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ABSTRACT

Zeroth-order (ZO) optimization, in which the derivative is unavailable, has recently
succeeded in many important machine learning applications. Existing algorithms
rely on finite difference (FD) methods for derivative estimation and gradient de-
scent (GD)-based approaches for optimization. However, these algorithms suffer
from query inefficiency because many additional function queries are required
for derivative estimation in their every GD update, which typically hinders their
deployment in real-world applications where every function query is expensive.
To this end, we propose a trajectory-informed derivative estimation method which
only employs the optimization trajectory (i.e., the history of function queries during
optimization) and hence can eliminate the need for additional function queries to
estimate a derivative. Moreover, based on our derivative estimation, we propose the
technique of dynamic virtual updates, which allows us to reliably perform multiple
steps of GD updates without reapplying derivative estimation. Based on these two
contributions, we introduce the zeroth-order optimization with trajectory-informed
derivative estimation (ZORD) algorithm for query-efficient ZO optimization. We
theoretically demonstrate that our trajectory-informed derivative estimation and our
ZORD algorithm improve over existing approaches, which is then supported by
our real-world experiments such as black-box adversarial attack, non-differentiable
metric optimization, and derivative-free reinforcement learning.

1 INTRODUCTION

Zeroth-order (ZO) optimization, in which the objective function to be optimized is only accessible by
querying, has received great attention in recent years due to its success in many applications, e.g.,
black-box adversarial attack (Ru et al., 2020), non-differentiable metric optimization (Hiranandani
et al., 2021), and derivative-free reinforcement learning (Salimans et al., 2017). In these problems, the
derivative of objective function is either prohibitively costly to obtain or even non-existent, making
it infeasible to directly apply standard derivative-based algorithms such as gradient descent (GD).
In this regard, existing works have proposed to estimate the derivative using the finite difference
(FD) methods and then apply GD-based algorithms using the estimated derivative for ZO optimiza-
tion (Nesterov and Spokoiny, 2017; Cheng et al., 2021). These algorithms, which we refer to as
GD with estimated derivatives, have been the most widely applied approach to ZO optimization
especially for problems with high-dimensional input spaces, because of their theoretically guaran-
teed convergence and competitive practical performance. Unfortunately, these algorithms suffer
from query inefficiency, which hinders their real-world deployment especially in applications with
expensive-to-query objective functions, e.g., black-box adversarial attack.

* Equal contribution.
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Specifically, one of the reasons for the query inefficiency of existing algorithms on GD with estimated
derivatives is that in addition to the necessary queries (i.e., the query of every updated input)1, the
FD methods applied in these algorithms require a large number of additional queries to accurately
estimate the derivative at an input (Berahas et al., 2022). This naturally begs the question: Can we
estimate a derivative without any additional query? A natural approach to achieve this is to leverage
the optimization trajectory, which is inherently available as a result of the necessary queries and their
observations, to predict the derivatives. However, this requires a non-trivial method to simultaneously
(a) predict a derivative using only the optimization trajectory (i.e., the history of updated inputs
and their observations), and (b) quantify the uncertainty of this prediction to avoid using inaccurate
predicted derivatives. Interestingly, the Gaussian process (GP) model satisfies both requirements and
is hence a natural choice for such a derivative estimation. Specifically, under the commonly used
assumption that the objective function is sampled from a GP (Srinivas et al., 2010), the derivative at
any input in the domain follows a Gaussian distribution which, surprisingly, can be calculated using
only the optimization trajectory. This allows us to (a) employ the mean of this Gaussian distribution
as the estimated derivative, and (b) use the covariance matrix of this Gaussian distribution to obtain a
principled measure of the predictive uncertainty and the accuracy of this derivative estimation, which
together constitute our trajectory-informed derivative estimation (Sec. 3.1).

Another reason for the query inefficiency of the existing algorithms on GD with estimated deriva-
tives is that every update in these algorithms requires reapplying derivative estimation and hence
necessitates additional queries. This can preclude their adoption of a large number of GD updates
since every update requires potentially expensive additional queries. Therefore, another question
arises: Can we perform multiple GD updates without reapplying derivative estimation and hence
without any additional query? To address this question, we propose a technique named dynamic
virtual updates (Sec. 3.2). Specifically, thanks to the ability of our method to estimate the derivative
at any input in the domain while only using existing optimization trajectory, we can apply multi-step
GD updates without the need to reapply derivative estimation and hence without requiring any new
query. Moreover, we can dynamically determine the number of steps for these updates by inspecting
the aforementioned predictive uncertainty at every step, such that we only perform an update if the
uncertainty is small enough (which also indicates that the estimation error is small, see Sec. 4.1).

By incorporating our aforementioned trajectory-informed derivative estimation and dynamic virtual
updates into GD-based algorithms, we then introduce the zeroth-order optimization with trajectory-
informed derivative estimation (ZORD) algorithm for query-efficient ZO optimization. We theo-
retically bound the estimation error of our trajectory-informed derivative estimation and show that
this estimation error is non-increasing in the entire domain as the number of queries is increased
and can even be exponentially decreasing in some scenarios (Sec. 4.1). Based on this, we prove the
convergence of our ZORD algorithm, which improves over the existing ZO optimization algorithms
that rely on the FD methods for derivative estimation (Sec. 4.2). Lastly, we use extensive experiments,
such as black-box adversarial attack, non-differentiable metric optimization, and derivative-free rein-
forcement learning, to demonstrate that (a) our trajectory-informed derivative estimation improves
over the existing FD methods and that (b) our ZORD algorithm consistently achieves improved query
efficiency compared with previous ZO optimization algorithms (Sec. 5).

2 PRELIMINARIES

2.1 PROBLEM SETUP

Throughout this paper, we use∇ and ∂x to denote, respectively, the total derivative (i.e., gradient)
and partial derivative w.r.t the variable x. We consider the minimization of a black-box objective
function f : X → R, in which X ⊂ Rd is a convex subset of the d-dimensional domain:

min
x∈X

f(x) . (1)

Since we consider ZO optimization, the derivative information is not accessible and instead, we are
only allowed to query the inputs in X . For every queried input x ∈ X , we observe a corresponding
noisy output of y(x) = f(x) + ζ, in which ζ is a zero-mean Gaussian noise with a variance of σ2:

1In practice, it is usually necessary to query every updated input to measure the optimization performance
and select the best-performing input. We refer to these queries as necessary queries.
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Algorithm 1: Standard (Projected) GD
with Estimated Derivatives

1: Input: Objective function f : X → R,
initialization x0, iteration number T ,
learning rates {ηt}Tt=1, projection
function PX (x)

2: for iteration t = 1, . . . , T do
3: g(xt−1) ≈ ∇f(xt−1) with (2)
4: xt ← PX (xt−1 − ηt−1g(xt−1))
5: Query xt to yield y(xt)
6: end for
7: Return argminx1:T

y(x)

Algorithm 2: ZORD (Ours)
1: Input: In addition to the parameters in Algo. 1, set

the steps of virtual updates {Vt}Tt=1
2: for iteration t = 1, . . . , T do
3: xt,0 ← xt−1

4: for iteration τ = 1, . . . , Vt do
5: xt,τ ← PX (xt,τ−1 − ηt,τ−1∇µt−1(xt,τ−1))
6: end for
7: Query xt = xt,τ to yield y(xt)
8: Update (4) using optimization trajectory
9: end for

10: Return argminx1:T
y(x)

ζ ∼ N (0, σ2). Besides, we adopt a common assumption on f which has already been widely used in
the literature of Bayesian optimization (BO) (Srinivas et al., 2010; Kandasamy et al., 2018): we assume
that f is sampled from a Gaussian process (GP). A GP GP(µ(·), k(·, ·)), which is characterized by a
mean function µ(·) and a covariance function k(·, ·), is a stochastic process in which any finite subset
of random variables follows a multi-variate Gaussian distribution (Rasmussen and Williams, 2006).
In addition, following the common practice of GP and BO, we assume w.l.o.g. that µ(x) = 0 and
k(x,x′) ≤ 1 (∀x,x′ ∈ X ). We also assume that the kernel function k is differentiable, and that
∥∂z∂z′k(z, z′)|z=z′=x∥2 ≤ κ2 ,∀x ∈ X for some κ > 0. This is satisfied by most commonly used
kernels such as the squared exponential (SE) kernel (Rasmussen and Williams, 2006).

2.2 ZO OPTIMIZATION WITH ESTIMATED DERIVATIVES

To solve (1), GD with estimated derivatives (e.g., Algo. 1) has been developed (Flaxman et al.,
2005; Ghadimi and Lan, 2013; Nesterov and Spokoiny, 2017; Liu et al., 2018a;b). Particularly,
these algorithms first‘ estimate the derivative of f (line 3 of Algo. 1) and then plug the estimated
derivative into GD-based methods to obtain the next input for querying (lines 4-5 of Algo. 1). In these
algorithms, the derivative is typically estimated by averaging the finite difference approximation of
the directional derivatives for f along certain directions, which we refer to as the finite difference
(FD) method in this paper. For example, given a parameter λ and directions {ui}ni=1, the derivative
∇f at any x ∈ X can be estimated by the following FD method (Berahas et al., 2022):

∇f(x) ≈ g(x) ≜
n∑

i=1

y(x+ λui)− y(x)
λ

ui. (2)

The directions {ui}ni=1 are usually sampled from the standard Gaussian distribution (Nesterov and
Spokoiny, 2017) or uniformly from the unit sphere (Flaxman et al., 2005), or set as the standard basis
vectors with 1 at one of its coordinates and 0 otherwise (Lian et al., 2016). As mentioned before,
existing FD methods typically require many additional queries (i.e., {x+ λui}ni=1) to achieve an
accurate derivative estimation in every iteration of Algo. 1 (Berahas et al., 2022), making existing ZO
optimization algorithms (Flaxman et al., 2005; Nesterov and Spokoiny, 2017) query-inefficient.

3 ZO OPTIMIZATION VIA TRAJECTORY-INFORMED DERIVATIVE ESTIMATION

To improve existing GD with estimated derivatives (e.g., Algo. 1), we propose the ZORD algorithm
(Algo. 2), which achieves more query-efficient ZO optimization thanks to our two major contributions.
Firstly, we propose a derived GP-based derivative estimation method which only uses the optimization
trajectory and consequently does not require any additional query for derivative estimation (Sec. 3.1).
Secondly, thanks to the ability of our method to estimate the derivative at any input in the domain
without any additional query and to measure the estimation error in a principled way, we develop the
technique of dynamic virtual updates to further improve the query efficiency of our ZORD (Sec. 3.2).

