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Abstract

Transforming complex actions into discrete skill
abstractions has demonstrated strong potential for
robotic manipulation. Existing approaches mainly
leverage latent variable models, e.g., VQ-VAE, to
learn skill abstractions through learned vectors
(codebooks), while they suffer from codebook
collapse and modeling the causal relationship be-
tween learned skills. To address these limita-
tions, we present Skill Training with Augmented
Rotation (STAR), a framework that advances both
skill learning and composition to complete com-
plex behaviors. Specifically, to prevent codebook
collapse, we devise rotation-augmented residual
skill quantization (RaRSQ). It encodes relative
angles between encoder outputs into the gradi-
ent flow by rotation-based gradient mechanism.
Points within the same skill code are forced to
be either pushed apart or pulled closer together
depending on gradient directions. Further, to cap-
ture the causal relationship between skills, we
present causal skill transformer (CST) which ex-
plicitly models dependencies between skill repre-
sentations through an autoregressive mechanism
for coherent action generation. Extensive exper-
iments demonstrate the superiority of STAR on
both LIBERO benchmark and realworld tasks,
with around 12% improvement over the baselines.

1. Introduction
The challenge of modeling multitask visuomotor policy has
long been a central problem in robotic manipulation (Levine

†
Corresponding Author 1School of Computer Science

and Technology, Harbin Institute of Technology (Shenzhen)
2Huawei Noah’s Ark Lab. Correspondence to: Rui Shao
<shaorui@hit.edu.cn>, Xiang Deng <dengxiang@hit.edu.cn>.

Proceedings of the 42 st International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Codebook

Quantization

Before Update Gradient Flow After Update

Naive VQ

RaRSQ

Encoder

D
ecoder

Figure 1. Comparison between naive VQ and our RaRSQ approach
in the skill learning process. Top: Overview of skill quantization
framework. Bottom: Visualization of gradient flow and codebook
updates across three stages (before update, during gradient flow,
and after update), where RaRSQ maintains geometric relationships
between embeddings, leading to more diverse skills.

et al., 2016; Zhu et al., 2018). Individual manipulation tasks
already pose significant challenges like multimodal action
distributions (Mandlekar et al., 2021), while these chal-
lenges are substantially amplified in the multitask setting.
This results in a highly entangled action space where char-
acteristics of different tasks interact and overlap, making it
challenging to learn complex manipulation behaviors (Lv
et al., 2024).

An intuitive approach to alleviate this problem is to learn
structured representations of manipulation behaviors by de-
composing complex actions into simpler, reusable skill ab-
stractions (Fu et al., 2024; Sharma et al., 2019). This hi-
erarchical framework reflects the compositional structure
inherent to manipulation tasks, enabling the systematic de-
composition of complex behaviors into sequences of skill
abstractions. Recent studies (Ju et al., 2024; Wu et al., 2024)
have demonstrated promising results using latent variable
models (LVM) to discretize continuous action spaces into
learned skills. These methods enable a more efficient repre-
sentation and composition of complex behaviors.

1

https://github.com/JiuTian-VL/STAR


STAR: Learning Diverse Robot Skill Abstractions through Rotation-Augmented Vector Quantization

However, while this discretization paradigm transforms con-
tinuous actions into skills and provides a structured represen-
tation for complex behaviors, existing LVM-based methods
face two critical limitations in skill learning and composi-
tion (Garg et al., 2022; Lee et al., 2024). First, techniques
like VQ-VAE suffer from codebook collapse (Mentzer et al.,
2023; Roy et al., 2018). Most codebook vectors remain
unused during training, with only a small subset being fre-
quently utilized for encoding diverse manipulation skills.
This severely limits the capacity to capture the rich variety of
robot behaviors. We argue that this limitation stems from the
straight-through gradient estimator (STE) in VQ-VAE (Van
Den Oord et al., 2017). During training, as illustrated in the
middle column of Fig. 1, STE assigns identical gradients to
all encoder embeddings (hollow circles) that are quantized
to the same codebook vector (orange solid circles). This
oversimplified gradient assignment ignores the inherent ge-
ometric relationships between different embeddings within
the same partition (regions separated by curved blue deci-
sion boundaries), leading to suboptimal codebook updates
and eventual collapse of the representation space.

Second, existing approaches struggle with effective skill
composition, particularly in complex, long-horizon tasks
that require precise coordination of multiple skills (Mete
et al., 2024). While some methods adopt residual quanti-
zation (RQ) (Zeghidour et al., 2021) to decompose skills
into multiple levels for more precise representation, they fail
to model the dependencies between different skill abstrac-
tions (Lee et al., 2024). This makes it difficult to generate
coherent and temporally consistent actions for multi-stage
manipulation tasks, where skills need to be carefully se-
quenced and composed.

To address these fundamental challenges, we propose Skill
Training with Augmented Rotation (STAR), a novel frame-
work that advances both skill learning and composition for
robot manipulation. Our key insight is that encoding ge-
ometric relationships between action sequences into the
residual quantization process is crucial for learning diverse
and reusable skills, rather than relying on the oversimplified
gradient assignment of straight-through estimation. Specifi-
cally, (1) to prevent codebook collapse, we devise rotation-
augmented residual skill quantization (RaRSQ), which com-
bines multi-level residual encoding with rotation-based gra-
dient mechanisms. The residual structure progressively cap-
tures skills at different abstraction levels, while the rotation-
augmented gradient flow enables points within the same
skill code to be either pushed apart or pulled closer together
based on their geometric relationships. Compared to naive
VQ-VAE where similar embeddings are forced to have iden-
tical gradients, Fig. 1 demonstrates that RaRSQ prevents em-
beddings from collapsing to the same codebook vector, lead-
ing to more diverse skill representations; and (2) for effec-
tive skill composition, we present causal skill transformer

(CST) which explicitly models dependencies between skill
representations through an autoregressive mechanism for
coherent action generation. By leveraging the hierarchical
nature of residual quantization, CST sequentially predicts
skill codes from coarse to fine levels and incorporates an
offset prediction mechanism from BeT (Shafiullah et al.,
2022) to bridge the gap between discrete skills and contin-
uous control. This combination of hierarchical prediction
and continuous refinement enables precise control through-
out extended sequences, making it particularly effective for
long-horizon manipulation tasks. To summarize, our main
contributions are as follows:

• A rotation-augmented residual skill quantization (RaRSQ)
mechanism that maintains diverse skill representations by
encoding relative angular relationships in gradient up-
dates, while achieving precise skill abstraction through
hierarchical residual encoding.

