PRSformer: Disease Prediction from Million-Scale
Individual Genotypes

Payam Dibaeinia’ Chris German' Suyash Shringarpure!
p.dibaeinia@gmail.com chrisg@23andme.com suyashss@gmail.com
Adam Auton' Aly A. Khan'?*
aauton@23andme.com aakhan@uchicago.edu

123andMe, Palo Alto, CA, USA
2University of Chicago, Chicago, IL, USA

Abstract

Predicting disease risk from DNA presents an unprecedented emerging challenge
as biobanks approach population scale sizes (N > 10 individuals) with ultra-high-
dimensional features (L > 10° genotypes). Current methods, often linear and re-
liant on summary statistics, fail to capture complex genetic interactions and discard
valuable individual-level information. We introduce PRSformer, a scalable deep
learning architecture designed for end-to-end, multitask disease prediction directly
from million-scale individual genotypes. PRSformer employs neighborhood atten-
tion, achieving linear O(L) complexity per layer, making Transformers tractable
for genome-scale inputs. Crucially, PRSformer utilizes a stacking of these efficient
attention layers, progressively increasing the effective receptive field to model
local dependencies (e.g., within linkage disequilibrium blocks) before integrating
information across wider genomic regions. This design, tailored for genomics,
allows PRSformer to learn complex, potentially non-linear and long-range inter-
actions directly from raw genotypes. We demonstrate PRSformer’s effectiveness
using a unique large private cohort (/N ~ 5M) for predicting 18 autoimmune and
inflammatory conditions using L =~ 140k variants. PRSformer significantly outper-
forms highly optimized linear models trained on the same individual-level data and
state-of-the-art summary-statistic-based methods (LDPred2) derived from the same
cohort, quantifying the benefits of non-linear modeling and multitask learning at
scale. Furthermore, experiments reveal that the advantage of non-linearity emerges
primarily at large sample sizes (N > 1M), and that a multi-ancestry trained model
improves generalization, establishing PRSformer as a new framework for deep
learning in population-scale genomics.

1 Introduction

Learning predictive models from high-dimensional, complex structured data is a fundamental machine
learning challenge. This challenge is acutely relevant in modern genomics, where biobanks are rapidly
scaling towards million-sample sizes (N > 1,000, 000) and individual genomes are characterized
by hundreds of thousands to millions of genetic variants (e.g., Single Nucleotide Polymorphisms,
SNPs), yielding a regime of ultra-high dimensionality (L > 100, 000). Effectively leveraging
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individual-level genomic data at this unprecedented N x L scale is critical for unlocking deeper
insights into complex trait genetics, such as predicting disease susceptibility [[1, [2].

Current state-of-the-art methods for disease risk prediction primarily rely on Polygenic Risk Scores
(PRS) derived from Genome-Wide Association Study (GWAS) summary statistics [3} 4} 5/16]. While
effective to a degree, these methods are predominantly linear, capturing additive genetic effects.
Furthermore, by operating on summary statistics, they discard potentially valuable individual-level
information and struggle to model non-additive genetic interactions (epistasis) [[7, 8,19, [10]]. These
limitations may cap predictive performance, especially as dataset sizes scale towards the million-
sample regime where subtle interaction effects might become detectable.

Transformer architectures have revolutionized sequence modeling in other domains by capturing com-
plex, long-range dependencies via self-attention [11]]. We hypothesize that the attention mechanism
provides a powerful inductive bias for genomics, enabling more effective modeling of pairwise linear
and non-linear interactions between genetic loci compared to traditional architectures or inherently
linear models. However, a critical barrier persists: the prohibitive O(L?) computational complexity
of standard self-attention renders its direct application to genome-scale sequences (L > 100, 000)
computationally infeasible. Addressing this scalability bottleneck is critical to harnessing the power
of Transformers for large-scale genomics.

Here we introduce PRSformer, a novel Transformer-based architecture specifically engineered
for scalable, end-to-end, multitask disease risk prediction directly from ultra-high-dimensional
(L > 100k) individual-level genotypes (N > 1M). PRSformer’s core innovation lies in its scalability,
achieved by incorporating neighborhood attention (NA) [12], an efficient attention mechanism
restricting computations to local genomic windows, resulting in O(L) complexity per layer. This
design aligns with the biological structure of the genome, which we treat as a series of linked
regions, called linkage disequilibrium (LD) blocks, where genetic variants are often inherited together.
PRSformer stacks NA layers, which first model interactions within LD blocks, then progressively
integrates information between neighboring LD blocks in deeper layers, capturing larger-scale genetic
patterns influencing disease.

To evaluate PRSformer’s ability to harness the shared genetics underlying multiple, related traits, we
trained and validated it in a multitask setting across 18 autoimmune and inflammatory conditions.
This trait set provides an ideal testbed for multitask learning due to immune-mediated inflammatory
diseases frequently exhibiting shared inflammatory pathophysiology and overlapping genetic factors
[13]. The multitask formulation allows us to test PRSformer’s ability to exploit shared genetic
associations while learning disease-specific patterns, aiming to enhance predictive performance
through a shared representation.

We provide rigorous empirical validation using data from a unique large private cohort (N ~ 3.8M
European-ancestry individuals) for training, validation, and evaluation across D = 18 autoimmune
and inflammatory conditions using L ~ 140k variants. The scale of this cohort significantly exceeds
current public biobanks [14], providing a critical real-world testbed for methods designed to handle
genomic data of the million-scale magnitude. We conduct stringent comparisons against: (i) highly
optimized linear models (regularized logistic regression with learnable embeddings) trained on
the exact same individual-level genotype data, isolating the benefit of PRSformer’s non-linear
architecture; and (ii) state-of-the-art summary-statistic-based PRS methods (LDPred2 [3]]) derived
from the exact same cohort, enabling a direct comparison between end-to-end and summary-statistic-
based approaches. Our experiments demonstrate statistically significant performance gains for
PRSformer.

Our main contributions are:

* Scalable deep learning for genomics at population scale: We present an efficient multitask
Transformer architecture applied to population-scale data (N ~ 5M) with ultra-high-
dimensional features (L ~ 140K), establishing a blueprint for tackling other genome
sequence prediction tasks.

* Critical scaling law for non-linear models: We empirically establish and quantify a key
scaling law demonstrating that the predictive advantage of non-linear models over linear
methods emerges primarily at the million-sample scale for complex immune-related condi-
tions. Our analysis quantifies this effect, showing that performance gains grow consistently
as the training set size increases beyond one million individuals.



* Multitask learning improves genomic prediction: We show that multitask training across
related traits consistently outperforms the standard single-task paradigm, demonstrating
the benefit of learning a shared genetic representation across complex immune-mediated
inflammatory diseases.

* Improved cross-ancestry generalization: We show that training PRSformer on multi-
ancestry data, including an additional ~ 1.1M non-European individuals, markedly improves
prediction accuracy for held-out non-European individuals compared to a model trained
only on European-ancestry data, offering a path toward more equitable genomic prediction.

2 Related work

This work is situated at the intersection of statistical genetics, genomics, and deep learning. We
specifically advance upon prior work in three key areas: polygenic risk prediction, the application
of deep learning to genomic data, and the development of efficient Transformer architectures for
ultra-long sequences.

