gintare Karolina Dziugaite. Un-
masking the lottery ticket hypothesis: What’s encoded in
a winning ticket’s mask? International Conference on

Learning Representations (ICLR), 2023.

Lixiong Qin, Mei Wang, Xuannan Liu, Yuhang Zhang, Wei
Deng, Xiaoshuai Song, Weiran Xu, and Weihong Deng.
Faceptor: A generalist model for face perception, 2024.
URL https://arxiv.org/abs/2403.09500.

Christos Sagonas, Georgios Tzimiropoulos, Stefanos
Zafeiriou, and Maja Pantic. 300 faces in-the-wild chal-
lenge: The first facial landmark localization challenge. In
2013 IEEE International Conference on Computer Vision

Workshops, pages 397–403, 2013. doi: 10.1109/ICCVW.
2013.59.

Soumyadip Sengupta, Jun-Cheng Chen, Carlos Castillo,
Vishal M. Patel, Rama Chellappa, and David W. Jacobs.
Frontal to profile face verification in the wild. In 2016

IEEE Winter Conference on Applications of Computer

Vision (WACV), pages 1–9, 2016. doi: 10.1109/WACV.
2016.7477558.

Kyunghwan Shim, Jaewoong Yun, and Shinkook Choi.
Snp: Structured neuron-level pruning to preserve atten-
tion scores, 2024. URL https://arxiv.org/abs/
2404.11630.

Kyunghwan Shim, Jaewoong Yun, and Shinkook Choi. Snp:
Structured neuron-level pruning to preserve attention
scores. In European Conference on Computer Vision,
pages 90–104. Springer, 2025.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Train-
ing data-efficient image transformers distillation through
attention, 2021. URL https://arxiv.org/abs/
2012.12877.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and
Illia Polosukhin. Attention is all you need, 2023. URL
https://arxiv.org/abs/1706.03762.

Xianzhe Xu, Yiqi Jiang, Weihua Chen, Yilun Huang, Yuan
Zhang, and Xiuyu Sun. Damo-yolo : A report on real-
time object detection design, 2023. URL https://
arxiv.org/abs/2211.15444.

Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W
Mahoney. Pyhessian: Neural networks through the lens
of the hessian. In 2020 IEEE international conference on

big data (Big data), pages 581–590. IEEE, 2020.

Fang Yu, Kun Huang, Meng Wang, Yuan Cheng, Wei Chu,
and Li Cui. Width & depth pruning for vision transform-
ers. In AAAI Conference on Artificial Intelligence (AAAI),
volume 2022, 2022a.

Lu Yu and Wei Xiang. X-pruner: explainable pruning for
vision transformers. In Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition,
pages 24355–24363, 2023.

Shixing Yu, Tianlong Chen, Jiayi Shen, Huan Yuan, Jian-
chao Tan, Sen Yang, Ji Liu, and Zhangyang Wang. Uni-
fied visual transformer compression. arXiv preprint

arXiv:2203.08243, 2022b.

Sixing Yu, Arya Mazaheri, and Ali Jannesari. Topology-
aware network pruning using multi-stage graph embed-
ding and reinforcement learning. In International confer-

ence on machine learning, pages 25656–25667. PMLR,
2022c.

Xin Yu, Thiago Serra, Srikumar Ramalingam, and Shandian
Zhe. The combinatorial brain surgeon: pruning weights
that cancel one another in neural networks. In Interna-

tional Conference on Machine Learning, pages 25668–
25683. PMLR, 2022d.

https://arxiv.org/abs/1405.0312
https://ojs.aaai.org/index.php/AAAI/article/view/6832
https://ojs.aaai.org/index.php/AAAI/article/view/6832
https://arxiv.org/abs/2103.14030
https://arxiv.org/abs/2103.14030
https://arxiv.org/abs/1810.05270
https://arxiv.org/abs/1810.05270
https://arxiv.org/abs/1411.7766
https://arxiv.org/abs/2403.09500
https://arxiv.org/abs/2404.11630
https://arxiv.org/abs/2404.11630
https://arxiv.org/abs/2012.12877
https://arxiv.org/abs/2012.12877
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2211.15444
https://arxiv.org/abs/2211.15444

Zhifei Zhang, Yang Song, and Hairong Qi. Age pro-
gression/regression by conditional adversarial autoen-
coder, 2017. URL https://arxiv.org/abs/
1702.08423.

Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie
Zhang, Kun Yuan, Wenxiu Sun, and Hongsheng Li. Learn-
ing n: m fine-grained structured sparse neural networks
from scratch. arXiv preprint arXiv:2102.04010, 2021.

Max Zimmer, Christoph Spiegel, and Sebastian Pokutta.
How i learned to stop worrying and love retraining. Inter-

national Conference on Learning Representations (ICLR),
2023.

https://arxiv.org/abs/1702.08423
https://arxiv.org/abs/1702.08423

A CONVERGENCE ANALYSIS

The update rule of SERo in the exploration phase is as follows:

Wt+1 = Wt ≃ ε ·↗
Wt

L ·Mt ·W |·|

Consider the squared distance between Wt+1 and W↑:

↔Wt+1 ≃W↑↔2 = ↔Wt ≃ ε ·↗
Wt

L ·Mt ·W |·|
t

≃W↑↔2.

Taking the expectation conditioned on Wt:

E[↔Wt+1 ≃W↑↔2 | Wt] = ↔Wt ≃W↑↔2 ≃ 2εE[⇒↗
Wt

L ·Mt ·W |·|
t
,Wt ≃W↑⇑ | Wt] + ε

2E[↔↗
Wt

L ·Mt ·W |·|
t
↔2 | Wt].

Using the assumption that E[↔↗
Wt

L↔2 | Wt] ⇐ G
2 and noting that ↔a · b↔2 = ↔a↔2↔b↔2 for element-wise multiplication,

we have:
E[↔↗

Wt
L ·Mt ·W |·|

t
↔2 | Wt] ⇐ G

2↔Mt ·W |·|
t
↔2.

by convexity and the loss difference condition,

⇒↗
Wt

L ·Mt ·W |·|
t
,Wt ≃W↑⇑ ↘ L(Wt)≃ L(W↑)≃ ϑ.

Plugging these bounds back:

E[↔Wt+1 ≃W↑↔2 | Wt] ⇐ ↔Wt ≃W↑↔2 ≃ 2ε(L(Wt)≃ L(W↑)≃ ϑ) + ε
2
G

2↔Mt ·W |·|
t
↔2.

Summing over t = 1 to T , the left-hand side telescopes:

↔WT+1 ≃W↑↔2 ⇐ ↔W1 ≃W↑↔2 ≃ 2ε
T∑

t=1

(L(Wt)≃ L(W↑)≃ ϑ) + ε
2
G

2
T∑

t=1

↔Mt ·W |·|
t
↔2.

Rearranging:
1

T

T∑

t=1

L(Wt)≃ L(W↑) ⇐
↔W1 ≃W↑↔2

2εT
+ 2εT ϑ+

εG
2

2T

T∑

t=1

↔Mt ·W |·|
t
↔2.

Taking the expectation over all randomness:

E
[
1

T

T∑

t=1

L(Wt)

]
≃ L(W↑) ⇐

↔W1 ≃W↑↔2

2εT
+ 2εT ϑ+

εG
2

2
E[↔Mt ·W |·|

t
↔2].

A.1 CONVERGENCE BOUND OF RE-OPTIMIZATION PHASE

With a fixed explored sparse structure, the convergence bound for standard gradient descent over T iterations is given by:

E
[
1

T

T∑

t=1

L(Wt)

]
≃ L(W↑) ⇐

↔W1 ≃W↑↔2

2εT
+

εG
2

2
.

When initializing W̃1 with the parameters found in the exploration phase (WW

1), the distance to the optimal solution is
smaller compared to random initialization (W random

1). Specifically, since:

↔W random
1 ≃W

↑↔2 > ↔WW

1 ≃W
↑↔2,

the improvement in the convergence bound is given by:

! =
↔W random

1 ≃W
↑↔2 ≃ ↔WW

1 ≃W
↑↔2

2εT
.

Thus, initializing from W
W

1 leads to faster convergence compared to random initialization.

Figure 8: Mean absolute weights per block with different update methods in re-optimization phase using DeiT-Small model
with 40% sparsity on ImageNet dataset

Figure 9: Illustration of dimension mismatch caused by non-shared weight masking (left) versus Hardware Friendly Pruning
with consistent dimensions through shared masking (right).

