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Abstract

Graph Neural Networks (GNNs) have achieved strong performance across a range
of graph representation learning tasks, yet their adversarial robustness in graph
classification remains underexplored compared to node classification. While most
existing defenses focus on the message-passing component, this work investigates
the overlooked role of pooling operations in shaping robustness. We present a
theoretical analysis of standard flat pooling methods (sum, average and max),
deriving upper bounds on their adversarial risk and identifying their vulnerabilities
under different attack scenarios and graph structures. Motivated by these insights,
we propose Robust Singular Pooling (RS-Pool), a novel pooling strategy that
leverages the dominant singular vector of the node embedding matrix to construct
a robust graph-level representation. We theoretically investigate the robustness of
RS-Pool and interpret the resulting bound leading to improved understanding of
our proposed pooling operator. While our analysis centers on Graph Convolutional
Networks (GCNs), RS-Pool is model-agnostic and can be implemented efficiently
via power iteration. Empirical results on real-world benchmarks show that RS-Pool
provides better robustness than the considered pooling methods when subject to
state-of-the-art adversarial attacks while maintaining competitive clean accuracy.
Our code is publicly available at: https://github.com/king/rs-pool.

1 Introduction

Graph Neural Networks (GNNs) [24, 44, 38] have demonstrated strong performance on graph-
structured data and are now a standard tool for learning node and graph representations. However,
recent studies reveal that GNNs are susceptible to adversarial perturbations – small, deliberately
designed changes to the adjacency matrix or node features that can drastically affect predictions [20].
This vulnerability raises concerns about their reliability and consequently, enhancing the adversarial
robustness of GNNs has become a key research focus. Efforts include the design of novel attack
methods [7, 49, 48, 17] and corresponding defense mechanisms [42, 46, 19]. However, prior work
primarily investigates node-classification tasks, with limited attention paid to adversarial robustness
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in graph-classification settings [21]. Yet, robustness at the graph level is equally critical, particularly
in domains where entire graphs, rather than individual nodes, constitute the prediction target. In drug
discovery, for example, molecules are modeled as graphs, and predicting properties such as efficacy or
toxicity is a graph classification problem [35, 22]. Adversarial perturbations, editing a bond type for
instance, can lead to erroneous evaluations with serious implications in precision medicine. Similarly,
in cybersecurity, classifying control-flow graphs of binary programs aids in malware detection [34];
subtle perturbations could allow malicious code to evade the anomaly classification.

Existing adversarial defenses for GNNs primarily focus on the message-passing component, lever-
aging techniques such as attention mechanisms [46], weight regularization [1, 10], and adjacency
preprocessing [42]. While these approaches are applicable to both node and graph classification
tasks, graph-level prediction introduces additional challenges that go beyond message passing [18],
particularly in constructing global representations from structurally diverse inputs. This step relies on
pooling mechanisms [5, 9], which aggregate node features into fixed-size graph embeddings. Pooling
operations are generally categorized into two types [30]: hierarchical pooling, which performs
multi-stage graph coarsening to produce progressively smaller subgraphs [5], and flat pooling (or
readout functions), which compute a global representation in a single step using aggregation functions
such as sum, average, or max [9]. While hierarchical pooling is a general architectural tool used
throughout the network, flat pooling specifically produces the final representation used in graph-level
classification. Given the importance of this final aggregation step, it is critical to investigate how flat
pooling functions influence the robustness of GNNs.

This work offers a complementary perspective on GNN robustness by focusing on the pooling stage,
which plays a critical role in bridging node-level representations and graph-level embeddings. We
center our analysis on flat pooling methods, which are widely used for their simplicity, efficiency,
and strong empirical performance. Through theoretical analysis, we examine how different pooling
strategies influence the expected robustness and provide insights on selecting pooling functions that
balance robustness and performance under varying attack scenarios.

To pursue this goal, we begin by formalizing adversarial attacks in the context of graph classification.
This framework establishes an upper bound on the model’s expected adversarial risk, allowing us
to quantify GNN vulnerability within defined neighborhoods of input graphs. We then theoretically
analyze common pooling operations, derive their respective robustness bounds, and provide insights
into their behavior under perturbations. These bounds reflect both graph structure and model-specific
factors such as message-passing weights. Motivated by this analysis, we propose Robust Singular
Pooling (RS-Pool), a novel pooling mechanism that constructs graph-level representations using
the dominant right-singular vector of the node embedding matrix. RS-Pool improves robustness
by filtering out noise-sensitive components. RS-Pool is fully differentiable, model-agnostic, and
compatible with existing GNN architectures and defense methods. Since, we rely solely on the
dominant singular vector in our pooling operation, we do not require the expensive computation
of the entire singular value decomposition and can instead employ the far more efficient power
iteration method enabling practical deployment. Empirical results across multiple adversarial settings
confirm that RS-Pool achieves strong robustness with minimal impact on clean accuracy and runtime
performance.

The main contributions of this work are threefold. First, we introduce a theoretical framework
that quantifies the effect of flat pooling operations on the resulting robustness of GNNs in graph
classification. Second, we propose RS-Pool, a novel pooling mechanism that leverages the dominant
singular vector of the node representation matrix to improve resilience to adversarial perturbations.
Third, we develop an efficient approximation algorithm for RS-Pool and empirically validate its
effectiveness in enhancing model robustness under adversarial attacks.

2 Related Work

The adversarial robustness of graph neural networks (GNNs) has attracted substantial attention [20,
37, 26, 11], spurring a variety of attack methodologies. These attacks are typically formulated as
optimization problems that seek minimal perturbations of the adjacency matrix or node features
to alter model predictions. They fall into two main categories: evasion attacks, which alter the
graph after training [43, 49, 17, 19], and poisoning attacks, which introduce modifications during
training [47, 29]. Although most studies target node classification, techniques such as Projected
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Gradient Descent (PGD) also extend to graph classification. Nevertheless, only a few methods
explicitly address the graph-level setting. For example, [39] leverage Bayesian optimization to mount
attacks on graph classifiers, while [7] evaluate reinforcement learning, gradient-based optimization,
and genetic algorithms that iteratively refine graphs via a fitness-driven evolutionary process.

On the defense side, numerous strategies have been proposed to strengthen GNN robustness such
as input preprocessing [13]. For instance, [42] remove potentially adversarial edges using Jaccard
similarity. These techniques aim to suppress perturbations before message passing. More recent
approaches intervene in the message-passing process itself. GNNGuard [46] employs attention-
based edge pruning to discard vulnerable connections, and SoftMedian [17] introduces a robust
aggregation scheme that down-weights neighbors based on their distance to the dimension-wise
median, mitigating the impact of outliers or malicious inputs. Other architectural defenses include
GCORN [1], which enforces orthogonal weights to enhance stability. Beyond architectural changes,
adversarial training remains highly effective. For example, [19] train GNNs on perturbed graphs,
increasing robustness to future attacks. Complementing empirical defenses, certified methods are
gaining traction. Techniques such as randomized smoothing [4], building on earlier work [50, 3],
offer probabilistic guarantees that predictions remain stable under bounded perturbations.

In parallel, research on pooling strategies has also made great strides [45, 31, 27, 2], where different
pooling methods have been presented to enhance the model’s predictive ability. In this work, we aim
to connect these two research directions, by examining how flat pooling operations affect the expected
robustness. Rather than competing with existing defenses, we offer a complementary viewpoint by
analyzing the final pooling stage – a crucial but often overlooked component in robustness research
for graph-level prediction. To the best of our knowledge, this is the first systematic study of pooling
in the context of adversarial defense for graph classification. While recent work by [40] offers a broad
empirical benchmark of hierarchical pooling methods, assessing their robustness and generalization,
their study centers on graph coarsening and does not address flat pooling or its theoretical implications
in adversarial settings.

3 Preliminaries

In this section, we introduce the fundamental concepts and notation that underpin our work.

Notation and Setup. Let G = (V,E) be a graph, where V and E denote its sets of nodes and
edges, respectively. We use n = |V | and m = |E| to represent the number of nodes and edges. The
neighborhood of a node v ∈ V is denoted by N (v) = {u : (v, u) ∈ E}. The degree of node v is thus
deg(u) = |N (v)|. A graph is typically represented by its adjacency matrix A ∈ Rn×n and, when
available, a node feature matrix X ∈ Rn×d, where d is the feature dimensionality.

Message Passing GNNs. A GNN consists of a sequence of neighborhood aggregation layers that
update node representations by incorporating information from local neighborhoods. Let h(0)

v denote
the initial feature vector of node v. The hidden representation of node v at layer ℓ ≤ L is updated as:

a(ℓ)v = AGGREGATE(ℓ)
({

h(ℓ−1)
u : u ∈ N (v)

})
; h(ℓ)

v = COMBINE(ℓ)
(
h(ℓ−1)
v , a(ℓ)v

)
,

where AGGREGATE(ℓ) is a permutation-invariant function that summarizes the features of v’s
neighbors, and COMBINE(ℓ) integrates this summary with v’s previous representation.

Pooling Operation. After L layers of message passing, a permutation-invariant pooling function is
applied to the final node representations to obtain a graph-level embedding:

hG = POOL
({

h(L)
v : v ∈ V

})
.

This step, often referred to as readout or flat pooling, is essential for producing a fixed-size rep-
resentation of the entire graph. In this study, we aim to understand how this operation affects the
expected robustness of GNNs. For tractability, we focus on flat pooling methods that aggregate node
representations in a single step, specifically Sum, Average, and Max pooling.

4 On the Robustness of Pooling Operations

We start by discussing the concept of the expected robustness in graph classification tasks, followed
by a theoretical analysis of widely used flat pooling operations.
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4.1 Expected Graph Robustness

We consider a set of input graphs represented by their adjacency matrices and node features with
associated labels, denoted as (A1, X1, y1), . . . , (AN , XN , yN ) ∈ (A,X ,Y)N , sampled from an
underlying distribution D over (A,X ,Y). The goal of graph classification is to learn a function
f : (A,X ) → Y that predicts a target label by minimizing the expected classification risk under D.

In this work, we focus on the black-box evasion setting, where the attacker has no access to the
trained model f or its training data and cannot modify them. For the purpose of analysis, we extend
the framework introduced in [10] to the graph classification context. Let (A,X) ∈ (A,X ) be an
input graph with label y ∈ Y . We assess the model’s robustness by examining its behavior in the
neighborhood of the input graph, measuring the expected risk of prediction changes under bounded
perturbations. Given a perturbation budget ϵ, the expected adversarial risk of f with respect to D is
defined as:

Rϵ[f ] = E
(A,X)∼D

(Ã,X̃)∈Nϵ(A,X)

[dY(f(Ã, X̃), f(A,X))], (1)

where dY = ∥·∥2 denotes distance in the output space Y . The set Nϵ(A,X) = {(Ã, X̃) :

dA,X ((A,X), (Ã, X̃)) < ϵ} defines the neighborhood of admissible perturbations under the budget
ϵ, measured by the input space distance dA,X . In our work, we consider a distance that reflect both
the topology and the node features while taking into account the set of permutation matrices Π, which
can be written as: dA,X ((A,X), (Ã, X̃)) = minP∈Π

{
∥A− PÃPT ∥2 + ∥X − PX̃∥2

}
.