2.1 Polygenic risk score methods

Traditional complex trait prediction relies heavily on PRS derived from GWAS summary statistics
[4)16]. Early methods often involved simple thresholding and summing of SNP effects [3}[15]. More
recent Bayesian approaches, such as LDpred?2 [5] and PRS-CS [16]], explicitly model LD patterns
and utilize shrinkage priors to improve predictive accuracy. These methods represent the current
state-of-the-art for prediction from summary statistics. However, PRS methods based on summary
statistics are fundamentally limited in several ways.

First, by discarding individual-level genotype and haplotype information, these methods cannot
capture LD structure and must instead rely on LD estimates that are typically imputed from external
reference panels, which can introduce biases due to population mismatches [17,18]]. Second, they
cannot capture variant-variant interactions such as epistasis as they are restricted to using marginal
variant effects. Third, the use of precomputed summary statistics constrains these models to largely
linear architectures, precluding the discovery of complex multi-locus or hierarchical genetic patterns.
Recent summary-statistic approaches to leverage non-additive signal remain constrained by the lack
of individual-level haplotype context [[19]. Taken together, these limitations may cap predictive
performance, particularly as biobank-scale datasets grow large enough to enable the detection of
more subtle and nonlinear genetic effects.

Alternative individual-level approaches, such as BOLT-LMM [20]] and GEMMA [21]], estimate SNP
effect sizes under a linear mixed model framework to account for population structure and polygenic
background effects. However, these methods are computationally demanding at our study’s scale
(N=3.8M, D=18 traits): GEMMA’s cubic complexity in N renders it intractable, while BOLT-
LMM, though more scalable, operates on a single trait at a time, requiring 18 separate runs. Prior
work has shown that LDPred2 achieves predictive performance comparable to BOLT-LMM across
multiple traits [22} [23], supporting its use as a strong linear baseline for comparison.

2.2 Deep learning in genomics and trait prediction

Deep learning has been successfully applied to various supervised genomic prediction tasks. Much
work has focused on modeling sequence-level information (DNA base pairs) to predict molecular
phenotypes like transcription factor binding [24} 25} [26], chromatin accessibility [27], or gene
expression [28| 29]]. These approaches have predominantly utilized Convolutional Neural Networks
(CNNs) or Transformers incorporating CNN-style tokenization, which are well-suited to capturing
biologically meaningful motifs and local patterns at base-pair resolution. However, this paradigm
is less intuitive when modeling the influence of genetic variants (e.g., SNPs) on complex traits, as
causal variants can be spread across the genome and may interact over long distances, often without
strong local sequence motifs defining their impact.

The application of deep learning to predict complex traits (like disease status) directly from individual-
level genotype data (i.e., SNP arrays) remains relatively underexplored, particularly at the population
scale addressed in this paper [30,31]]. This is largely due to the challenges of ultra-high dimensionality



(L) and, until recently, the limited statistical power of publicly available cohorts with both individual-
level genotypes and phenotypes (V). Prior work in this specific domain has often relied on: (i) tree
ensemble models such as gradient boosting or simple neural networks trained on reduced feature sets
(e.g., using LASSO feature selection); (ii) smaller cohorts where complex interactions are difficult
to detect; and (iii) models operating on precomputed PRS or summary statistics rather than raw
genotype data [8} 32133/ [34, 35 36]]. Recently, Phenformer [37] proposed a multi-scale Transformer
that predicts disease risk from DNA sequences by linking genetic variation, gene expression, and
phenotype through a pretrained sequence-to-expression backbone. While conceptually similar to
our end-to-end genotype-to-phenotype goal, Phenformer operates on DNA sequences covering
approximately =~ 3% of the genome and is trained on ~ 150K individuals, whereas our approach
models variant-level genotype data and scales to millions of individuals, enabling systematic analysis
of how nonlinearity interacts with data scale in complex trait prediction.

2.3 Efficient transformer architectures

Applying standard Transformers to genome-scale data (L > 100k) is computationally prohibitive due
to the O(L?) complexity of self-attention [11,38]. A wide range of efficient attention mechanisms
have been proposed to address this limitation, including sparse attention patterns (e.g., Longformer
[39], BigBird[40]), low-rank approximations (e.g., Linformer [41]), and kernel-based methods
(e.g., Performer [42]). Other architectures exploit locality through sliding windows or blockwise
mechanisms (e.g., Swin Transformer [43]]) to reduce complexity while capturing local dependencies.
In our work, we adopt neighborhood attention [12], a variant of self-attention in which each query
attends only to a fixed-size local window of neighboring tokens, rather than the full sequence. This
inductive bias aligns well with the block-like correlation structure of genomic data driven LD. By
limiting attention to a neighborhood of size k¥ < L, NA reduces both computational and memory
complexity to O(L - k) -achieving linear scaling in sequence length. We employ the optimized GPU
implementation provided by the NATTEN library [12,44], which supports scalable training on long
sequences while maintaining the expressiveness of content-based attention.

3 Methods

3.1 Problem definition

We aim to predict susceptibility to multiple (D = 18) autoimmune and inflammatory conditions from
individual-level genotypes. Formally, given a dataset of IV individuals, the input for individual ¢
is their genotype profile x; € {0, 1,2, UNKN}Z, representing genotypes of L pre-selected genetic
variants, where UNKN indicates missing data. The target output is a vector y; € {0,1, UNKN}?,
representing the binary status (case/control) for D diseases, where UNKN indicates unrecorded
status. Our goal is to learn a multitask function f : ZZ — [0, 1] that predicts the probability of
each disease y; = f(x;). The primary challenges lie in the ultra-high dimensionality (L ~ 140k in
this work), the need to capture potentially non-linear and long-range interactions, and leveraging
the statistical power of population-scale datasets (N ~ 5M total used in this study). We propose a
Transformer-based architecture adapted for this task, leveraging efficient attention mechanisms for
scalability and multi-task learning for joint prediction across diseases.

3.2 PRSformer architecture

PRSformer adapts the Transformer architecture for disease prediction from ultra-long (L ~ 140k)
individual-level genotype sequences using the following key designs:

Scalability via Neighborhood Attention: Standard O(L?) self-attention is computationally infeasi-
ble. We replace it with Neighborhood Attention (NA) [12], restricting each query token’s attention
to a symmetric local window of size k. This reduces complexity to O(L - k), enabling efficient
processing of the L = 137, 245 input variants used in this study. We use & = 385, chosen via hyper-
parameter tuning (Section [3.5] Supplementary Table F8), which conceptually aligns with capturing
dependencies within local LD blocks (Figure[T]JA) and corresponds to roughly 100 kilobases along
the genome [45]).

Genome-ordered input without explicit positional encodings: Input variants are ordered by their
chromosomal position and then concatenated from Chrl to Chr22. This fixed order is used for all
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Figure 1: Schematic overview of PRSformer and its core components. (A) A preselected set of
variants across the 22 chromosomes, sorted by genomic position, allows each query variant (e.g., blue
or red) to attend within a local block (k = 385) via neighborhood attention. (B) Model architecture
with input, Transformer blocks, and output layer. (C) Variant embedding layer, which encodes each
variant and its corresponding genotype (0, 1, 2, or UNKN) into a 64-dimensional representation. (D)
Transformer block with pre-layer normalization, neighborhood attention, and GELU activation.

individuals. We omit standard positional encodings (e.g., sinusoidal or learned absolute). The fixed
genomic order provides implicit relative positional information that NA inherently leverages within
its local attention windows. We also experimented with learned positional encodings, but did not
observe measurable improvement in performance.