3.1 TRAJECTORY-INFORMED DERIVATIVE ESTIMATION

To begin with, if a function f follows a GP, then its derivative ∇f also follows a GP (Rasmussen
and Williams, 2006). This is formalized by our Lemma 1 below (proof in Appx. B.1), which then
provides us a principled way to estimate the derivative at any input in the domain.
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Lemma 1 (Derived GP for Derivatives). If a function f follows a GP: f ∼ GP
(
µ(·), σ2(·, ·)

)
, then

∇f ∼ GP
(
∇µ(·), ∂σ2(·, ·)

)
where ∂σ2(·, ·) denotes the cross partial derivative w.r.t the first and second arguments of σ2(·, ·).

f Follows the Posterior GP. As discussed in Sec. 2.1, we assume that f ∼ GP(µ(·), k(·, ·)).
So, in every iteration t of our Algo. 2, conditioned on the current optimization trajectory Dt−1 ≜
{(xτ , yτ )}t−1

τ=1, f follows the posterior GP: f ∼ GP
(
µt−1(·), σ2

t−1(·, ·)
)

with the mean function
µt−1(·) and the covariance function σ2

t−1(·, ·) defined as below (Rasmussen and Williams, 2006):

µt−1(x) ≜ kt−1(x)
⊤ (Kt−1 + σ2I

)−1
yt−1

σ2
t−1(x,x

′) ≜ k (x,x′)− kt−1(x)
⊤ (Kt−1 + σ2I

)−1
kt−1 (x

′)
(3)

where y⊤
t−1 ≜ [yτ ]

t−1
τ=1 and kt−1(x)

⊤ ≜ [k(x,xτ )]
t−1
τ=1 are (t − 1)-dimensional row vectors, and

Kt−1 ≜ [k(xτ ,xτ ′)]
t−1
τ,τ ′=1 is a (t−1)× (t−1)-dimensional matrix. Define σ2

t−1(x) ≜ σ2
t−1(x,x),

the posterior distribution at x is Gaussian with mean µt−1(x) and variance σ2
t−1(x).

∇f Follows the Derived GP for Derivatives. Substituting (3) into Lemma 1, we have that

∇f ∼ GP
(
∇µt−1(·), ∂σ2

t−1(·, ·)
)
, (4)

in which the mean∇µt−1(x) at x and the covariance ∂σ2
t−1(x,x

′) at x,x′ are

∇µt−1(x) ≜ ∂zkt−1(z)
⊤ (Kt−1 + σ2I

)−1
yt−1

∣∣
z=x

,

∂σ2
t−1(x,x

′) ≜ ∂z∂z′k(z, z′)− ∂zkt−1(z)
⊤ (Kt−1 + σ2I

)−1
∂z′kt−1(z

′)
∣∣
z=x,z′=x′ ,

(5)

in which ∂zkt−1(z) ≜ [∂zk(z,xτ )]
t−1
τ=1 is a (t − 1) × d-dimensional matrix and ∂z∂z′k(z, z′) is

a d× d-dimensional matrix. Therefore, ∇µt−1(x) is a d-dimensional vector and ∂σ2
t−1(x,x

′) is a
d× d-dimensional matrix. We refer to this GP (4) followed by∇f as the derived GP for derivatives.

So, define ∂σ2
t−1(x) ≜ ∂σ2

t−1(x,x), we have that for any input x ∈ X , the derivative ∇f(x) at x
follows a d-dimensional Gaussian distribution: ∇f(x) ∼ N (∇µt−1(x), ∂σ

2
t−1(x)). This allows us

to (a) estimate the derivative ∇f(x) at any input x ∈ X using the posterior mean∇µt−1(x) of the
derived GP for derivatives (4):

∇f(x) ≈ ∇µt−1(x) , (6)
and (b) employ the posterior covariance matrix ∂σ2

t−1(x) to obtain a principled measure of the
uncertainty for this derivative estimation, which together constitute our novel derivative estimation.
Remarkably, our derivative estimation only makes use of the naturally available optimization trajectory
Dt−1 and does not need any additional query, which is in stark contrast to the existing FD methods
(e.g., (2)) that require many additional queries for their derivative estimation. Moreover, our principled
measure of uncertainty allows us to perform dynamic virtual updates (Sec. 3.2) and theoretically
guarantee the quality of our derivative estimation (Sec. 4.1).

3.2 DYNAMIC VIRTUAL UPDATES

Note that our derived GP-based derivative estimation (6) can estimate the derivative at any input x
within the domain. As a result, in every iteration t of our ZORD algorithm, for a step τ ≥ 1, after
performing a GD update using the estimated derivative at xt,τ−1 (i.e., ∇µt−1(xt,τ−1)) to reach the
input xt,τ (line 5 of Algo. 2), we can again estimate the derivative at xt,τ (i.e.,∇µt−1(xt,τ )) and then
perform another GD update to reach xt,τ+1 without requiring any additional query. This process can
be repeated for multiple steps, and can further improve the query efficiency of our ZORD. Formally,
given the projection function PX (x) ≜ argminz∈X ∥x− z∥22 /2 and learning rates {ηt,τ}Vt−1

τ=0 , we
perform the following virtual updates for Vt steps (lines 4-6 of Algo. 2):

xt,τ = PX (xt,τ−1 − ηt,τ−1∇µt−1(xt,τ−1)) ∀τ = 1, · · · , Vt (7)

and then choose the last xt,Vt
to query (i.e., line 7 of Algo. 2). Importantly, these multi-step virtual

GD updates are only feasible in our ZORD (Algo. 2) because our derivative estimator (6) does not
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require any new query in all these steps, whereas the existing FD methods require additional queries
to estimate the derivative in every step.

The number of steps for our virtual updates (i.e., Vt) induces an intriguing trade-off: An overly small
Vt may not be able to fully exploit the benefit of our derivative estimation (6) which is free from the
requirement for additional queries, yet an excessively large Vt may lead to the usage of inaccurate
derivative estimations which can hurt the performance (validated in Appx. D.2). Remarkably, (4)
allows us to dynamically choose Vt by inspecting our principled measure of the predictive uncertainty
(i.e., ∂σ2

t−1(x)) for every derivative estimation. Specifically, after reaching the input xt,τ , we continue
the virtual updates (to reach xt,τ+1) if our predictive uncertainty is small, i.e., if

∥∥∂σ2
t−1(xt,τ )

∥∥
2
≤ c

where c is a confidence threshold; otherwise, we terminate the virtual updates and let Vt = τ since
the derivative estimation at xt,τ is likely unreliable.2

4 THEORETICAL ANALYSIS

4.1 DERIVATIVE ESTIMATION ERROR

To begin with, we derive a theoretical guarantee on the error of our derivative estimation at any x.

Theorem 1 (Derivative Estimation Error). Let δ ∈ (0, 1) and β ≜
√
d+ 2(

√
d+ 1) ln(1/δ). For

any x ∈ X and any t ≥ 1, the following holds with probability of at least 1− δ,

∥∇f(x)−∇µt(x)∥2 ≤ β
√
∥∂σ2

t (x)∥2 .
Thm. 1 (proof in Appx. B.2) has presented an upper bound on the error of our derivative estimation (6)
at any x ∈ X in terms of

√
∥∂σ2

t (x)∥2, which is a measure of the uncertainty about our derivative
estimation at x (Sec. 3.1). This hence implies that the threshold c applied to our predictive uncertainty∥∥∂σ2

t (x)
∥∥
2

(Sec. 3.2) also ensures that the derivative estimation error is small during our dynamic
virtual updates. Next, we show in the following theorem (proof in Appx. B.3) that our upper bound
on the estimation error from Thm. 1 is non-increasing as the number of function queries is increased.
Theorem 2 (Non-Increasing Error). For any x ∈ X and any t ≥ 1, we have that∥∥∂σ2

t (x)
∥∥
2
≤
∥∥∂σ2

t−1(x)
∥∥
2
.

Let δ ∈ (0, 1). Define r ≜ maxx∈X ,t≥1

√
∥∂σ2

t (x)∥2 /
∥∥∂σ2

t−1(x)
∥∥
2
, given the β in Thm. 1 , we

then have that r ∈ [1/
√
1 + 1/σ2, 1], and that with a probability of at least 1− δ,

∥∇f(x)−∇µt(x)∥2 ≤ β
√
∥∂σ2

t (x)∥2 ≤ κβr
t .

Thm. 2 shows that our upper bound on the derivative estimation error (i.e., β
√
∥∂σ2

t (x)∥2 from
Thm. 1) is guaranteed to be non-increasing in the entire domain as the number of function queries is
increased. Moreover, in some situations (i.e., when r < 1), our upper bound on the estimation error is
even exponentially decreasing. Of note, r characterizes how fast the uncertainty about our derivative
estimation (measured by

√
∥∂σ2

t (x)∥2) is reduced across the domain. Since GD-based algorithms
usually perform a local search in a neighborhood (especially for the problems with high-dimensional
input spaces), all the inputs within the local region are expected to be close to each other (measured
by the kernel function k). Moreover, as the objective function is usually smooth in the local region
(i.e., its derivatives are continuous), reducing the uncertainty of the derivative at an input xt (i.e., by
querying xt) is also expected to decrease the uncertainty of the derivatives at the other inputs in the
same local region (i.e., decrease

√
∥∂σ2

t (x)∥2). So, r < 1 is expected to be a reasonable condition
that can be satisfied in practice. This will also be corroborated by our empirical results (e.g., Figs. 1
and 2), which demonstrates that the error of our derivative estimation (6) is indeed reduced very fast.

Our GP-based Method (6) vs. Existing FD Methods. Our derivative estimation method based
on the derived GP (6) is superior to the traditional FD methods (e.g., (2)) in a number of major
aspects. (a) Our derivative estimation error can be exponentially decreasing in some situations (i.e.,
when r < 1 in Thm. 2), which is unachievable for the existing FD methods since they can only

2The first step of GD update to reach xt,1 is always performed, i.e., Vt ≥ 1.
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attain a polynomial rate of reduction (Berahas et al., 2022). (b) Our method (6) does not need any
additional query to estimate the derivative (but only requires the optimization trajectory), whereas the
existing FD methods require additional queries for every derivative estimation. (c) Our method (6) is
equipped with a principled measure of the predictive uncertainty and hence the estimation error for
derivative estimation (i.e., via

√
∥∂σ2

t (x)∥2, Thm. 1), which is typically unavailable for the existing
FD methods. (d) Our method (6), unlike the existing FD methods, makes it possible to apply the
technique of dynamic virtual updates (Sec. 3.2) thanks to its capability of estimating the derivative at
any input in the domain without requiring any additional query and measuring the estimation error in
a principled way (Thm. 1).