From a defense perspective, the goal is to minimize the expected risk Rϵ[f ], thereby ensuring the
model’s predictions remain stable within the allowed perturbation budget. Bounding this risk offers
valuable insights into a model’s expected robustness and its sensitivity to adversarial inputs. Based
on this, we formalize the notion of GNN robustness in Definition 4.1.
Definition 4.1. (Expected Robustness) A graph-based function f : (A,X ) → Y is said to be
(ϵ, γ)-robust if its expected risk satisfies Rϵ[f ] ≤ γ.

We note that this definition is different from the usually used adversarial robustness in the literature,
and rather adopts an average case perspective by evaluating robustness over the entire neighborhood
Nϵ(A,X), in contrast to worst case analysis, which considers only the most damaging perturbation.
We have chosen to operate within this direction, since we consider that worst case attacks represent a
subset of the neighborhood and therefore it follows that upper-bounding this quantity for the average
would also give me some insights on the robustness under the worst case criterion. This distinction
between average and worst case robustness has been discussed in the literature [36].

4.2 On the Expected Robustness of Flat Pooling Operations

Having established a formal definition of the expected robustness in the context of graph classification,
we now apply this framework to assess the robustness properties of commonly used pooling operations.
Specifically, we examine two representative models from the message-passing family introduced
in Section 3: Graph Convolutional Networks (GCNs) [24] and Graph Isomorphism Networks
(GINs) [44], both of which are widely adopted in graph-level tasks.

Following message passing, node embeddings are aggregated through a pooling operation to produce
a global graph representation suitable for downstream classification. However, this step can introduce
information loss, prompting the development of various pooling strategies. In this work, we focus
on three widely used flat pooling techniques, which generate graph-level representations through
a single aggregation step over node embeddings: Sum, Average, and Max pooling [9]. While our
theoretical analysis centers on these operations, the proposed robustness framework is general and
can be extended to other mechanisms. The primary objective is to quantify the influence of each
pooling strategy on the expected robustness of the model, as defined in Definition 4.1. Throughout
the remainder of this paper, ∥·∥ denotes the operator norm.
Theorem 4.2. Let f : (A,X ) → Y denote a graph-based function composed of L GCN layers, where
the weight matrix of the ℓ-th layer is denoted by W (ℓ). Under a feature-based adversarial attack with
perturbation budget ϵ, the robustness of f in the sense of Definition 4.1 satisfies the following:

• If f is based on Max pooling, then it is (ϵ, γ)-robust with:
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γ =
√
min{n, dL}

(∏L
ℓ=1∥W (ℓ)∥

)
maxu∈V ŵuϵ.

• If f is based on Sum pooling, then it is (ϵ, γ)-robust with:

γ =
(∏L

ℓ=1∥W (ℓ)∥
)∑

u∈V ŵuϵ.

• If f is based on Average pooling, then it is (ϵ, γ)-robust with:

γ = 1
n

(∏L
ℓ=1∥W (ℓ)∥

)∑
u∈V ŵuϵ.

Here, ŵu denotes the sum of normalized walks of length L−1 originating from node u, and dL is the
output dimensionality of the final layer.

Theorem 4.2 establishes upper bounds on the expected risk for different flat pooling operations. A
common factor across all bounds is the product of the weight matrix norms, reflecting the influence
of message-passing layers. The second term in each bound differentiates the pooling methods. For
Sum pooling, the bound scales with the total normalized walk count, which increases with graph
density. Consequently, adversarial noise propagates through multiple paths, weakening robustness and
highlighting Sum pooling’s vulnerability in dense graphs. In contrast, Average pooling normalizes
this term by the number of nodes, diminishing the impact of increased walk counts. As graphs grow
larger or sparser, this normalization tightens the bound, offering improved robustness over Sum
pooling. We observe the bound on Max pooling to be governed by a single node in the graph for
which the normalized sum of walks of length L − 1 is maximal. Consequently, the max-pooling
operator more localized than the Sum and Mean Operators for which our bounds depend on global
characteristics.

The robustness of each pooling method further depends on the attack strategy. Under targeted attacks,
where high-degree or influential nodes are perturbed, Max pooling can be particularly vulnerable,
especially in gradient-based settings that expose critical nodes. However, when less influential nodes
are targeted, it may retain robustness. In non-targeted attacks that perturb nodes more uniformly, Max
pooling may outperform Sum and Average pooling, as it aggregates over only one node. Overall,
the analysis reveals that no single pooling method is optimal across all scenarios. Robustness varies
with graph structure and attack type, underscoring the importance of selecting pooling strategies
based on the anticipated threat model. Although our analysis focuses on GCNs, the same theoretical
framework naturally extends to Graph Isomorphism Networks (GINs).

Theorem 4.3. Let f : (A,X ) → Y be composed of L GIN-layers (with its internal parameter ζ = 0)
and let W (ℓ) denote the weight matrix of the ℓ-th MLP layer. We consider the input node feature
space to be bounded, i.e., ∥X∥2 < B for some B ∈ R. Under a feature-based adversarial attack
with perturbation budget ϵ, the model f is (ϵ, γ)-robust with respect to Definition 4.1, with:

• If f is based on Max pooling: γ =
∏L

ℓ=1∥W (ℓ)∥ (BL (maxu∈V deg(u)) + ϵ) .

• If f is based on Sum pooling: γ =
∏L

ℓ=1∥W (ℓ)∥(2BL|E|+ nϵ) .

• If f is based on Average pooling: γ =
√
n, dL

(∏L
ℓ=1∥W (ℓ)∥

) ( 2BL|E|
n + ϵ

)
.

Here, |E| is the number of edges, n number of nodes and dL the dimensionality of the final layer L.

As in the GCN case, the derived upper bounds for GIN highlight the influence of pooling operations
on expected robustness. For Sum pooling, the expected adversarial risk grows with both the number
of nodes and edges, indicating increased vulnerability in larger or denser graphs. In comparison,
Average pooling normalizes by the number of nodes, which reduces the relative impact of individual
perturbations and enhances robustness in large or sparse settings. Max pooling produces a bound
governed by the maximum node degree, suggesting heightened sensitivity in graphs with hub-like
structures, particularly when high-degree nodes are targeted. These findings are consistent with
GCN-based analysis and further emphasize that pooling is a key factor in shaping the robustness of
GNNs.
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5 Robust Pooling Through Singular Decomposition

Section 4.2 demonstrated that pooling significantly influences the robustness of graph classification
models. This aligns with the intuition behind message passing, where node-level perturbations
propagate through local neighborhoods and ultimately affect the global representation, depending
on the pooling strategy. Influential nodes with high centrality or strong connectivity tend to amplify
adversarial effects, spreading their influence and creating compound vulnerabilities. Similar trends
have been observed in node classification [28], where gradient-based attacks often target structurally
important nodes. Mitigating the influence of such nodes can therefore improve robustness.

To address adversarial vulnerabilities, prior work has proposed various preprocessing techniques [42,
13, 46, 17]. However, these defenses typically operate before or during the message-passing stage
and are primarily tailored for node classification tasks, where graphs are large and removing a
subset of nodes has limited impact on performance. In contrast, graph classification often involves
smaller graphs for which the removal of nodes can be more critical. Removing or down-weighting
certain nodes can disrupt information propagation and degrade clean accuracy, which is especially
problematic given that it is not known in advance whether a graph has been attacked. As a result,
achieving a favorable trade-off between robustness to adversarial inputs and strong performance on
clean data remains a key challenge in graph-level learning.

Given these considerations, to avoid the consequences of node removal, we propose an alternative
pooling strategy that effectively balances robustness and clean performance. We introduce Robust
Singular Pooling (RS-Pool), a novel method that retains informative signals in clean graphs while
mitigating the influence of adversarial perturbations. RS-Pool generates the graph-level representation
by extracting the dominant right singular vector of the node embeddings. This design is motivated
by classical results in matrix perturbation theory [8, 41], which demonstrate that leading singular
vectors are stable under bounded perturbations and encode the most reliable directions of variation.

In the context of graph classification, adversarial attacks distort node embeddings produced by
message-passing layers. These distortions are typically localized in nature, due to the limited depth of
GNNs (empirically often L ∈ {2, 3, 4, 5} is observed to be highest-performing [14]) and constrained
perturbation budgets that restrict modifications to a small subset of nodes [28]. As a result, the
dominant singular vector often remains stable, while less-dominant components are more susceptible
to noise. By projecting onto this robust direction, RS-Pool generates a stable and expressive graph
representation that maintains performance under adversarial conditions. Formally, let H ∈ Rn×d

denote the matrix of node representations obtained after the message-passing stage (e.g., from
a GCN [24]), where n is the number of nodes and d the features (embedding) dimension. We
consider the singular value decomposition (SVD): H = UΣV ⊤, where U ∈ Rn×n, Σ ∈ Rn×d,
and V ∈ Rd×d. The singular values σ1 ≥ σ2 ≥ · · · ≥ σmin(n,d) ≥ 0 quantify the contribution of
each singular direction. Let v1 ∈ Rd denote the dominant right singular vector, RS-Pool defines the
graph-level representation as a scaled version of v1:

RS-Pool : Rn×d → Rd

H 7→ τ v1(H),

where τ ∈ R>0 is a scaling factor controlling the magnitude of the output embedding. The dominant
singular vector captures the principal direction of variation in the embedding space, effectively
summarizing the global structure encoded in H . Scaling ensures the pooled vector retains sufficient
energy to serve as a meaningful input to downstream classifiers.

Crucially, RS-Pool also offers inherent robustness. Classical results from matrix perturbation the-
ory [8, 41] show that if the leading singular value σ1(H) is well-separated from the next σ2(H) (we
use σs and σs(H) interchangeably when unambiguous), then the top singular vector v1(H) is stable
under small perturbations to H . This separation condition ensures that adversarial distortions, often
low-rank and localized, have limited influence on the dominant representation. Within the expected
adversarial risk framework introduced in Definition 4.1, we now formalize the robustness guarantee
of RS-Pool.

Theorem 5.1. Let f : (G,X ) → Y denote a graph function composed of L GCN layers and using
our RS-Pool, where the weight matrix of the i-th layer is denoted by W (i). Under a feature-based
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adversarial attack with perturbation budget ϵ, f is (ϵ, γ)-robust in respect to Definition 4.1 with:

γ =
τ
√
2ϵ

σ1 − σ2

( L∏
ℓ=1

∥W (ℓ)∥
) n∑

u=1

(ŵu)
2, (2)

with ŵu denoting the sum of normalized walks of length (L− 1) starting from node u, and σ1 ̸= σ2

being the two dominant singular values.