The overall data flow of PRSformer proceeds as follows (Figure [IB):

1. Learnable variant embedding layer (Figure [IIC): Each variant in the input sequence
of variant genotypes is mapped to a doqei-dimensional vector. For each variant j and
individual 4, an observed genotype z;; € {0, 1,2} is represented as F; - x;; using a learned
variant-specific embedding ;. A missing genotype (x;; = UNKN) is represented by
a separate learned variant-specific embedding M;. This allows the model to distinguish
missingness from observed genotypes distinctly for each variant. We use dpoge; = 64.

2. Transformer blocks (Figure Ep): The embedded sequence is processed by Niayers = 2
Transformer blocks. Each block applies pre-layer normalization [46] followed by multi-head
NA (Npeags = 4) and a feed-forward network with GELU activation [47]. The choice
of Niayers = 2 was based on validation performance, where deeper models did not show
significant improvement for this task (Supplementary Table F7), suggesting two stacked
NA layers provide a sufficient receptive field to capture interactions between adjacent LD
blocks.

3. Output layer: The normalized sequence representation from the last block is flattened and
optionally concatenated with covariates such as sex and age, and passed to a fully-connected
layer generating D = 18 independent disease likelihood predictions. We also evaluated
mean pooling and dedicated [CLS] tokens as alternatives to simple flattening of normalized
representations, but neither outperformed the flattening-based design (see Supplementary
Table F10).

Key architectural hyperparameters (dmodet> Nheads» Niayers, NA window size k) were optimized based
on validation set performance (Supplementary Tables F5-10).



3.3 Datasets

We utilized data from a large, private biobank consisting of individuals who consented to participate in
research under an IRB-approved protocol. Starting from an internal GWAS data freeze timestamped
08-2021 (used to prevent information leakage, see Section[3.4), we identified individuals genotyped on
the same platform and excluded all pairs of individuals related by more than 700 cM (i.e., first cousins
or closer), thereby minimizing the risk of learning simple familial signals. Individuals included
had recorded phenotypes (i.e., self-reported status) for at least one of the D = 18 autoimmune and
inflammatory conditions considered. We also excluded individuals under age 10 who did not have a
case diagnosis. This resulted in a training set of Nyin = 3, 838, 549 individuals of European genetic
ancestry (throughout this work, ancestry was determined via an internal classifier [48]]).

We constructed temporally distinct validation and test sets using individuals who enrolled and
consented after the 08-2021 data freeze date and up to 12-2024, applying the identical filtering criteria.
The validation dataset was used for hyperparameter tuning, while the test dataset was used to report
final performance metrics. This yielded Ny, = 525,448 and Ny = 494, 265 individuals. To assess
whether models capture familial relationships versus causal genotype—phenotype associations, we
constructed a kinship-controlled European test set (N ~ 148k) by subsetting test individuals related
to any training sample by no more than 300 cM and ensuring that no pair within the subset is related
by more than 700 cM. In total, the European dataset comprised N = 4,858,302 individuals across
training, validation, and test sets, with an additional N =~ 1.1M non-European individuals included
for cross-ancestry training (see Section [3.7). Case/control counts per disease and further details
regarding cohort construction (including differences from the subset used for GWAS computations)
are provided in Appendix A and Supplementary Tables F2-4.

3.4 Variant selection

To define the input feature space (L), we selected variants associated with at least one of the D = 18
diseases based on internal GWAS summary statistics (European ancestry cohort, computed prior
to an 08-2021 data freeze to prevent information leakage into model training). For each disease,
variants passing standard QC, located on autosomal chromosomes, had a genotyping rate > 0.95,
MAF > 0.001, and exhibited nominal association with the disease (GWAS p-value < 1 x 1072). The
final PRSformer input set was the union across all 18 diseases, resulting in L = 137, 245 variants.
Further details on GWAS procedures, exploration of variant’s pruning by LD and per-disease variant
counts are in Appendix B and Supplementary Table F9)

3.5 Training
Given the training data D = {(z;, ;) }.»"s", we trained PRSformer by minimizing the following loss,
summed over individuals and their available (non-UNKN) disease labels t € T'(i):

Nirain

L==3">" [yitlog(@ie) + (1= yie)log(l = §ie)]
)

i=1 teT(i

where T'() denotes the set of recorded disease statuses for individual ;. We also evaluated focal loss
[49], task-uncertainty—weighted loss [S0], and standard averaged cross-entropy, all of which were
outperformed by the proposed loss function in terms of validation AUROC. We used the AdamW
optimizer [51] (31 = 0.9, 32 = 0.999, weight decay=0.05) with an initial learning rate of 5 x 1074,
decreased via a Cosine Annealing scheduler. Training was performed efficiently on this large-scale
dataset for 2 epochs consisting of ~ 120,000 gradient updates in an effective batch size of 64 across
four NVIDIA A100 GPUs, leveraging Distributed Data Parallel and mixed-precision (FP16) training
(training duration was tuned based on validation AUROC across diseases (Table[F5); most models
showed signs of overfitting beyond two epochs). Hyperparameters, including architecture choices
(Niayers s Amodel; Nheads» k), were selected based on optimal AUROC on the validation set after extensive
searches (e.g., See Supplementary Tables F5-10), following standard ML best practices to minimize
overfitting to validation data and ensure that test performance provides an unbiased estimate of
generalization. To isolate the contribution of genotype to model performance, all models presented in
the main text were trained without including covariates such as sex or age.



3.6 Baseline models

To comprehensively evaluate PRSformer and validate our main claims regarding the utility of end-
to-end non-linear modeling on large-scale individual-level genotypes, we established three rigorous
baselines. These baselines are specifically designed to: (1) compare against the current state-of-the-art
using conventional summary-statistic inputs (LDPred2), (2) benchmark against an enhanced version
of this state-of-the-art (Stacked LDPred2), and (3) isolate the specific performance gains attributable
to PRSformer’s non-linear Transformer architecture via a carefully matched linear counterpart.

1. LDPred2: state-of-the-art summary-statistic method. We selected LDPred2 [5] due to
its strong empirical performance and widespread adoption in the field [36,152]]. To ensure
the most direct comparison possible, we configured LDPred2 meticulously:

* Matched data source: LDPred2 was applied to GWAS summary statistics derived
from the same European training data freeze used for PRSformer’s data and variant
selection.

* Cohort-specific LD: An LD reference panel from our research cohort was used.

» Standard QC: Input variants (~445K per disease) passed standard GWAS QC and
LDPred2-specific filtering [18]].

* Tuning: LDPred2 hyperparameters (p, h?) were extensively tuned (up to 100 models
per disease) by maximizing AUROC on the same validation set used for PRSformer
(details in Appendix C).

2. Stacked LDPred2: enhanced summary-statistic baseline. To create a stronger summary-
statistic baseline, we ensembled the converged LDPred2 models from the hyperparameter
search using elastic-net regression trained via cross-validation on the validation set (Ap-
pendix C).

PRSformer+: Since Stacked LDPred2 uses the validation set for training ensemble
weights, we develop and compare it against PRSformer+, which is the final PRSformer
model retrained on the combined training and validation datasets, ensuring parity in
total data usage (Supplementary Figure E2).