4.2 CONVERGENCE ANALYSIS

To analyze the convergence of our ZORD, besides our main assumption that f is sampled from a GP
(Sec. 2.1), we assume that f is Lc-Lipchitz continuous for Lc > 0. This is a mild assumption since it
has been shown that a function f sampled from a GP is Lipchitz continuous with high probability
for commonly used kernels, e.g., the SE kernel and Matérn kernel with ν > 2 (Srinivas et al., 2010).
We also assume that f is Ls-Lipchitz smooth, which is commonly adopted in the analysis GD-based
algorithms (J Reddi et al., 2016). We aim to prove the convergence of our ZORD for nonconvex f
by analyzing how fast it converges to a stationary point (Ghadimi and Lan, 2013; Liu et al., 2018a).
Specifically, we follow the common practice of previous works (J Reddi et al., 2016; Liu et al., 2018b)
to analyze the following derivative mapping:

Gt,τ ≜ (xt,τ − PX (xt,τ − ηt,τ∇f(xt,τ ))) /ηt,τ . (8)

The convergence of our ZORD is formally guaranteed by Thm. 3 below (proof in Appx. B.4).
Theorem 3 (Convergence of ZORD). Let δ ∈ (0, 1). Suppose our ZORD (Algo. 2) is run with
Vt = V and ηt,τ = η ≤ 1/Ls for any t and τ . Then with probability of at least 1− δ, when r < 1,

min
t≤T

1

V

V−1∑
τ=0

∥Gt,τ∥22 ≤
2[f(x0)− f(x∗)]/η

TV︸ ︷︷ ︸
1

+
2α2r2

T (1− r2)
+

(2Lc + 1/η)αr

T (1− r)︸ ︷︷ ︸
2

where α ≜ κ
√
d+ 2(

√
d+ 1) ln(V T/δ). When r = 1, we instead have 2 = 2α2 + (2Lc + 1/η)α.

In the upper bound of Thm. 3, the term 1 represents the convergence rate of (projected) GD when
the true derivative is used and it asymptotically goes to 0 as T increases; the term 2 corresponds to
the impact of the error of our derivative estimation (6) on the convergence. In situations where r < 1
which is a reasonably achievable condition as we have discussed in Sec. 4.1, the term 2 will also
asymptotically approach 0. This, remarkably, suggests that the impact of the derivative estimation
error on the convergence vanishes asymptotically and our ZORD algorithm is guaranteed to converge
to a stationary point (i.e., mint≤T

1
V

∑V−1
τ=0 ∥Gt,τ∥22 approaches 0) at the rate ofO(1/T ) when r < 1.

This is unattainable by existing ZO optimization algorithms using FD-based derivative estimation
(Nesterov and Spokoiny, 2017; Liu et al., 2018b), because these methods typically converge to a
stationary point at the rate ofO(1/T + const.) with a constant learning rate. Even when r = 1 where
the term 2 becomes a constant independent of T , our Thm. 3 is still superior to the convergence of
these existing works because our result (Thm. 3) is based on the worst-case analysis whereas these
works are typically based on the average-case analysis, i.e., their results only hold in expectation over
the randomly sampled directions for derivative estimation. This means that their convergence may
become even worse when inappropriate directions are used, e.g., directions that are nearly orthogonal
to the true derivative which commonly happens in high-dimensional input spaces. In addition, given
a fixed T , our ZORD enjoys a query complexity (i.e., the number of queries in T iterations) of O(T ),
which significantly improves over the O(nT ) of the existing works based on FD (n in Sec. 2.2).

The impacts of the number of steps of our virtual updates (i.e., V ) are partially reflected in Thm. 3.
Specifically, a larger V improves the reduction rate of the term 1 because a larger number of virtual
GD updates (without requiring additional queries) will be applied in our ZORD algorithm. This is
also unachievable by existing ZO optimization algorithms using FD-based derivative estimation since
they require additional queries for the derivative estimation in their every GD update. Meanwhile, a
larger V may also negatively impact the performance of our ZORD since it may lead to the use of
those estimated derivatives with large estimation errors (Sec. 3.2). However, this negative impact has
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Figure 1: Our derived GP for derivative estimation (4) with different number n of queries. Green
curve and its confidence interval denote the mean∇µ(x) and standard deviation of the derived GP.
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Figure 2: Comparison of the derivative estimation errors of our derived GP-based estimator (6) (GP)
and the FD estimator, measured by cosine similarity (larger is better) and Euclidean distance (smaller
is better). Each curve is the mean ± standard error from five independent runs.

only been implicitly accounted for by the term 2 because this term comes from our Thm. 2, which is
based on a worst-case analysis and gives a uniform upper bound on the derivative estimation error for
all inputs in the domain X .

5 EXPERIMENTS

In this section, we firstly empirically verify the efficacy of our derived GP-based derivative estimator
(6) in Sec. 5.1, and then demonstrate that our ZORD outperforms existing baseline methods for ZO
optimization using synthetic experiments (Sec. 5.2) and real-world experiments (Secs. 5.3, 5.4).

5.1 DERIVATIVE ESTIMATION

Here we investigate the efficacy of our derivative estimator (6) based on the derived GP for derivatives
(4). Specifically, we sample a function f (defined on a one-dimensional domain) from a GP using
the SE kernel, and then use a set of randomly selected inputs as well as their noisy observations (as
optimization trajectory) to calculate our derived GP for derivatives. The results (Fig. 1) illustrate a
number of interesting insights. Firstly, in regions where (even only a few) function queries are per-
formed (e.g., in the region of [−3, 0]), our estimated derivative (i.e., ∇µt−1(x) (6)) generally aligns
with the groundtruth derivative (i.e., ∇f(x)) and our estimation uncertainty (i.e., characterized by√∥∥∂σ2

t−1(x)
∥∥
2
) shrinks compared with other un-queried regions. These results hence demonstrate

that our (4) is able to accurately estimate derivatives and reliably quantify the uncertainty of these
estimations within the regions where function queries are performed. Secondly, as more input queries

are collected (i.e., from left to right in Fig. 1), the uncertainty
√∥∥∂σ2

t−1(x)
∥∥
2

in the entire domain
is decreased in general. This provides an empirical justification for our Thm. 2 which guarantees
non-increasing uncertainty and hence non-increasing estimation error. Lastly, note that with only 12
queries (rightmost figure), our derivative estimator is already able to accurately estimate the derivative
in the entire domain, which represents a remarkable reduction rate of our derivative estimation error.

Next, we compare our derivative estimator (6) with the FD estimator (Sec. 2.2). Specifically, using
the Ackley function with d = 10 (see Appx. C.2), we firstly select an input x0 and then follow the
FD method (2) to randomly sample n directions {ui}ni=1 from the standard Gaussian distribution, to
construct input queries {x0 + λui}ni=1 (see Sec. 2.2). Next, these queries and their observations are
(a) used as the optimization trajectory to apply our derivative estimator (6), and (b) used by the FD
method to estimate the derivative following (2). The results are shown in Fig. 2a (for two different
values of λ), in which for both our derived GP-based estimator (6) and the FD estimator, we measure
the cosine similarity (larger is better) and Euclidean distance (smaller is better) between the estimated
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(a) Ackley (d = 20) (b) Ackley (d = 40) (c) Levy (d = 40) (d) Levy (d = 100)

Figure 3: Optimization of Ackley and Levy functions with different dimensions. The x-axis and y-
axis denote the number of queries and log-scaled optimality gap (i.e., log (f(xT )− f(x∗))) achieved
after this number of queries. Each curve is the mean ± standard error from ten independent runs.
Table 1: Comparison of the number of required queries to achieve a successful black-box adversarial
attack. Every entry represents mean ± standard deviation from five independent runs.

Dataset Metric GLD RGF PRGF TuRBO-1 TuRBO-10 ZORD

MNIST # Queries 1780±222 1192±260 1236±145 654±70 747±60 248±50
Speedup 7.2× 4.8× 5.0× 2.6× 3.0× 1.0×

CIFAR-10 # Queries 964±175 3622±1155 4133±1525 638±108 708±105 384±59
Speedup 2.5× 9.4× 10.8× 1.7× 1.8× 1.0×

derivative and the true derivative at x0. The figures show that our derivative estimation error enjoys a
faster rate of reduction compared with the FD method, which corroborates our theoretical insights
from Thm. 2 (Sec. 4.1) positing that our estimation error can be rapidly decreasing. Subsequently,
to further highlight our advantage of being able to exploit the optimization trajectory and hence to
eliminate the need for additional function queries (Sec. 4.1), we perform another comparison where
our derived GP-based estimator (6) only utilizes 20 queries from the optimization trajectory (sampled
using the same method above) for derivative estimation. The results (Fig. 2b) show that even with
only these 20 queries (without any additional function query), our derivative estimator (6) achieves
comparable or better estimation errors than FD using as many as 80 additional queries. Overall,
the results in Fig. 2 have provided empirical supports for the superiority of our derived GP-based
derivative estimation (6), which substantiates our theoretical justifications in Sec. 4.1.

5.2 SYNTHETIC EXPERIMENTS

Here we adopt the widely use Ackley and Levy functions with various dimensions (Eriksson et al.,
2019) to show the superiority of our ZORD. We compare ZORD with a number of representative
baselines for ZO optimization, e.g., RGF (Nesterov and Spokoiny, 2017) which uses FD for derivative
estimation, PRGF (Cheng et al., 2021) which is a recent extension of RGF, GLD (Golovin et al., 2020)
which is a recent ZO optimization algorithm based on direct search, and TuRBO (Eriksson et al.,
2019) which is a highly performant Bayesian optimization (BO) algorithm. We also evaluate the
performance of a first-order optimization algorithm, i.e., GD with true derivatives. More details are
in Appx. C.2. The results are shown in Fig. 3, where ZORD outperforms all other ZO optimization
algorithms. Particularly, ZORD considerably outperforms both RGF and PRGF, which can be
attributed to our two major contributions. Firstly, our derivative estimator (6) used by ZORD is more
accurate and more query-efficient than the FD method adopted by RGF and PRGF, as theoretically
justified in Sec. 4.1 and empirically demonstrated in Sec. 5.1. Secondly, our dynamic virtual updates
(Sec. 3.2) can perform multi-step GD updates without requiring any additional query, which further
improves the performance of ZORD (validated in Appx. D.2). Moreover, ZORD is the only ZO
optimization algorithm that is able to converge to a comparable final performance to that of the GD
with true derivatives in every figure of Fig. 3.