Theorem 5.1 provides an upper bound on the expected adversarial risk of the proposed RS-Pool
method. As with previous bounds, the expression includes shared terms such as the product of
message-passing weight norms and the perturbation budget. However, a distinguishing feature of this
bound is its dependence on the spectral gap of the clean representation matrix H and the scaling factor
τ . Notably, the bound relies solely on the spectral gap of the unperturbed node embeddings, not the
perturbed input, reinforcing our earlier claim that RS-Pool mitigates the influence of adversarial noise.
Furthermore, the scaling parameter τ acts as a tunable control for the representation’s sensitivity,
allowing the bound to be tightened and thereby improving robustness. This tunability is especially
beneficial in settings where the message-passing layers exhibit high sensitivity to input perturbations.
Corollary 5.2. Let f : (G,X ) → Y be the graph-based function considered in Theorem 5.1. Let γ
be the upper-bound derived in Theorem 5.1, we have that f is (ϵ, γ′)-robust with:

γ′ = min{γ, 2τ}. (3)

Corollary 5.2 highlights that even when the message-passing component is highly vulnerable to
adversarial perturbations, as indicated by large weight norms, RS-Pool can still ensure a bounded
expected risk by constraining the representation through the scaling parameter τ . This scenario has
motivated prior robustness techniques such as orthogonal regularization [6]. The result demonstrates
that RS-Pool serves as a stabilizing mechanism, contributing to overall robustness even when earlier
layers are sensitive to input perturbations. Moreover, RS-Pool retains the essential property of
permutation invariance, ensuring its compatibility with standard GNN architectures.
Lemma 5.3. RS-Pool is permutation invariant; that is, for any pair of isomorphic graphs G and GΠ

with its corresponding permutation matrix Π, we have f(A,X) = f(AΠ, XΠ).

Remark. Theorem 5.1 does not address cases where the largest singular value has multiplicity greater
than one. Such cases are rare in practice, as GNNs’ inherent smoothing tends to reduce the feature
matrix rank and create a non-trivial spectral gap. Nonetheless, Wedin’s Theorem, which underlies our
proof, extends to the case where the dominant singular value has multiplicity r, yielding an additional
factor

√
r (instead of

√
2) in the upper bound γ, with the relevant spectral gap σr − σr+1.

Algorithm 1 RS-Pool Forward Pass

Require: H ∈ Rn×d, τ ∈ R>0, K ∈ N>0

1: S ← H⊤H
2: v ← random unit vector in Rd

3: for t = 1 to K do
4: v ← Sv
5: v ← v/∥v∥2
6: end for
7: return τHv

Implementation and Algorithm. RS-Pool constructs
the graph-level representation by extracting the dominant
right-singular vector of the node embedding matrix H .
As only the top singular vector is needed, computing the
costly full SVD is unnecessary. Instead, we employ the
truncated power iteration method to efficiently estimate the
dominant vector. This iterative approach is scalable with
respect to both the number of nodes and the embedding
dimension. A key advantage of RS-Pool is that it remains
fully differentiable, allowing seamless integration into
existing GNN pipelines and enabling end-to-end training via standard backpropagation. Algorithm 1
outlines the forward pass of a GNN model utilizing RS-Pool.

Computational Complexity. The main computational overhead of RS-Pool stems from approximat-
ing the dominant singular vector using power iteration. Each iteration has a complexity of O(n× d),
where n is the number of nodes and d the embedding dimension. In practice, we find that only a small
number of iterations (e.g., 2–5) is sufficient to obtain a reliable estimate. This efficiency is supported
by the convergence properties of power iteration, which is known to converge geometrically at a
rate determined by the ratio σ2(H)/σ1(H), where σ1(H) and σ2(H) are the top two singular values
of H . A well-separated spectral gap ensures rapid convergence, which is commonly observed in
GNN embeddings due to dominant low-frequency components. As a result, the overall complexity
remains O(K × n× d) for a small K, making RS-Pool suitable for real-world graph applications. A
comparison of its runtime with other pooling methods is provided in Appendix E.2.
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We further note that the fast empirical convergence of power iteration aligns with the theoretical
robustness bound in Theorem 5.1, where the spectral gap σ1(H)−σ2(H) plays a central role. A larger
gap not only tightens the bound (lower γ), indicating improved robustness, but also ensures faster
convergence of the power iteration method used to compute RS-Pool. This dual benefit highlights
the practical effectiveness of RS-Pool, as favorable spectral properties commonly observed in GNN
embeddings lead to both stable representations and efficient computation. We provide empirical
validation of this observation in Appendix E.1.

6 Experimental Results

This section aims to validate our theoretical insights on real-world datasets where we aim to investigate
the robustness of RS-Pool in comparison to other considered pooling methods. In line with our
theoretical study, we focus on the GCN model in this section while we provide results on the GIN
in Appendix E.4. We additionally provide results when considering the adversarial defenses as a
backbone GNN in Appendix E.5, showcasing therefore the universality of our insights. For all our
experiments, we use a 2 layers GCN (resp. GIN) classifier with identical hyper-parameters across all
experiments to guarantee a fair comparison. Each experiment is run 10 times to reduce the effect of
randomness. Additional implementation details are provided in Appendix F.

Considered Benchmarks. We evaluate RS-Pool against classical flat pooling methods, including
Average, Max, and Sum pooling, as well as several advanced approaches. We include Self-Attention
Graph pooling (SAG) [27], which uses node features and graph structure to compute attention scores
and retain informative nodes, and TopK pooling (TopK-P) [16], which learns to rank nodes via a
projection vector and selects a fixed fraction by score. We also consider Path-Integral-based Pooling
(PAN-P) [31], a TopK extension that integrates multi-hop structure into scoring. Lastly, we compare
with Sort Pooling (Sort-P) [45], which orders nodes by feature magnitude and concatenates the top-k
sorted nodes.

Attacks. We evaluate robustness under three adversarial attack strategies: (i) Random Attack, which
randomly adds or removes edges in the input graph. The search is performed over K random
perturbations, and the one yielding the worst performance is selected; (ii) Genetic Attack [7], which
uses evolutionary algorithms to generate adversarial graphs via selection, crossover, and mutation;
and (iii) Gradient-Based Attack (PGD) [7], which greedily modifies the graph structure by targeting
edges with the highest gradient magnitude relative to the model’s input. For all attacks, we apply a
perturbation budget of ϵ = 0.3, allowing up to 30% of the edges in each graph to be modified. We
additionally considered the Bit-Flip Attacks (BFAs) [26, 25] in Appendix E.6.

Datasets. We conduct experiments on standard graph classification datasets from the TUDataset
benchmark [32], spanning diverse domains. In bioinformatics graphs (PROTEINS, D&D, EN-
ZYMES), small changes to residue contact links can influence biological property predictions. In
molecular graphs (NCI1, ER_MD), altering a bond may change the predicted molecular function. For
social networks (IMDB-B, REDDIT-B), edge perturbations, such as fake user interactions, can flip
the predicted graph label. In image-based graphs (MSRC_9), local edits to image patches can lead to
misclassification. For all datasets, we use the public train/validation/test splits when available [14];
otherwise, we adopt the same evaluation protocol and report the specific folds used.

6.1 Experimental Results

Empirical Estimation of Adversarial Risk. We begin by empirically analyzing the adversarial risk
defined in Section 4, characterized by the upper bound γ. To this end, we compute the distance be-
tween the pooled representations of clean and adversarially perturbed graphs for each pooling method.
Figure 1 presents the results of this analysis across the considered pooling strategies. As expected,
RS-Pool consistently maintains a smaller distance between clean and perturbed representations. In
addition, we see the exact behavior underlined in our theoretical results provided in Theorem 4.2,
where the Sum is the one with the higher upper-bound, followed by the Max and the Average. This
behavior directly correlates with lower attack success rates of our RS-Pool, as shown in subplots (b)
and (d). Complete results for all pooling methods are provided in Appendix E.3.

On the Effect of the Hyperparameter τ . As discussed in Section 5, the parameter τ plays a critical
role in RS-Pool. While it directly scales the extracted dominant singular vector, its more significant
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Figure 1: Left: Empirical estimation of adversarial risk γ and corresponding attack success rate on
PROTEINS ((a), (b)) and D&D ((c), (d)). Right (e): Study of the effect of the parameter α which
inversely controls τ on the PROTEINS dataset.

Table 1: Clean and Attacked classification accuracy (± standard deviation) of the RS-Pool and other
pooling strategies on different graph classification dataset when subject to adversarial attacks.

Dataset Attack Sum Average Max SAG TopK-P PAN-P Sort-P RS-Pool

PROTEINS

Clean 74.2 ± 3.1 70.8 ± 2.2 73.2 ± 2.3 72.3 ± 3.3 73.2 ± 2.9 74.7 ± 1.7 72.3 ± 2.3 73.5 ± 2.9
PGD 45.8 ± 2.9 34.2 ± 2.1 28.2 ± 3.5 45.5 ± 2.1 48.5 ± 1.2 33.3 ± 1.5 31.8 ± 2.9 51.9 ± 3.6
Random 68.3 ± 3.1 65.7 ± 2.3 42.9 ± 4.1 61.9 ± 5.1 68.2 ± 1.8 68.5 ± 2.1 64.3 ± 3.2 70.4 ± 3.1
Genetic 66.1 ± 2.3 65.3 ± 3.2 39.8 ± 5.0 62.9 ± 3.8 66.5 ± 2.2 66.4 ± 2.7 63.7 ± 2.1 68.2 ± 1.8

D&D

Clean 75.1 ± 0.6 70.1 ± 0.5 74.1 ± 0.6 71.3 ± 0.4 74.4 ± 1.1 75.7 ± 2.8 74.9 ± 1.7 74.6 ± 0.7
PGD 6.7 ± 2.0 12.6 ± 3.6 8.7 ± 5.2 9.0 ± 3.8 5.9 ± 2.9 9.6 ± 2.8 16.6 ± 1.9 30.4 ± 3.2
Random 61.9 ± 3.4 64.4 ± 2.9 19.7 ± 2.4 62.8 ± 2.4 58.6 ± 1.1 61.9 ± 2.4 50.3 ± 2.9 66.7 ± 2.1
Genetic 60.5 ± 4.2 63.1 ± 2.6 21.4 ± 1.5 62.5 ± 2.8 57.7 ± 0.6 56.1 ± 3.6 57.7 ± 4.3 67.2 ± 2.9

NCI1

Clean 70.6 ± 0.8 67.9 ± 1.6 68.2 ± 1.2 70.4 ± 0.9 70.9 ± 0.9 70.4 ± 1.7 69.5 ± 0.4 70.1 ± 1.2
PGD 23.4 ± 1.1 14.1 ± 2.1 19.7 ± 1.7 22.3 ± 1.3 23.2 ± 2.7 23.9 ± 2.3 23.5 ± 1.1 26.3 ± 1.8
Random 26.1 ± 0.7 20.6 ± 2.6 9.6 ± 5.1 19.8 ± 1.5 25.8 ± 1.8 24.7 ± 2.1 24.3 ± 1.2 27.2 ± 0.1
Genetic 25.9 ± 0.8 19.7 ± 2.7 9.3 ± 2.2 18.7 ± 1.2 23.9 ± 2.4 19.1 ± 2.6 25.8 ± 1.4 26.9 ± 0.7