3. Linear model: direct architectural ablation. This crucial baseline isolates the contribution
of PRSformer’s non-linear Transformer architecture. It mirrors PRSformer precisely except
for omitting the Transformer blocks:

* Identical data, inputs & training: Uses the exact same L ~ 140k input variants and
individual-level train/validation/test splits. Employs the same multitask framework
(D = 18), loss function, AdamW optimizer, and training schedule (Section @) Uses
the same embedding layer (Figure[T|C) for genotypes and missingness.

* Architecture difference: The input embeddings are fed directly to the final linear
output layer, bypassing the Transformer blocks (Figure [ID).

This provides a multitask linear model on the same large-scale individual data, allowing
direct assessment of the performance gain from PRSformer’s non-linear processing.

3.7 Cross-ancestry experiments

To assess generalization, we developed PRSformer-ME (Multi-Ethnic). We performed ancestry-
specific GWAS (African American (AFR), European (EUR), Latino (LAT), East Asian (EAS), and
South Asian (SAS); determined by internal classifier) using the same 08-2021 data freeze and variant
selection criteria (Section p-value < 1x 1072, QC) where sample sizes permitted (Supplementary
Table F12). We defined an expanded input set (L = 251, 538 variants) as the union of selected
variants across all available disease-ancestry pairs (including Europeans). We constructed a multi-
ancestry training set (~ 5M total individuals) by combining the European training set (Section[3.3)
with N = 1,136, 746M non-European individuals meeting the same filtering criteria. PRSformer-
ME was trained on this combined dataset using the same architecture and hyperparameters as the
European-only PRSformer, without additional ancestry-specific tuning. Evaluation was performed on
a combined test set including the European test set and held-out non-European individuals processed
identically (Supplementary Table F3).



4 Experiments and results

We present results evaluating PRSformer’s performance against baselines, analyzing the impact of
non-linearity and sample scale, assessing the benefit of multitask learning, and testing cross-ancestry
generalization using AUROC as the primary metric unless otherwise stated.

4.1 PRSformer outperforms state-of-the-art baselines

We first benchmarked PRSformer against the highly optimized linear model and the state-of-the-art
summary-statistic method, LDPred2, on the European test set (Vyst =~ 494k). As shown in Figure |Z|,
PRSformer consistently achieves higher AUROC scores than its linear counterpart across all 18
autoimmune and inflammatory conditions. This comparison, using identical data and training setups
except for the Transformer blocks, directly quantifies the predictive benefit derived from PRSformer’s
non-linear architecture.
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Figure 2: Benchmarking PRSformer against baseline methods using AUROC. PRSformer consistently
outperforms the linear model (trained on identical individual-level data) and LDPred?2 (state-of-the-
art summary statistic method derived from the same cohort). Error bars: 95% CI (10k bootstraps).
p-values: estimated using a one-sided paired bootstrap test (10,000 replicates), sampling with
replacement from the test set and comparing AUROCSs of PRSformer and LDPred2 on identical
sample pairs. The p-value reflects the fraction of replicates where LDPred2’s AUROC > PRSformer’s.

Crucially, PRSformer also significantly outperforms LDPred2 (using summary statistics derived from
the same cohort) on 16 out of 18 diseases, with 11 differences being statistically significant (p < 0.05,
one-sided paired bootstrap test). This demonstrates the advantage of end-to-end modeling on
individual-level data compared to state-of-the-art methods relying on summary statistics. Consistent
improvements were also observed in area under the precision—recall curve (Supplementary Figure E1)
and explained variance (Supplementary Table F11), as well as when comparing against an enhanced
Stacked LDPred2 baseline (PRSformer+, Supplementary Figure E2), confirming the robustness of
PRSformer’s advantage.

We also evaluated PRSformer and LDPred2 on the kinship-controlled test set, reproducing similar
trends (Supplementary Figure E3): PRSformer outperformed LDPred2 in 14 of 18 diseases, main-
taining its lead in 13 of the 16 and newly improving Alopecia Areata, with six remaining statistically
significant (p < 0.05). The smaller number of significant improvements is expected given the
reduced power of the kinship-controlled test set (~148k vs. ~494k). These results confirm that
PRSformer’s advantage is not driven by familial confounding and persists under stringent kinship
control, reinforcing the validity of our findings.

4.2 Benefit of non-linearity emerges at million-sample scale

To understand when the non-linear modeling capabilities of PRSformer become advantageous, we
compared its performance against the linear baseline across varying training dataset sizes (down-
sampling the N ~ 3.8M training set). Figure [3]reveals a critical insight: at smaller sample sizes,
comparable to current large public cohorts like UK Biobank [53] (up to N = 1M), the performance
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Figure 3: Impact of training scale on non-linear model advantage. Performance (AUROC) of
PRSformer (non-linear) and the linear baseline across downsampled training sets (multitask setting).
The benefit of non-linearity becomes apparent only at N > 1M scale.

of PRSformer is similar to the simpler linear model. However, as the training size exceeds one million
individuals, a clear advantage for the non-linear PRSformer emerges and progressively widens. This
trend holds across multiple diseases (Supplementary Figure E4) and persists even when using appro-
priately subsetted variant sets for smaller scales (Supplementary Figure ES). These results indicate
a scaling law: the benefits of non-linear architectures like PRSformer manifest only when sample
sizes are sufficient to resolve higher-order genetic interactions. Below this threshold, linear models
remain competitive, whereas beyond the million-sample regime, PRSformer achieves measurable
gains (although with higher computational cost in FLOPs per sample).

4.3 Multitask learning consistently improves performance

We investigated the benefit of PRSformer’s multitask design by comparing it against single-task
(ST) models trained independently for each disease. Figure 4] shows that multitask (MT) training
consistently yields superior AUROC compared to ST training for both PRSformer and the linear
baseline, across different data scales (see Supplementary Figure E6 for other diseases). This improve-
ment was robust even when ST models used disease-specific optimized variant sets (Supplementary
Figure E7). Thus, the gain stems from leveraging shared information across related immune-mediated
inflammatory diseases allowing shared model components (variant embeddings and Transformer
blocks in PRSformer, and variant embedding in the linear baseline) to be optimized more effectively.
By training these shared layers across multiple related diseases, the model can capture generalizable
representations that enhance performance beyond what is achievable with isolated, ST training.
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4.4 TImproved cross-ancestry generalization via multitask multi-ancestry training

Recognizing the need for equitable genomic prediction [54], we trained PRSformer-ME on a com-
bined multi-ancestry cohort (~ 5M individuals, including ~ 1.1M non-Europeans) using an expanded
variant set (L =~ 252k, see Section[3.7]Methods). We evaluated its performance on a held-out test set
containing individuals from European (EUR), African American (AFR), Latino (LAT), East Asian
(EAS), and South Asian (SAS) ancestries, comparing it to the original PRSformer trained only on
EUR individuals.

As summarized in Table|l} PRSformer-ME demonstrates significantly improved generalization to
non-EUR populations. It achieves substantially higher AUROC scores across most diseases in AFR,
LAT, EAS, and SAS individuals compared to the EUR-only model. Importantly, this gain in non-EUR



populations is achieved with minimal to no degradation in performance on EUR individuals. These
results indicate that training on diverse, aggregated individual-level data allows PRSformer-ME to
capture both shared and ancestry-specific genetic signals, leading to more accurate and potentially
more equitable predictions across populations compared to models trained on a single ancestry
group (incorporating covariates such as sex and age further improves predictive performance, see
Supplementary Table F14). This is an important finding since state-of-the-art methods generally rely
on single-ancestry summary statistics, preventing them from jointly training on individual-level data
across multiple ancestries and from leveraging shared cross-population genetic signals.