5.3 BLACK-BOX ADVERSARIAL ATTACK

We further compare our ZORD with other ZO optimization algorithms in the problem of black-box
adversarial attack on images, which is one of the most important applications of ZO optimization in
recent years. In black-box adversarial attack (Ru et al., 2020), given a fully trained ML model and an
image z, we intend to find (through only function queries) a small perturbation x to be added to z
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Figure 4: Optimization of different non-differentiable metrics on the Covertype dataset. The x-axis
and y-axis denote, respectively, the number of queries and the improvement on the non-differentiable
metric. Each curve is the mean ± standard error from five independent experiments.

such that the perturbed image z + x will be incorrectly classified by the ML model. Following the
practice from (Cheng et al., 2021), we randomly select an image from MNIST (Lecun et al., 1998)
(d = 28× 28) or CIFAR-10 (Krizhevsky et al., 2009) (d = 32× 32), and aim to add a perturbation
with an L∞ constraint to make a trained deep neural network misclassify the image (more details
in Appx. C.3). Tab. 1 summarizes the number of required queries to achieve a successful attack by
different algorithms (see results on multiple images in Appx. D.3). The results show that in such
high-dimensional ZO optimization problems, our ZORD again significantly outperforms the other
algorithms since it requires a considerably smaller number of queries to achieve a successful attack.
Particularly, our ZORD is substantially more query-efficient than RGF and PRGF which rely on the
FD methods for derivative estimation, e.g., for CIFAR-10, the number of queries required by RGF
and PRGF are 9.4× and 10.8× of that required by ZORD. This further verifies the advantages of
our trajectory-informed derivative estimation (as justified theoretically in Sec. 4.1 and empirically
in Sec. 5.1) and dynamic virtual updates (as demonstrated in Appx. D.2). Remarkably, our ZORD
also outperforms BO (i.e., TuRBO-1/10 which correspond to two versions of the TuRBO algorithm
(Eriksson et al., 2019)) which has been widely shown to be query-efficient in black-box adversarial
attack (Ru et al., 2020). Overall, these results showcase the ability of our ZORD to advance the other
ZO optimization algorithms in challenging real-world ZO optimization problems.

5.4 NON-DIFFERENTIABLE METRIC OPTIMIZATION

Non-differentiable metric optimization (Hiranandani et al., 2021; Huang et al., 2021), which has
received a surging interest recently, can also be cast as a ZO optimization problem. We therefore use it
to further demonstrate the superiority of our ZORD to other ZO optimization algorithms. Specifically,
we firstly train a multilayer perceptron (MLP) (d = 2189) on the Covertype (Dua and Graff, 2017)
dataset with the cross-entropy loss function. Then, we use the same dataset to fine-tune this MLP
model by exploiting ZO optimization algorithms to optimize a non-differentiable metric, such as
precision, recall, F1 score and Jaccard index (see more details in Appx. C.4). Here we additionally
compare with the evolutionary strategy (ES) which has been previously applied for non-differentiable
metric optimization (Huang et al., 2021). Fig. 4 illustrates the percentage improvements achieved
by different algorithms during the fine-tuning process (i.e., (f(x0)− f(xT ))× 100%/f(x0)). The
results show that our ZORD again consistently outperforms the other ZO optimization algorithms in
terms of both the query efficiency and the final converged performance. These results therefore further
substantiate the superiority of ZORD in optimizing high-dimensional non-differentiable functions.

6 CONCLUSION

We have introduced the ZORD algorithm, which achieves query-efficient ZO optimization through
two major contributions. Firstly, we have proposed a novel derived GP-based method (6) which only
uses the optimization trajectory and hence eliminates the requirement for additional queries (Sec. 3.1)
to estimate derivatives. Secondly, we have introduced a novel technique, i.e., dynamic virtual updates,
which is made possible by our GP-based derivative estimation, to further improve the performance
of our ZORD (Sec. 3.2). Through theoretical justifications (Sec. 4) and empirical demonstrations
(Sec. 5), we show that our derived GP-based derivative estimation improve over existing FD methods
and that our ZORD outperforms various ZO optimization baselines.

9



Published as a conference paper at ICLR 2023

7 REPRODUCIBILITY STATEMENT

For our theoretical results, we have discussed all our assumptions in Sec. 2.1 & Sec. 4.2, and provided
our complete proofs in Appx. B. For our empirical results, we have provided our detailed experimental
settings in Appx. C and included our codes in the supplementary materials (i.e., the zip file).
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APPENDIX A RELATED WORK

Various types of algorithms have been proposed in the literature to solve ZO optimization problems,
e.g., direct search, Bayesian optimization (BO) and GD-based algorithms with estimated derivatives.
Particularly, direct search, e.g., (Stich et al., 2013; Golovin et al., 2020), relies on the comparison of
function values at different inputs for the updates, which can be query-inefficient in practice owing to
its indirect utilization of function values. In contrast, Bayesian optimization (BO) directly utilizes the
function values to model the objective function using a Gaussian process (GP) and iteratively selects
the inputs to query by trading off sampling potentially optimal inputs (i.e., exploitation) and inputs
that can improve the GP belief of the objective function over the entire input domain (i.e., exploration)
(Chowdhury and Gopalan, 2017; Srinivas et al., 2010; Dai et al., 2019; 2020). However, in ZO
optimization problems with high-dimensional input spaces, BO algorithms typically suffer from
query inefficiency and large computational complexity (Rasmussen and Williams, 2006; Letham et al.,
2020; Eriksson et al., 2019), which significantly hinders their real-world applications. Therefore,
GD-based algorithms with estimated derivatives, which inherit the advantage of GD-based algorithms
in optimizing functions with high-dimensional input spaces, have been more widely applied in
practice. For these algorithms, the derivatives are commonly estimated using the finite difference
(FD) approximation (which requires additional function queries) of the directional derivatives along
selected directions, in which the directions can be randomly sampled unit vectors Flaxman et al.
(2005), Gaussian vectors (Nesterov and Spokoiny, 2017), or standard bases (Lian et al., 2016)
(Sec. 2.2). More recently, some works have incorporated a time-dependent prior (i.e., the estimated
derivative in the previous iteration) into existing FD methods to improve the quality of its derivative
estimation (Ilyas et al., 2019; Meier et al., 2019; Cheng et al., 2021). Nevertheless, such a prior
is also estimated by the FD method (i.e., in the previous iteration) and can hence be biased owing
to the its estimation error, which may even lead to larger derivative estimation errors in practice
due to compounding errors. Another line of work has taken the surrogate derivatives from other
sources to help reduce the derivative estimation error of existing FD methods (Maheswaranathan
et al., 2019; Cheng et al., 2019). However, these surrogate derivatives may generally be unavailable
in practice. Importantly, these existing FD methods require additional function queries for every
derivation estimation during optimization, which will significantly increase the query complexity of
ZO optimization algorithms which employ these FD methods for derivative estimation.

APPENDIX B PROOFS

B.1 PROOF OF LEMMA 1

According to Rasmussen and Williams (2006), if a function f follows from a Gaussian process, its
derivative also follows a Gaussian process determined by its mean E[·] and covariance Cov(·, ·), i.e.,

∇f ∼ GP (E [∇f ] ,Cov(∇f,∇f)) . (9)

So, to prove Lemma 1, we only need to derive the mean and the covariance of the Gaussian process
above for a function f that is sampled from another Gaussian process, i.e., f ∼ GP(µ(·), σ2(·, ·)).
Specifically, for the mean E [∇f ], we have

E [∇f ] = ∇E [f ] = ∇µ . (10)
where the first equality derives from the interchangeability of the expectation and derivative operation
based on the Leibniz integral rule. The second equality comes from the fact that E [f ] = µ.

For the covariance Cov(∇f,∇f), we have

Cov(∇f(z),∇f(z′))
(a)
= E

[
(∇f(z)− E [∇f(z)])⊤ (∇f(z′)− E [∇f(z′)])

]
(b)
= E

[
∇ (f(z)− E [f(z)])

⊤∇ (f(z′)− E [f(z′)])
]

(c)
= E

[
∂z∂z′ (f(z)− E [f(z)])

⊤
(f(z′)− E [f(z′)])

]
(d)
= ∂z∂z′E

[
(f(z)− E [f(z)])

⊤
(f(z′)− E [f(z′)])

]
(e)
= ∂z∂z′σ2

t (z, z
′) .

(11)
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Notably, (b) and (d) also derive from the interchangeability of the expectation and derivative operation
based on the Leibniz integral rule. Besides, (e) is obtained based on Cov(f, f) = σ2(·, ·). This
finally completes our proof.

B.2 PROOF OF THEOREM 1

To begin with, we introduce the following concentration inequality for standard multi-variate Gaussian
distribution:

Lemma B.1 (Laurent and Massart (2000)). Let ζ ∼ N (0, Im) and δ ∈ (0, 1) then

P
(
∥ζ∥2 ≤

√
m+ 2(

√
m+ 1) ln(1/δ)

)
≥ 1− δ . (12)

Define ζ ≜
(
∂σ2

t (x)
)−1/2

(∇f(x)−∇µt(x)), according to Lemma 1, we then have that ζ follows
a standard multi-variate Gaussian distribution, i.e.,

ζ ∼ N (0, Id) . (13)

Let δ ∈ (0, 1). By substituting the result above into Lemma B.1, the following holds with probability
of at least 1− δ:

∥∇f(x)−∇µt(x)∥2 =
∥∥∥(∂σ2

t (x)
)−1/2

ζ
∥∥∥
2

≤
√
∥∂σ2

t (x)∥2 ∥ζ∥2

≤
√
d+ 2(

√
d+ 1) ln(1/δ)

√
∥∂σ2

t (x)∥2

= β
√
∥∂σ2

t (x)∥2

(14)

with β ≜
√
d+ 2(

√
d+ 1) ln(1/δ) and the first inequality is from the Cauchy-Schwarz inequality,

which completes our proof.

B.3 PROOF OF THEOREM 2

We first introduce the following lemmas.

Lemma B.2 (Chowdhury and Gopalan (2021)). For any σ ∈ R and any matrix A, the following hold

I−A⊤ (AA⊤ + σ2I
)−1

A = σ2
(
A⊤A+ σ2I

)−1
. (15)

Lemma B.3 (Sherman-Morrison formula). For any invertible square matrix A and column vectors
u,v, suppose A+ uv⊤ is invertible, then the following holds

(
A+ uv⊤)−1

= A−1 − A−1uv⊤A−1

1 + v⊤A−1u
. (16)

Preparation. We then introduce some additional notations and representations for our proof of
Theorem 2. Following the common practice in (Chowdhury and Gopalan, 2021), we let the kernel k
be defined by ψ(x), i.e., k(x,x′) = ψ(x)⊤ψ(x′), and ϕ(x) ≜ ∇ψ(x). We then further define the
(t× d)-dimensional Jacobian matrix ϕt(x) ≜ [ϕ(x)⊤ψ(xτ )]

t
τ=1 and Ψt ≜ [ψ(xτ )]

t
τ=1. The matrix

Kt and the covariance matrix ∂σ2
t (x) defined on the optimization trajectory Dt in our Sec. 3.1 can

be reformulated as

Kt = Ψ⊤
t Ψt ,

∂σ2
t (x) = ϕ(x)⊤ϕ(x)− ϕt(x)

⊤ (Kt + σ2I
)−1

ϕt(x) .
(17)
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Based on the reformulation above, define Vt ≜ ΨtΨ
⊤
t + σ2I, we can further reformulate ∂σ2

t (x) as
below

∂σ2
t (x)

(a)
= ϕ(x)⊤ϕ(x)− ϕt(x)

⊤ (Kt + σ2I
)−1

ϕt(x)

(b)
= ϕ(x)⊤ϕ(x)− ϕ(x)⊤Ψt

(
Ψ⊤

t Ψt + σ2I
)−1

Ψ⊤
t ϕ(x)

(c)
= ϕ(x)⊤

(
I−Ψt

(
Ψ⊤

t Ψt + σ2I
)−1

Ψ⊤
t

)
ϕ(x)

(d)
= σ2ϕ(x)⊤

(
ΨtΨ

⊤
t + σ2I

)−1
ϕ(x)

(e)
= σ2ϕ(x)⊤V−1

t ϕ(x) .

