
On the Sparsity of Image Super-resolution Network

Chenyu Dong1,2, Hailong Ma1,2, Jinjin Gu3, Ruofan Zhang1,2, Jieming Li2 and Chun Yuan1,4,∗

1Tsinghua Shenzhen International Graduate School, Tsinghua University
2Huawei Technologies

3The University of Sydney
4Peng Cheng National Laboratory

Abstract

The over-parameterization of neural networks has been widely considered for a
long time. This allows us to find sub-networks that can improve the parameter
efficiency of neural networks from over-parameterized networks. In our study, we
used EDSR (25) as the backbone network to explore the parameter efficiency in
super-resolution(SR) networks in the form of sparsity. Specifically, we search for
sparse sub-networks at the two granularity of weight and kernel through various
methods and analyze the relationship between the structure and performance of the
sub-networks. In summary, our work: (1) On weight granularity, we observe the
“Lottery Ticket Hypothesis” (10) from a new perspective in the regression task of
SR; (2) On convolution kernel granularity, we apply several methods to explore
the influence of different sparse sub-networks on network performance and found
that based on certain rules, the performance of different sub-networks rarely de-
pends on their structures; (3) We propose a very convenient width-sparsity method
on convolution kernel granularity, which can improve the parameter utilization
efficiency of most SR networks.

1 Introduction

Super-resolution (SR) networks aim at predicting high-resolution (HR) images from low-resolution
(LR) observations. SR networks often contain a large number of parameters. Obtaining better
performance with fewer parameters is an important research topic. Network sparsification and
network pruning are considered to be promising methods. The success of the “Lottery ticket
hypothesis” (LTH) (10) seems to point in a surprising direction. LTH uses a simple iterative pruning
method to find a sparse sub-network with better performance than the densely connected network. In
this work, we try to obtain a more efficient SR network substructure by building a sparse SR network.
However, finding “lottery tickets” for SR networks is difficult. In other words, there is a positive
correlation between the parameters of the SR networks and the performance.

We first conduct our research at the weight level sparsity – we try to find a sparse subnetwork that
is comparable to the original network when trained in isolation. This is also called the “winning
lottery ticket” (10) for SR networks. Our experimental results show that a sparse connection will
lead to performance degradation when an SR network is well-trained. While the “winning ticket
phenomenon” only exists in the networks that are not well-trained, and can not generate comparable
performance to the original network. In other words, we can not find a sparse sub-network from
a dense-large SR network without experiencing a performance drop as Lottery Ticket Hypothesis
described.

∗Corresponding author.

I Can’t Believe It’s Not Better Workshop at NeurIPS 2022.

0.00.20.40.60.81.0
Sparsity Ratio

27.8

28.0

28.2

28.4

28.6

28.8

29.0

PS
NR

LTH

0.0001-1000K
0.0001-300K
0.0001-100K
0.00005-1000K
0.00005-300K
0.00005-100K
0.00002-1000K
0.00002-300K
0.00002-100K
0.001-1000K
0.001-300K
0.001-100K
Cosine-1000K
Cosine-300K
Cosine-300K

0.00.20.40.60.81.0
Sparsity Ratio

27.8

28.0

28.2

28.4

28.6

28.8

29.0

PS
NR

LMC-LTH

0.0001-1000K
0.0001-300K
0.0001-100K
0.00005-1000K
0.00005-300K
0.00005-100K
0.00002-1000K
0.00002-300K
0.00002-100K
0.001-1000K
0.001-300K
0.001-100K
Cosine-1000K
Cosine-300K
Cosine-300K

0.00.20.40.60.81.0
Sparsity Ratio

27.8

28.0

28.2

28.4

28.6

28.8

29.0

PS
NR

LTH-PWC

0.0001-1000K
0.00005-1000K
0.00002-1000K
0.001-1000K
Cosine-1000K

Figure 1: Experimental results of three weight-level methods on DIV2k_val dataset. The lines of
different colors represent the results of different learning rates(0.001, 0.0001, 0.00005, 0.00002,
CosineLR). In figure (a) and (b), the “solid lines”, “dash-dotted lines”, and “dashed lines” denotes
the experiment with the iteration number of 1,000K, 300K, and 100K, respectively.

0 1 2 3 4 5 6 7 8
Magnitude of Gradients 1e 6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Am
ou

nt
 o

f G
ra

di
en

ts

1e5
100% sparsity
40% sparsity
20% sparsity

(a)

Grouply Convolution

Randomly connected

(b)

Figure 2: (a) Histogram of gradient distribution under different sparsity at 1,000K iteration, all layers
in EDSR are collected. (b) Example of Group convolution and Randomly-Connected neural network
layers. The blue dots can be considered as channels in the convolution layer, Black lines can be
considered as convolution kernels in convolution layers.

Secondly, we use four methods to sparse the network at the convolution kernel granularity, which
can be abstracted as pruning off a part of the connections between channels. Our experiments show
that all these methods of obtaining sub-networks, whether they are reasonable or not, have obtained
similar performance under the same width and sparsity (the difference in PSNR does not exceed
0.03dB) unless transmission of information is blocked in some channels. Though we can’t find a
sparse sub-network comparable to the fully-connected network, we implement a very convenient
width-sparsity trade-off method that can optimize the parameter efficiency of SR networks. According
to our experimental results at the kernel level, we can conveniently define a large-sparse network
structure in the initialization phase. In this way, we can improve the network’s performance (PSNR
improved 0.04dB-0.08dB on Div2k_val) without changing the FLOPS or reducing parameters without
changing the network’s performance. Such a method only needs to decorate the convolution layer
without changing the network infrastructure or training strategy. Moreover, the network structure can
be defined at the initialisation stage, saving computational expenses in the pruning process.