Table 1: AUROC of EUR-only PRSformer vs. multi-ancestry PRSformer-ME on the multi-ancestry
test set. PRSformer-ME shows improved performance in non-EUR ancestries often without sacrificing
EUR performance. Bold font denotes the higher AUROC in each pairwise comparison.
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PRSformer  0.7933 0.8457 0.7661 0.6337 0.6669 0.7504 0.6338 0.6004 0.7184 0.6985 0.6048 0.6442 0.6660 0.5802 0.6212 0.7164 0.6227 0.6051
EUR  pRSformer-ME 0.7867 0.8431 0.7674 0.6404 0.6683 0.7487 0.6458 0.6069 0.7157 0.6981 0.5995 0.6447 0.6654 0.5818 0.6222 0.7146 0.6246 0.6125

PRSformer  0.6219 0.6391 0.5676 0.5118 0.5559 0.6727 0.5404 0.5241 0.5447 0.5726  _  0.5401 0.5928 <0.5 0.5122 0.6008 0.5913 <0.5
AFR  pRSformer-ME 0.6269 0.6986 0.6997 0.6399 0.5822 0.6939 0.6140 0.5660 0.6397 0.6217 =  0.5902 0.6285 0.5410 0.5605 0.6550 0.6026 0.5844

PRSformer  0.7437 0.7459 0.7060 0.6181 0.6449 0.7482 0.6063 0.5712 0.6832 0.6674 0.6526 0.6184 0.6216 0.5610 0.5871 0.6994 0.6283 0.5579
LAT  pRSformer-ME 0.7521 0.7732 0.7568 0.6685 0.6596 0.7581 0.6536 0.5979 0.7256 0.6842 0.6553 0.6291 0.6539 0.6038 0.6166 0.7270 0.6397 0.6346

PRSformer  0.8180 0.6640 0.7667 0.6383 0.6209 0.6705 0.5656 0.6052 0.7341 0.6630  _ 0.6974 0.6423 0.5999 0.5693 0.5421 0.5999 0.5754
SAS  pRSformer-ME 0.8002 0.6852 0.7612 0.6885 0.6269 0.6907 0.6196 0.5974 0.7503 0.7061 =  .6969 0.6858 0.5828 0.6009 0.5146 0.5813 0.5972

PRSformer _0.6507 0.6937 0.5770 0.6167 0.6535 0.6144 0.5566 0.5406 0.6282 0.7431 0.6204 0.5902 0.5184 0.5463 0.6809 0.5731 0.5846
EAS  pRSformer-ME =  0.7121 0.7487 0.6176 0.6355 0.6876 0.6573 0.6085 0.5019 0.6256 0.6973 0.6545 0.6518 0.5860 0.5602 0.7085 0.5929 0.6386

5 Conclusion

We introduced PRSformer, a scalable Transformer architecture leveraging neighborhood attention to
enable end-to-end, multitask disease prediction from population-scale individual genotypes (INV ~ 5M,
L ~ 140k). Our rigorous evaluation on a unique large private cohort, conducted under IRB and using
consented research participant data, demonstrates that PRSformer significantly outperforms strong
linear and state-of-the-art summary-statistic baselines (LDPred2) derived from the same cohort.

A key finding of this work is that the benefit of PRSformer’s non-linear modeling for complex
immune-mediated inflammatory diseases emerges primarily at the million-sample scale (N > 1M).
This advantage varies across diseases, with traits like celiac disease and type 1 diabetes benefiting
substantially from non-linear modeling to explain disease risk variance [55]. This scaling law,
alongside our findings that multitask training improves performance and multi-ancestry data enhances
generalization, establishes a new framework for genomic prediction.

While PRSformer advances predictive accuracy, its gains come with higher computational demands
that may limit immediate clinical scalability. Furthermore, future work is required to develop
interpretation methods to understand the learned non-linear interactions, which is essential for
biological hypothesis generation and experimental validation. A key future direction is to extend the
framework beyond a single disease domain to a phenome-scale setting spanning thousands of traits.
This approach is motivated by widespread genetic pleiotropy, where a single variant can influence
multiple, seemingly disparate conditions. A unified model could therefore capture the shared genetic
underpinnings linking diverse biological systems, such as the contribution of immune pathways to
neurodegeneration and cancer.

Our research prioritizes fairness across diverse populations and the responsible deployment of
genomic models. Recognizing the sensitivity of genomic data, we have taken steps to balance
transparency with participant privacy: we provide detailed methodological descriptions and have
released our implementation code at https://github.com/23andMe/PRSformer; however, the data and
trained models are not publicly available.

Taken together, our results and scaling analyses position PRSformer as a foundation for phenome-
scale genetic risk modeling that can fully leverage genetic pleiotropy to improve prediction and
generalization at population scale.
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A Details of the GWAS runs

The internal ancestry classifier assigns individuals to one of five major genetic ancestry groups -
African American (AFR), European (EUR), East Asian (EAS), South Asian (SAS), or Latino (LAT) -
based on local ancestry inference [48]]. To reduce confounding introduced by population structure,
GWAS analyses were stratified by these genetically inferred ancestry groups.

Principal component analysis (PCA) was conducted separately within each ancestry group using a
subset of <100,000 high-quality genotyped variants shared across all internal platforms. A randomly
selected subset of individuals was used for each group: 513K for AFR, 398K for EAS, 1M for EUR,
IM for LAT, and 111K for SAS [48].

For each disease and ancestry group, GWAS was performed using logistic regression with additive
allelic effects as predictors. Covariates included age, sex, genotype platform (to adjust for batch
effects), and top principal components - specifically, the top 5 PCs for EUR, EAS, and SAS; the
top 6 for AFR; and the top 9 for LAT. Association p-values were derived using a likelihood ratio
test, comparing a reduced model fitted using covariates only to a full model fitted with both additive
genetic effects and covariates [56].

B Exploration of LD-based variant pruning

We additionally experimented with training PRSformer on a subset of variants that had been LD-
pruned using PLINK 2.0 [57]. LD pruning removes highly correlated SNPs to retain approximately
independent markers. In this procedure, a sliding window is moved across the genome, pairwise
linkage disequilibrium () is computed among variants, and SNPs exceeding a specified correlation
threshold with nearby variants are iteratively removed until no pair within each window remains
above that threshold. Starting from a union variant set constructed similarly to that in Section 3.4 (but
with slightly adjusted filtering thresholds), we applied PLINK 2.0 with a window size of 6,000 kb
(6 Mb), a step size of one variant, and an -2 threshold of 0.5. Supplementary Table F11 compares two
models from the hyperparameter tuning round trained with and without LD-based variant pruning.
Interestingly, despite reducing multicollinearity among variant features, LD pruning led to lower
validation performance, suggesting that PRSformer benefits from leveraging the local correlation
structure within LD blocks to capture causal signals more effectively.