(18)

Note that (b) is obtained by exploiting the fact that Kt = Ψ⊤
t Ψt and ϕt(x) = ϕ(x)⊤Ψt. In addition,

(d) comes from Lemma B.2 by replacing the matrix A in Lemma B.2 with the matrix Ψ⊤
t .

First Part. We then prove the first half part of our Theorem 2, i.e., the following Lemma B.4.

Lemma B.4 (Non-Increasing Variance Norm). For any x ∈ X and any t ≥ 1, we have that∥∥∂σ2
t (x)

∥∥
2
≤
∥∥∂σ2

t−1(x)
∥∥
2
. (19)

Proof. Based on our additional notations and representations, we have

∂σ2
t (x)

(a)
= σ2ϕ(x)⊤V−1

t ϕ(x)

(b)
= σ2ϕ(x)⊤

(
Ψt−1Ψ

⊤
t−1 + σ2I+ ψ(xt)ψ(xt)

⊤)−1
ϕ(x)

(c)
= σ2ϕ(x)⊤

(
Vt−1 + ψ(xt)ψ(xt)

⊤)−1
ϕ(x)

(d)
= σ2ϕ(x)⊤V−1

t−1ϕ(x)− σ2
(
1 + ψ(xt)

⊤V−1
t−1ψ(xt)

)−1
ϕ(x)⊤V−1

t−1ψ(xt)ψ(xt)
⊤V−1

t−1ϕ(x)

(e)
= ∂σ2

t−1(x)− σ2
(
1 + ψ(xt)

⊤V−1
t−1ψ(xt)

)−1
ϕ(x)⊤V−1

t−1ψ(xt)ψ(xt)
⊤V−1

t−1ϕ(x)

(f)

≼ ∂σ2
t−1(x) .

(20)
Note that (a) follows from the aforementioned definition of Vt and (b) comes from the fact that
ΨtΨ

⊤
t = Ψt−1Ψ

⊤
t−1 + ψ(xt)ψ(xt)

⊤. Similarly, (c) uses the definition of Vt−1. In addition,
equality (d) derives from Lemma B.3 by letting A = Vt−1 and u = v = ψ(xt) and (e) follows
from the reformulation of ∂σ2

t−1(x) in (18). Finally, (f) derives from the positive semi-definite
property of ϕ(x)⊤V−1

t−1ψ(xt)ψ(xt)
⊤V−1

t−1ϕ(x) as well as the fact that 1+ψ(xt)
⊤V−1

t−1ψ(xt) > 0.
That is, for any column vector z we have that

z⊤ϕ(x)⊤V−1
t−1ψ(xt)ψ(xt)

⊤V−1
t−1ϕ(x)z =

(
ϕ(xt)

⊤V−1
t−1ϕ(x)z

)⊤ (
ϕ(xt)

⊤V−1
t−1ϕ(x)z

)
=
∥∥ϕ(xt)

⊤V−1
t−1ϕ(x)z

∥∥2
2

≥ 0 .

(21)

So, ϕ(x)⊤V−1
t−1ψ(xt)ψ(xt)

⊤V−1
t−1ϕ(x) is positive semi-definite. Following a similar way, we are

also able to verify that 1 + ψ(xt)
⊤V−1

t−1ψ(xt) > 0 by showing that ψ(xt)
⊤V−1

t−1ψ(xt) ≥ 0 using
the decomposition of V−1

t−1 from the Principle Component Analysis (PCA). Since ∂σ2
t (x) ≼ σ2

t−1(x)

is equivalent to
∥∥∂σ2

t (x)
∥∥
2
≤
∥∥∂σ2

t−1(x)
∥∥
2
, we then complete the proof of first half part of our

Theorem 2.

Second Part. To prove the rest of our Theorem 2, we firstly introduce the following lemmas.

Lemma B.5. For any x ∈ X and any t ≥ 1, the following holds

V−1
t ≼ V−1

t−1 . (22)
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Proof. For any column vector z, we have

z⊤ (Vt −Vt−1) z = z⊤ψ(xt)ψ(xt)
⊤z

=
(
ψ(xt)

⊤z
)⊤ (

ψ(xt)
⊤z
)

=
∥∥ψ(xt)

⊤z
∥∥2
2

≥ 0 .

(23)

The first equality comes from the intermediate result in (20). So, Vt−Vt−1 is positive semi-definite,
i.e., Vt−1 ≼ Vt. This can also indicate that V−1

t ≼ V−1
t−1, which thus completes our proof.

Lemma B.6 (Lower Bound of Variance Norm). For any x ∈ X and any t ≥ 1, the following holds

1/(1 + 1/σ2)
∥∥∂σ2

t−1(x)
∥∥
2
≤
∥∥∂σ2

t (x)
∥∥
2
. (24)

Proof. We firstly show that∥∥∥V−1/2
t ψ(x)ψ(x)⊤V

−1/2
t

∥∥∥
2

(a)

≤
∥∥∥V−1/2

t ψ(x)
∥∥∥
2

∥∥∥ψ(x)⊤V−1/2
t

∥∥∥
2

(b)
=
∥∥∥ψ(x)⊤V−1/2

t

∥∥∥2
2

(c)
= ψ(x)⊤V

−1/2
t V

−1/2
t ψ(x)

(d)
= ψ(x)⊤V−1

t ψ(x)
(e)

≤ ψ(x)⊤V−1
t−1ψ(x)

(f)

≤ ψ(x)⊤V−1
0 ψ(x)

(g)
= ψ(x)⊤ψ(x)/σ2

(h)
= 1/σ2 .

(25)

Note that (a) derives from the Cauchy-Schwarz inequality. As for (b) and (c), they have exploited

the fact that
(
V

−1/2
t ψ(x)

)⊤
= ψ(x)⊤V

−1/2
t and ψ(x)⊤V−1/2

t is a row vector. In addition, (e)

follows from Lemma B.5. Finally, (g) results from V−1
0 = I/σ2 and (h) derives from the assumption

that k(x,x) ≤ 1 (∀x ∈ X ) in Sec. 2.1. Alternatively, we can restate the result above as

V
−1/2
t ψ(x)ψ(x)⊤V

−1/2
t ≼ σ−2I . (26)

We then complete our proof on the first inequality in Lemma B.6 using the following inequality:

∂σ2
t (x)

(a)
= σ2ϕ(x)⊤

(
Vt−1 + ψ(xt)ψ(xt)

⊤)−1
ϕ(x)

(b)
= σ2ϕ(x)⊤

[
V

1/2
t−1

(
I+V

−1/2
t−1 ψ(xt)ψ(xt)

⊤V
−1/2
t−1

)
V

1/2
t−1

]−1

ϕ(x)

(c)
= σ2ϕ(x)⊤V

−1/2
t−1

(
I+V

−1/2
t−1 ψ(xt)ψ(xt)

⊤V
−1/2
t−1

)−1

V
−1/2
t−1 ϕ(x)

(d)

≽ σ2ϕ(x)⊤V−1
t−1ϕ(x)/(1 + 1/σ2)

(e)
= ∂σ2

t−1(x)/(1 + 1/σ2)

(27)

where (a) derives from (20) and (c) comes from the inversion of matrix product. Finally (d) follows
from the result in (26) and (e) exploits the reformulation of ∂σ2

t−1(x).

According to Lemma B.4 and Lemma B.6, the following holds for any x ∈ X and any t ≥ 1,

1

1 + 1/σ2
≤

∥∥∂σ2
t (x)

∥∥
2∥∥∂σ2

t−1(x)
∥∥
2

≤ 1 . (28)
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Based on the definition of r in our Theorem 2, we therefore also have

r ≜ max
x∈X ,t≥1

√
∥∂σ2

t (x)∥2 /
∥∥∂σ2

t−1(x)
∥∥
2
∈
[
1/
√

1 + 1/σ2, 1
]
. (29)

As a result, for every iteration t of our Algo. 2, we have√
∥∂σ2

t (x)∥2 ≤ r
√∥∥∂σ2

t−1(x)
∥∥
2

≤ rt
√
∥∂σ2

0(x)∥2

= rt
√
∥∂z∂z′k(z, z′)|z=z′=x∥2

≤ rtκ

(30)

where the last inequality derives from our assumption of ∥∂z∂z′k(z, z′)|z=z′=x∥2 ≤ κ2 (∀x ∈ X )
in our Sec. 2.1. By substituting the result above into our Theorem 1, we complete our proof of
Theorem 2.

B.4 PROOF OF THEOREM 3

Preparation. Following the definition of the derivative mapping on the true derivative ∇f(xt,τ ) in
(8), we defined the following derivative mapping on our estimated derivative∇µt−1(xt,τ ):

Ĝt,τ ≜
xt,τ − xt,τ+1

ηt,τ
=

xt,τ − PX (xt,τ − ηt,τ∇µt(xt,τ ))

ηt,τ
. (31)

By re-arranging it, we have the following update rule that has reformulated (7):

xt,τ+1 = xt,τ − ηt,τ Ĝt,τ . (32)

Based on our definition of the derivative mappings in (31) and (8), we introduce the following lemmas:

Lemma B.7 (General Projection Inequalities). Given PX (x) = argminz∈X ∥x− z∥22 /2 and
domain X , for any x,x′, we have

∥x− PX (x)∥2 ≤ ∥x− PX (x′)∥2 , (33)

∥PX (x)− PX (x′)∥2 ≤ ∥x− x′∥2 . (34)

Proof. For (33), as PX (x′) ∈ X (∀x′) and PX (x) = argminz∈X ∥x− z∥22 /2, we then naturally
have (33).