In summary, our work: (1) Apply several methods to the EDSR network, and we could not find
a sparse sub-network that can perform comparably to the original network like the lottery ticket
hypothesis; (2) Draws an important observation that the performance of sparse SR networks with
the same width and sparsity are surprisingly similar at the kernel level unless the transmission of
information between channels is blocked; (3) We propose a very convenient method that can be
deployed on most existing super-resolution networks to improve parameter efficiency.

2 Weight Level Sparsity

In this part of the experiment, we use three methods based on the lottery hypothesis to obtain sub-
networks, and have a new understanding of the lottery ticket hypothesis from the perspective of the
regression task like super-resolution.

2

2.1 Obtain sub-network

Weight is the smallest unit in a neural network; therefore, sparsity at the weight level can minimize
the performance drop of networks. The LTH (10) is one of the most influential methods in recent
years. The LTH proposes that in classification tasks, we are able to find sparse sub-networks from a
randomly-initialized dense network that this sub-network can be trained from scratch in isolation
and reach test accuracy comparable to the original network. Specifically, in LTH, we first initialize a
classification network randomly with parameters θ0. And then, we train the network for T iterations
and arrive at θT . The third, we use a mask m ∈ {0, 1}|θ| to prune p% of the existing parameters
in θT . At last, we reset the remaining parameters to their initialized value θ0, apply m to θ0 and
convert parameters to m⊙ θ0. Then, the algorithm will repeat the above steps in the way of iterative
pruning for several rounds. Through this pruning method, a sparse sub-network comparable to the
fully-connected network can be found in the "winning ticket" classification task. Besides, LMC-LTH
(11) proposes to rewind parameters to a certain time after a small amount of training θt, instead of
the initialization stage θ0. Liu et al. (27) found that replacing then parameters rewind operation in
LTH with a fine-tune process for another T -epoch can obtain a better sub-network compared with
LTH. We chose these three representative methods to obtain sub-networks and specific experimental
settings will be described in detail in Appendix.

2.2 Results

Our experimental results are shown in Figure 1. Figures (a), (b), and (c) show the results of LTH,
LMC-LTH, and LTH-PWC respectively, where the solid lines represent the experimental results under
different learning rates with 1000K iteration. Although these results differ slightly in numerical value,
these curves have similar trends. We can see that in the three groups of experiments with 1,000K
iterations, except for the experiment where the learning rate is 1× 10−3, the network performance
decreases with the decrease of sparsity. The first experimental phenomenon we draw is that, different
from the classification task, even if we set the learning rate (2× 10−5) to a value much smaller than
the normal case (2×10−4), when the network is sufficiently trained, we can not find a “winning ticket”
in SR network (“winning ticket” usually appears in the classification task when the learning rate is
relatively small). On the contrary, when the learning rate is set too large (1× 10−3), a sub-network
with better performance than the original network appears. But we also noticed that there was a
significant performance gap between the network at 1 × 10−3 learning rate and the appropriate
learning rate when fully connected.

In figures (a) and (b), dash-dotted lines and dotted lines show the experimental results with the
iteration of 300K and 100k, respectively. The results of these two methods still have a similar
phenomenon. It can be noticed that when the number of iterations is 300K, the “winning ticket”
appears in the network with a learning rate of 2× 10−5. And when the number of iterations is further
reduced and set to 100k, there are “winning tickets” under all learning rates. We note that though the
reasons for winning tickets’ appearance are different from those before (1× 10−3 learning rate), the
same phenomenon is that the network has not reached its own capacity of expressiveness. Specifically,
there will be a gap of more than 0.2dB in PSNR.

We want to emphasize that super-resolution is essentially a complex regression task, therefore, there
will be no obvious overfitting phenomenon like the classification task in the training process. This
makes the model always in the convergence stage during the SR network training process. In other
words, the SR network will continue to improve the performance in the later stage of training even
with a small learning rate. While in the classification task with a low learning rate, the network may
converge to the local optimal solution. To verify our idea, we compare the gradient distribution of the
network with a small learning rate under different sparsity. It can be seen from the Figure 2a that the
sparser the network, the smaller the gradient.

In conclusion, we tend to think that the sparse network changes the solution space of the network by
constraining the weights and gradients, the change of gradient makes the network jump out of the
local optimal (usually appears under the small learning rate).

According to the experimental results above, we can draw two novel conclusions about Lottery Ticket
Hypothesis in the super-resolution task: (1) Different from classification tasks, in a sufficiently trained
SR network, even if the learning rate is set much smaller than the normal case, the sparsity of the
network will lead to performance degradation, and the higher the sparsity degree, the greater the

3

0.0 0.2 0.4 0.6 0.8

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Average
Path Length

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sparsity

Complete connected

1

3

4
5

6
78

2

1

3

4

2

5

6

7

8

Sparsity 15% Sparsity 35%Randomly-connected

Clustering Coefficient

Figure 3: 64-channel con-
volutional layers’ substruc-
tures generated by the WS-
flex graph generator. We
show the sparsity of differ-
ent substructures in the form
of a heat map and select
eight substructures for vi-
sual display and mark their
positions in the heat map.