B COMPARATIVE ANALYSIS OF GRADIENT UPDATE METHODS: STANDARD VS
WEIGHT-SCALED APPROACHES

Figure 8 shows the average weights per block and accuracy after applying different gradient update methods in re-
optimization phase. The blue line represents our standard gradient update method, while the orange line shows the
gradient⇓ |W | approach used in exploration phase. The results indicate that multiplying by |W | leads to overall smaller
weight values and lower accuracy. This occurs because |W | is less than 1, effectively reducing the update magnitude. Such
reduced updates essentially mimic a lower learning rate, potentially slowing down optimization or increasing the risk of
getting trapped in local minima.

C HARDWARE FRIENDLY PRUNING

When masks are not shared across query/key, value/proj, and FFN layers, dimension mismatch problems similar to Zeroing
Pruning may arise. The left side of Figure 9 illustrates that removing the third column from the input and the second
row from the weight matrix results in unnecessary computations such as 1a + 2d + 3g in the final output. Upon actual
compression of such a model, as shown in the bottom left, the computational results deviate from pre-compression values.
This presents a significant obstacle to effective hardware optimization. Therefore, as demonstrated in the right image, we
need a hardware-friendly pruning approach that maintains consistent input/output dimensions.

D ANALYSIS OF WEIGHT DISTRIBUTIONS

Figure 11: Weight distribution comparison of DeiT-Tiny
model trained on CIFAR-100: Weight distributions per block
of SERo (blue) and Gradient magnitude (red). yellow re-
gions indicate overlapping distributions.

Figure 12: Weight average comparison of
Query/Key/Value/FFN1 per block in DeiT-Tiny model
trained on CIFAR-100: SERo (orange) and Gradient
magnitude (blue)

As shown in Figure (10, 11), while SERo (blue) and Gradient magnitude (red) exhibit similar pruning patterns (yellow
overlapping regions), SERo’s superior performance can be attributed to subtle differences in non-overlapping regions and
particularly effective weight preservation in the Value layer.

Figure D further supports this analysis, showing that Query and Key layers display very similar patterns with peaks at block
5 followed by gradual decrease, while the Value layer maintains consistently high mean weights after block 1, with a notable
difference at block 12. SERo (orange) maintains higher mean absolute weight values throughout the network, indicating
better preservation of important weights. Notably, the Value layer plays a particularly crucial role in this preservation,
demonstrating SERo’s effectiveness in maintaining essential weight information for model performance.

E IMPLEMENTATION DETAILS

We conduct experiments using the officially released DeiT models, maintaining consistent hyperparameters for both sparse
structure exploration and re-optimization phases. The sparse structure exploration runs for 50 epochs and re-optimization for
150 epochs, with both phases using a learning rate of 5e-5 and a weight decay of 0.05. The AdamW optimizer with a cosine
learning rate scheduler is applied in all experiments. The batch size is set to 256 or 512 for the ImageNet-1K dataset and 128
for CIFAR datasets. All ImageNet-1K experiments are conducted on NVIDIA A6000 GPU, while CIFAR experiments are
run on NVIDIA RTX 3090 GPU. For more implementation details, please refer to our released code.

F MODEL AND TASK GENERALIZATION

To verify whether SERO’s applicability is limited to classification tasks on DeiT models, we conducted experiments as
shown in Tables 6,7, and8.

First, in Table 6, we performed classification task experiments on the Swin Transformer Liu et al. [2021] model rather than
the DeiT model. As specified in the training details of the paper, we applied the hyperparameters used for DeiT training to
perform 50% pruning on this model and measured the computational cost (FLOPs) and accuracy. The experimental results
showed that despite significantly improving efficiency by reducing FLOPs by approximately 50%, the accuracy drop was
only about 1.9%.

In Table 7, to evaluate the effectiveness of SERO in non-classification tasks such as object detection, we applied SERO to
the DAMO Xu et al. [2023] model architecture, which incorporates attention mechanisms, and conducted evaluation on the
COCO 2017 Lin et al. [2015] dataset. When SERO was applied to the DAMO-NL variant achieving approximately 48%
parameter reduction, FLOPs decreased by 48.4% while mAP dropped by only 2.07 points (from 40.5 to 38.43). Similarly,
other DAMO model variants (NS, NM) also showed only limited mAP performance degradation despite significant reductions
in FLOPs and parameters.