C Details of LDpred2 runs

For each disease we used the Gibbs sampler LDpred2 software [5] on the summary statistics with
an internal LD panel. LD matrix computation included variants with minor allele frequency greater
than 0.1%, and genotype call rate greater than 90%. Variants greater than 5cM apart were assumed to
be independent. Summary statistics were filtered to keep variants that had a minor allele frequency
greater than 0.1% and had a genotype call rate greater than 95%. This consisted of variant sets with
roughly 445,000 variants. We estimated posterior SNP-effect sizes using the grid option with a set
of 100 combinations of hyperparameters, leading to up to 100 sets of polygenic risk scores (PRS)
per disease (depending on convergence). The hyperparameters that LDpred?2 takes are an estimate
for the proportion of causal variants, p, and trait heritability, h2. We used LD score regression to
estimate A2, then used a grid of the h? estimate multiplied by 0.6, 0.8, 1, 1.2, and 1.4. For p, we used
a sequence of values equally spaced on a logarithmic scale from 10~° to 1. The best hyperparameters
for each disease were selected based on validation AUROC leading to the final LDPred2 PRS models.
For Stacked LDPred2, however, we ensembled all of the converged PRSs per disease (up to 100) by
training elastic net on the validation data using 5-fold cross validation.

D Subsetting variants for down-sampled experiments

When training on smaller datasets, we may not have access to the same high-powered variant
selection as in the full-data setting. To account for this, we repeated variant selection using GWAS
summary statistics adjusted to reflect the reduced sample size of each downsampled dataset. For each
downsampled dataset, we estimated GWAS p-values under the reduced sample size using the original
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GWAS summary statistics:

_ B _ [ Nas _
Z_S_E’ Zgs = 4 X N Pas = 2®(—|Z4s|)

where § and SFE denote the effect size and standard error from the original GWAS, N is the
original sample size, Ny, is the downsampled sample size, and P is the standard normal cumulative
distribution function. Subsequently, variant selection was performed independently for each disease
and each downsampled dataset using the estimated p-values, applying a threshold of p < le—2. Multi-
task model training was then conducted using the union of the selected variant sets across diseases at
each downsampled scale, following the same procedure as in the full-data experiments. Additional
details on variant sets and data sizes and model configurations are provided in Supplementary Tables
F1,F2 and F13.

E Supplementary figures
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Figure E1: Benchmarking PRSformer against baseline methods using AUPRC as the evaluation
metric. Numbers above the bars indicate test set AUPRC values; error bars denote 95% confidence
intervals estimated via bootstrapped test samples. The reported p-values reflect the one-sided
statistical significance of PRSformer outperforming LDPred?2.
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Figure E2: Benchmarking of models trained on the combined training and validation datasets.
Numbers above the bars indicate test set AUROC; error bars represent 95% confidence intervals
computed via bootstrapped test samples. The two sets of p-values reflect the one-sided statistical
significance of PRSformer+ outperforming stacked LDPred2, and PRSformer outperforming non-
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Figure E4: Prediction performance across different training scales for the non-linear model and linear
baseline, both trained in a multitask (MT) setting using the same input variant set as PRSFormer. For
most diseases, performance improves with more training data, with the non-linear model surpassing
the linear baseline at larger scales. Fluctuations in performance for Polymyalgia Rheumatica and
Axial Spondyloarthritis likely stem from the former’s rarity and the latter’s relatively small training
size (see Supplementary Table F2).
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Figure ES: Prediction performance across different training scales for the non-linear model and linear
baseline, both trained in a multitask (MT) setting using subsetted variant sets at each down-sampled
scale (see Supplementary section D and Table F13). For most diseases, performance improves with
increasing training data, with the non-linear model outperforming the linear baseline at larger scales.
These trends are consistent with those observed using a fixed input variant set across scales (see
Supplementary Figure E4).
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Figure E6: Comparison of multitask (MT) versus single-task (ST) training for three additional
diseases across different training scales, all using the same input variant set as PRSformer. X-axis
values outside parentheses indicate ST training sizes, and those inside indicate corresponding MT
training sizes. Across all tested diseases, MT training outperforms ST training for both the non-linear

training data size

model (left) and the linear baseline (right).
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Figure E7: Comparison of multitask (MT) versus single-task (ST) training for four tested diseases
across different training scales. Both MT and ST models were trained on downsampled datasets using
subsetted variants; additionally, ST models used disease-specific variant sets (see Supplementary
section D and Table F13). X-axis values outside parentheses indicate ST training sizes, while those
inside indicate the corresponding MT sizes. Across all tested diseases, MT training outperforms
ST training for both the non-linear model (left) and the linear baseline (right). These results are
consistent with those observed using a fixed input variant set for both MT and ST across scales (see
Supplementary Figure E6).
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F Supplementary tables

Table F1: Number of selected variants per disease across European datasets

Disease EUR dataset  3M 2M  15M 1M 05M 03M 0.15M
Celiac 14291 9595 6461 5576 4923 3906 3380 2722
TID 16176 12607 7865 6424 5323 4033 3371 2530
Graves’ 17350 14104 8380 6614 5231 3725 2984 2096
Sjogren’s 11949 9381 4692 3502 2633 1954 1439 845
Psoriasis 24685 19621 11943 9088 6770 4529 3478 2148
Hashimoto Thyroiditis 29806 25103 15141 11314 7869 4677 3256 2030
Lupus 13618 10252 4840 3305 2384 1512 943 494
Rheumatoid Arthritis 18426 13683 6303 3980 2497 1484 891 373
Multiple Sclerosis 13347 10124 5587 4309 3301 2328 1683 1226
Crohn’s 14140 10444 5126 3397 2099 739 302 90
Polymyalgia Rheumatica 8113 5818 2440 1674 1135 558 267 78
Ulcerative Colitis 14138 10381 5081 3487 2300 1042 547 164
Pediatric IBD 8677 5679 1954 1095 650 204 72 24
Axial Spondyloarthritis 6352 2215 668 316 122 20 4 0
Vitiligo 12980 9720 5231 3926 2900 1695 1092 525
Migratory Glossitis 14309 8692 4516 3327 2394 1457 1019 610
Canker Sore 18418 6181 3204 2126 1322 485 206 34
Alopecia Areata 9741 7117 3160 2087 1325 680 312 59
Union 137245 94176 38018 23397 15060 9181 6829 4863

Table F2: Training sample sizes (case / control) per disease across European and multi-ancestry
datasets