0 5 10 15 20 25 30 35 40
Number of connections

0

25

50

75

100

125

150

175

200

Nu
m

be
r o

f n
eu

ro
ns

12.5% Sparsity
Randomly Connection
Relational Graph

30 40 50 60 70 80 90 100
Number of connections

0

20

40

60

80

100

120

Nu
m

be
r o

f n
eu

ro
ns

50% Sparsity
Randomly Connection
Relational Graph

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Clustering Coefficient

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Av
er

ag
e

Pa
th

 Le
ng

th

Different sub-structures

28.70

28.75

28.80

28.85

28.90

28.95

29.00

29.05

(a)

0 5 10 15 20 25 30 35 40
Number of connections

0

25

50

75

100

125

150

175

200

Nu
m

be
r o

f n
eu

ro
ns

12.5% Sparsity
Randomly Connection
Relational Graph

30 40 50 60 70 80 90 100
Number of connections

0

20

40

60

80

100

120

Nu
m

be
r o

f n
eu

ro
ns

50% Sparsity
Randomly Connection
Relational Graph

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Clustering Coefficient

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Av
er

ag
e

Pa
th

 L
en

gt
h

Different sub-structures

28.70

28.75

28.80

28.85

28.90

28.95

29.00

29.05

(b)

Figure 4: (a) Experimental results of 67 different substructures under six sparsity degrees (12.5%,
18%, 25%, 35%, 50%, 70%) on DIV2k_val dataset. We show the PSNR of each substructure after
training in the form of a heat map. The points on each dotted line have the same sparsity. (b)
Distribution of the number of neuronal connections in random connections and relational graph
connections. The x-axis represents the total number of connections of a node, The y-axis represents
the number of nodes with x connections.

performance degradation. (2) When the SR network does not reach its expression ability through
training, a fake "winning lottery" will appear in the process of network pruning.

3 Kernel level sparsity

In this section, we conducted experiments at the kernel level sparsity. Although we have obtained
similar experimental results at weight level (sparsity will lead to the decline of network performance),
we are also surprised to find that in an image super-resolution network, the performance of the
network almost only depends on the width and sparsity of the network rather than the structures.

3.1 Obtain sub-network

We describe the obtaining of sparse sub-networks under the following unified framework. Consider
an SR network f(ILR; Ω,Θ) parameterized by convolution weights for L layers Ω = {ω1, . . . , ωL}
and all the other parameters Θ with an input LR image ILR.

Then, a sub-network is represented as

f(ILR; {m1 ⊙ ω1 . . . ,mL ⊙ ωL},Θ), (1)

where m1, . . . ,mL represent L masks for every layers, ⊙ indicates the masking operation with
broadcasting. Suppose a weight ωl is a tensor of size Cin × Cout ×K ×K, where Cin and Cout

denote the number of input and output channels, and K is the kernel size. Then ml is a binary mask
of size Cin × Cout, where each element indicates whether the corresponding kernel is masked out.
In this way, the masks obtained through different methods indicate different sparse sub-networks.

The sparsity of the obtained sub-network can be approximated by
∑Cin

i

∑Cout
j mi,j

Cin×Cout
. For the global

4

1

2

3

4

1

2

3

4

1 2

3 4

(a)

1

2

3

4

1

2

3

4

1 2

3 4

(b)

1

2

3

4

1

2

3

4

1 2

3 4

(c)

Figure 5: Mapping of four channels’ convolution layer connection structure in the relational graph.
(a) can represent the relational graph, (b) can represent the group convolution, and (c) can represent
the random connection.

Sparsity Random Group ERSS-G ERSS-L Graph-1 Graph-2
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

12.5% 28.64 0.8102 28.70 0.8115 28.77 0.8140 28.75 0.8133 28.79 0.8144 28.78 0.8143
15% 28.71 0.8121 - - 28.80 0.8144 28.79 0.8142 28.81 0.8147 28.81 0.8147
25% 28.78 0.8141 28.82 0.8151 28.88 0.8164 28.86 0.8162 28.88 0.8166 28.89 0.8169
35% 28.86 0.8161 - - 28.94 0.8181 28.93 0.8180 28.91 0.8175 28.93 0.8180
50% 28.92 0.8178 28.93 0.8180 28.99 0.8196 28.97 0.8189 28.96 0.8188 28.97 0.8190
70% 28.96 0.8186 - - 29.01 0.8201 29.00 0.8196 29.00 0.8197 29.01 0.8200

Table 1: Quantitative results of different sparse sub-network obtained by different methods on the
DIV2k_val dataset. “Graph-1” denotes relational graphs with low Average Path Length and “Graph-2”
denotes relational graphs with high Average Path Length. “ERSS-L” denotes layer-wise pruning, and
ERSS-G denotes global pruning.

unified operations, we omit the subscript l without loss of generality. Next, we will introduce the
mask acquisition methods involved in this part.