Table 6: Comparison of Swin Transformer Models with SERo

Model Parameters Pruning Rate (%) FLOPs Accuracy
Swin-T (Original) 29M - 4.5G 81.3%
Swin-S (Original) 50M - 8.7G 83.0%
Swin-S + SERo 25M 50% 4.3G 81.1%

Table 7: Performance Comparison of DAMO Models with SERo

Model Pruning Method Compression FLOPs Params mAP @ Latency Latency
Ratio (G) (M) 0.5:0.95 Orin batch 1 Nuc batch 1

DAMO NS Original - 1.62 1.41 32.3 3.06 110.78
DAMO NS SERo (ours) 33% 1.09 0.93 30.94 2.29 66.67

DAMO NM Original - 3.8 2.71 38.2 2.56 72.72
DAMO NM SERo (ours) 49% 1.99 1.37 35.19 2.19 49.59

DAMO NL Original - 6.16 5.69 40.5 1.90 38.05
DAMO NL SERo (ours) 48% 3.18 2.87 38.43 1.61 28.9

Table 8: Performance Comparison of Faceptor Models with SERo

Model Parameters FLOPs CFP_FP UTK_FACE CelebA CelebAMask-HQ LaPa LaPa 300W
(M) (G) (Val Acc ⇔) (MAE ↖) (mACC) (F1-mean ⇔) (F1-mean ⇔) (Inter-Ocular ↖) (Inter-Pupil ↖)

Faceptor 105.2 108.46 96.14 4.21 23.12 88.22 91.94 4.63 6.67

SERo 62.59 67.55 96.46 4.32 23.13 88.00 91.69 4.52 6.51

SERo 42.57 46.97 92.69 4.41 23.13 86.74 90.95 4.68 6.74

Additionally, Table 8 shows the experimental results on the Faceptor Qin et al. [2024] model, a more complex transformer
model that combines encoder-decoder architecture, using six datasets Sengupta et al. [2016], Zhang et al. [2017], Liu et al.
[2015], Lee et al. [2020], Liu et al. [2020], Sagonas et al. [2013]. SERO maintained strong performance across various
face-related tasks even at high compression rates (achieving 62.59M parameters with approximately 40% compression),
with minimal performance degradation and even performance improvements in some tasks such as Face ID (CFP_FP) and
Face Alignment (300W, LaPa).

G HYPERPARAMETER SENSITIVITY ANALYSIS

In this section, we conduct an analysis of hyperparameter sensitivity. These studies utilized the DeiT-small model pruned to
70% sparsity, with performance evaluated based on CIFAR-100 accuracy.

Table 9 examines the effect of learning rate in the re-optimization phase. When set higher than the exploration phase learning
rate (5e-4 vs. 5e-5), convergence problems occurred, resulting in a low accuracy of 78.8%. In contrast, using the same
learning rate (5e-5) for both exploration and re-optimization achieved the best performance of 83.1% accuracy. This is
because it can effectively maintain the sparse structure discovered during training. Using a lower learning rate (5e-6) than
the exploration phase resulted in insufficient optimization, achieving only 80.69% performance. Therefore, we confirmed
that using the same learning rate for both phases is the most effective approach.

Table 10 examines the impact of pruning mask update frequency on model performance. The frequency of 8 (mask update
every 8 epochs) used in the main experiments achieved the best performance of 83.1%. When updating the mask every
epoch (frequency=1), performance decreased to 82.24% due to structural instability. In contrast, lower update frequencies
(frequency 16, 32, 64) maintained stable performance in the range of 82.7 82.9%. This demonstrates that excessively
frequent mask updates negatively affect performance, while stability is secured above a certain threshold.

Table 11 analyzes the impact of epoch allocation between the exploration and re-optimization phases on performance. When
configured with 50 epochs for exploration and 150 epochs for re-optimization, the optimal balance was achieved, recording

the highest accuracy of 83.1%. This demonstrates the importance of maintaining an appropriate balance between exploration
and re-optimization. When exploration was insufficient (2 epochs), performance was limited to 82.4%, while conversely,
excessive exploration with minimal re-optimization (199 exploration epochs, 1 re-optimization epoch) significantly degraded
performance to 78.8%.

Table 9: Effect of learning rate in the re-optimization phase
on model performance. DeiT-small model pruned to 70%
sparsity evaluated on CIFAR-100.

Step LR Acc (%)

SERo

Exploration 5e-5 79.67
Exploration + Re-optimization 5e-4 78.8
Exploration + Re-optimization 5e-5 83.1
Exploration + Re-optimization 5e-6 80.69

Table 10: Impact of pruning mask update frequency on
model performance. DeiT-small model pruned to 70% spar-
sity evaluated on CIFAR-100.