ENZYMES

Clean 33.4 ± 4.9 27.7 ± 4.9 27.7 ± 1.6 26.1 ± 0.9 27.7 ± 4.3 28.3 ± 3.6 29.7 ± 2.1 32.8 ± 4.6
PGD 2.7 ± 2.1 3.3 ± 1.3 9.8 ± 2.3 8.9 ± 2.1 6.7 ± 1.4 1.7 ± 1.3 5.6 ± 2.1 11.9 ± 2.7
Random 7.4 ± 3.4 8.3 ± 2.3 2.2 ± 1.6 3.8 ± 1.6 10.6 ± 1.3 5.6 ± 2.1 9.4 ± 1.6 11.7 ± 2.1
Genetic 8.9 ± 4.3 7.2 ± 4.1 6.1 ± 0.8 4.4 ± 2.1 9.4 ± 1.6 5.0 ± 1.3 9.4 ± 1.6 9.9 ± 2.1

IMDB-B

Clean 52.9 ± 4.2 62.7 ± 3.9 56.7 ± 4.1 63.7± 4.1 52.0 ± 5.3 53.3 ± 2.4 56.7 ± 4.2 62.0 ± 3.2
PGD 52.0 ± 2.8 61.3 ± 4.4 32.0 ± 5.8 61.3 ± 3.2 47.0 ± 4.5 49.6 ± 2.9 56.7 ± 3.2 61.7 ± 2.5
Random 52.3 ± 3.2 62.3 ± 3.2 45.9 ± 3.3 62.9 ± 4.3 49.7 ± 4.0 51.3 ± 1.2 55.7 ± 3.3 61.3 ± 2.9
Genetic 52.0 ± 2.8 61.0 ± 2.3 52.0 ± 4.1 61.7 ± 3.8 50.9 ± 4.3 52.3 ± 1.7 57.8 ± 3.3 62.7 ± 3.2

REDDIT-B

Clean 77.5 ± 0.8 70.0 ± 1.2 72.0 ± 0.9 70.5 ± 1.6 78.5 ± 1.4 77.5 ± 1.5 80.0 ± 0.9 75.5 ± 0.6
PGD 69.0 ± 1.4 57.5 ± 2.5 62.0 ± 2.5 55.5 ± 1.9 55.5 ± 1.9 57.0 ± 1.9 56.5 ± 2.5 74.0 ± 0.9
Random 76.0 ± 0.8 69.5 ± 0.9 67.9 ± 1.2 69.0 ± 1.6 76.5 ± 1.5 75.6 ± 1.4 78.0 ± 0.6 75.0 ± 0.3
Genetic 74.0 ± 0.9 69.0 ± 1.5 66.9 ± 1.4 68.5 ± 1.9 55.5 ± 1.5 57.0 ± 2.5 56.5 ± 1.9 74.5 ± 0.7

ER_MD

Clean 64.0 ± 3.9 61.1 ± 6.7 61.4 ± 6.1 61.1 ± 5.8 66.3 ± 4.2 69.7 ± 1.8 67.1 ± 5.4 65.9 ± 5.9
PGD 40.4 ± 3.2 44.5 ± 3.8 45.8 ± 3.3 45.9 ± 2.8 37.4 ± 5.3 35.2 ± 4.5 34.1 ± 6.2 47.9 ± 3.4
Random 55.1 ± 2.3 51.6 ± 2.8 52.4 ± 3.8 49.8 ± 2.3 50.1 ± 3.8 55.1 ± 2.3 52.4 ± 3.8 58.1 ± 5.9
Genetic 60.2 ± 1.1 58.9 ± 1.8 60.2 ± 0.8 59.9 ± 2.3 51.4 ± 1.8 52.4 ± 4.2 55.1 ± 2.3 61.7 ± 1.3

MSRC_9

Clean 88.6 ± 3.2 88.6 ± 1.8 88.6 ± 1.8 90.1 ± 1.1 87.1 ± 2.8 89.4 ± 2.1 89.4 ± 2.8 89.7 ± 1.1
PGD 82.6 ± 2.8 84.1 ± 2.1 78.0 ± 2.9 82.6 ± 2.3 54.6 ± 1.9 84.1 ± 2.3 75.8 ± 3.4 85.6 ± 3.1
Random 85.6 ± 2.6 87.8 ± 1.3 86.3 ± 1.3 87.1 ± 1.6 84.1 ± 3.2 86.8 ± 1.3 86.4 ± 2.1 89.1 ± 0.4
Genetic 85.6 ± 2.1 86.3 ± 2.8 87.1 ± 1.9 87.1 ± 2.1 84.1 ± 3.2 86.3 ± 1.8 86.4 ± 3.2 89.4 ± 1.1

effect lies in modulating the robustness bound in Theorem 5.1 and influencing the expected risk as
detailed in Corollary 5.2. To validate this theoretically grounded effect, we examine how varying
τ impacts both clean accuracy and robustness. In our experiments, to better isolate the role of the
spectral gap, we parameterize τ as a scaled version of the leading singular value, which is already
computed during the power iteration. Specifically, we set τ = σ1(X)/α, where α > 0 is a tunable
constant. We then study how different values of α affect performance, measuring clean accuracy
and attack success rate. As shown in Figure 1 (e), increasing α (and thus decreasing τ ) leads to a
lower attack success rate, indicating improved robustness. However, this comes at the cost of clean
accuracy, which peaks at an intermediate α before declining. These results highlight the importance of
selecting an appropriate value of α to achieve a desirable trade-off between robustness and predictive
performance.

Results Analysis. We evaluate the performance of RS-Pool and baseline pooling methods under
adversarial attacks. Table 1 presents classification accuracy on clean and perturbed data across
datasets and attack types. RS-Pool consistently performs well on clean inputs and significantly
outperforms baselines under adversarial conditions. The only exceptions occur in two cases involving
the Random attack, where the limited perturbation budget results in low attack success, allowing
some baselines to retain higher accuracy due to strong clean performance. Under stronger attacks
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Table 2: Clean and Attacked classification accuracy (± standard deviation) of the RS-Pool and other
pooling strategies on different graph classification dataset when subject to feautre-based adversarial
attacks.

Dataset Attack Sum Average Max SAG TopK-P PAN-P Sort-P RS-Pool

PROTEINS
Clean 74.2 ± 3.1 70.8 ± 2.2 73.2 ± 2.3 72.3 ± 3.3 73.2 ± 2.9 74.7 ± 1.7 72.3 ± 2.3 73.5 ± 2.9
PGD 68.4 ± 4.0 64.6 ± 2.2 66.4 ± 4.1 64.3 ± 3.6 64.9 ± 6.9 68.8 ± 2.9 66.7 ± 2.9 69.9 ± 4.1
Random 69.5 ± 5.2 67.6 ± 2.9 68.4 ± 3.2 69.0 ± 4.0 68.8 ± 6.5 69.2 ± 3.2 70.2 ± 2.6 70.9 ± 2.8

D&D
Clean 75.1 ± 0.6 70.1 ± 0.5 74.1 ± 0.6 71.3 ± 0.4 74.4 ± 1.1 75.7 ± 2.8 74.9 ± 1.7 74.6 ± 0.7
PGD 36.9 ± 3.6 36.9 ± 6.8 46.4 ± 6.4 49.9 ± 1.8 28.7 ± 3.7 37.5 ± 4.1 47.9 ± 4.8 51.8 ± 1.1
Random 49.0 ± 5.2 44.0 ± 6.5 45.7 ± 4.6 54.1 ± 3.0 40.9 ± 5.1 51.0 ± 4.6 49.7 ± 4.9 54.9 ± 2.3

NCI1
Clean 70.6 ± 0.8 67.9 ± 1.6 68.2 ± 1.2 70.4 ± 0.9 70.9 ± 0.9 70.4 ± 1.7 69.5 ± 0.4 70.1 ± 1.2
PGD 38.6 ± 2.8 36.4 ± 3.5 37.9 ± 5.3 36.6 ± 2.2 35.1 ± 2.2 38.4 ± 1.8 36.2 ± 3.6 39.4 ± 1.9
Random 41.1 ± 2.0 38.1 ± 2.9 40.9 ± 5.5 40.1 ± 2.9 38.5 ± 1.0 40.9 ± 2.4 38.5 ± 4.8 41.7 ± 1.3

ER_MD
Clean 64.0 ± 3.9 61.1 ± 6.7 61.4 ± 6.1 61.1 ± 5.8 66.3 ± 4.2 69.7 ± 1.8 67.1 ± 5.4 65.9 ± 5.9
PGD 41.9 ± 3.2 45.3 ± 1.4 45.3 ± 4.6 45.7 ± 3.5 45.3 ± 3.8 45.3 ± 2.1 43.1 ± 3.5 55.1 ± 4.9
Random 54.3 ± 2.3 50.2 ± 4.3 52.1 ± 6.4 53.9 ± 5.5 52.1 ± 4.1 51.3 ± 5.2 53.6 ± 7.7 56.2 ± 5.1

MSRC_9
Clean 88.6 ± 3.2 88.6 ± 1.8 88.6 ± 1.8 90.1 ± 1.1 87.1 ± 2.8 89.4 ± 2.1 89.4 ± 2.8 89.7 ± 1.1
PGD 84.8 ± 2.8 85.6 ± 4.0 85.6 ± 2.8 87.1 ± 1.1 83.3 ± 1.1 85.6 ± 3.9 84.1 ± 1.9 88.3 ± 1.1
Random 86.4 ± 3.7 88.6 ± 1.9 87.9 ± 2.8 89.4 ± 1.1 87.1 ± 2.1 87.9 ± 3.9 88.6 ± 3.2 89.3 ± 1.1

such as PGD, RS-Pool shows notable gains, achieving up to a 14% uplift over the second-best method
on the D&D dataset. This advantage is more pronounced on datasets like D&D, which contain larger
and denser graphs where the leading singular vector captures most of the informative signal, enabling
more robust representation through RS-Pool. Similar observations hold for GIN and other adversarial
defenses, as shown in Appendix E.4 and E.5.

Feature-Based Robustness. To further demonstrate the value of our theoretical analysis, and inline
with the considered setup, we evaluate adversarial attacks targeting node features. We adopt the same
attack strategies used in the structural setting: Random, which adds noise to features at random, and
PGD, a gradient-based attack. Table 2 reports clean and attacked accuracies (with standard deviations)
for our proposed pooling method, RS-Pool, alongside other baseline pooling strategies across multiple
datasets. Consistent with the structural attack results, RS-Pool achieves higher attacked accuracy,
highlighting its improved robustness against feature perturbations.

7 Conclusion

In this work, we provided a theoretical analysis of how pooling operations affect the adversarial
robustness of GNNs in the context of graph classification. Our findings indicate that different pooling
strategies exhibit varying levels of sensitivity to attack types – some being more robust to targeted
perturbations, while others are more vulnerable under global attacks. To address this, we introduced
RS-Pool, a novel pooling method that uses a scaled version of the dominant singular vector of the node
embedding matrix as the graph-level representation. We theoretically demonstrated that RS-Pool can
attenuate the impact of adversarial perturbations at the pooling stage, thereby improving the model’s
overall robustness. Empirical evaluations on real-world datasets, using different GNN backbones and
adversarial attacks, confirm that RS-Pool achieves stronger robustness while maintaining competitive
performance on clean data.