• A causal skill transformer (CST) that models skill depen-
dencies through autoregressive prediction and enhances
action precision via action refinement.

• Comprehensive experimental validation across multiple
benchmarks and real-world tasks, demonstrating substan-
tial improvements in both skill learning efficiency and
task performance.

2. Related Work
Multi-task Imitation Learning. Multi-task robotic learn-
ing has been approached through various methods including
supervised pre-training (Sun et al., 2023; Wu et al., 2023;
Li et al.) and large-scale demonstration learning (Vuong
et al., 2023; Brohan et al., 2023; Li et al., 2025). Recent ad-
vances have explored the use of generative models, with
frameworks like diffusion models (Chi et al., 2023; Ze
et al., 2024; Lv et al., 2025) and transformer-based ap-
proaches (Pertsch et al., 2025; Bharadhwaj et al., 2024)
showing promising results in handling multimodal action
distributions. The Behavior Transformer (BeT) (Shafiul-
lah et al., 2022) demonstrated that policies operating in
discretized action spaces can effectively model diverse be-
haviors, and introduced an offset prediction mechanism to
handle the discretization-induced precision loss. Action
Chunking Transformer (ACT) (Zhao et al., 2023) further
addressed temporal correlations by predicting action chunks.
Unlike existing methods, STAR advances this line of work
by introducing novel mechanisms for learning structured
skill representations while preserving the geometric rela-
tionships inherent in continuous action sequences.

Robotic Manipulation in Learned Latent Spaces. Latent
Variable Models (LVMs) have emerged as powerful tools
for learning structured representations in robotics (Yang
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et al., 2024; Luo et al., 2023; Bharadhwaj et al., 2023),
particularly for offline imitation learning and skill abstrac-
tions. Among them, methods like LAPA (Ye et al., 2024),
IGOR (Chen et al., 2024), leverage internet-scale human
videos to learn transferable manipulation skills. Several
works have explored discrete latent spaces for skill rep-
resentation. PRISE (Zheng et al., 2024) employs BPE
tokenization for temporal abstraction but struggles to ef-
fectively encode varied action distributions across tasks.
TAP (Jiang et al., 2022) and H-GAP (Jiang et al., 2023) use
self-supervised autoencoders for skill learning but rely heav-
ily on state-based model predictive control, limiting their
real-world applicability. QueST (Mete et al., 2024) learns
discrete latent skills with temporal dependencies, but strug-
gles to learn diverse skill representations. VQ-BeT (Lee
et al., 2024) shares our motivation of using discrete latent
skills for transformer-based policies, but their standard quan-
tization approach suffers from codebook collapse and fails
to capture temporal dependencies between skills. Unlike
existing approaches, STAR addresses both the representa-
tional and temporal challenges through a two-stages frame-
work that combines rotation-augmented quantization for
preventing codebook collapse with explicit modeling of
skill dependencies for coherent behavior generation.

3. Method
3.1. Preliminaries

Residual VQ-VAE and STE. VQ-VAE with residual quan-
tization transforms continuous data into hierarchical dis-
crete representations through a multi-stage quantization pro-
cess (Adiban et al., 2022). It consists of three key com-
ponents: an encoder E , a decoder D, and multiple code-
books Ci. Given an input x ∈ Rn, the encoder E first
maps it to a continuous latent code e ∈ Rm. Then, e
are quantized using D codebooks, where each codebook
Ci = {e(i,1), ..., e(i,K)} contains K learnable vectors.

Starting with the initial residual r0 = e, residual quan-
tization iteratively performs nearest neighbor lookup and
residual computation:

kd = Q(rd−1; Cd) = argmink∈{1,...,K} ∥rd−1 − e(d,k)∥22
(1)

rd = rd−1 − e(d,kd) (2)

where kd is the selected code index at depth d, and rd is
the remaining residual to be quantized by subsequent code-
books. The final quantized representation ê is obtained by
summing the selected code vectors:

ê =
∑D

d=1
e(d,kd) (3)

The decoder D then reconstructs the input: x̂ = D(ê). The
model is trained with a combination of reconstruction and

Algorithm 1 Rotation-augmented Residual Skill Quantiza-
tion (RaRSQ)
Require: action sequence at:t+T , codebooks {Cd}Dd=1

1: z← Encoder(at:t+T )
2: r0 ← z
3: for d = 1 to D do
4: // Quantize current residual
5: kd ← argmink ∥rd−1 − e(d,k)∥22
6: // Compute rotation matrix that aligns rd−1 to e(d,kd)

7: Rd ← ComputeRotation(rd−1, ed,kd)
8: // Apply rotation with stop-gradient to preserve geometric

structure
9: q̃d ← sg

[ ∥e(d,kd)∥
∥rd−1∥

Rd

]
rd−1

10: // Update residual for next level
11: rd ← rd−1 − q̃d

12: end for
13: ẑ←

∑D
d=1 q̃d

14: â← Decoder(ẑ)
15: return reconstructed action â, codes {kd}Dd=1

commitment losses:

L = ∥x−D(ê)∥22 + ∥ sg(e)− ê∥22 + β∥e− sg(ê)∥22
(4)

where sg(·) denotes the stop-gradient operator and β is a
hyperparameter scaling the commitment loss for multi-stage
residual learning stability (Lee et al., 2022).

Due to the non-differentiability of the quantization operation
Q(·), the straight-through estimator (STE) is employed for
backpropagation by simply copying gradients from ê to e
through setting ∂ê/∂e = I. This residual approach enables
more precise approximation than standard VQ-VAE - with
codebook size K and depth D, it can effectively represent
KD distinct quantization outputs while maintaining better
computational efficiency and training stability.