SERo

Frequency Acc (%)
1 82.24
8 83.1

16 82.75
32 82.71
64 82.9

Table 11: Impact of epoch allocation between exploration
and re-optimization phases on model performance. DeiT-
small model pruned to 70% sparsity evaluated on CIFAR-
100.

Exploration Re-optimization Accuracy (%)

SERo

2 198 82.4
25 175 82.9
50 150 83.1

100 100 82.5
150 50 82.39
175 25 81.85
199 1 78.8

As shown in Table 12, SERo significantly reduces the computational operations in the re-optimization phase compared to the
fine-tuning phase. Notably, for the DeiT-Base model with 70% sparsity, the computational operations (GFLOPs) decrease
from 17.6 to 5.4, showing approximately 70% reduction, which demonstrates that our proposed re-optimization strategy
can effectively alleviate the computational burden of the model. Furthermore, Table 13 demonstrates that global pruning
consistently outperforms layer-wise pruning across all model variants on CIFAR-100. The performance gap is particularly
notable for DeiT-Small, where global pruning achieves 83.34% accuracy compared to 78.28% with layer-wise pruning,
suggesting that maintaining the flexibility to redistribute sparsity across layers is beneficial for model performance.

Table 12: Comparison of GFLOPs between fine-tuning and
re-optimization phases of SERo across different DeiT archi-
tectures.

GFLOPs

Model Sparsity Fine-tuning Re-optimization

SERo
DeiT-Tiny 40% 1.3 0.8
DeiT-Small 70% 4.6 1.5
DeiT-Base 70% 17.6 5.4

Table 13: Comparison of model accuracies between layer-
wise and global pruning strategies of SERo on CIFAR-100
dataset (Sparsity = 50%).

Accuracy (%) on CIFAR-100

Model Sparsity Layer-wise Global

SERo
DeiT-Tiny 50% 76.95 79.58
DeiT-Small 50% 78.28 83.34
DeiT-Base 50% 83.02 85.76

H ATTENTION PATTERN ANALYSIS BEFORE AND AFTER PRUNING

Figure 13 shows the per-block GradCAM visualization comparing the original and pruned models. The pruned model
demonstrates reduced overall noise and shows improved focus on key features such as the chimpanzee’s face and form. This

suggests that the pruning process effectively preserved the model’s essential feature extraction capabilities while eliminating
unnecessary activations.

The attention map analysis at blocks 4 and 10 Figure (14, 15) reveals interesting pattern differences. In Figure 14, the original
model shows distributed attention patterns across wider regions, while the pruned model exhibits more focused attention
on key features of the peacock (head, tail). In Figure 15, both models demonstrate sparse attention patterns, reflecting
the tendency to focus on specific feature points in higher blocks. These findings demonstrate that model compression can
achieve efficient processing while maintaining key feature recognition capabilities.

(a) Block (1 4) distribution (b) Block (5 8) distribution

(c) Block (9 12) distribution

Figure 10: Weight distribution comparison of DeiT-Tiny model trained on CIFAR-100: block-wise Query/Key/Value/FFN1
distributions of SERo (blue) and Gradient magnitude (red). yellow regions indicate overlapping distributions.

Figure 13: Comparison of combined and individual block GradCAM between original(left) and 70% pruned(right) DeiT-Base
model

Figure 14: Comparison of combined and individual head attention maps between original(left) and 70% pruned(right)
DeiT-Base model at block 4

Figure 15: Comparison of combined and individual head attention maps between original(left) and 70% pruned(right)
DeiT-Base model at block 10

	Introduction
	Related work
	Pruning
	Vision transformer model pruning

	Proposed method
	Preliminary
	Pruning unit, granularity and criterion
	Structure exploration and re-optimization

	Experiment
	Main result
	Computational efficiency
	Unit-wise analysis
	Comparative analysis of unit-wise pruning
	Sparse structural analysis of active connections
	Model-specific connection pattern analysis

	Method validation
	Loss landscape analysis
	Weight initialization impact and Re-optimization

	Conclusion
	Convergence analysis
	Convergence bound of Re-optimization phase

	Comparative analysis of gradient update methods: standard vs weight-scaled approaches
	Hardware Friendly pruning
	Analysis of weight distributions
	Implementation details
	Model and Task Generalization
	Hyperparameter Sensitivity Analysis
	Attention pattern analysis before and after pruning