Grouped and randomly-connected convolutions. These two are the most straightforward and
simple methods. We show examples for these two kinds of sub-networks in Figure 2b. For a grouped
convolution layer with G groups, we assume that the input has N channels. Then this operation is to
first divide N channels into G parts. Each group corresponds to N

G channels, which are independently
connected within each group. After each group convolution is calculated, the output is concatenated
as the output of this layer. For a grouped convolution layer with G groups, only 1

G of all elements in
the mask are set to 1, thus the sparsity is equal to 1

G .

If grouped convolution is the most regular way to obtain the mask, then randomly-connected convolu-
tion is the other extreme. Given a pre-defined sparsity q, then each element in the mask mi,j follows
a Bernoulli distribution P (mi,j = 1) = q. This is the simplest way to achieve a certain sparsity in a
convolution layer.

Network pruning. Generally, this kind of method starts with training a large, over-parameterized
network, and then proposes to remove redundant parameters without significantly compromising
accuracy. Mao et al. (30) have taken the sum of the absolute values of all weights in a 2-D convolution
kernel as a unit, and then prune part of kernels with the lowest-magnitude. In our study, we will use
this simplest way to do iterative pruning for 6 rounds (corresponding to six sparsity degrees). For this
method, we will apply global pruning (pruning the the lowest-magnitude kernels collectively across
all convolutional layers) and layer-wise pruning (pruning each layer separately at the same rate).

Networks guided by relational graphs. You et al. (41) have described a novel approach to
represent the complex and diverse possible sparse connections between layers in a neural network.
The relational graph depicts the information interaction between the input channels and the output
channels, and a graph G = (V, C) is used to represent this interaction, where V is the channel set
and C contains connection between channels. The graph measures of G can characterize important
properties for the corresponding architecture. You et al. (41) have presented that average path length
and clustering coefficient are two important measures. Through the WS-flex graph generator (39), we
can sample graphs with different average path lengths and clustering coefficients as much as possible.
Figure 3 shows the distribution of generated graphs and some network connection examples. It is
worth noting that the architectures obtained through random connection only account for a small
part of all possible architectures, and we mark them by the gray area in Figure 3. With the above
correspondence between the relational graphs and the network architectures, we can discover various
other possible architectures that cannot be simply obtained by the other methods.

5

3.2 Results

Table 1 show the experimental results of different methods. To our surprise, the substructure generated
by the relational graph can achieve a result comparable to the pruning method. And these two methods
perform better than group convolution and random connection, and the more sparse the network, the
greater the impact of its connection structure on the performance of the network.

In order to further study the relationship between the SR network’s structures and performance, we
selected six sparsity degrees (12.5%, 18%, 25%, 35%, 50%, 70%), and uniformly sampled from
Figure 3 according to these six sparsity degrees. Figure 4a shows our experimental results. In this
figure, the PSNR is indicated by the color depth. It can be found that even if our sampling under
the same sparsity covers a large range, the performance between the substructures generated by the
relational graph is almost equivalent. This shows to a certain extent that for an SR network, the
connection structure of the network at the kernel level has little impact on the model performance.

The difference between the performance of randomly (group) connection and relational graph
connection is that the substructure sampled from the graph is a "connected structure". Figure 5
shows three kinds of graph structure mapping. It can be seen that although the three structures have
the same number of connections between the four channels, only the mapping of structure (a) is a
connected graph. Such a structure ensures that each node in the network can directly or indirectly
complete information transmission (Receive or send) with any other node in the network. In other
words, the connected graph not only ensures smooth information transmission but also ensures global
information transmission. Figure 5 shows the node connection distribution of random connection
and relational graph connection under two sparsity degrees. It can be seen that the relationship graph
suppresses the number of nodes with fewer connections at low sparsity through the principle of
"connected graph". When the sparsity increases, this repression is weakened, and the performance
gap between the two connection methods is also reduced.

In summary, in this part of the study, we make a very interesting discovery: When the relational
graph structure of an SR network can be mapped to a "connected graph", its performance depends
almost entirely on its channel number and sparsity, and rarely on its structure. At the same time, such
a substructure has an expression capacity comparable to that of the pruning method.

4 Width-sparsity trade off

Zhu et al. (49) have proposed that on weight level, pruned models (large-sparse) can outperform
their smaller, but dense (small-dense) counterparts with identical FLOPS. This is a simple method to
improve the performance of most existing models in the classification task, but a pruning process
is still needed to obtain a superior sub-network. Moreover, although we all know that sparsity on
the weight level can better maintain network performance than on the kernel level, our experimental
results show that fine-grained sparsity on large SR networks will lead the model difficult to converge.
At the same time, the model is prone to collapse on networks with an attention mechanism (more
details in appendix). Based on these phenomena above and our experimental results on the kernel
level, we hope to obtain a large sparse network more conveniently on the kernel level.

According to our conclusion obtained on kernel-level: when the relational graph of the network
structure can be mapped to a connected graph, we can define an approximate optimal sub-network
in the initialization phase, which means we can save the computational cost of the pruning process.
Meanwhile, sparsity on the kernel level means that compared with the weight level, we can use a
coarser granularity to sparse the network, which is helpful for the convergence of the network

Combined with the experimental results on two levels, we propose the following methods to improve
the parameter utilization efficiency of the network: (1) Expand the channels of the existing SR
network (1.5-2.5 times the original); (2) Sparse the network according to the principle of “a connected
graph”; (3) Keep the training settings of the original model unchanged and conduct training.