Limitations. Our method relies on the existence of a spectral gap in feature matrices, yet gap size can
depend on the network depth and graph topology and varies across settings, which warrants further
study. Moreover, power iteration pooling scales linearly with edges but may incur nontrivial overhead
on very dense graphs, limiting its use in resource constrained applications.
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[17] Simon Geisler, Tobias Schmidt, Hakan Şirin, Daniel Zügner, Aleksandar Bojchevski, and
Stephan Günnemann. Robustness of graph neural networks at scale. Advances in Neural
Information Processing Systems, 34:7637–7649, 2021.

[18] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning,
pages 1263–1272. PMLR, 2017.

[19] Lukas Gosch, Simon Geisler, Daniel Sturm, Bertrand Charpentier, Daniel Zügner, and Stephan
Günnemann. Adversarial training for graph neural networks: Pitfalls, solutions, and new
directions. Advances in Neural Information Processing Systems, 36, 2024.

[20] Stephan Günnemann. Graph neural networks: Adversarial robustness. In Graph Neural
Networks: Foundations, Frontiers, and Applications, pages 149–176. Springer, 2022.

[21] Wei Jin, Yaxing Li, Han Xu, Yiqi Wang, Shuiwang Ji, Charu Aggarwal, and Jiliang Tang.
Adversarial attacks and defenses on graphs. SIGKDD Explor. Newsl., page 19–34, 2021.

[22] Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, and Patrick Riley. Molecular
graph convolutions: moving beyond fingerprints. Journal of Computer-Aided Molecular Design,
30(8):595–608, 2016.

[23] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[24] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional
Networks. In International Conference on Learning Representations (ICLR), 2017.

[25] Lorenz Kummer, Wilfried N. Gansterer, and Nils Morten Kriege. On the relationship between
robustness and expressivity of graph neural networks. In The 28th International Conference on
Artificial Intelligence and Statistics, 2025.

[26] Lorenz Kummer, Samir Moustafa, Sebastian Schrittwieser, Wilfried Gansterer, and Nils Kriege.
Attacking graph neural networks with bit flips: Weisfeiler and leman go indifferent. In Proceed-
ings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD
’24, page 1428–1439, New York, NY, USA, 2024. Association for Computing Machinery.

[27] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In International
conference on machine learning, pages 3734–3743. pmlr, 2019.

[28] Kuan Li, Yang Liu, Xiang Ao, and Qing He. Revisiting graph adversarial attack and defense
from a data distribution perspective. In The Eleventh International Conference on Learning
Representations, 2023.

[29] Vijay Lingam, Mohammad Sadegh Akhondzadeh, and Aleksandar Bojchevski. Rethinking
label poisoning for GNNs: Pitfalls and attacks. In The Twelfth International Conference on
Learning Representations, 2024.

[30] Chuang Liu, Yibing Zhan, Jia Wu, Chang Li, Bo Du, Wenbin Hu, Tongliang Liu, and Dacheng
Tao. Graph pooling for graph neural networks: progress, challenges, and opportunities. In
Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence,
IJCAI ’23, 2023.

[31] Zheng Ma, Junyu Xuan, Yu Guang Wang, Ming Li, and Pietro Liò. Path integral based
convolution and pooling for graph neural networks. Advances in Neural Information Processing
Systems, 33:16421–16433, 2020.

[32] Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. arXiv
preprint arXiv:2007.08663, 2020.

12



[33] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems
32, pages 8024–8035. Curran Associates, Inc., 2019.

[34] Hao Peng, Zehao Yu, Dandan Zhao, Zhiguo Ding, Jieshuai Yang, Bo Zhang, Jianming Han,
Xuhong Zhang, Shouling Ji, and Ming Zhong. Evading control flow graph based GNN malware
detectors via active opcode insertion method with maliciousness preserving. Scientific Reports,
15(1):9174, 2025.

[35] Aymen Qabel, Sofiane Ennadir, Giannis Nikolentzos, Johannes F Lutzeyer, Michail Chatzianas-
tasis, Henrik Boström, and Michalis Vazirgiannis. Structure-aware antibiotic resistance classifi-
cation using graph neural networks. In NeurIPS 2022 AI for Science: Progress and Promises,
2022.

[36] Leslie Rice, Anna Bair, Huan Zhang, and J Zico Kolter. Robustness between the worst and
average case. Advances in Neural Information Processing Systems, 34:27840–27851, 2021.

[37] Lichao Sun, Yingtong Dou, Carl Yang, Kai Zhang, Ji Wang, Philip S. Yu, Lifang He, and Bo Li.
Adversarial attack and defense on graph data: A survey. IEEE Transactions on Knowledge and
Data Engineering, 2022.
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Supplementary Material: Enhancing Graph
Classification Robustness with Singular Pooling

A Proof of Theorem 4.2

Theorem 4.2 Let f : (A,X ) → Y denote a graph-based function composed of L GCN layers, where
the weight matrix of the ℓ-th layer is denoted by W (ℓ). Under a feature-based adversarial attack with
perturbation budget ϵ, the robustness of f in the sense of Definition 4.1 satisfies the following:

• If f is based on Max pooling, then it is (ϵ, γ) robust with:

γ =
√
min{n, dL}

(∏L
ℓ=1∥W (ℓ)∥

)
maxu∈V ŵuϵ.

• If f is based on Sum pooling, then it is (ϵ, γ) robust with:

γ =
(∏L

ℓ=1∥W (ℓ)∥
)∑

u∈V ŵuϵ.

• If f is based on Average pooling, then it is (ϵ, γ) robust with:

γ = ϵ
n

(∏L
ℓ=1∥W (ℓ)∥

)∑
u∈V ŵu.

Here, ŵu denotes the sum of normalized walks of length L−1 originating from node u, and dL is the
output dimensionality of the final layer.

Proof. In this proof, we consider that f is a graph-function that is based on L layers of GCN. We
recall that the GCN message-passing propagation is formulated for a node u as

h(ℓ)
u = σ(ℓ)( Σ

v∈N (u)
⋃
{u}

W (ℓ)h
(ℓ−1)
v√

(1 + du)(1 + dv)
), (4)

where W (ℓ) ∈ Rdℓ−1×dℓ is the learnable weight matrix with dℓ being the embedding dimension of
layer ℓ and σ(ℓ) is the activation function of ℓ-th layer. We recall that h(0) = X ∈ Rn×d is set to the
initial node features.

Similar to [1], we denote X as the original node features and denote by X ′ the perturbed adversarial
features. We consider a node u ∈ V , we denote by hu its representation in the clean graph and h′

u

its representation in the attacked graph. We consider that the activation functions (σ(ℓ))1≤ℓ≤L are
nonexpansive (1-Lipschitz continuous). From the work, we have the following result

∥h(L)
u − h′(L)

u′ ∥ ≤
L∏

ℓ=1

∥W (ℓ)∥2
∥∥∥∥ Σ
v∈N (u)

⋃
{u}

Σ
j∈N (v)

⋃
{v}

. . .

Σ
z∈N (y)

⋃
{y}

Xu −X ′
u√

(1 + du)(1 + dw)(1 + dj) . . . (1 + dy)
√
(1 + dz)

∥∥∥∥∥
≤

L∏
ℓ=1

∥W (ℓ)∥ŵuϵ,

with ŵu being the sum of normalized walks of length (L− 1) starting from node u.

The previous results give us an idea about the behavior of each node’s representation when attacked.
In the case of graph classification, an additional pooling operation is added, Specifically:
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h
(L)
graph = Pool

(
{h(L)

u }u∈V

)
.

Hence this proof’s goal is to analyze the following quantity

∥h(L)
graph − h′(L)

graph∥.

Let’s consider the Sum pooling operation, that can be written as

h
(L)
graph =

∑
u∈V

h(L)
u .

We have the following

∥h(L)
graph − h′(L)

graph∥ =

∥∥∥∥∥∑
u∈V

(
h(L)
u − h′(L)

u

)∥∥∥∥∥
≤
∑
u∈V

∥h(L)
u − h′(L)

u ∥ (by triangle inequality)

≤
∑
u∈V

(
L∏

ℓ=1

∥W (ℓ)∥

)
∥ŵu∥ϵ

=

(
L∏

ℓ=1

∥W (ℓ)∥

)
ϵ
∑
u∈V

ŵu.

For the case of the Average pooling operation, that can be written as

h
(L)
graph =

1

|V |
∑
u∈V

h(L)
u .

We have the following analysis

∥h(L)
graph − h′(L)

graph∥ =

∥∥∥∥∥ 1

|V |
∑
u∈V

(
h(L)
u − h′(L)

u

)∥∥∥∥∥
≤ 1

|V |
∑
u∈V

∥h(L)
u − h′(L)

u ∥ (by triangle inequality)

≤ 1

|V |

(
L∏

ℓ=1

∥W (ℓ)∥

)
ϵ
∑
u∈V

ŵu.

In the case of Max pooling: Let’s denote ∆ = H(L) −H ′(L). Since the magnitude of a single entry
of a row can never exceed the Euclidean norm of the whole row, which can be formulated as for any
column j of our difference matrix that | ∆u,j |≤ ∥∆u,:∥ For Max poling, we have the following

∥h(L)
graph − h′(L)

graph∥2 ≤
√

dL max
u

∥∆u:∥2

≤ ϵ
√
dL

(
L∏

ℓ=1

∥W (ℓ)∥

)
max
u∈V

ŵu.

We additionally note that we have the following

∥h(L)
graph − h′(L)

graph∥2 =

dL∑
j=1

max
u

| ∆uj |2≤
∑
u,j

| ∆uj |2= ∥∆∥2F . (5)
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And we have that

∥∆∥F ≤ ϵ

(
L∏

ℓ=1

∥W (ℓ)∥

)(∑
u

(ŵ(L)
u )2

)1/2

.

From the two derived inequalities, we conclude that in the case of Max pooling we have

∥h(L)
graph − h′(L)

graph∥ ≤ ϵ
√
min{n, dL}

(
L∏

ℓ=1

∥W (ℓ)∥

)
max
u∈V

ŵu.

By taking into account the expectancy (as shown in Definition 1), we get the desired results.

B Proof of Theorem 4.3

Theorem 4.3 Let f : (A,X ) → Y be composed of L GIN-layers (with its internal parameter ζ = 0)
and let W (ℓ) denote the weight matrix of the ℓ-th MLP layer. We consider the input node feature
space to be bounded, i.e.∥X∥2 < B for some B ∈ R. Under a feature-based adversarial attack with
perturbation budget ϵ, the model f is (ϵ, γ)-robust with respect to Definition 4.1, with:

• If f is based on Max pooling: γ =
∏L

ℓ=1∥W (ℓ)∥ (BL (maxu∈V deg(u)) + ϵ) .

• If f is based on Sum pooling: γ =
∏L

ℓ=1∥W (ℓ)∥(2BL|E|+ nϵ) .

• If f is based on Average pooling: γ =
√
n, dL

(∏L
ℓ=1∥W (ℓ)∥

) ( 2BL|E|
n + ϵ

)
.

Here, |E| is the number of edges, n number of nodes and dL the dimensionality of the final layer L.