Rotation Trick. To address the limitations of STE in pre-
serving geometric relationships during gradient propagation,
recent work(Fifty et al., 2024) proposes the rotation trick
that transforms encoder outputs to codebook vectors via
rotation and rescaling. For encoder output e and codebook
vector q, it computes:

q̃ =
∥q∥
∥e∥

·R · e (5)

where R is the rotation matrix that aligns e with q. Dur-
ing backpropagation, the rotation transformation preserves
relative angles between gradients and vectors, enabling dif-
ferent points within the same quantization region to receive
varying gradient updates based on their geometric relation-
ships. This mechanism helps prevent codebook collapse
and maintain diverse vector representations by encouraging
appropriate exploration of the latent space.
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Figure 2. Overview of the STAR framework. Top: The RaRSQ module encodes continuous action sequences into hierarchical discrete
skills through rotation-augmented residual quantization. Bottom: The CST module processes multimodal inputs (visual observations,
proprioceptive states, and language instructions) to generate actions through autoregressive skill prediction and action refinement.

3.2. STAR

3.2.1. OVERVIEW

In this section, we present the Skill Training with Aug-
mented Rotation (STAR) framework, which employs
Rotation-augmented Residual Skill Quantization (RaRSQ)
and a Causal Skill Transformer (CST) to enhance skill learn-
ing and composition in robotic manipulation. The frame-
work of STAR is shown in Fig. 2. STAR adopts a two-stage
training strategy: first training RaRSQ to learn skill abstrac-
tions, then fixing RaRSQ to train CST for skill composition.

3.2.2. ROTATION-AUGMENTED RESIDUAL SKILL
QUANTIZATION

To learn expressive and reusable skill representations
from continuous action sequences, we propose Rotation-
augmented Residual Skill Quantization (RaRSQ). Our ap-
proach addresses two key limitations of standard VQ-VAE:
codebook collapse and inefficient skill representation. By
integrating rotation transformations with residual quanti-
zation, RaRSQ preserves geometric relationships between
action sequences while enabling hierarchical skill encoding.

Skill Encoding Process. Given an action sequence at:t+T ,
we first encode it into a latent vector z = ϕ(at:t+T ) through
an encoder network ϕ (see Algorithm 1). RaRSQ then
discretizes z through an iterative process as follows:

Starting with the initial residual r0 = z, for each depth

d = {1, ..., D}, we quantize and rotate the residual:

kd = argmink ∥rd−1 − e(d,k)∥22 (6)

q̃d = sg

[∥e(d,kd)∥
∥rd−1∥

Rd

]
rd−1 (7)

rd = rd−1 − q̃d (8)

where ed,kd
represents the kd-th vector in codebook Cd, and

sg[·] denotes the stop-gradient operator. The rotation matrix
Rd is computed as:

Rd = I− 2rdr
T
d + 2q̂dr̂

T
d−1 (9)

where

q̂d = e(d,kd)/∥e(d,kd)∥, r̂d−1 = rd−1/∥rd−1∥ (10)

r̂d =
r̂d−1 + q̂d

∥r̂d−1 + q̂d∥
(11)

The final skill representation is obtained by summing the
rotated quantized vectors:

ẑ =
∑D

d=1
q̃d (12)

During backpropagation, gradients flow through the rotation
matrices:

∂ẑ

∂rd−1
=

∥e(d,kd)∥
∥rd−1∥

Rd (13)

This rotation-based gradient mechanism enables different
points within the same quantization region to receive vary-
ing updates based on their geometric relationships, effec-
tively preventing codebook collapse.
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Theoretical Benefits. Our formulation offers three key
advantages:

1. Improved Skill Diversity: The rotation-based gradient
mechanism prevents codebook collapse by preserving ge-
ometric relationships between actions and corresponding
skills. Our rotation transformation enables varied up-
dates based on relative angular relationships, preventing
skills from collapsing to a small subset of codes.

2. Hierarchical Skill Structure: The residual quantization
naturally decomposes actions into a hierarchy, where
k1 captures coarse primitives while subsequent codes
encode finer details, matching the inherent structure of
manipulation tasks.

3. Enhanced Representation Capacity: The combination
of residual quantization and rotation-augmented gradi-
ents enables representing KD distinct skills with only
K codes per level, while maintaining low quantization
errors compared to naive VQ approaches.

Training Objective. We train RaRSQ using a combination
of reconstruction and commitment losses:

L = Lrecon + Lcommit (14)

Lrecon = ∥at:t+T − ψ(ẑ)∥22 (15)

Lcommit = β

D∑
d=1

∥ sg[rd−1]−
∥ed,kd

∥
∥rd−1∥

Rdrd−1∥22 (16)

where ψ is the decoder, sg[·] denotes stop-gradient, and β
is a weighting coefficient. The reconstruction loss Lrecon

ensures accurate action reconstruction, while the commit-
ment loss Lcommit encourages the residuals to stay close
to their corresponding rotated and scaled skill abstractions,
maintaining geometric relationships during quantization.

3.2.3. CAUSAL SKILL TRANSFORMER

To effectively compose learned skills for sequential manipu-
lation tasks, we propose the Causal Skill Transformer (CST)
that combines autoregressive skill prediction with adaptive
refinement. Our framework explicitly models the hierar-
chical dependencies between skills while enabling precise
action generation through refinement.

Input Representation. Given a sequence of observations
ot−h:t = {(ik,pk)}, where ik and pk represent visual
and proprioceptive inputs at timestep k, and a task instruc-
tion τ , we first encode the multimodal inputs using:hk =
[fvis(ik); fprop(pk)], where fvis and fprop are vision and
proprioceptive encoders respectively. The transformer-
based policy πθ then processes these encodings along with
the task embedding to generate contextual features:

gt = πθ([τ ;ht−h:t]). (17)

Hierarchical Skill Prediction. Building on our residual
quantization framework, CST models skill selection as a

hierarchical process where each skill depends on previous
choices:

P (k1, ..., kD|ot−h:t, τ ) =

D∏
d=1

P (kd|k<d,gt) (18)

where k<d represents all previously predicted skill codes,
and kd ∈ {1, ...,K} denotes the index selected from the d-
th codebook. For each depth d, a prediction head ζd outputs
a categorical distribution over the K possible codebook
indices, enabling the model to select appropriate skills at
each level of abstraction. This autoregressive formulation
is crucial as it captures the natural dependency structure in
our residual skill space - coarse movement primitives must
be selected before fine-grained adjustments.