We apply our method to EDSR (25), PAN (47), IMDN (16) and Lattice-net (29), Experimental results
are shown in Appendix. We are pleasantly surprised to find that our method can work on a small
network with only 270k parameters such as PAN. We divide the sparse network into performance and
efficient modes. The efficient mode can reduce flops by 20% - 40% while maintaining the original
performance of the network, performance mode can improve the PSNR on the Div2k_val set by
0.04dB-0.08dB while maintaining the FLOPS of the original network.

6

References

[1] Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image super-resolution: Dataset and
study. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,
pages 126–135, 2017. 9

[2] Namhyuk Ahn, Byungkon Kang, and Kyung-Ah Sohn. Fast, accurate, and lightweight super-resolution
with cascading residual network. In Proceedings of the European Conference on Computer Vision (ECCV),
pages 252–268, 2018. 9

[3] Yue Bai, Huan Wang, ZHIQIANG TAO, Kunpeng Li, and Yun Fu. Dual lottery ticket hypothesis. In
International Conference on Learning Representations, 2021. 9

[4] Haoyu Chen, Jinjin Gu, and Zhi Zhang. Attention in attention network for image super-resolution. arXiv
preprint arXiv:2104.09497, 2021. 9

[5] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing
Xu, Chao Xu, and Wen Gao. Pre-trained image processing transformer. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 12299–12310, 2021. 9

[6] Tao Dai, Jianrui Cai, Yongbing Zhang, Shu-Tao Xia, and Lei Zhang. Second-order attention network for
single image super-resolution. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 11065–11074, 2019. 9

[7] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image super-resolution using deep
convolutional networks. IEEE transactions on pattern analysis and machine intelligence, 38(2):295–307,
2015. 9

[8] Chao Dong, Chen Change Loy, and Xiaoou Tang. Accelerating the super-resolution convolutional neural
network. In European conference on computer vision, pages 391–407. Springer, 2016. 9

[9] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. The Journal
of Machine Learning Research, 20(1):1997–2017, 2019. 9

[10] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2019. 1, 3, 9, 11

[11] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode connectivity
and the lottery ticket hypothesis. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pages 3259–3269. PMLR, 13–18 Jul 2020. 3, 9

[12] Jinjin Gu, Hannan Lu, Wangmeng Zuo, and Chao Dong. Blind super-resolution with iterative kernel
correction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
1604–1613, 2019. 9

[13] Jinjin Gu, Yujun Shen, and Bolei Zhou. Image processing using multi-code gan prior. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3012–3021, 2020. 9

[14] Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns. In Proceedings
of the 30th International Conference on Neural Information Processing Systems, pages 1387–1395, 2016.
9

[15] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015. 9

[16] Zheng Hui, Xinbo Gao, Yunchu Yang, and Xiumei Wang. Lightweight image super-resolution with
information multi-distillation network. In Proceedings of the 27th ACM International Conference on
Multimedia, pages 2024–2032, 2019. 6

[17] Xinrui Jiang, Nannan Wang, Jingwei Xin, Xiaobo Xia, Xi Yang, and Xinbo Gao. Learning lightweight
super-resolution networks with weight pruning. Neural Networks, 144:21–32, 2021. 9

[18] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate image super-resolution using very deep
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1646–1654, 2016. 9

[19] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Deeply-recursive convolutional network for image
super-resolution. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
1637–1645, 2016. 9

[20] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 9

[21] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro Acosta,
Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-realistic single image super-
resolution using a generative adversarial network. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4681–4690, 2017. 9

[22] Yuchao Li, Shaohui Lin, Baochang Zhang, Jianzhuang Liu, David Doermann, Yongjian Wu, Feiyue Huang,
and Rongrong Ji. Exploiting kernel sparsity and entropy for interpretable cnn compression. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 2800–2809, 2019. 9

[23] Zheyuan Li, Yingqi Liu, Xiangyu Chen, Haoming Cai, Jinjin Gu, Yu Qiao, and Chao Dong. Blueprint sep-
arable residual network for efficient image super-resolution. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 833–843, 2022. 9

[24] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. Swinir: Image
restoration using swin transformer. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 1833–1844, 2021. 9

7

[25] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced deep residual
networks for single image super-resolution. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops, July 2017. 1, 6, 9, 10, 11

[26] Chen Lin, Zhao Zhong, Wu Wei, and Junjie Yan. Synaptic strength for convolutional neural network.
Advances in Neural Information Processing Systems, 31, 2018. 9

[27] Ning Liu, Geng Yuan, Zhengping Che, Xuan Shen, Xiaolong Ma, Qing Jin, Jian Ren, Jian Tang, Sijia Liu,
and Yanzhi Wang. Lottery ticket preserves weight correlation: Is it desirable or not? In Marina Meila and
Tong Zhang, editors, Proceedings of the 38th International Conference on Machine Learning, volume 139
of Proceedings of Machine Learning Research, pages 7011–7020. PMLR, 18–24 Jul 2021. 3, 9