Disease Multi-Ancestry Dataset ~ Full Dataset 3M 2M 1.5M IM 0.5M 0.3M 0.15M
Celiac 14851/2444838 1330471933687 10451/1511685 6828/1007277  5228/755823  3458/503346  1747/251838 1052/151689  555/75772
TID 2581574600428 21108/3568017 16519/2788978 11126/1859420 8246/1393969  5525/929582  2714/464434 1626/278712 808/139611
Graves’ 3437714767527 26982/3708583  21132/2898733 14099/1932335 10573/1449024 7154/966394  3518/482997 2131/289748 1043/144919
Sjogren’s 23480/4791439 1954473718113  15259/2906128 10245/1937041 7562/1452756  5032/968626  2588/484220 1497/290448 735/145343
Psoriasis 181096/4404301  151767/3560128 118647/2782686 79073/1854947 59461/1391012 39630/927636 19622/463485 11922/278024 5934/139104
Hashimoto Thyroiditis 124104 /4677800 106911/3708583 83363/2898733 55523/1932335 41881/1449024 27653/966394 14022/482997 8314/289748 4172/144919
Lupus 3592674816513 2779573747933 21623/2929376 14499/1952708 10807/1464450 7293/976354  3661/488102 2144/292815 1092/ 146446
Rheumatoid Arthritis 128990/4532187  104481/3611921 81737/2823204 54452/1882141 40607/1411177 27066/941019 13610/470158 8174/282097 3970/141143
Multiple Sclerosis 2023074812927 1701573735898  13384/2920007 8962/1946527 6689/1459824  4390/973437  2170/486450 1329/291870 639/145979
Crohn’s 2743414667812 23802/3637333  18571/2842879 12475/1895460 9301/1421090  5975/947547  3210/473495 1952/284047 992/142142
Polymyalgia Rheumatica 746974620931 6940/3588209  5392/2804710  3597/1869745 2742/1401959  1802/934872  880/467030  557/280181 274/140198
Ulcerative Colitis 5302174636460 44568/3632871  34799/2839378 23012/1893078 17467/1419395 11663/946417 5880/472898 3456/283722 1784/141974
Pediatric IBD 1001474613960 8311/3577312  6470/2796009  4303/1864258 3316/1397699  2145/932056  1143/465543  639/279336  337/139724
Axial Spondyloarthritis 7786/336188 6843/292915 5377/229150 3527/153102  2682/114299 1812/76600 901/37712 532/22931 258/11477
Vitiligo 38209/4534376 29309/3550146  22855/2774956 15261/1849633 11479/1387067 7725/925064  3682/462197 2295/277303 1159/138722
Migratory Glossitis 3239471217541 27982/1031326  21764/805875  14687/537379 10837/402928  7404/268314  3627/134668 2176/80804  1122/40505
Canker Sore 5788387194610 493951/643681  385900/502693 257526/335273 193006/251409 128495/167596 64644/84032 38620/50224 19452/25453
Alopecia Areata 35533/4498787 22506/3522691  17705/2753494 11820/1835462 8740/1376318  5895/917773  2885/458592 1725/275141 809/137684
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Table F3: Test data sample sizes (case / control) per disease across ancestry groups

Disease EUR AFR LAT EAS SAS
Celiac 2160/243495 80/46973 630/172120 - 30/8072
T1D 2720/457259 615/105176  1391/309332  77/55295 48/17309
Graves’ 3388/469283 914/110197  1766/317074  422/55642  45/17946
Sjogren’s 2816/472870  520/111322 1310/319124  157/56119 50/18187
Psoriasis 21015/431120 2521/101166 9615/292205 1530/50308 569/16048
Hashimoto Thyroiditis 14186/458485 804/110307 6093/312747 367/55697 317/17674
Lupus 3936/473772  1137/111165 2442/319080 225/56313 72718237
Rheumatoid Arthritis 131847443140 3280/101623 7071/297862 507/52176  188/16702
Multiple Sclerosis 2025/446886  475/101646  780/297888 36/51393 29/16457
Crohn’s 3005/455308 513/105068  1033/305040  67/53528 66/16929
Polymyalgia Rheumatica ~ 708/435628 - 124/287923 10/49222 -
Ulcerative Colitis 5298/452158 796/104667  2518/303129  192/52713  147/16845
Pediatric IBD 11477449546 191/104216  546/302110 33/52611 37/16782
Axial Spondyloarthritis 1086/36301 47/3144 363/16630 53/2073 22/503
Vitiligo 5109/446859  1246/102158 3199/298421  298/51520 214/16422
Migratory Glossitis 1092 /36473 108 /4993 358/18007 39/2133 11/565
Canker Sore 2827578842 2442 /2463 11662/6178 1579/596 2847272
Alopecia Areata 3263/445400 2198/100221 3527/294859 606/50802 358/15913

Disease EUR Validation Size
Celiac 2096/262416
T1D 3088 /488880
Graves’ 3469/506279
Sjogren’s 2964 /509623
Psoriasis 22883/467419
Hashimoto Thyroiditis 145557495193
Lupus 4173/511037
Rheumatoid Arthritis 14315/479237
Multiple Sclerosis 22037484295
Crohn’s 34497493246
Polymyalgia Rheumatica 662/472910
Ulcerative Colitis 5966/489957
Pediatric IBD 12857487101
Axial Spondyloarthritis 1153739350
Vitiligo 5320/484047
Migratory Glossitis 1374746592
Canker Sore 36835/11355
Alopecia Areata 3567/482771

22

Table F4: Validation dataset sample sizes (case/control) per disease (only European individuals)



Table F5: Tuning of the training steps based on validation AUROC
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model-t059 2.0  0.7732 0.6843 0.7621 0.7412 0.6295 0.7165 0.6593 0.5911 0.6401 0.8392
model-t059 3.0  0.7368 0.6592 0.7323 0.7225 0.6087 0.6829 0.6415 0.5780 0.6164 0.8162

model-t15 1.8 0.7775 0.6869 0.7623 0.7417 0.6279 0.7137 0.6581 0.5901 0.6357 0.8398
model-t16 1.9 0.7785 0.6895 0.7632 0.7435 0.6345 0.7173 0.6600 0.5924 0.6371 0.8404
model-t17 20 07784 0.6904 0.7648 0.7446 0.6341 0.7218 0.6613 0.5939 0.6405 0.8424
model-t18 2.1 0.7463 0.6717 0.7386 0.7235 0.6147 0.6905 0.6410 0.5782 0.6164 0.8173
model-t19 22 0.7430 0.6666 0.7341 0.7193 0.6099 0.6829 0.6376 0.5758 0.6132 0.8132

Note. Most models (e.g., model-t059) showed signs of overfitting beyond 2 training epochs. We
also explored training durations around this point (1.8-2.2 epochs) and selected 2 epochs as the final
configuration.

Table F6: Tuning of attention heads and model dimension based on validation AUROC
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Model-t17 4 64 0.7784 0.6904 0.7648 0.7446 0.6341 0.7218 0.6613 0.5939 0.6405 0.8424 0.7072

Model-t20 4 32 0.7649 0.6794 0.7568 0.7418 0.6214 0.7081 0.6584 0.5902 0.6343 0.8371 0.6992
Model-t21 4 96 0.7754 0.6892 0.7656 0.7464 0.6334 0.7208 0.6628 0.5954 0.6427 0.8424 0.7074
Model-t22 3 48 0.7783  0.6909 0.7640 0.7449 0.6357 0.7192 0.6612 0.5927 0.6408 0.8424 0.7070
Model-t23 3 24 0.7714 0.6819 0.7527 0.7404 0.6259 0.7136 0.6558 0.5897 0.6315 0.8392 0.7002
Model-t24 3 72 0.7667 0.6865 0.7649 0.7448 0.6289 0.7131 0.6611 0.5932 0.6403 0.8397 0.7039
Model-t25 5 80 0.7659 0.6871 0.7643 0.7446 0.6278 0.7127 0.6613 0.5941 0.6406 0.8405 0.7039
Model-t26 5 40 0.7741 0.6874 0.7602 0.7426 0.6309 0.7145 0.6591 0.5912 0.6377 0.8401 0.7038

Note. We selected 4 attention heads with dpeg.; = 64 for their competitive performance despite a
smaller model dimension compared to Model-t21.