Action Refinement. While the predicted codes can be di-
rectly decoded to actions using the decoder in RaRSQ, dis-
cretization of the continuous action space inevitably leads
to some loss of fidelity (Shafiullah et al., 2022). Following
BeT, we introduce a refinement mechanism through an off-
set prediction head to bridge this gap. Specifically, we add
an offset head ζref to predict continuous refinements to the
discretized actions. The final action is computed as:

ât = ψ(

D∑
d=1

Rded,kd
) + ζref(gt) (19)

where ψ is the RaRSQ decoder from Section 3.2.2, ed,kd

is the selected codebook vector at depth d, and Rd is the
corresponding rotation matrix.

Training Objective. We optimize our framework using a
combination of skill prediction and refinement losses:

L = −
D∑

d=1

logP (k∗d|k<d,gt) + λ∥at − ât∥2 (20)

where k∗d are the ground truth codes from RaRSQ encoding
of the expert action at, and λ is a trade-off coefficient.

3.2.4. INFERENCE PROCESS

At inference time, our framework generates actions through
an efficient two-stage process that balances exploration and
precision. Given the current observation context ot−k:t and
task instruction ℓ, we perform:

Hierarchical Skill Selection. We first sample skill codes
(k1, ..., kD) autoregressively using nucleus sampling with
temperature τ and threshold p:

kd ∼ NucleusSample(P (kd|k<d,gt), p, τ) (21)

Action Generation and Execution. The sampled skill
codes are mapped to their corresponding codebook vec-
tors and combined with predicted refinements to generate
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Method LIBERO-Object LIBERO-Spatial LIBERO-Goal LIBERO-Long LIBERO-90 Overall

Octo† 85.7 ±0.9 78.9 ±1.0 84.6 ±0.9 51.1 ±1.3 - 75.1 ±0.6
OpenVLA† 88.4 ±0.8 84.7 ±0.9 79.2 ±1.0 53.7 ±1.3 - 76.5 ±0.6
ResNet-T 78.9 ±1.4 75.7 ±1.9 52.7 ±2.4 45.0 ±1.1 83.9 ±1.5 67.3 ±0.9
Diffusion Policy 62.6 ±2.8 69.5 ±1.8 54.6 ±0.5 51.2 ±3.0 75.3 ±0.7 62.6 ±0.6
ACT 78.8 ±1.2 82.0 ±0.5 66.1 ±1.6 44.0 ±0.5 63.4 ±5.8 66.8 ±1.1
VQ-BeT 90.3 ±1.5 88.7 ±2.0 61.3 ±1.0 59.7 ±0.2 84.2 ±0.3 76.8 ±0.5
QueST 90.0 ±1.1 84.5 ±0.2 76.7 ±0.9 69.1 ±1.0 87.4 ±0.4 81.5 ±0.6
Ours 98.3 ±0.2 95.5 ±0.6 95.0 ±0.7 88.5 ±0.3 90.8 ±0.2 93.6 ±0.1

Table 1. Overall Performance. The results of the baselines marked with † are cited from their original papers. Bold indicate the highest
score. We report the mean and standard deviation of the normalized score with three random seeds.

actions:

ât:t+h = ψ(

D∑
d=1

ed,kd
) + ζoffset(gt) (22)

The system executes the generated action sequence and up-
dates observations before re-planning. This rolling horizon
approach allows our framework to adapt to environment
dynamics while maintaining behavioral consistency through
the learned skill space.

4. Experiment
4.1. Setup and Baselines

We evaluate STAR on two comprehensive manipulation
benchmarks: LIBERO (130 tasks across five suites) and
MetaWorld MT50 (50 distinct manipulation tasks), plus two
real-world long-horizon tasks. Success Rate (SR) is mea-
sured over 50 episodes per task with three random seeds.
Detailed descriptions are in Appendix A. We compare STAR
against three categories of state-of-the-art methods: (1) Dis-
crete LVM approaches, (2) End-to-end imitation learn-
ing, (3) Large-scale VLA models. Detailed descriptions of
these baselines can be found in Appendix A.5.1.

4.2. Overall Performance

As shown in Table 1, STAR significantly outperforms
all baselines across different LIBERO task suites, achiev-
ing 93.6% overall success rate and surpassing the previ-
ous state-of-the-art QueST by 12.1% (81.5%). The perfor-
mance improvement is particularly pronounced on LIBERO-
Long tasks (88.5% vs. 69.1%, +19.4%) and complex
manipulation scenarios like LIBERO-Object (98.3% vs.
90.0%, +8.3%). Compared with other baselines, STAR
demonstrates consistent improvements across all task cate-
gories. For basic manipulation tasks in LIBERO-Object and
LIBERO-Spatial, our method achieves 7.2%-12.6% higher
success rates. The improvement margins expand signifi-
cantly to 18.3%-33.9% on more challenging LIBERO-Goal
and LIBERO-Long tasks.

This larger gap on complex tasks stems from the codebook
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Figure 3. Performance comparison on the MetaWorld MT50 bench-
mark. STAR achieves consistently superior performance (92.7%)
compared to baseline methods across 50 manipulation tasks.

collapse issue in discrete latent approaches like VQ-BeT
and QueST. Notably, STAR even outperforms large-scale
models like Octo and OpenVLA despite their access to
significantly more training data.

To further validate the capability of our approach across
different manipulation scenarios, we evaluate STAR on the
MetaWorld MT50 benchmark. As demonstrated in Fig. 3,
the strong performance extends to the MetaWorld MT50
benchmark, where STAR achieves 92.7% average success
rate across all 50 tasks, outperforming existing methods
with a margin of 2.1%-5.4%. The consistent improvements
across both manipulation benchmarks demonstrate the ef-
fectiveness of STAR as a general framework for learning
diverse robot skills.