[28] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016. 9

[29] Xiaotong Luo, Yuan Xie, Yulun Zhang, Yanyun Qu, Cuihua Li, and Yun Fu. Latticenet: Towards
lightweight image super-resolution with lattice block. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXII 16, pages 272–289. Springer, 2020.
6

[30] Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang, and William J Dally. Exploring
the granularity of sparsity in convolutional neural networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pages 13–20, 2017. 5

[31] Yiqun Mei, Yuchen Fan, Yuqian Zhou, Lichao Huang, Thomas S Huang, and Honghui Shi. Image super-
resolution with cross-scale non-local attention and exhaustive self-exemplars mining. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5690–5699, 2020. 9

[32] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32:8026–8037, 2019. 9

[33] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken, Rob Bishop, Daniel
Rueckert, and Zehan Wang. Real-time single image and video super-resolution using an efficient sub-pixel
convolutional neural network. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1874–1883, 2016. 9

[34] Dehua Song, Chang Xu, Xu Jia, Yiyi Chen, Chunjing Xu, and Yunhe Wang. Efficient residual dense
block search for image super-resolution. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 12007–12014, 2020. 9

[35] Ying Tai, Jian Yang, and Xiaoming Liu. Image super-resolution via deep recursive residual network. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 3147–3155, 2017.
9

[36] Longguang Wang, Xiaoyu Dong, Yingqian Wang, Xinyi Ying, Zaiping Lin, Wei An, and Yulan Guo.
Exploring sparsity in image super-resolution for efficient inference. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 4917–4926, 2021. 9

[37] Xintao Wang, Ke Yu, Kelvin C.K. Chan, Chao Dong, and Chen Change Loy. BasicSR: Open source image
and video restoration toolbox. https://github.com/xinntao/BasicSR, 2020. 9

[38] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao, and Chen Change Loy.
Esrgan: Enhanced super-resolution generative adversarial networks. In European Conference on Computer
Vision, pages 63–79. Springer, 2018. 9

[39] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks. nature,
393(6684):440–442, 1998. 5

[40] Deyun Wei and Zhaowu Wang. Multi-scale channel network based on filer pruning for image super-
resolution. Optik, 236:166641, 2021. 9

[41] Jiaxuan You, Jure Leskovec, Kaiming He, and Saining Xie. Graph structure of neural networks. In
Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pages 10881–10891. PMLR, 13–18
Jul 2020. 5, 9

[42] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. Image super-resolution using
very deep residual channel attention networks. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 286–301, 2018. 9

[43] Yulun Zhang, Kunpeng Li, Kai Li, Bineng Zhong, and Yun Fu. Residual non-local attention networks for
image restoration. arXiv preprint arXiv:1903.10082, 2019. 9

[44] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu. Residual dense network for image
super-resolution. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
2472–2481, 2018. 9

[45] Yulun Zhang, Huan Wang, Can Qin, and Yun Fu. Aligned structured sparsity learning for efficient image
super-resolution. Advances in Neural Information Processing Systems, 34:2695–2706, 2021. 9

[46] Yulun Zhang, Huan Wang, Can Qin, and Yun Fu. Learning efficient image super-resolution networks via
structure-regularized pruning. In International Conference on Learning Representations, 2021. 9

[47] Hengyuan Zhao, Xiangtao Kong, Jingwen He, Yu Qiao, and Chao Dong. Efficient image super-resolution
using pixel attention. In European Conference on Computer Vision Workshop (ECCVW). Springer, 2020.
6, 9, 10

[48] Shaochen Zhong, Guanqun Zhang, Ningjia Huang, and Shuai Xu. Revisit kernel pruning with lottery
regulated grouped convolutions. In International Conference on Learning Representations, 2022. 9

8

https://github.com/xinntao/BasicSR

[49] Michael H Zhu and Suyog Gupta. To prune, or not to prune: Exploring the efficacy of pruning for model
compression. 2018. 6

A Appendix

A.1 Related Work

A.1.1 Image Super-Resolution

Since Dong (7) introduce the first SR network, plenty of deep learning based methods have been
proposed for SR, deeper (8; 18) and wider networks (25), different network strategies (19; 35; 12; 13),
residual or dense connections (21; 44; 38), attention mechanism (42; 6; 47; 4), non-local operations
(43; 31), transformers (24; 5). In order to make the SR network more efficient and meet the needs of
algorithm miniaturization, designing a lightweight SR model is also the focus of both the research
community and industry. Early works directly achieved the effect of adjusting the computational
complexity by adjusting the scale (depth and width) of the network (8). Other works include
introducing less complex operations to improve the efficiency of the network (33; 2; 47), adding
complex operations selectively at important locations (4), employing network architecture search (9)
technology to find efficient architectures (34). Zhang et al. (45; 46) lighter the specific network by
pruning on filter-level. More related to this work, CARN, (2) BSRN (23) introduces group convolution
into SR networks to reduce the computational cost. Wang (36) adopts dynamic unstructured pruning
to find efficient sparse sub-networks of specific networks. To the best of our knowledge, no other
work analyses the utilization efficiency of parameters from the perspective of sparse structure and
found a promotion method that can be generalized on most networks.