For (34), since PX (x) is the optimum of h(z) = ∥x− z∥22 /2, according to the optimality condition
of the convex projection function h(z) within the domain z ∈ X (Boyd and Vandenberghe, 2014),
we then have the following inequality for any PX (x′) ∈ X :

∇h(z)⊤ (PX (x′)− z) ≥ 0 . (35)

By taking∇h(z) = z − x with z = PX (x) into the inequality above, we have

(PX (x)− x)
⊤
(PX (x′)− PX (x)) ≥ 0 . (36)

By exchanging x and x′ in the result above, we achieve the following similar result:

(PX (x′)− x′)
⊤
(PX (x)− PX (x′)) ≥ 0 . (37)

By summing (36) and (37),

(x− x′)
⊤
(PX (x)− PX (x′)) ≥ ∥PX (x)− PX (x′)∥22 . (38)

Based on the Cauchy-Schwarz inequality, we finally achieve (34) using

∥PX (x)− PX (x′)∥22 ≤ (x− x′)
⊤
(PX (x)− PX (x′))

≤ ∥x− x′∥2 ∥PX (x)− PX (x′)∥2
(39)

where both sides need to be divided by ∥PX (x)− PX (x′)∥2 to complete our proof.
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Lemma B.8 (Inequalities for Derivative Mappings). Given (31) and (8), for every t and τ , we have∥∥∥Ĝt,τ

∥∥∥2
2
≤ ∇µt−1(xt,τ )

⊤Ĝt,τ , (40)

∥Gt,τ∥2 ≤ ∥∇f(xt,τ )∥2 , (41)∥∥∥Ĝt,τ −Gt,τ

∥∥∥
2
≤ ∥∇µt−1(xt,τ )−∇f(xt,τ )∥2 . (42)

Proof. For (40), let x̂t,τ = xt,τ − ηt,τ∇µt−1(xt,τ ), we then have

∥PX (xt,τ )− PX (x̂t,τ )∥22 − (xt,τ − x̂t,τ )
⊤
(PX (xt,τ )− PX (x̂t,τ ))

(a)
= ∥xt,τ − xt,τ+1∥22 − ηt,τ∇µt−1(xt,τ )

⊤ (xt,τ − xt,τ+1)

(b)
= η2t,τ

∥∥∥Ĝt,τ

∥∥∥2
2
− η2t,τ∇µt−1(xt,τ )

⊤Ĝt,τ

(c)

≤ 0

(43)

where (a) results from the fact that xt,τ+1 = PX (xt,τ − ηt,τ∇µt−1(xt,τ )) based on our (7) and
(b) derives from the definition of Ĝt,τ in (31). In addition, (c) is based on the following result by
substituting x = xt,τ and x′ = x̂t,τ into (38):

∥PX (xt,τ )− PX (x̂t,τ )∥22 − (xt,τ − x̂t,τ )
⊤
(PX (xt,τ )− PX (x̂t,τ )) ≤ 0 . (44)

Finally, by dividing η2t,τ on the both sides of the last inequality in (43), we finish the proof for (40).

For (41), following the same proof above, we can also obtain achieve the following inequality for the
projected derivative Gt,τ :

∥Gt,τ∥22 ≤ ∇f(xt,τ )
⊤Gt,τ ≤ ∥∇f(xt,τ )∥2 ∥Gt,τ∥2 . (45)

We complete the proof for (41) by dividing ∥Gt,τ∥2 on the both sides of the inequality above.

For (42), define x′
t,τ+1 ≜ xt,τ − ηt,τGt,τ , we have∥∥∥Ĝt,τ −Gt,τ

∥∥∥
2

(a)
=

1

ηt,τ

∥∥xt,τ − xt,τ+1 −
(
xt,τ − x′

t,τ+1

)∥∥
2

(b)
=

1

ηt,τ

∥∥xt,τ+1 − x′
t,τ+1

∥∥
2

(c)
=

1

ηt,τ
∥PX (xt,τ − ηt,τ∇µt−1(xt,τ ))− PX (xt,τ − ηt,τ∇f(xt,τ ))∥2

(d)

≤ 1

ηt,τ
∥xt,τ − ηt,τ∇µt−1(xt,τ )− (xt,τ − ηt,τ∇f(xt,τ ))∥2

(e)
= ∥∇µt−1(xt,τ )−∇f(xt,τ )∥2

(46)

where (a) comes from the definition of Ĝt,τ and Gt,τ in (31) and (8), respectively. In addition, (c)
derives from (7) and (8). Finally, (d) results from (34).

Proof. Since the objective function f is assumed to be Ls-Lipschitz smooth (Sec. 4.2), we have the
following inequality for any xt,τ ∈ X in our ZORD algorithm:

f(xt,τ+1)− f(xt,τ ) ≤ ∇f(xt,τ )
⊤ (xt,τ+1 − xt,τ ) +

Ls

2
∥xt,τ+1 − xt,τ∥22 . (47)
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Let δ′ ∈ (0, 1). Define β ≜
√
d+ 2(

√
d+ 1) ln(1/δ′), by substituting (32) into the inequality above,

the following inequality holds with probability of at least 1− δ′:
f(xt,τ+1)− f(xt,τ )

(a)

≤ − ηt,τ∇f(xt,τ )
⊤Ĝt,τ +

Lsη
2
t,τ

2

∥∥∥Ĝt,τ

∥∥∥2
2

(b)
= ηt,τ (∇µt−1(xt,τ )−∇f(xt,τ ))

⊤
Ĝt,τ − ηt,τ∇µt−1(xt,τ )

⊤Ĝt,τ +
Lsη

2
t,τ

2

∥∥∥Ĝt,τ

∥∥∥2
2

(c)
= ηt,τ

[
(∇µt−1(xt,τ )−∇f (xt,τ ))

⊤
(
Ĝt,τ −Gt,τ

)
+ (∇µt−1(xt,τ )−∇f(xt,τ ))

⊤
Gt,τ

]
− ηt,τ∇µt−1(xt,τ )

⊤Ĝt,τ +
Lsη

2
t,τ

2

∥∥∥Ĝt,τ

∥∥∥2
2

(d)

≤ ηt,τ

[
∥∇µt−1(xt,τ )−∇f (xt,τ )∥2

∥∥∥Ĝt,τ −Gt,τ

∥∥∥
2
+ ∥∇µt−1(xt,τ )−∇f(xt,τ )∥2 ∥Gt,τ∥2

]
− ηt,τ∇µt−1(xt,τ )

⊤Ĝt,τ +
Lsη

2
t,τ

2

∥∥∥Ĝt,τ

∥∥∥2
2

(e)

≤ ηt,τ

[
∥∇µt−1(xt,τ )−∇f (xt,τ )∥22 + ∥∇µt−1(xt,τ )−∇f (xt,τ )∥2 ∥∇f(xt,τ )∥2

]
−

2ηt,τ − Lsη
2
t,τ

2

∥∥∥Ĝt,τ

∥∥∥2
2

(f)

≤ ηt,τκ
2β2r2t + ηt,τLcκβr

t − ηt,τ
2

∥∥∥Ĝt,τ

∥∥∥2
2

(48)
where (d) derives from the Cauchy-Schwarz inequality and (e) follows from the Lemma B.7. Finally,
(f) result from the bounded derivative estimation error in Theorem 2 and the fact that f isLc-Lipschitz
continuous (i.e., ∥∇f(x)∥2 ≤ Lc for any x ∈ X ) and ηt,τ ≤ 1/Ls (∀τ).
For every iteration t our ZORD algorithm, we in fact will apply the virtual updates (7) for Vt times
(see Algo. 2). Therefore, for probability ≥ 1− Vtδ′, we have

1

Vt

Vt−1∑
τ=0

ηt,τ

∥∥∥Ĝt,τ

∥∥∥2
2
≤ 2

Vt

Vt−1∑
τ=0

[
f(xt,τ )− f(xt,τ+1) + ηt,τ

(
κ2β2r2t + Lcκβr

t
)]

=
2

Vt
[f(xt−1 − f(xt))] +

(
2

Vt

Vt−1∑
τ=0

ηt,τ

)(
κ2β2r2t + Lcκβr

t
) (49)

where the first inequality results from (48) by re-arranging it and then sum it up over τ .

However, in order to prove the convergence of our ZORD algorithm to a stationary point, we need to
consider the derivative mapping of Gt,τ instead (refer to our Sec. 4.2). So, for any τ , we propose the
following inequality:

∥Gt,τ∥2 =
∥∥∥Gt,τ − Ĝt,τ + Ĝt,τ

∥∥∥
2

≤
∥∥∥Gt,τ − Ĝt,τ

∥∥∥
2
+
∥∥∥Ĝt,τ

∥∥∥
2

≤ ∥∇µt−1(xt,τ )−∇f(xt,τ )∥2 +
∥∥∥Ĝt,τ

∥∥∥
2

≤ κβrt +
∥∥∥Ĝt,τ

∥∥∥
2

(50)

where the first inequality is from the Cauchy-Schwarz inequality and the second inequality comes
from (42). Finally, by taking the result above into (49), we have

1

Vt

Vt−1∑
τ=0

ηt,τ ∥Gt,τ∥22 ≤
2

Vt
[f(xt−1 − f(xt))] +

(
2

Vt

Vt−1∑
τ=0

ηt,τ

)(
κ2β2r2t + Lcκβr

t
)
+ κβrt .

(51)
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Then, substituting Vt = V and ηt,τ = η for any t, τ into the result above, the following inequality
holds with probability of at least 1− V Tδ′ when r < 1:

1

T

T∑
t=1

1

V

V−1∑
τ=0

η ∥Gt,τ∥22
(a)

≤ 1

T

T∑
t=1

(
2 (f(xt−1 − f(xt))

V
+ 2ηκ2β2r2t + (2ηLc + 1)κβrt

)
(b)

≤ 2

TV
[f(x0)− f(xT )] +

2η(1− r2T )
T (1− r2)

κ2β2r2

+
(2ηLc + 1)(1− rT )

T (1− r)
κβr

(c)

≤ 2

TV
[f(x0)− f(x∗)] +

2ηκ2β2r2

T (1− r2)
+

(2ηLc + 1)κβr

T (1− r)
.

(52)
Note that (b) derives from the summation of the geometric sequence about r and (c) comes from
x∗ ≜ argminx∈X f(x). When r = 1, the following holds with probability of at least ≥ 1− V Tδ′
accordingly:

1

T

T∑
t=1

1

V

V−1∑
τ=0

η ∥Gt,τ∥22 ≤
1

T

T∑
t=1

(
2 (f(xt−1 − f(xt))

V
+ 2ηκ2β2r2t + (2ηLc + 1)κβrt

)
=

2

TV
[f(x0)− f(xT )] + 2ηκ2β2 + (2ηLc + 1)κβ .

(53)

Finally, let δ = V Tδ′ ∈ (0, 1), the following holds with probability of at least 1− δ,

min
t≤T

1

V

V−1∑
τ=0

∥Gt,τ∥22 ≤
1

T

T∑
t=1

1

V

V−1∑
τ=0

∥Gt,τ∥22

≤ 1 + 2

(54)

where 1 and 2 can be defined as below with α ≜ κ
√
d+ 2(

√
d+ 1) ln(V T/δ):

1 =
2/η

TV
[f(x0)− f(xT )]

2 =

{
2α2r2/

[
T (1− r2)

]
+ (2Lc + 1/η)αr/ [T (1− r)] (r < 1) ,

2α2 + (2Lc + 1/η)α (r = 1) .

(55)
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APPENDIX C EXPERIMENTAL SETTINGS

C.1 GENERAL SETTINGS

Derived GP. Among all our experiments in Sec. 5, to apply the derivative estimation in Sec. 3.1
for every iteration t and every step τ of our ZORD algorithm, we use the derived GP (4) based on
the Matérn kernel with ν = 2.5 and fit this derived GP using 150 queries that achieves the smallest
Euclidean distance with input xt,τ from the optimization trajectory. This is because we only need to
model the objective function f in the vicinity of input xt,τ precisely rather than the entire domain, so
as to achieve an accurate derivative estimation at input xt,τ .