4.3. Analysis of Learned Skill Diversity

To evaluate the effectiveness of STAR in preventing code-
book collapse, we conduct quantitative analysis of the
learned skill representations. Fig. 4 reveals several find-
ings that demonstrate the superiority of our approach over
naive VQ-VAE: First, STAR achieves complete codebook
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Method LIBERO-Object LIBERO-Spatial LIBERO-Goal LIBERO-Long LIBERO-90 Overall

Ours 98.3 ±0.2 95.5 ±0.6 95.0 ±0.7 88.5 ±0.3 90.8 ±0.2 93.6 ±0.1
w/o AR 95.3 ±0.5 94.3 ±0.6 88.1 ±0.2 83.3 ±1.1 86.4 ±0.2 89.5 ±0.1
w/o Rotation 93.7 ±0.2 94.6 ±0.3 91.3 ±0.3 85.7 ±0.8 89.7 ±0.2 91.0 ±0.3
w/o Rotation and AR 93.3 ±0.4 91.9 ±0.8 86.9 ±0.2 81.5 ±1.1 85.5 ±2.0 87.8 ±0.4

Table 2. Ablation Results. “w/o AR/Rotation” represents removing the module of auto regressive and rotation matrix, respectively. Best
results are marked in bold.
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between RaRSQ (light blue) and naive VQ-VAE (dark blue) ap-
proaches shows RaRSQ achieves complete codebook utilization
across all 16 codes, while naive VQ-VAE exhibits severe collapse
with only 7 active codes. The percentage values indicate the usage
frequency of each codebook index during training.

utilization with all 16 codes being actively engaged in skill
representation, while naive VQ-VAE exhibits severe col-
lapse, utilizing only 43.8% of its codebook capacity (7 out
of 16 codes). This comprehensive utilization indicates that
RaRSQ successfully maintains diverse skill abstractions
throughout the learning process. Second, beyond mere uti-
lization, RaRSQ demonstrates significantly more balanced
skill distribution across its codebook. The mean utilization
frequency per code is 6.25%, approaching the theoretical
optimal uniform distribution. In contrast, VQ-VAE shows
a highly skewed distribution with 14.29% mean utilization
per active code, indicating overreliance on a limited subset
of representations. RaRSQ crucially maintains this healthy
variation across its entire codebook rather than concentrat-
ing it in a small subset of active codes.

4.4. Ablation Study

To evaluate the contribution of each key component in
STAR, we conduct ablation studies by removing critical
modules. The results are shown in Table 2. We compare the
following variants: (1) w/o AR: Removes the autoregressive
prediction in CST, directly predicting all skill codes indepen-
dently; (2) w/o Rotation: Removes the rotation-augmented

gradient in RaRSQ, using standard straight-through estima-
tion; (3) w/o Rotation and AR: Removes both components.

The results demonstrate that both components are essential
for strong performance. First, removing the autoregressive
prediction (w/o AR) significantly impacts the ability to cap-
ture skill dependencies, leading to a substantial performance
drop (89.5% vs 93.6% overall). This degradation is partic-
ularly severe on tasks requiring precise skill sequencing,
such as LIBERO-Goal (-6.9%) and LIBERO-Long (-5.2%).
Without autoregressive prediction, the model struggles to
maintain temporal coherence between selected skills, re-
sulting in fragmented or inconsistent behavior sequences.
The rotation-augmented gradient also proves crucial for
effective skill learning. Removing this component (w/o
Rotation) leads to degraded performance (91.0% overall),
with the impact most pronounced on LIBERO-Object (-
4.6%). This aligns with our theoretical analysis - without
rotation-augmented gradients, the model suffers from code-
book collapse and fails to maintain diverse skill representa-
tions. The performance decline is especially noticeable in
tasks requiring varied manipulation skills, where having a
rich repertoire of distinct skills is essential.

When both components are removed (w/o Rotation and
AR), we observe the most severe performance degradation
(87.8% overall). This synergistic effect demonstrates how
our two-stage approach - first learning diverse skills through
rotation-augmented quantization, then capturing their causal
relationships through autoregressive prediction - is crucial
for effective skill learning and composition. The substan-
tial performance gap (5.8% lower than STAR) validates our
design principle of combining geometric structure preser-
vation for skill diversity with explicit temporal dependency
modeling for skill composition.

Method Sequential Stages Overall

Open +Place +Close Success

VQ-BET 4/10 3/10 1/10 1/10
QueST 3/10 1/10 0/10 0/10
Ours 6/10 4/10 3/10 3/10

Table 3. Performance on sequential manipulation task (drawer op-
eration). Results show successful trials out of 10 attempts for each
stage and overall task completion.
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start move grasp open relax move

pick up move place move push

Instruction: Open the drawer, place the toy in the drawer and then close it.

start move down pick up place

up move pick up move place

Instruction: Pick the cube into the plate and pick the toy into the box.

Figure 5. Visualization of two real-world manipulation tasks with key execution stages. Each frame shows a critical step in the manipulation
sequence.

Method Task Completion Overall

Cube→Plate Toy→Box Success

VQ-BET 5/10 3/10 3/10
QueST 6/10 4/10 4/10
Ours 8/10 6/10 6/10

Table 4. Performance on sequential manipulation task (sequential
object placement). Results show successful trials out of 10 attempts
for each subtask and overall completion.

4.5. STAR on Real-World Robots

To validate the effectiveness of STAR beyond simulation,
we evaluate our approach on two challenging real-world ma-
nipulation tasks: a sequential object placement task (”Pick
the cube into the plate and pick the toy into the box”) and a
structured drawer manipulation sequence (”Open the drawer,
place the toy in the drawer and then close it”). These tasks
mirror the complexity of LIBERO-Long tasks while intro-
ducing real-world challenges like lighting variations and
physical dynamics.

For the drawer manipulation task, as shown in Table 3, the
results highlight a key advantage of the hierarchical skill
decomposition. While all methods can initiate basic ac-
tions like drawer opening (60% success rate for STAR),
performance degrades through complex sequences. STAR
maintains higher success rates across stages, achieving 30%

complete task success compared to 10% for VQ-BeT and
0% for QueST. The performance degradation from open-
ing (60%) to complete execution (30%) reveals the com-
pounding difficulty of maintaining precise control through
extended sequences, though the degradation of STAR is
notably less severe than the baselines.