Proof. In this proof, we consider that f is graph-based function that is based on L GIN-layers (with
a parameter ζ = 0, usually denoted as ϵ, but changed to avoid confusion with our attack budget). The
GIN message-passing propagation process can be written for a node u as:

h(ℓ+1)
u = T (ℓ+1)((1 + ζ)h(ℓ)

u + Σ
v∈N (u)

h(ℓ)
v ),

with T denoting a Neural Networks (usually a MLP) and ζ denotes the parameter of the GIN. We
recall that h(0) = X ∈ Rn×d is set to the initial node features.

Similar to the previous proof, we base our analysis on previous work [1], we denote X as the
original node features and denote by X ′ the perturbed adversarial features. We consider a node
u ∈ V , we denote by hu its representation in the clean graph and h′

u its representation in the attacked
graph. We recall that in our problem setup, we consider that the activation functions (σ(ℓ))1≤ℓ≤L are
nonexpensive (1-Lipschitz continuous).

We use the same assumptions as the one considered in [1]. Specifically, we consider that the input
feature space H0 is bounded, thus each hidden space Hi of the iterative process of message passing
is bounded and let B = max

ℓ≤L
Bℓ be its global maximum bound. We additionally consider that

GIN-parameter ζ ≈ 0 (which is very frequent in the literature). For a node u ∈ V , we have the
following result:

∥h(ℓ+1)
u − h′(ℓ+1)

u′ ∥≤
L∏

ℓ=1

∥W (ℓ)∥(BL deg(u) + ϵ) .

From this perspective, let’s consider the case of graph classification. We omit the definition of the
different pooling as this was stated in the previous proof. We start by considering the Sum pooling
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operation:

∥h(L)
graph − h′(L)

graph∥ = ∥
∑
u∈V

(
h(L)
u − h′(L)

u

)
∥

≤
∑
u∈V

∥h(L)
u − h′(L)

u ∥ (by the triangle inequality)

≤
L∏

ℓ=1

∥W (ℓ)∥
∑
u∈V

(BL deg(u) + ϵ)

=

L∏
ℓ=1

∥W (ℓ)∥

(
BL

∑
u∈V

deg(u) + |V |ϵ

)
.

In the case of undirected graph, since
∑

u∈V deg(u) = 2|E|, based on the previous result, we can
write:

∥h(L)
graph − h′(L)

graph∥≤
L∏

ℓ=1

∥W (ℓ)∥(2BL|E|+ |V |ϵ) .

Similar for the case of Average pooling, we have:

∥h(L)
graph − h′(L)

graph∥ =
1

|V |
∥
∑
u∈V

(
h(L)
u − h′(L)

u

)
∥

≤ 1

|V |
∑
u∈V

∥h(L)
u − h′(L)

u ∥

≤
L∏

ℓ=1

∥W (ℓ)∥
(
2BL|E|
|V |

+ ϵ

)
.

In the case of Max pooling operation, following the derivated Inequality 5, we can directly get:

∥h(L)
graph − h′(L)

graph∥≤
√
n, dL

( L∏
ℓ=1

∥W (ℓ)∥
)(

BL

(
max
u∈V

deg(u)

)
+ ϵ

)
.

By taking into account the expectancy (as shown in Definition 1), we get the desired results.

C Proof of Theorem 5.1

Theorem 5.1 Let f : (G,X ) → Y denote a graph-based function composed of L GCN layers and
using our RS-Pool, where the weight matrix of the i-th layer is denoted by W (i). Under a feature-
based adversarial attack with perturbation budget ϵ, f is (ϵ, γ)-robust in the sense of Definition 4.1
with:

γ =
τ
√
2ϵ

σ1 − σ2

( L∏
ℓ=1

∥W (ℓ)∥
) n∑

u=1

(ŵu)
2,

with ŵu denoting the sum of normalized walks of length (L− 1) starting from node u, and σ1 ̸= σ2

being the two dominant singular values.

Proof. In this proof, we consider that f is a graph-function that is based on L layers of GCN. Similar
to previous proof, we denote by X ′ the perturbed node features, and h′

u
(ℓ) the corresponding node

embedding of u at layer ℓ. Following [1], for each node u we have:

∥h(L)
u − h′

u
(L)∥≤

( L∏
ℓ=1

∥W (ℓ)∥
)
ŵuϵ, (6)
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Thus, to relate ∥H(L) −H ′(L)∥ in operator norm

∥H(L) −H ′(L)∥2F=
n∑

u=1

∥h(L)
u − h′

u
(L)∥2≤

( L∏
ℓ=1

∥W (ℓ)∥
)2

ϵ2
n∑

u=1

(ŵu)
2.

Consequently, we have

∥H(L) −H ′(L)∥≤ ∥H(L) −H ′(L)∥F≤
( L∏
ℓ=1

∥W (ℓ)∥
)
ϵ

n∑
u=1

(ŵu)
2. (7)

We consider now our proposed pooling RS-Pool, which consists of considering the dominant right
singular vector of H(L). In this perspective, let:

S = span{v1(H(L)} and S′ = span{v1(H ′(L)} and accordingly: θ = Θ(S, S′) ∈
[
0, π

2

]
,

with θ being the principle angle between the two vectors. Note that we ensure to always take the
smaller of the two possible angles between the two dominant vectors (by controlling the signs).
Building on Wedin’s sin-Θ theorem [41], we can write:

sin θ ≤ ∥H −H ′∥
σ1(H)− σ2(H)

.

From another perspective, for our considered subspaces S and S′, when considering the principal
angle, we have the following:

cos θ = max
x∈S,y∈S′

∥x∥=∥y∥=1

⟨x, y⟩ = |⟨v1, v′1⟩|.

We may assume ⟨v1, v′1⟩ ≥ 0, since the sign of the dominant singular vector can be chosen by
definition. From a different perspective, we can express as follows:

∥v1 − v′1∥2 = ⟨v1 − v′1, v1 − v′1⟩ = 2− 2⟨v1, v′1⟩
= 2− 2 cos θ

= 4 sin2(θ/2).

We additionally have the following (note that θ ∈ [0, π
2 ]):

sin θ = 2 sin
θ

2
cos

θ

2
⇒ sin

θ

2
=

sin θ

2 cos θ
2

≤ sin θ

2 cos
√
2
2

=
sin θ√

2
.

From the two computed elements, we find that:

∥v1 − v′1∥2 ≤ 2 sin(θ/2)

≤ 2
sin θ√

2

≤
√
2 sin θ

≤
√
2

∥H −H ′∥
σ1(H)− σ2(H)

≤
√
2ϵ

σ1 − σ2

( L∏
ℓ=1

∥W (ℓ)∥
) n∑

u=1

(ŵu)
2.

By also incorporating the constant τ ∈ R>0, we obtain the final bound:

γ =
τ
√
2ϵ

σ1 − σ2

( L∏
ℓ=1

∥W (ℓ)∥
) n∑

u=1

(ŵu)
2.
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On the special case of singular value degeneracy. In the previous analysis, we consider that the
dominant singular value doesn’t have a multiplicity higher than 1. We consider that this is the most
dominant case in practice. Specifically, we note that RS-Pool is applied to the final node embedding
matrix produced by the message-passing scheme. At this stage, having a dominant singular value
with high multiplicity is highly unlikely, even in symmetric graphs, because the learned embeddings
do not depend just on the graph structure but also on initial node features and the GNN parameters,
which typically break such dominant symmetries. Moreover, GNNs are known for their inherent
smoothing tendencies, which lead to rank-reduction in the feature matrix and result in a non-trivial
spectral gap in practice.

Nonetheless, extending to the case where the dominant singular value is of multiplicity r shall result
in an additional scalar

√
(r) (rather than

√
(2)) in the derived upper-bound γ and the considered

spectral gap is σr − σr+1.

Corollary 5.2 Let f : (G,X ) → Y be the graph-based function considered in Theorem 5.1. Then f
is (ϵ, γ′)-robust with:

γ′ = min{γ, 2τ},

where γ is the bound derived in Theorem 5.1.

Proof. Let’s consider the model f : (G,X ) → Y that uses our proposed RS-Pool.

From Theorem 5.1, we have seen that f is (ϵ, γ)-robust with:

γ =
τ
√
2ϵ

σ1 − σ2

( L∏
ℓ=1

∥W (ℓ)∥
) n∑

u=1

(ŵu)
2.

Using the triangular inequality, we have the following:

∥hG − hG′∥ = ∥RS-Pool(H)− RS-Pool(H ′)∥
= ∥τv1(H)− τv1(H

′)∥
= τ∥v1(H)− v1(H

′)∥
≤ τ

[
∥v1(H)∥+ ∥v1(H ′)∥

]
≤ 2τ.

And therefore by combining the two provided bounds, we can write that f is (ϵ, γ′)-robust with:

γ′ = min{γ, 2τ}.

D Proof of Lemma 5.3

Lemma 5.3. RS-Pool is permutation invariant; that is, for any pair of isomorphic graphs G and GΠ

with its corresponding permutation matrix Π, we have f(A,X) = f(AΠ, XΠ).

Proof. Let X ∈ Rn×d be a matrix, let’s consider its SVD decomposition:

X = UΣV T .

Let’s X ′ be a permuted version of the adjacency matrix X , and let P ∈ Rn×n be the corresponding
permutation matrix. Since by definition PTP = PPT = In, we can write the following:

(PX)T (PX) = XTPTPX = XTX.
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From the previous equality, we observe that XTX and (PX)T (PX) are identical. Consequently,
they share the same largest eigenvalue and corresponding eigenspace. Thus, any unit-norm dominant
eigenvector of PX must lie in the one-dimensional subspace spanned by v1(X). By enforcing a
consistent sign convention during pooling (e.g., requiring the first non-zero entry to be positive), we
obtain:

RS-Pool(X ′) = RS-Pool(PX) = τv1(PX) = τv1(X) = RS-Pool(X).

As a result, we obtain permutation invariance in our pooling operation when X represents the output
of the message-passing stage.

E Additional Results

E.1 Convergence Analysis

As outlined in Section 5, our proposed RS-Pool method relies on estimating the dominant singular
vector of an input matrix using the iterative power method. This classical algorithm begins with
a randomly initialized vector and performs a series of matrix-vector multiplications, progressively
aligning the estimate with the dominant singular vector of the matrix. The number of iterations,
denoted by K, directly influences the quality of this approximation and, by extension, the effectiveness
of the pooling operation.

In this section, we empirically investigate how the choice of K impacts the accuracy of the estimated
singular vector. To this end, we compare the vector obtained after K iterations of the power method
to the dominant singular vector computed via the more precise full SVD implemented in the gesdd
routine of the LAPACK package. We use the ℓ2-norm to measure the distance between the estimated
and true singular vectors. This allows us to quantify the convergence behavior of the power method
and assess how quickly a sufficiently accurate approximation can be achieved.
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Figure 2: Effect of the number of iterations on the convergence of the iterative power method. The
convergence is computed through the ℓ2 distance between the estimated and true dominant singular
vectors (obtained via full SVD).