Confidence Threshold. Among all our experiments in Sec. 5, the confidence threshold c of our
dynamic virtual updates (Sec. 3.2) is set to be 0.35 in order to realize a good trade-off between query
efficiency and accurate derivative estimation in practice, which can already allow our ZORD to
achieve compelling empirical results consistently (see our Sec. 5). In light of this, c = 0.35 would be
a reasonably good choice in practice, especially when there is no prior knowledge about the objective
functions. When we have prior knowledge about the smoothness of the objective functions, we can
likely make a better choice for c: Intuitively, smooth objective functions usually can be modeled
by the Gaussian process effectively (Rasmussen and Williams, 2006), so an accurate derivative
estimation from our derived GP is also likely to be achieved. In this scenario, a large confidence
threshold can be applied to fully exploit the benefit of our derivative estimation that is free from
the requirement for additional queries and consequently results in an improved query efficiency in
practice.

Baselines. In addition, among all our experiments in Sec. 5, we consistently use n = 10, λ = 0.01
and directions {ui}ni=1 that are randomly sampled from a unit sphere for the derivative estimation
of the FD method (2) applied in the RGF and PRGF algorithm. Moreover, following the common
practice of (Berahas et al., 2022; Cheng et al., 2021), we conduct orthogonalization on these randomly
selected directions via the Gram-Schmidt procedure. As for the ES algorithm (e.g., the one applied in
(Salimans et al., 2017)), we apply the same n, λ and {ui}ni=1 in RGF and PRGF for their update in
every iteration.

Domain Transformation. Following the practice that has been used in (Eriksson et al., 2019), for
all our experiments, we firstly re-scale the input domains into [0, 10]d to ease the optimization and
then re-scale the updated inputs back to the original domains for querying.

C.2 SYNTHETIC EXPERIMENTS

Let input x = [xi]
d
i=1, the Ackley and Levy function applied in our synthetic experiments are given

below,

f(x) = −20 exp

−0.2
√√√√1

d

d∑
i=1

x2i

− exp(
1

d

d∑
i=1

cos (2πxi)) + 20 + exp(1), (Ackley)

f(x) = sin2 (πw1) +

d−1∑
i=1

(wi − 1)
2 [

1 + 10 sin2 (πwi + 1)
]
+ (wd − 1)

2 [
1 + sin2 (2πwd)

]
(Levy)

(56)
where wi = 1 + (xi − 1)/4 for any i = 1, · · · , d, Ackley function achieves its minimum (i.e.,
min f(x) = 0) at x∗ = 0, and Levy function achieves its minimum (i.e., min f(x) = 0) at x∗ = 1.
Note that the Ackley and Levy function for the synthetic experiments in our Sec. 5.2 are defined
within the domain [−20, 20]d and [−7.5, 7.5]d, respectively. To give a better understanding of these
two synthetic functions, we provide a 3D illustration of these two synthetic functions with d = 2 in
our Fig. 5. As shown in Fig. 5, these two synthetic functions are highly nonconvex and therefore have
local minimums within their domains.

To compare our ZORD algorithm with other ZO/FO optimization baselines in Sec. 5.2, we firstly
employ TuRBO of 300 queries to find a good initialization for all other ZO/FO optimization algorithms
in Fig. 3 because of the nonconvexity of these two synthetic functions as shown in Fig. 5. We then
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(a) Ackley function (d = 2) (b) Levy function (d = 2)

Figure 5: The 3D illustration of Ackley and Levy synthetic function with d = 2.

apply these ZO/FO optimization algorithms with a query budget of 200 for d = 20, 40, and a
query budget of 400 for d = 100 to compare their query efficiency. We use the same Adam
optimizer (Kingma and Ba, 2015) with a learning rate of 0.1 and exponential decay rates of 0.9, 0.999
for RGF, PRGF, GD, and our ZORD algorithm, for faster convergence compared with standard GD.

C.3 BLACK-BOX ADVERSARIAL ATTACK

For the black-box adversarial attack experiment on the MNIST dataset, we use the same fully trained
deep neural networks from (Cheng et al., 2021) and adopt a L∞ constraint of ∥x∥∞ ≤ 0.3 on the
input perturbation x. For the black-box adversarial attack experiment on the CIFAR-10 dataset, we
fully train a ResNet-18 (He et al., 2016) on CIFAR-10 using stochastic gradient descend (SGD) with
a cosine annealed learning rate from 0.1 to 0, a momentum of 0.9 and a weight decay of 5× 10−4 for
200 epochs, and adopt a L∞ constraint of ∥x∥∞ ≤ 0.2 on the input perturbation x. Note that we use
the same loss function as (Cheng et al., 2021) for these two experiments. Meanwhile, to apply RGF,
PRGF and our ZORD, we adopt Adam optimizer with the same learning rate of 0.5 and the same
exponential decay rates of 0.9, 0.999.

C.4 NON-DIFFERENTIABLE METRIC OPTIMIZATION

The Covertype dataset used in Sec. 5.4 is a classification dataset consisting of 581,012 samples from
7 different categories. Each sample from this dataset is a 54-dimensional vector of integers. In this
experiment, we randomly split the dataset into training and test sets with each containing 290,506
samples. The MLP classifier applied in Sec. 5.4 consists of 2 layers with 30 and 14 hidden neurons
respectively, leading to 2189 parameters in total (i.e., d = 2189). We first train this MLP classifier on
the training dataset of Covertype using the L-BFGS algorithm with the cross-entropy loss function
for 300 epochs, and then apply ZO optimization algorithms to fine-tune our trained MLP directly on
the non-differentiable metrics (i.e., using these metrics as the new loss functions), including precision,
recall, F1 score and Jaccard index. To obtain the results of ES, RGF, PRGF and our ZORD algorithm
in Sec. 5.4, we apply the same Adam optimizer with a learning rate of 0.2 (for precision and recall)
or 0.01 (for F1 score and Jaccard index) and exponential decay rates of 0.9, 0.999. Note that standard
BO algorithms (including TuRBO) fail to achieve any percentage improvements (i.e., achieving 0%
in the y-axis of Fig. 4) in this experiment according to our five independent runs, which is likely due
to their aggressive exploration in the input domain of such a high dimension. In light of this, we do
not include them in our comparison since all other methods are able to achieve certain improvements.

C.5 DERIVATIVE-FREE REINFORCEMENT LEARNING

Our derivative-free RL experiments aim to learn controllers (which outputs policies) that maximize
the rewards/return for several environments in the OpenAI Gym (Brockman et al., 2016) without
using true derivatives. Specifically, we need to optimize the parameters (i.e., x) of our neural network
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Table 2: OpenAI Gym environment properties and their respective network dimensions.

Acrobot Swimmer Lunar BipedalWalker Walker2D HalfCheetah

|S| 6 8 8 24 17 17
|A| 3 2 4 4 6 6
d 213 222 244 404 356 356
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(a) Results under various input dimension d and fixed Matérn(ν = 2.5)
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(b) Results under various kernels and fixed input dimension d = 80

Figure 6: Comparison of the derivative estimation errors of our derived GP-based estimator (GP) and
the FD estimator under various input dimensions and kernels. Similarly, each result is reported with
the mean ± standard error from five independent runs.

(MLP) controller with 2 hidden layers, where each hidden layer has 10 hidden neurons and one bias
term. We adopt a L∞ constraint of ∥x∥∞ ≤ 1 on the parameters x. We use a softmax output layer
for the policies that deal with discrete action spaces, and a tanh output layer for the policies that deal
with continuous action spaces. The dimension of neural network parameters (represented as a column
vector) d is determined by the dimensions of both the observation |S| and the action space |A| of an
environment, as detailed in Tab. 2.

In order to search for policies that are robust to different random state initializations, we use the
vectorized API of OpenAI Gym, and our observed function value y(x) given the network parameters
x is an averaged return of 32 parallel environments. We also fix the seed of OpenAI Gym for all
queries, which ensures that we are evaluating on a fixed set of 32 state initializations and that our
results can be reproduced. We first initialize a sample of 500 points from a Latin Hypercube (McKay
et al., 1979) to find a good initial input, and then proceed to apply ZO optimization algorithms (i.e.,
ES, RGF, PRGF, and our ZORD) with the same query budget of 1000 on this initial input. For all
these ZO optimization algorithms, we employ the same Adam optimizer with a learning rate of 1.0
and exponential decay rates of 0.9, 0.999. Considering the prohibitive noise in RL experiments, we
use 300 queries from the optimization trajectory that has the smallest Euclidean distance with an
input needing to be updated. Of note, we conduct 10 trials in total where each trial differs from each
other by both the OpenAI Gym seed and the Latin Hypercube initializations.

APPENDIX D MORE RESULTS

D.1 MORE RESULTS ON DERIVATIVE ESTIMATION

Besides the comparison in Fig. 2, we provide additional comparison between our derived GP-based
estimator (6) and the FD estimator (2) under various input dimensions in Fig. 6(a) and various kernels
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(a) Ackley (d = 40) (b) Levy (d = 40)

Figure 7: Comparison of our ZORD algorithm using different confidence thresholds c for its dynamic
virtual updates, where the x-axis and the y-axis denote the number of function queries and the log-
scaled optimality gap (i.e., log (f(xT )− f(x∗))) achieved with this number of queries, respectively.

in Fig. 6(b) using the Ackley function. We adopt the same setting in Sec. 5.2. Interestingly, Fig. 6(a)(b)
show that under various input dimensions and GP kernels, our derived GP-based estimator (6) is
still able to achieve faster reduction rates compared with the FD estimator. Of note, all the function
queries applied in our derived GP-based estimator is from the optimization trajectory whereas the FD
estimator requires additional function queries for its derivative estimation. So, Fig. 6(a)(b) also show
that our derived GP method is still able to achieve improved query efficiency for accurate derivative
estimation than FD method under various input dimensions and GP kernels because our method
avoids the requirement of additional queries for derivative estimation. Interestingly, the objective
function (i.e., the Ackley function) is not truly sampled from the GPs based on these kernels. This
therefore means that though we have assumed that we need the prior knowledge about the GP in
which the objective function is sampled from (Sec. 2.1), such an assumption does not really need to be
satisfied for our derived GP-based method to achieve accurate derivative estimation in practice. More
interestingly, we notice that Matérn(ν = 0.5) and SE kernel will achieve slightly worse derivative
estimation, indicating that the choice of GP kernels may impact the quality of our derived GP-based
derivative estimation. However, in practice, our derived GP method based on Matérn(ν = 2.5) kernel,
which has been widely adopted in our experiments, is already able to provide us with good derivative
estimation for ZO optimization as confirmed by the results in our other experiments.