A.1.2 Sparse Sub-network

Obtaining sparse sub-networks for efficient inference follows a long line of works. Network compres-
sion/sparseness can be generally categorized into unstructured and structured methods. Unstructured
methods (15; 14) directly pop unimportant weights, but the obtained sparse network can only show
computational efficiency when using specialized libraries or hardware. On the contrary, the structured
methods trims the entire channel or filter of little importance, so the actual acceleration can be easily
achieved without the need for a special accelerator. Kernel-level pruning is a pruning method between
structured pruning and unstructured pruning. This kind of pruning method prunes the convolution
kernel of 2D dimension as a unit and has attracted more attention in recent years (26; 22; 48).

For unstructured weight pruning, since the lottery ticket hypothesis (10) was proposed, a lot of
follow-up work (11; 41; 3) for classification networks has been devoted to finding a sub-network that
performs as well as the fully-connected network. We naturally raise a question: can SR networks
play lottery tickets? In other words, can we find a sparse sub-network from a dense large SR network
without experiencing any performance drop? In addition, in order to obtain more sparse sub-network
on different levels, we also conducted sparse experiments on the kernel-level. We note that there
are works that try to apply network pruning or network compression technologies to SR networks.
However, these methods usually require modification of the network (40; 17) and lose generality.

A.2 Implementations of the main body

A.2.1 Weight Level

We use EDSR(25) as the backbone large network. EDSR only contains residual blocks, no special
modules or layers are used, which makes our conclusions without loss of generality. For training,
we train all the networks using DIV2K training dataset (1). Our training program is implemented
using the PyTorch framework (32) and is based on the wonderful BasicSR (37) toolbox. We use the
Adam (20) optimization method with β1 = 0.9, β2 = 0.999. For learning rate, We select four fixed
learning rates (1 × 10−3,1 × 10−4,5 × 10−5,2 × 10−5) from a large range and an initial learning
rate 2× 10−4 with cosine decay function and warm restarts strategy (28). For pruning, we follow
LTH’s settings for deep neural networks, so we do not prune the first and last layers of the model
and conduct a global pruning in all three methods. For LTH-PWC (27), we choose to fine-tune for
another 1,000K iterations after 1,000K iterations’ training. More detailed experimental settings are
shown in Table 2.

9

Method p t T

LTH 20% 0 1,000K / 300K / 100K
LMC-LTH 20% 60 / 18 / 6 1,000K / 300K / 100K
LTH-PWC 20% 1,000K 1,000K

Table 2: Experimental settings of three methods. p denotes the ratio of parameters to be pruned to the
parameters that remains per pruning round. t denotes the iteration number of parameters loaded after
pruning. T denotes the total training iterations.

A.2.2 Kernel level

In this part, we also use EDSR (25) as the backbone large network. For grouped convolution, we
use the official built-in implementation of PyTorch. For relational graph based convolutions, we
follow the official implementation and integrate it into the SR networks. The randomly-connected
convolutions are implemented with similar way as it can be viewed as a special case of relational
graph based convolutions. For EDSR, we use the same settings as weight-level, iterations are set to
1000K. The only difference is that we only use the Cosine learning rate in weight-level part. For
pruning part, we do not prune the first layer and the last layer of the network and we will apply 500K
iterations for fine-tune with the same training strategy.

A.3 Width-sparsity on weight level

Figure 6a and Figure 6b show the results of finding trade-off on EDSR and pan with extended
channels through “Lottery ticket hypothesis" (LTH). Because we want to find a convenient way to
improve the performance of the model, we have not changed any training strategy during the pruning
process. Specifically, all the experiments in the figure are conducted at the iteration number of 1000K,
an initial learning rate 2× 10−4 with cosine decay function and warm restarts strategy. We use the
Adam optimization method with β1 = 0.9, β2 = 0.999.

First, in Figure 6a, the performance of the network decreases with the increase of sparsity. At the
same time, under the low sparsity, when the number of training iterations is 1,000K, the performance
is not as good as the result of our sparsity on the kernel granularity.

In Figure 6b, the same phenomenon as EDSR appears. At the same time, when the network sparsity
of PAN (47) is low, it is difficult for us to train the model to the end. The problem of model collapse
will occur between 300K and 500K iterations. Therefore, in these sub-networks, we selected the
PSNR maximum value that appeared in the training process. As the degree of sparsity increases, we
can complete the training process. But the model effect is still not as good as the sparse model at the
kernel level under the same number of channels and sparsity.

0.0 0.2 0.4 0.6 0.8
Sparsity Ratio

28.70

28.75

28.80

28.85

28.90

28.95

29.00

29.05

29.10

PS
NR

EDSR sparsity

weight level
EDSR-P on kernel level

(a)

0.0 0.2 0.4 0.6 0.8
Sparsity Ratio

28.75

28.80

28.85

28.90

28.95

29.00

29.05

29.10

PS
NR

PAN sparsity

weight level
PAN-P on kernel level

(b)

Figure 6: (a) Experimental results of 128-channel EDSR. The x-axis represents the degree of network
sparsity. The y-axis represents the PSNR tested on Div2k_val on data set. (b) Experimental results of
100-channel PAN. The x-axis represents the degree of network sparsity. The y-axis represents the
PSNR tested on Div2k_val on data set.