As show in Table 4, the sequential object placement results
further demonstrate the effectiveness of STAR in handling
varied manipulation skills. STAR achieves 60% success rate
for complete task execution, significantly outperforming
VQ-BeT and QueST. The performance difference between
initial cube placement and the more challenging toy place-
ment aligns with task complexity, as the second placement
requires more precise control given the confined space of the
box. These results, visualized in Fig. 5, demonstrate that the
improvements of STAR in skill learning and composition
are effective in real-world scenarios.

5. Conclusion
In this paper, we presented STAR, a framework for learn-
ing and composing diverse robot skills through rotation-
augmented vector quantization. Through RaRSQ and CST,
our approach effectively prevents codebook collapse while
enabling precise skill composition. Extensive experiments
demonstrate the strong performance of STAR across manip-

8
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ulation benchmarks, significantly outperforming state-of-
the-art methods in both simulation and real-world settings.

Limitations. While STAR demonstrates strong perfor-
mance across benchmarks, our approach requires pre-
defined codebook sizes and quantization depths, which must
be manually tuned for different task domains. Further, as
an imitation learning approach, STAR depends on the qual-
ity of available expert demonstrations, which may limit its
applicability when such data is scarce.
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A. Experimental and Dataset

Put the yellow and white mug in the microwave and close it demo

turn on the stove and put the moka pot on it demo

put both the alphabet soup and the cream cheese box in the basket demoput the moka pot on it demo

Figure 6. The visualization of simulated tasks, including

A.1. Benchmark Environments

We evaluate STAR across multiple comprehensive benchmarks spanning both simulated and real-world environments to
assess its effectiveness in diverse manipulation scenarios.

A.1.1. LIBERO BENCHMARK

LIBERO is a comprehensive benchmark for language-conditioned manipulation tasks that evaluates different aspects of
robotic manipulation capabilities through five distinct task suites:

• LIBERO-Spatial contains 10 tasks focusing on identical objects in different spatial layouts, testing the understanding
of spatial relationships.

• LIBERO-Object comprises 10 tasks with consistent layouts but varying objects, evaluating the ability to generalize
across different object types.

• LIBERO-Goal features 10 tasks sharing the same object categories and spatial layouts but with different goals,
assessing the capability to learn diverse task-oriented behaviors.

• LIBERO-Long presents 10 challenging long-horizon tasks involving diverse object categories and layouts, testing
temporal reasoning and sequential manipulation skills.

• LIBERO-90 encompasses 90 tasks with extremely diverse object categories, layouts, and task goals, providing a
comprehensive evaluation platform.

For our experiments, we utilize 50 expert demonstrations per task from the author-provided dataset. These demonstrations
capture diverse manipulation strategies and initial conditions, enabling robust policy learning.
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A.1.2. METAWORLD MT50

MetaWorld MT50 is a challenging multi-task benchmark consisting of 50 distinct manipulation tasks performed by a Sawyer
robotic arm in simulation. The tasks range from basic object manipulation (e.g., pushing, pulling) to complex tool usage (e.g.,
using a hammer, operating a door lock). Each task requires precise control to achieve specific goals, such as moving objects
to target locations or manipulating articulated objects to desired configurations. The MT50 setting specifically evaluates the
ability to simultaneously learn and master all 50 tasks, making it a rigorous test for skill learning and composition.

For training, we collect 100 demonstrations per task using the scripted policies provided in the official MetaWorld codebase.
These policies ensure consistent and optimal task execution, providing a reliable basis for learning manipulation skills.

A.2. Real-World Setup

To validate the effectiveness of our approach in real-world scenarios, we conducted experiments using the Cobot Agilex
ALOHA robot, a dual-arm manipulator platform. For our experiments, we utilized a single arm to perform two challenging
sequential manipulation tasks designed to test the ability to handle complex, multi-stage operations.For each task, we
collected 45 demonstrations through human teleoperation.

A.2.1. SEQUENTIAL OBJECT PLACEMENT TASK

The first task required the robot to ”Pick the cube into the plate and pick the toy into the box.” This task was designed
to evaluate the ability to perform sequential pick-and-place operations involving multiple objects and target locations.
Specifically, the robot needed to:

• Successfully grasp and place a cube onto a plate.

• Transition to a second object (a toy) and place it into a box.

A.2.2. DRAWER MANIPULATION TASK

The second task involved a more complex sequence: ”Open the drawer, place the toy in the drawer, and then close it.” This
task was designed to assess the capability to handle confined spaces and sequential manipulation steps. The robot needed to:

• Open a drawer.

• Place a toy inside the drawer.

• Close a drawer.

A.3. Evaluation Protocol

To ensure a rigorous evaluation of our approach, we adopted a comprehensive evaluation protocol across both simulated and
real-world tasks.

A.3.1. SIMULATED BENCHMARKS

For the LIBERO and MetaWorld MT50 benchmarks, we evaluated performance using the Success Rate (SR) metric,
calculated over 50 episodes per task with three random seeds. This protocol allowed us to assess the robustness and
consistency of our approach across different task configurations.

A.3.2. REAL-WORLD TASKS

For the real-world tasks, we conducted 10 trials per task and reported both the overall success rate and the stage-wise
completion rate. Specifically:

• For the sequential object placement task, we tracked the successful completion of both the cube-to-plate and toy-to-box
placements.
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• For the drawer manipulation task, we measured success rates across three sequential stages: drawer opening, toy
placement, and drawer closing.

A trial was considered successful only if all stages of the task were completed in the correct sequence. This evaluation
protocol allowed us to identify potential bottlenecks in the manipulation sequence and assess the overall robustness of the
learned policies.

A.4. Implementation Details

we provide comprehensive implementation details of our framework, including the architecture configurations and training
settings for both RaRSQ and CST modules, as well as the optimization process.

For the Rotation-augmented Residual Skill Quantization (RaRSQ) module in our proposed STAR framework, we adopt
a single-layer MLP as the encoder with a hidden dimension of 128. The decoder is implemented as a transformer with 4
attention heads, 4 decoder layers, and a hidden dimension of 128. We set the codebook size K = 16 and the quantization
depth D = 2, with each skill abstraction spanning 8 timesteps. During training, the encoder and decoder are jointly
optimized, while the codebook vectors are updated through the rotation-augmented gradient mechanism.