D.2 MORE RESULTS ON SYNTHETIC EXPERIMENTS

In this section, we compare ZORD with more baselines in Fig. 8. Notably, we mainly compare our
ZORD with CobBO (based on the code implementation provided by (Tan et al., 2021)) since CobBO
generally performs better than other baselines, e.g., TPE, ATPE, and BADS according to (Tan et al.,
2021). As shown in the results in Fig. 8, our ZoRD algorithm is still able to outperform the other
benchmark BO algorithm (i.e., CobBO).

We then investigate the impacts of the dynamic virtual updates (Sec. 3.2) on our ZORD algorithm. In
particular, we apply the same setting in Appx. C.2 to optimize the Ackley and Levy function with
d = 40 under various confidence thresholds c for our dynamic virtual updates. Fig. 7 illustrates the
results. As shown in both Fig. 7(a) and (b), our ZORD algorithm using the technique of dynamic
virtual updates (i.e., c > 0) can consistently achieve improved query efficiency compared with the
one not using the technique of dynamic virtual updates (i.e., c = 0). This indicates the essence of
dynamic virtual updates in helping improve the query efficiency of our ZORD algorithm. Such a
result actually corroborates our theoretical insights about virtual updates (Sec. 4.2). Remarkably,
our ZORD algorithm without the technique of dynamic virtual updates (i.e., c = 0) is still able to
achieve both improved query efficiency and better converged performance compared with RGF and
PRGF, which further verifies the superiority of our derived GP-based derivative estimation. More
interestingly, both Fig. 7(a) and Fig. 7(b) have verified that there indeed exists a trade-off for the
confidence threshold c as we have discussed in Sec. 3.2: The confidence threshold c can not be overly
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Figure 8: Additional comparison between our ZORD and other baselines. The x-axis and y-axis
denote the number of queries and log-scaled optimality gap (i.e., log (f(xT )− f(x∗))) achieved
after this number of queries. Each curve is the mean ± standard error from ten independent runs.
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(a) Success rate on MNIST (b) Success rate on CIFAR-10

Figure 9: Comparison of the success rate achieved by various ZO optimization algorithms on the 15
images selected from MNIST and CIFAFR-10 dataset. Note that the x-axis and the y-axis denote
the number of queries and the success rate (within the range of [0, 1]) achieved after this number of
queries, respectively.

small or excessively large in order to achieve the best query efficiency of our ZORD algorithm, e.g.,
c = 0.3 for Ackley (d = 40) and c = 0.4 for Levy (d = 40).

D.3 MORE RESULTS ON BLACK-BOX ADVERSARIAL ATTACK

Besides the comparison in our Sec. 5.3, we also compare the success rate achieved by different ZO
optimization algorithms on the 15 images selected from MNIST or CIFAR-10 in Fig. 9. Note that
we adopt the same settings in Appx. C.3 for this comparison. Considering the large computational
complexity of TuRBO-1/10 algorithm for hard-to-attack images3 which is usually undesirable in
practice, we drop the comparison with them in this experiment. Fig. 9 shows that under the same
query budget, our ZORD algorithm is able to achieve considerably improved success rate over other
ZO optimization algorithms. These results therefore further support the superior query efficiency of
our ZORD algorithm in real-world challenging problems.

D.4 MORE RESULTS FOR DERIVATIVE-FREE REINFORCEMENT LEARNING

Recent years have also witnessed a surging interest in derivative-free reinforcement learning (Salimans
et al., 2017; Qian and Yu, 2021), where ZO optimization algorithms are widely applied. In light of
this, we also demonstrate the superiority of our ZORD algorithm in the problem of derivative-free
reinforcement learning. Specifically, we adopt the setting in Sec. C.5 to experiment in different RL
environments. Tab. 3 summarizes the comparison among different ZO optimization algorithms under

3Bayesian optimization algorithms, including TuRBO-1/10, are widely known to suffer from the prohibitive
computational complexity when they need a large number of function queries for optimization, e.g., T > 1000
(Rasmussen and Williams, 2006).
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Table 3: Comparison of the rewards (larger is better) achieved by various ZO optimization algorithms
in different RL environments. Each result is reported with the mean ± standard deviation from ten
independent runs.

Algorithm Acrobot Swimmer Lunar BipedalWalker Walker2D HalfCheetah

ES −86.2±11.0 176.0±56.8 −94.7±24.4 −34.7±27.3 340.4±143.0 1042.4±753.9
RGF −83.0±5.6 213.2±65.1 −93.8±19.1 −30.3±40.3 368.4±223.1 1129.3±748.5
PRGF −86.3±9.9 218.6±66.2 −100.1±16.0 −29.9±35.2 344.6±152.3 1083.3±722.2

ZORD −73.3±2.4 280.5±77.6 −45.1±38.3 12.9±37.8 729.1±304.2 1950.5±576.1

the same query budget of 1000. As BO algorithms usually suffer from the prohibitive computational
complexity for a large T (Rasmussen and Williams, 2006) and GLD has never been applied in RL, we
mainly compare our ZORD algorithm with ES, RGF and PRGF, which also belongs to the same type
of ZO optimization algorithm: GD with estimated derivative. Remarkably, Tab. 3 shows that under
the same query budget, our ZORD algorithm can consistently enjoy improved performance (i.e.,
highest rewards) than the other ZO optimization algorithms in different RL environments. This further
supports the superiority of our ZORD algorithm to other FD-based ZO optimization algorithms.

APPENDIX E DISCUSSIONS

E.1 ZORD VS. FD-BASED ZO OPTIMIZATION

Of note, the novelty of our work in fact lies in its way of exploiting the GP assumption to help design
an improved derivative estimation and hence an improved ZO optimization algorithm, which to the
best of our knowledge has not been explored theoretically yet in the field of ZO optimization via
GD with estimated derivative. That is, at this moment, it is still not known in the literature how
existing FD methods can utilize such an assumption to achieve better derivative estimation (i.e., their
derivative estimation quality will remain the same), even when they make the same assumption as us.
In light of this, the comparison between our derived GP method and the FD method in Sec. 4 is not
only necessary but also meaningful to show the advantage of exploiting such an assumption in ZO
derivative estimation. Importantly, our empirical results further show that such an assumption is in
fact not restrictive for our ZORD to achieve compelling performance in practice. For example, our
Fig. 2 and Fig. 6 have shown that our derived GP-based method is able to achieve smaller derivative
estimation error than the FD method when the objective functions are not designed to be sampled
from a GP with the kernel that we had applied for our derivative estimation. Moreover, the results in
our Sec. 5.2, 5.3, 5.4 have shown that our ZORD is capable of achieving competitive optimization
performance for real-world optimization problems where the objective functions are also not designed
to be sampled from a GP with the kernel that we had used for our ZORD.

Meanwhile, the theoretical challenges of our work lie in the theoretical guarantee on the derivative
estimation error of our unique derived GP-based method for any input in the domain as well as the
convergence analysis based on such a unique derivative estimation, which to the best of our knowledge
have not been studied in the literature. This means that our Thm. 1 and Thm. 2 have provided new
developments in the analysis of gradient estimation error and our Thm. 3 will be the first convergence
result for GD using our unique derivative estimation method. Interestingly, the bound in our Thm. 3
also improves over the standard ones from (Nesterov and Spokoiny, 2017; Liu et al., 2018b) in several
aspects, as discussed in our Sec. 4.2.

E.2 ZORD VS. BO

Our ZORD algorithm and standard BO algorithms (e.g., GP-UCB) have in fact applied the same
GP assumption for their algorithm design. That is, however, where the similarity ends. Of note, our
ZORD exploits such an assumption to derive a specific GP (i.e., (4)) for derivative estimation, which
is then employed for local exploitation via (projected) GD update. In contrast, BO algorithms utilize
such an assumption to construct their acquisition functions for a global optimization that can trade
off between exploitation and exploration. In practice, the exploration of BO algorithms is usually
query-inefficient, especially for problems with high-dimensional input spaces, and therefore GD with
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Figure 10: Comparison of local derivative estimation (in the input domain of [0, 3]) in our ZORD
and global function approximation (in the input domain of [−6, 6]) in BO under various number of
random function queries.

estimated derivatives (especially our ZORD) is preferred to realize better optimization performances
in these problems (see our Sec. 5.2). So, our ZORD and BO algorithms belong to two different types
of ZO optimization algorithms (i.e., GD-type vs. BO-type), where their theoretical analyses are in
fact not comparable. In particular, GD-type and BO-type ZO optimization algorithms apply different
metrics for their theoretical analyses, e.g., the derivative estimation error as well as the convergence
to a stationary point (in the nonconvex case) for GD-type ZO optimization algorithms vs. the global
asymptotic convergence in terms of the regret for BO-type ZO optimization algorithms. So, it is more
reasonable to compare the theory (including the theoretical challenge, the new developments, and the
novelty of the convergence result) of our ZORD with other GD-type ZO optimization algorithms,
e.g., the ones using FD methods for their derivative estimation (Nesterov and Spokoiny, 2017; Liu
et al., 2018b), as what we have discussed in Sec. E.1.

In addition, in contrast to using the GP to model the objective function within the entire domain for
global exploration in BO, our derived GP in ZORD will be applied to estimate the derivative of the
objective function for local exploitation by GD as shown in Sec. 3.1. As GD typically optimizes in a
local region, our derived GP only needs to estimate the derivative locally, which is known to be much
simpler than modeling the objective function within the entire domain in BO especially for objective
functions in high-dimensional input spaces. In light of this, the derived GP for derivative estimation
(4) in our ZORD algorithm advances the standard GP in BO in the following aspects:

1. Improved Query Efficiency for Estimation. The derived GP in our ZORD algorithm
requires fewer function queries to provide accurate derivative estimation. We provide a
visual example in Fig. 10, in which we sample a one-dimensional function f from a GP prior
GP(0, k(x, x)) using the standard SE kernel and then randomly select the same number
of queries from the input domain of [−6, 6] and [0, 3] for standard GP and our derived GP,
respectively. As illustrated in Fig. 10, function in a local region (i.e., x ∈ [0, 3]) is usually
smoother than its counterpart in the entire domain (i.e., x ∈ [−6, 6]). As a result, with only
4 function queries, our derived GP can already provide accurate estimation to the derivative
of this objective function whereas standard GP requires more than 8 function queries to
model this objective function accurately in the entire domain.

2. Reduced Computational Complexity. Comparing (3) and (5), both the derived GP for
derivative estimation in our ZORD algorithm and the standard GP in BO enjoy a compu-
tational complexity of O(n3) with n function queries. However, as a consequence of the
improved query efficiency of our derived GP, it is able to require fewer function queries (i.e.,
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smaller n) for accurate derivative estimation4 and hence can enjoy a reduced computational
complexity in practice especially when a large number of queries (e.g., n > 1000) are
applied to the standard GP in BO.

4As introduced in our Appx. C, 150 function queries for our derived GP can already help our ZORD algorithm
to achieve remarkable results in practice (refer to the experiments in our Sec. 5).
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