10

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Sparsity Ratio

28.30

28.35

28.40

28.45

28.50

28.55

28.60

PS
NR

CONV-2 Sparsity

0.0001
0.00002
0.00005
0.001

(a)

0.0 0.1 0.2 0.3 0.4
Sparsity Ratio

28.40

28.45

28.50

28.55

28.60

28.65

28.70

PS
NR

CONV-4 Sparsity

0.0001
0.00002
0.00005
0.001

(b)

Figure 7: (a) Experimental results of Conv-2 toy model. The x-axis represents the degree of network
sparsity. The y-axis represents the PSNR tested on Div2k_val on data set. (b) Experimental results of
Conv-4 toy model. The x-axis represents the degree of network sparsity. The y-axis represents the
PSNR tested on Div2k_val on data set.

In the experiments of LTH (10) , the higher the degree of network sparsity, the higher the number of
iterations required to train the network. Therefore, thinning out on too fine-grained granularity will
slow the convergence speed of the model. Because of this, sparsity at the kernel level will be more
advantageous under the same number of iterations.

A.4 Toy models

We use 64 channel two-layer convolution and four-layer convolution to replace the 15 residual blocks
in EDSR (25) . We selected four fixed learning rates (0.001, 0.0001, 0.00005, 0.00002), In order to
sufficiently train the network, we still set the number of training iterations to 1000K. Meanwhile,
we followed the experimental setup in LTH, so we set the p of each pruning to 10% and apply a
layer-wise pruning (prune each layer separately at the same rate). Although we have not thinned out
the two toy models to less than 10% sparsity, we can still observe the experimental phenomenon
from Figure 7a and Figure 7b. That is, different from LTH in classification task, we could not find a
sparse network that can achieve the expression ability of its fully connected network (In the LTH
experiment, compared with deep neural networks, the “winning ticket" of a toy model is easier to
find).

A.5 Quantitative results

Figure 8 and Table 3 shows the experimental results of our width-sparsity trade-off method. We are
pleasantly surprised to find that our method can work not only on the midsize model Lattice with a
parameters of 777k, but also on small network with only 270k parameters such as PAN. We divide
the sparse network into performance and efficient modes (denoted "P" and "E" in Table 3). Efficient
mode can reduce flops by 20% - 40% while maintaining the original performance of the network,
performance mode can improve the PSNR on the Div2k_val set by 0.04dB-0.8dB while maintaining
the FLOPS of the original network.

A.6 Qualitative results

Figure 9 shows the visualization effect of our proposed method. It can be seen that the proposed
method improves the processing of dense texture in the network.

11

200 400 600 800 1000 1200 1400 1600
Parameter (k)

28.85

28.90

28.95

29.00

29.05
PS

N
R

 (d
B

)

PAN
-30.88%

+0.04dB

EDSR-19.67%

+0.06dB

IMDN-38.46%

+0.06dB

LatticeNet
-23.29%

+0.08dB

Figure 8: Improvement of PAN, IMDN, LatticeNet, and EDSR models through width-sparsity trade-
off on kernel granularity. This is an extremely convenient method that can be deployed on most
existing SR models. Parameter (x-axis) represents the number of parameters actually used by the
network.

Model Mode channel sparsity Params(K) BSD100 Urban100 DIV2K_val
psnr ssim psnr ssim psnr ssim

EDSR
O 64 100% 1500 26.24 0.7118 24.60 0.7654 29.03 0.8205
E 128 20% 1205 26.24 0.7123 24.59 0.7654 29.04 0.8206
P 150 17% 1503 26.28 0.7133 24.70 0.7693 29.08 0.8217

PAN
O 40 100% 272 26.18 0.7108 24.44 0.7616 28.92 0.8173
E 80 17% 188 26.17 0.7105 24.44 0.7614 28.91 0.8174
P 80 25% 274 26.21 0.7108 24.51 0.7623 28.96 0.8182

IMDN
O 64 100% 1500 26.24 0.7118 24.60 0.7654 29.00 0.8195
E 128 20% 1205 26.24 0.7123 24.58 0.7653 29.02 0.8202
P 150 17% 1420 26.28 0.7133 24 70 0.7693 29.06 0.8213

LatticeNet
O 64 100% 777 26.17 0.7097 24.43 0.7594 28.88 0.8156
E 128 17% 596 26.19 0.7101 24.45 0.7595 28.92 0.8172
P 128 25% 780 26.22 0.7112 24.53 0.7628 28.96 0.8183

Table 3: Quantitative results of baseline convolutional networks and other sparse versions for scaling
factor ×4, "O" denotes the original network, "E" denotes the Efficiency-version, "P" denotes the
Performance-version, and all experimental results of each model are from the same training settings.

12

Urban100 image072 HR

Bicubic

EDSR IMDN LatticeNet

EDSR-P IMDN-P LatticeNet-P

HR

Bicubic

EDSR IMDN LatticeNet

EDSR-P IMDN-P LatticeNet-P

Urban100 image073

Figure 9: Qualitative results of our method on Urban100 data set. We use "- P" as the suffix to
indicate the networks’ performance mode.

13

	Introduction
	Weight Level Sparsity
	Obtain sub-network
	Results

	Kernel level sparsity
	Obtain sub-network
	Results

	Width-sparsity trade off
	Appendix
	Related Work
	Image Super-Resolution
	Sparse Sub-network

	Implementations of the main body
	Weight Level
	Kernel level

	Width-sparsity on weight level
	Toy models
	Quantitative results
	Qualitative results