Figure 2 summarizes the convergence behavior of our method across multiple datasets. We observe
that in most cases, as few as 2 to 5 iterations are sufficient to obtain a reliable estimate of the dominant
singular vector. This rapid convergence ensures that RS-Pool achieves stable performance in terms of
both clean and adversarial accuracy, confirming its computational efficiency with a small number of
iterations K. Moreover, the results indicate that the spectral gap σ1(X)− σ2(X) is sufficiently large,
which, according to Theorem 5.1, guarantees robustness to perturbations within a budget ϵ.

E.2 Time Analysis

In this section, we analyze the computational cost of our proposed RS-Pool method, with a particular
focus on its time complexity. Building on the convergence analysis presented earlier, we examine how
the number of power iterations K affects training time, clean accuracy, and adversarial robustness.

Table 3 reports results on the PROTEINS dataset. We observe that increasing the number of iterations
yields only marginal improvements in clean accuracy. Similarly, the attack success rate decreases by
less than 2% when increasing K from 1 to 10. In contrast, training time grows significantly due to
the additional cost of repeated matrix-vector multiplications in the power iteration.

These results underscore the importance of selecting an appropriate number of iterations to balance
model performance and computational efficiency. Taken together with the convergence properties
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discussed earlier, those findings support that a small number of iterations (e.g., K = 2 to 5) is
sufficient to achieve strong robustness with minimal overhead.

Table 3: Training time and Performance in terms of both clean and attack success rate for different
number of iterations for the PROTEINS and NCI1 dataset for ϵ = 0.2.

DATASET K = 1 K = 2 K = 5 K = 10

PROTEINS
TRAINING TIME (IN S) 123.57 148.96 226.63 350.95
CLEAN ACCURACY 73.36 73.95 73.51 73.06
ATTACK SUCCESS RATE 21.04 21.25 20.50 19.89

We now focus on comparing the training time of the proposed RS-Pool against the benchmark pooling
methods that were considered both in our theoretical study and our experimental results in Section 6.

Table 4: Mean training time (seconds) of the proposed RS-Pool in comparison to other pooling
benchmarks on the different datasets.

Dataset Sum Avg Max SAG TopK-P Pan-P Sort-P RS-Pool
PROTEINS 56.95 56.50 60.78 81.27 71.32 68.98 71.59 148.96
D&D 1187.10 1176.93 1182.77 1206.33 1206.44 1210.92 1209.17 1293.93
NCI1 131.19 132.88 138.15 203.11 180.05 170.05 186.97 249.88
ENZYMES 20.42 20.57 21.54 30.76 27.54 26.34 28.28 46.30
IMDB-B 29.05 29.42 30.88 46.50 41.43 39.04 43.32 75.61
ER_MD 11.40 11.52 12.13 18.26 16.21 15.15 16.88 29.23
MSRC_9 6.62 6.71 7.06 9.93 8.96 8.39 9.31 18.43

E.3 Additional Results - GCN

Extending the analysis presented in Section 6, we continue our empirical evaluation of the upper
bound γ across the remaining pooling methods. Consistent with earlier findings, RS-Pool exhibits a
smaller distance between the pooled representations of clean and perturbed graphs compared to all
other methods. This reduced discrepancy correlates with a lower attack success rate, highlighting
RS-Pool’s improved adversarial robustness.

0.0 0.1 0.2 0.3 0.4 0.5

0

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Ad
ve

rs
ar

ia
l R

isk
 

 (L
og

 S
ca

le
) PROTEINS

0.0 0.1 0.2 0.3 0.4 0.5

0.00

0.05

0.10

0.15

0.20

0.25

At
ta

ck
 S

uc
ce

ss
 R

at
e

PROTEINS

0.0 0.1 0.2 0.3 0.4 0.5

0

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

101

DD

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.1

0.2

0.3

0.4

0.5

DD

Attack Budget 

RS-Pool Sum Avg Max SAG TopK-P Pan-P Sort-P

Figure 3: Extension of Figure 1: Empirical estimation of adversarial risk γ and corresponding attack
success rate on PROTEINS ((a), (b)) and D&D ((c), (d)).

E.4 Additional Results - GIN

We further want to evaluate our proposed RS-Pool when considering a different backbone architecture,
specifically Graph Isomorphism Networks (GIN). In this setup, we consider a model based on 2
GIN layers as the message-passing framework. Table 5 reports the mean and standard deviation
of both clean and adversarial accuracy under PGD attacks with a perturbation budget of ϵ = 0.3.
Notably, we observe that in the case of GIN, increasing the number of power iteration steps used to
approximate the dominant singular vector improves performance. As a result, we increase the number
of iterations from k = 2 (used with GCN) to k = 5. Overall, RS-Pool consistently outperforms
the baseline pooling methods, demonstrating similar robustness improvements to those observed
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with GCN. These results support our claim that RS-Pool is model-agnostic and can be effectively
integrated into different GNN architectures for graph classification.

Table 5: Clean and Attacked classification accuracy (± standard deviation) of the RS-Pool and other
pooling strategies applied on the GIN model when subject to the PGD adversarial attacks.

Sum Average Max SAG TopK-P PAN-P Sort-P RS-Pool

PROTEINS
Clean 75.6 ± 3.1 69.3 ± 1.5 75.8 ± 4.1 70.5 ± 1.9 73.5 ± 4.3 73.2 ± 2.6 73.2 ± 4.1 70.1 ± 1.6

Attacked 22.6 ± 1.7 26.2 ± 2.9 41.3 ± 1.9 32.1 ± 5.9 26.5 ± 5.9 21.1 ± 3.6 35.8 ± 3.2 43.1 ± 3.9

D&D
Clean 73.5 ± 2.9 72.9 ± 3.1 73.5 ± 3.4 71.8 ± 0.9 74.4 ± 4.1 72.1 ± 4.9 73.8 ± 1.9 70.9 ± 3.6

Attacked 12.9 ± 3.7 28.9 ± 5.6 5.6 ± 2.9 24.1 ± 4.9 23.9 ± 5.1 27.5 ± 3.6 32.9 ± 3.2 43.7 ± 5.1

ENZYMES
Clean 33.9 ± 4.9 27.8 ± 0.8 37.2 ± 4.3 27.8 ± 4.1 34.4 ± 0.8 30.0 ± 3.6 23.9 ± 2.8 27.8 ± 4.1

Attacked 1.1 ± 0.8 0.6 ± 0.8 2.8 ± 2.1 2.5 ± 1.2 2.8 ± 0.8 5.6 ± 1.2 5.6 ± 0.8 6.1 ± 2.1

IMDB-B
Clean 64.3 ± 2.1 61.7 ± 4.7 52.3 ± 4.5 63.7 ± 4.1 61.0 ± 5.7 60.3 ± 4.7 66.0 ± 3.8 63.3 ± 4.7

Attacked 43.7 ± 4.2 40.0 ± 5.1 42.0 ± 4.5 38.3 ± 4.3 34.3 ± 4.3 43.9 ± 2.1 35.0 ± 4.6 51.0 ± 3.8

ER_MD
Clean 68.2 ± 0.6 72.7 ± 2.8 71.2 ± 1.9 69.3 ± 4.6 67.8 ± 3.8 68.9 ± 2.8 61.8 ± 5.6 63.6 ± 2.4

Attacked 34.1 ± 3.2 35.6 ± 2.9 34.1 ± 1.4 36.7 ± 3.2 36.7 ± 3.2 35.6 ± 1.4 40.8 ± 2.3 60.1 ± 2.8

MSRC_9
Clean 93.9 ± 2.1 89.4 ± 2.1 93.2 ± 4.9 91.7 ± 1.1 93.2 ± 1.9 92.4 ± 1.1 91.7 ± 2.8 91.7 ± 4.6

Attacked 65.9 ± 7.4 72.7 ± 3.7 60.6 ± 2.1 67.5 ± 3.8 69.6 ± 5.2 54.6 ± 3.7 65.2 ± 7.7 83.3 ± 4.2

E.5 Additional Results - Adversarial Defenses

Since RS-Pool is model-agnostic, we investigate its effectiveness when combined with existing
adversarial defense strategies. We consider four representative defense categories. First, a post-
processing defense via adversarial training, where adversarial examples are generated and used to
retrain the model to improve robustness. We additionally consider Randomized smoothing, which
consists of generating a number of points within the input and then take the majority vote as a
classification. We afterwards consider a set of architecture-level defense using both R-GCN, which
modifies the message-passing mechanism to improve stability under perturbations, and SoftMedian,
which introduces a robust aggregation scheme that down-weights neighbors based on their distance
to the dimension-wise median, mitigating the impact of outliers or malicious inputs.

Table 6 provides the mean clean and attacked accuracy for the different considered pooling bench-
marks when subject to the PDG adversarial attack. We observe similar insights as in the case of the
GCN and GIN, where our proposed RS-Pool out-perform all the other poolings in terms of attacked
accuracy showcasing therefore its ability to work with different undelrying backbone GNNs.

E.6 Bit-Flip Attacks (BFAs)

Recently, Bit-Flip attacks have emerged as a new paradigm for attacking and consequently evaluating
the robustness of deep learning models at the hardware and memory level. Unlike conventional
adversarial attacks that perturb inputs or gradients, bit-flip attacks directly manipulate the binary
representation of a model’s parameters in memory. By flipping only a few critical bits, an adversary
can drastically alter the network’s behavior, causing severe accuracy degradation or targeted mis-
classification. While such attacks have been extensively studied in the context of convolutional and
feedforward architectures, their implications for Graph Neural Networks (GNNs) are only beginning
to be understood. Recent work [26, 25] have shown that even minimal bit-level corruption can disrupt
the delicate balance of the message-passing propagation mechanism.

In this perspective, and to further demonstrate the robustness and validity of our proposed RS-Pool,
we extend our evaluation to include this line of attack. Specifically, we adapt the Injectivity Bit-Flip
Attack (IBFA) by removing its quantization step, allowing it to operate directly on our floating-point
model. We employ the same dataset and follow an identical experimental setup, using the GIN
architecture and setting the attack parameter k = 5, consistent with the configuration used by the
original authors (on the OGB-molHIV molecular dataset). The results of this analysis, summarized
in Table 7, indicate that indeed RS-Pool consistently outperforms all other pooling baselines, further
validating its resilience to bit-level adversarial perturbations.
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Table 6: Clean and Attacked classification accuracy (± standard deviation) of the RS-Pool and other
pooling strategies applied on different graph adversarial methods when subject to the PGD adversarial
attacks.

Sum Average Max SAG TopK-P PAN-P Sort-P RS-Pool
PR

O
T

E
IN

S

Adv

Train.