For the Causal Skill Transformer (CST), we utilize a ResNet-18 model trained from scratch as the visual encoder and
a pre-trained CLIP-base model as the language encoder. The proprioception encoder is implemented as a single-layer
MLP with a hidden dimension of 128. The transformer decoder consists of 6 layers, 6 attention heads, and an embedding
dimension of 384. We set the start token dimension to 16, the beam size to 5, and the temperature to 1.0 for sampling. The
observation window is fixed at 10 timesteps. During training, the visual and language encoders are frozen, and only the
weights of the transformer decoder and the offset prediction head are updated.

We train the entire framework using the AdamW optimizer with a cosine decay learning schedule. For RaRSQ module, we
use a batch size of 1024, learning rate of 5.5e-5, and train for 100 epochs. For CST module, we use a batch size of 512,
learning rate of 8e-4, and train for 500 epochs. Both modules use a warmup step of 10 epochs and weight decay of 1e-6.
The loss weights for the first codebook prediction, second codebook prediction, and offset head prediction are set to 2.0, 1.0,
and 20.0, respectively. The models are implemented in PyTorch and trained on a server with 8 Nvidia RTX L40S 48GB
GPUs, with all models easily fitting on a single GPU.

A.5. Baseline Implementation

A.5.1. BASELINE DESCRIPTION

We systematically evaluate STAR against state-of-the-art methods in three major categories:
Discrete LVM approaches: (1) VQ-BeT (Lee et al., 2024) combines VQ-VAE for discrete latent space learning with a
transformer for latent code prediction; (2) QueST (Mete et al., 2024) leverages Finite-State Quantization for discrete latent
space construction and employs a causal transformer for action sequence modeling.
End-to-end imitation learning: (1) ResNet-T (Liu et al., 2024) uses ResNet-18 with FiLM for observation and task
instruction encoding, followed by a transformer and GMM output layer for action prediction; (2) Diffusion Policy(Chi et al.,
2023) implements a UNet-based architecture that maps Gaussian noise to action trajectories through a learned denoising
diffusion process; (3) ACT (Zhao et al., 2023) proposes a transformer-based CVAE that generates temporally extended
action sequences by decomposing behaviors into action chunks.
Large-scale VLA models: (1) Octo (Team et al., 2024) features a large-scale transformer policy trained on 800K
robotic demonstrations with diffusion-based action generation; (2) OpenVLA (Kim et al., 2024) presents a 7B-parameter
vision-language-action model that integrates Llama 2 with DINOv2 and SigLIP visual features.

A.5.2. BASELINE IMPLEMENTATION

Following prior works, we compare our method with several representative approaches in robotic manipulation. To ensure
fair comparison, these baselines are implemented with consistent input modalities and encoders.

ResNet-T. The architecture consists of a transformer with 6 layers and hidden dimension of 256. The observation encoder
incorporates ResNet-18 features combined with spatial attention mechanisms, maintaining a temporal context window of 10
timesteps for sequential prediction.
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ACT. The architecture incorporates 8 cross-attention and 4 self-attention layers, processing visual inputs through a
ResNet-18 backbone and language inputs via a CLIP text encoder. The continuous action space is discretized into 256 bins
per dimension, with model optimization performed using AdamW and cosine learning rate decay.

Diffusion Policy. The backbone follows a U-Net design with channel dimensions [256, 512, 1024]. For the LIBERO
benchmark, the prediction and execution horizons are set to T = 32 and Ta = 16 respectively, while the MetaWorld setup
uses T = 16 and Ta = 8. The policy maintains single-step observation history during execution.

VQ-BeT. The framework employs a single-layer MLP encoder (dimension 128) and a residual vector quantization module
with approximately 1024 codes. The sequence processing utilizes an observation window of 10 timesteps and action window
size T = 5, as longer sequences (T = 32) lead to information loss through excessive compression.

QueST. The model utilizes a transformer decoder with 6 layers and 6 attention heads (embedding dimension 384). The
action generation process incorporates a vocabulary size of 1000 and equivalent start token dimension. At inference time,
beam search is applied with width 5 and temperature 1.0, operating on action blocks of 8 timesteps.

For all baselines, multi-modal observations are processed through concatenation and dimension-specific projections, with
hyperparameters following their respective original implementations.

B. Extensive Ablation Studies

Method LIBERO-Object LIBERO-Spatial LIBERO-Goal LIBERO-Long LIBERO-90 Overall

Ours 98.3 ±0.2 95.5 ±0.6 95.0 ±0.7 88.5 ±0.3 90.8 ±0.2 93.6 ±0.1
w/o Action Refinement 87.7 ±1.7 76.8 ±2.8 54.4 ±0.5 37.6 ±1.6 38.4 ±0.3 59.0 ±0.8

Table 5. Ablation Results. “w/o Action Refinement” represents removing the module of action refinement. Best results are marked in bold.

B.1. Ablation Study on Action Refinement

To investigate the importance of action refinement in our framework, we conduct ablation experiments by removing the
refinement module while keeping all other components unchanged. As shown in Table 5, removing action refinement leads
to substantial performance degradation across all task suites.

The impact is particularly pronounced on more complex tasks that require precise manipulation. For LIBERO-Long
tasks, removing action refinement causes a dramatic drop in performance from 88.5% to 37.6% (-50.9%). Similarly, for
LIBERO-Goal tasks, the success rate decreases from 95.0% to 54.4% (-40.6%). This significant performance gap highlights
that discrete skill codes alone, while effective for capturing high-level behavior patterns, are insufficient for achieving the
precision required in complex manipulation tasks.

Even for relatively simpler tasks in LIBERO-Object and LIBERO-Spatial, we observe notable performance decreases of
10.6% and 18.7% respectively. This suggests that action refinement plays a crucial role in bridging the gap between discrete
skill abstractions and continuous control requirements, even for basic manipulation tasks.

The impact becomes more severe as task complexity increases, as evidenced by the larger performance drops in LIBERO-90
(-52.4%) and LIBERO-Long (-50.9%). This trend can be attributed to two factors:

1. Complex tasks often require more precise adjustments to handle varying object positions and environmental conditions,
which cannot be fully captured by discrete skill codes alone.