Clean 72.4 ± 4.0 70.2 ± 2.3 73.2 ± 3.7 71.1 ± 3.7 73.7 ± 2.9 73.5 ± 2.2 73.8 ± 2.3 72.1 ± 3.1

Attacked 45.8 ± 5.1 31.3 ± 2.2 18.5 ± 3.7 49.1 ± 3.6 46.1 ± 4.8 32.7 ± 3.1 51.5 ± 3.5 54.8 ± 4.1

SoftMedian
Clean 72.6 ± 4.7 71.2 ± 1.4 73.2 ± 4.6 72.0 ± 0.9 73.2 ± 0.8 73.0 ± 5.9 73.7 ± 0.7 74.3 ± 1.3

Attacked 53.9 ± 4.9 42.8 ± 6.7 41.5 ± 5.1 36.3 ± 2.9 52.4 ± 1.2 41.7 ± 2.1 58.3 ± 1.8 63.2 ± 2.8

RGCN
Clean 72.6 ± 2.3 61.0 ± 1.6 57.6 ± 3.4 66.7 ± 2.2 70.2 ± 3.4 70.5 ± 1.9 70.8 ± 0.4 71.7 ± 1.1

Attacked 65.4 ± 0.8 58.6 ± 1.7 39.8 ± 4.2 59.2 ± 1.1 63.1 ± 3.4 61.3 ± 4.7 63.6 ± 2.3 67.3 ± 1.8

Randomized

Smoothing

Clean 75.4 ± 3.6 71.7 ± 3.3 72.6 ± 2.2 70.8 ± 2.3 74.1 ± 3.6 75.6 ± 3.1 74.4 ± 4.1 73.5 ± 3.4

Attacked 56.2 ± 1.5 49.7 ± 3.7 36.3 ± 3.6 57.2 ± 4.4 56.1 ± 3.2 53.6 ± 0.7 52.9 ± 4.3 59.3 ± 4.8

D
&

D

Adv

Train.

Clean 76.7 ± 3.4 68.9 ± 4.1 70.4 ± 4.3 69.3 ± 3.6 75.1 ± 4.3 74.9 ± 2.6 76.0 ± 2.5 74.7 ± 3.4

Attacked 7.3 ± 2.7 18.6 ± 6.3 6.7 ± 2.2 19.6 ± 5.1 8.7 ± 1.7 7.1 ± 2.6 7.3 ± 1.5 31.9 ± 4.9

SoftMedian
Clean 74.1 ± 3.4 68.9 ± 4.7 69.0 ± 5.1 68.4 ± 5.1 75.7 ± 5.8 77.3 ± 1.6 74.9 ± 2.9 72.9 ± 3.4

Attacked 14.9 ± 3.8 51.2 ± 4.3 8.5 ± 3.8 46.1 ± 5.6 10.9 ± 4.3 29.1 ± 6.4 10.4 ± 4.4 54.3 ± 3.8

RGCN
Clean 74.9 ± 1.3 63.8 ± 2.4 66.4 ± 5.1 70.6 ± 3.4 75.4 ± 2.1 76.8 ± 1.8 73.1 ± 2.4 71.2 ± 2.8

Attacked 37.8 ± 2.1 22.8 ± 3.6 13.4 ± 2.9 38.7 ± 4.8 44.5 ± 2.4 58.7 ± 3.4 53.7 ± 3.6 61.4 ± 3.2

Randomized

Smoothing

Clean 74.9 ± 4.3 72.1 ± 2.8 42.5 ± 2.7 69.3 ± 1.7 74.8 ± 1.5 76.4 ± 1.5 76.1 ± 1.9 72.1 ± 3.8

Attacked 39.9 ± 2.6 43.1 ± 3.5 22.8 ± 4.5 34.1 ± 4.1 45.1 ± 4.8 41.1 ± 3.5 42.2 ± 1.7 49.7 ± 4.6

E
R

_M
D

Adv

Train.

Clean 63.7 ± 2.3 63.3 ± 3.4 63.3 ± 4.6 62.2 ± 4.5 63.3 ± 4.1 68.1 ± 0.9 65.5 ± 4.8 63.3 ± 2.8

Attacked 42.6 ± 4.1 45.7 ± 2.9 44.2 ± 2.6 48.6 ± 1.4 42.3 ± 4.9 35.4 ± 4.2 34.9 ± 3.3 53.9 ± 2.6

SoftMedian
Clean 70.0 ± 1.9 62.9 ± 6.9 62.5 ± 4.5 62.5 ± 4.0 65.1 ± 4.8 66.7 ± 6.8 65.5 ± 6.1 62.5 ± 1.9

Attacked 36.3 ± 5.5 42.3 ± 5.0 49.1 ± 5.0 43.4 ± 4.5 42.3 ± 5.0 26.6 ± 3.4 34.5 ± 1.0 53.6 ± 3.4

RGCN
Clean 58.0 ± 5.5 60.1 ± 4.3 58.4 ± 4.7 62.9 ± 5.7 63.6 ± 4.6 68.5 ± 6.4 66.7 ± 3.7 59.9 ± 3.7

Attacked 39.2 ± 1.2 47.5 ± 2.1 44.5 ± 3.9 49.3 ± 5.1 28.0 ± 3.8 38.6 ± 1.4 46.8 ± 1.4 51.7 ± 0.9

Randomized

Smoothing

Clean 69.2 ± 1.0 61.4 ± 3.4 61.4 ± 4.4 61.0 ± 3.5 62.9 ± 4.2 67.8 ± 2.3 63.6 ± 5.4 61.7 ± 4.1

Attacked 40.4 ± 3.4 40.4 ± 6.4 46.4 ± 1.1 48.3 ± 3.4 40.1 ± 4.7 43.4 ± 5.1 43.8 ± 4.4 54.7 ± 4.4

Table 7: Attacked classification accuracy (± standard deviation) of the RS-Pool and other pooling
strategies on different graph classification dataset when subject to Bit-Flip Attacks.

Dataset Sum Average Max SAG TopK-P PAN-P Sort-P RS-Pool
NCI1 64.7 ± 1.9 62.2 ± 1.9 65.9 ± 1.3 65.2 ± 1.3 61.2 ± 1.7 59.2 ± 1.7 63.5 ± 1.7 66.0 ± 1.6
DD 59.8 ± 4.1 61.8 ± 2.7 63.6 ± 2.6 63.1 ± 1.4 58.4 ± 2.1 56.2 ± 1.5 56.8 ± 2.5 68.3 ± 1.0
ER_MD 55.2 ± 2.5 52.3 ± 1.8 51.1 ± 1.8 52.4 ± 2.0 52.9 ± 2.7 52.2 ± 1.1 51.9 ± 2.7 55.5 ± 2.5
PROTEINS 57.0 ± 5.8 64.2 ± 1.5 64.8 ± 2.7 63.7 ± 0.9 61.2 ± 5.0 60.0 ± 4.9 66.7 ± 4.7 69.6 ± 1.1

E.7 On the Tightness of Upper-Bounds

In this section, we assess the tightness of the theoretical upper bound γ established in Theorem 4.2. To
this end, we compare the theoretical bound with empirical estimates computed as the norm difference
between the pooled representations of clean and perturbed graphs for different values of ϵ. The
results are shown in Figure 4. Across all pooling methods, we observe a clear correlation between the
empirical measurements and the theoretical bound, providing empirical support for the validity of our
theoretical analysis.

F Experimental Details

F.1 Datasets

For our experiments, we use standard graph classification datasets from the TUDataset bench-
mark [32], selecting a diverse subset to represent different domains. Specifically, we include datasets
from bioinformatics and chemoinformatics (PROTEINS, ENZYMES, D&D), small molecule predic-
tion (NCI1, ER_MD), and image-based graphs (MSRC_9). Model evaluation follows the standardized
protocol of [14], using 10-fold cross-validation. When public folds are available, we use them directly;
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ENZYMES: Empirical/Theoretical Bounds

Figure 4: Analysis of the Upper-Bounds provided in Theorem 4.2 and their empirical counter-part for
different values of ϵ on the PROTEINS (Upper) and ENZYMES (Lower) Dataset.

otherwise, we generate new folds following the same procedure. Dataset statistics and characteristics
are summarized in Table 8.

Table 8: Statistics of the graph classification datasets used in our experiments.

DATASET #GRAPHS #NODES #EDGES #CLASSES

PROTEINS 1113 39.06 72.82 2
DD 1178 284.32 715.66 2
NCI1 4110 29.87 32.30 2
ENZYMES 600 32.63 62.14 6
IMDB-B 1000 19.77 96.53 2
REDDIT-B 2000 429.63 497.75 2
ER_MD 446 21.33 234.85 2
MSRC_9 221 40.58 97.94 8

F.2 Experimental Setup

In all of the experiments, we use a 2-Layers GCN model. Specifically, the model uses a 2-layer
convolutional architecture (consisting of two iterations of message passing and updating) stacked
with a Multi-Layer Perception (MLP) as a readout. The only change in the architecture was on the
pooling level since the intent was to compare the different benchmarks in an iso-architectural setting,
to ensure a fair evaluation of their robustness.

All models are trained using the Adam optimizer [23] with a learning rate of 1× 10−3 for 100 epochs.
We set the hidden feature dimension to 32 and we used ReLU as our activation function for all the
models. For all the experiments, we used the same initialization distribution and the same number
of training epochs to ensure fairness following insights from previous work[12]. Additionally, to
account for variability due to random initialization, each experiment is repeated 10 times, and we
report the mean and standard deviation of the results. The experiments have been run on a NVIDIA
A40 GPU and we estimate the total number of hours of computing to be around 200 hours.

For our proposed RS-Pool, we set the number of iterations in the estimation algorithm to K = 2 in
the case of GCN while we set it to K = 5 in the case of GIN. In addition, the temperature parameter τ
was tuned separately for each dataset to optimize the trade-off between clean accuracy and adversarial
robustness, as detailed in Section 6 (Figures 1 (e)).
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F.3 Implementation Details

Our implementation is provided in the supplementary materials and will be made publicly available
after the review period. The code is developed using PyTorch [33], with a dense implementation of
GNNs, which is required for executing the considered adversarial attacks. For all baseline pooling
methods, we adapt the official implementations from PyTorch Geometric (PyG) [15], released under
the MIT license.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims presented in the abstract and introduction are supported by the
theoretical results in Section 4 and further validated through empirical evidence in Section 6.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the main limitations of our method in Section 7.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
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limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All theoretical claims are supported by detailed proofs in Appendices A, B, C,
and D. Additionally, the problem setup and underlying assumptions are clearly defined in
Section 3 and are explicitly referenced in each theorem and proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In addition to presenting a detailed experimental setup in Appendix F, we
include the source code for reproducing our results in the supplementary materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All experiments were conducted using publicly available datasets. When
available, we used the available public train/val/test folds, and we provide all of those. To
ensure reproducibility, we provide the source code in the supplementary materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Appendix F provides details of the experimental setup, including details about
the train/val/test used folds and the values of all hyperparameters.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the mean and the standard deviation of all results in the respective
tables, based on repeated experiments using 10 different random seeds. Further details are
provided in Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide information about compute resources for our experiments in
Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work adheres to the NeurIPS Code of Ethics. We use public datasets and
publicly available models and report on the limitations of our work.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work has no further societal impacts apart from known impacts of graph-
based models. We are not aware of any applications of our approach that would result in
negative societal impacts.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper does not release any data or models that have a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets, models and repositories were cited appropriately.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets, only rely on public datasets and models.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Justification: Our work did not involve crowdsourcing nor research with human
subjects. All experiments are performed on publicly available datasets.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects,
all experiments are performed on publicly available datasets.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No LLM was used in this work for the core methods.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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