2. Longer manipulation sequences accumulate small precision errors from discrete quantization, making the refinement
mechanism increasingly important for maintaining task success over extended horizons.

Overall, the ablation results demonstrate that action refinement is an essential component of our framework, contributing to
a 34.6% improvement in average performance across all tasks. This validates our design choice of combining discrete skill
abstractions with continuous refinement to enable both structured behavior representation and precise control execution.
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C. Extensive Analysis
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Figure 7. Visualization of representative skill dependency patterns. (a) Specialized pattern showing strong preference for specific second-
level codes (k1=3). (b) Bimodal pattern indicating branching skill relationships (k1=7). (c) Distributed pattern with more uniform
dependencies (k1=2).

C.1. Evaluation of Skill Composition

We analyze the conditional probability distribution P (k2|k1) between first and second codebook indices to understand the
hierarchical dependencies in our skill abstraction approach. Fig. 7 visualizes three representative patterns that demonstrate
how our framework decomposes complex behaviors.

As shown in Fig. 7(a), when k1 = 3, we observe a highly concentrated distribution with a prominent peak at k2 = 3
(P (k2 = 3|k1 = 3) = 0.286), indicating this first-level skill code consistently pairs with specific second-level codes. Fig.
7(b) shows a bi-modal distribution for k1 = 7, suggesting this primitive skill branches into two distinct paths. In contrast,
Fig. 7(c) illustrates a more uniform distribution for k1 = 2, indicating more flexible skill combinations.

These diverse dependency patterns validate our hierarchical skill decomposition design, demonstrating that RaRSQ
effectively captures different aspects of manipulation behaviors at multiple abstraction levels. This structured representation
enables CST to generate coherent action sequences for accurate control.

C.2. Codebook Relationship

The relationship between consecutive codebook layers in our RaRSQ approach reveals important insights into how robot
skills are hierarchically represented and composed. Fig. 8 visualizes the conditional probability distribution P (k2|k1)
between indices from the first and second codebooks, demonstrating several key patterns that validate our architectural
choices.
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Figure 8. Visualization of conditional probability distribution P (k2|k1) between first-level (k1) and second-level (k2) codebook indices.

The heatmap exhibits distinct non-uniform distributions across different first-level codes, indicating strong statistical
dependencies between the two codebook levels. For instance, when k1 = 3, we observe a particularly high probability of
P (k2 = 3|k1 = 3) = 0.286, suggesting this second-level code frequently serves as a refinement for the third first-level
primitive skill.

We observe several interesting patterns in the codebook relationships:

1. Specialized Connections: Some first-level codes show strong preferences for specific second-level codes. For example,
k1 = 7 exhibits high probabilities with k2 = 1 and k2 = 9 (P (k2 = 1|k1 = 7) = 0.202 and P (k2 = 9|k1 = 7) =
0.207), indicating these pairs may capture complementary aspects of certain manipulation skills.

2. Distributed Patterns: Other first-level codes (e.g., k1 = 2) demonstrate more uniform distributions across second-level
codes, suggesting these represent more general behaviors requiring diverse refinements.

3. Balanced Utilization: The moderate maximum conditional probability (0.286) and the presence of both strong
(dark red) and weak (light yellow) connections indicate the model learns meaningful skill hierarchies while avoiding
over-specialization.

These patterns validate several key design choices in our framework:

• The clear statistical dependencies between codebook levels support our use of autoregressive prediction in CST
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• The balanced utilization patterns demonstrate the effectiveness of RaRSQ in preventing codebook collapse

• The hierarchical structure revealed by the conditional probabilities confirms effective decomposition of complex
behaviors into primitive skills and their refinements

This analysis provides quantitative evidence for both the effectiveness of our hierarchical skill encoding and the importance
of modeling dependencies between codebook levels for robust skill composition.

C.3. Skill Quantization Loss

To further validate the effectiveness of our rotation-augmented residual skill quantization (RaRSQ) approach, we analyze the
quantization loss across different LIBERO task suites. The quantization loss measures the L1 distance between the encoder
outputs and their quantized representations, serving as a direct indicator of how well the codebook captures the underlying
skill space.

Fig. 9 shows the evolution of quantization loss during training for both standard VQ-VAE and our RaRSQ approach. Several
key observations emerge from this comparison:

• Initial Convergence: Both approaches start with similar loss values (around 0.001) across all task suites, indicating
comparable initialization conditions. However, RaRSQ demonstrates consistently lower initial losses (e.g., 0.00116 vs
0.00121 for LIBERO-Object at step 100), suggesting better initialization of the codebook structure.

• Training Dynamics: Standard VQ-VAE exhibits a concerning pattern where the quantization loss increases substan-
tially during training before partial recovery. For instance, in LIBERO-Spatial, the loss peaks at 0.0105 around step
5300 before settling at 0.0094. This pattern is indicative of codebook collapse, where the model struggles to maintain
diverse skill representations.

• Stability: In contrast, RaRSQ shows remarkably stable training dynamics. While it experiences minor initial increases
in loss (e.g., peaking at 0.004 for LIBERO-Spatial around step 600), these increases are both smaller in magnitude and
shorter in duration compared to standard VQ-VAE.

• Final Performance: RaRSQ achieves significantly lower final quantization losses across all task suites. The improve-
ments are particularly pronounced for complex tasks - LIBERO-Long shows a final loss of 0.00025 with RaRSQ
compared to 0.0076 with standard VQ-VAE, representing a 30× reduction in quantization error.

The loss patterns strongly correlate with our main experimental findings. The lower and more stable quantization losses of
RaRSQ directly translate to improved task performance, particularly for complex manipulation sequences where precise
skill representation is crucial. The brief initial increase in loss likely represents an exploration phase where the model
discovers and refines its skill abstractions, while the subsequent rapid convergence to low loss values indicates successful
preservation of geometric relationships through our rotation-augmented gradient mechanism.

Notably, the reduction in quantization error is most significant for LIBERO-Long (97% reduction) and LIBERO-90 (92%
reduction), precisely the task suites where our method shows the largest performance improvements. This suggests that the
ability of RaRSQ to maintain low quantization error is particularly beneficial for complex, long-horizon tasks that require
precise and diverse skill representations.
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Figure 9. skill quantization loss
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