Table F7: Tuning of attention dilation and number of transformer blocks based on validation AUROC
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Model #Transformer Blocks NA Dilation O &) O == | = ¥ =4 2} = Mean
Model-t9 2 (1-1) 0.7807 0.6938 0.7772 0.7508 0.6422 0.7297 0.6654 0.5987 0.6501 0.8425 0.7131
Model-t12 2 (1-2) 0.7806 0.6904 0.7766 0.7507 0.6401 0.7292 0.6659 0.5991 0.6497 0.8435 0.7126
Model-t13 3 (1-2-3) 0.7808 0.6921 0.7749 0.7498 0.6398 0.7291 0.6650 0.5982 0.6459 0.8427 0.7118

Note. Increasing the number of transformer blocks and applying dilated attention (e.g., (1-2),
(1-2-3)) led to mild overfitting. We selected 2 transformer blocks without dilation (1-1) as the final
configuration.
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Table F8: Tuning of the window size of neighborhood attention based on validation AUROC
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Model #Atten. Head #NA Window ] &) 6] = = = -9 ~ 7} =
Model-t75 4 385 0.7806 0.6944 0.7700 0.7415 0.6308 0.7265 0.6625 0.5975 0.6311 0.8418
Model-t127 4 129 0.7796 0.6955 0.7699 0.7410 0.6310 0.7265 0.6618 0.5963 0.6322 0.8412
Model-t128 4 257 0.7821 0.6922 0.7679 0.7403 0.6299 0.7246 0.6610 0.5963 0.6303 0.8410
Model-t129 4 513 0.7798 0.6945 0.7684 0.7412 0.6292 0.7252 0.6619 0.5969 0.6305 0.8413
Model-t130 4 641 0.7787 0.6940 0.7691 0.7411 0.6308 0.7233 0.6625 0.5959 0.6342 0.8405
Model-t131 2 129 0.7799 0.6927 0.7670 0.7398 0.6298 0.7252 0.6615 0.5954 0.6297 0.8403
Model-t132 2 257 0.7785 0.6936 0.7676 0.7408 0.6303 0.7234 0.6617 0.5962 0.6315 0.8404
Model-t133 2 513 0.7799 0.6946 0.7694 0.7413 0.6297 0.7256 0.6619 0.5961 0.6319 0.8410
Model-t134 2 641 0.7807 0.6923 0.7668 0.7404 0.6286 0.7247 0.6618 0.5948 0.6307 0.8407

Note. We selected 4 attention heads with Neighborhood Attention’s window size of 385 as the final
configuration.

Table F9: Exploring the impact of LD-based variant set pruning (r? = 0.5) on validation AUROC.
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model-t031 ~344K No 0.7640 0.6103 0.7334 0.7335 0.6192 0.6717 0.6572 0.5755 0.6340 0.8328
model-t034 ~232K Yes 0.7564 0.5951 0.7154 0.7179 0.6143 0.6595 0.6466 0.5732 0.6300 0.8238

Note. Interestingly, removing correlated variants via LD pruning lowers AUROC:S, indicating that
PRSformer benefits from the underlying LD structure when identifying causal signals.

Table F10: Exploring different output heads based on validation AUROC.
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model-t5 Flatten+FC 0.7799 0.6896 0.7773 0.7497 0.6385 0.7301 0.6655 0.5981 0.6491 0.8448
model-t10 10-[CLS]-tokens+Flatten+FC 0.7343 0.5678 0.6656 0.6682 0.5840 0.6410 0.6036 0.5590 0.6007 0.8004
model-t11 Global-Avg-Pool+FC 0.5820 0.5348 0.5955 0.5822 0.5516 0.5187 0.5504 0.5292 0.5601 0.5996

Note. In model-t10, we introduced ten [CLS] tokens into the input sequence and vocabulary, each
with learnable embeddings and full attention over all variant tokens. The flattened, normalized
representations of these [CLS] tokens were passed to a linear layer producing an 18-dimensional
output. In model-tl1, an average-pooling layer was applied to the normalized representations from
the last transformer block (reducing tensors from B x L x d to B X d), followed by a linear layer
mapping d to the 18-dimensional output.
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Table F11: Comparison of explained variance between PRSformer and LDpred2 across diseases on
the European test set

a

=)

Celiac

Graves

Sjogren’s

Psoriasis

Hashimoto Thyroiditis
Lupus

Rheumatoid Arthritis
Multiple Sclerosis
Crohn’s

Polymyalgia Rheumatical
Ulcerative Colitis
Pediatric IBD

Axial Spondyloarthritis
Vitiligo

Migratory Glossitis
Canker Sore

Alopecia Areata

Model

PRSformer 0.1269 0.2189 0.0885 0.0224 0.0570 0.1039 0.0231 0.0163 0.0868 0.0562 0.0226 0.0328 0.0364 0.0179 0.0289 0.0898 0.0555 0.0165
LDpred2 0.0870 0.1837 0.0874 0.0194 0.0545 0.1038 0.0236 0.0143 0.0687 0.0513 0.0178 0.0324 0.0401 0.0146 0.0275 0.0927 0.0591 0.0133

Note. Predicted probabilities from both models were calibrated on the test data.

Table F12: Number of selected variants per disease across non-European ancestries

Disease AFR LAT EAS SAS
Celiac 0 7515 0 0
T1D 7067 8546 0 0
Graves’ 6964 8889 6611 0
Sjogren’s 5926 6645 0 0
Psoriasis 6211 10545 6524 6041
Hashimoto Thyroiditis 6342 11037 5780 0
Lupus 6172 7413 0 0
Rheumatoid Arthritis 6342 8104 4453 0
Multiple Sclerosis 5936 6730 0 0
Crohn’s 5177 4959 0 0
Polymyalgia Rheumatica 0 0 0 0
Ulcerative Colitis 5254 5743 0 0
Pediatric IBD 0 4862 0 0
Axial Spondyloarthritis 0 0 0 0
Vitiligo 5599 7017 0 0
Migratory Glossitis 0 6927 0 0
Canker Sore 5732 6812 4296 5021
Alopecia Areata 5705 7521 4626 0

Table F13: Characteristics of multitask models trained on down-sampled datasets with subsetted
input variants

Model # Input Variants Train Data Size # Model Parameters
Non-linear_downsampled 94176 3000000 120.61M
Non-linear_downsampled 38018 2000000 48.73M
Non-linear_downsampled 23397 1500000 30.01M
Non-linear_downsampled 15060 1000000 19.34M
Non-linear_downsampled 9181 500000 11.82M
Non-linear_downsampled 6829 300000 8.81M
Non-linear_downsampled 4863 150000 6.29M
Linear_downsampled 94176 3000000 120.55M
Linear_downsampled 38018 2000000 48.66M
Linear_downsampled 23397 1500000 29.95M
Linear_downsampled 15060 1000000 19.28M
Linear_downsampled 9181 500000 11.75M
Linear_downsampled 6829 300000 8.74M
Linear_downsampled 4863 150000 6.22M
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Table F14: AUROC comparison across diseases under different covariate settings (sex and age). For
each disease and ancestry group, bold font denotes the best performance.
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EUR  PRSformer _ none 0.7933 0.8457 0.7661 0.7184 0.6660 0.6004 0.6212 0.6048 0.6338 0.5802 0.6985 0.7504 0.6669 0.6227 0.6051 0.6442 0.6337 0.7164
EUR  PRSformer  sex 0.8051 0.8469 0.7997 0.7392 0.6707 0.6197 0.6264 0.6139 0.7199 0.5697 0.7007 0.8063 0.6684 0.6266 0.6262 0.6493 0.7292 0.7248
EUR  PRSformer  sex+age 0.8037 0.8478 0.8224 0.7575 0.7098 0.7208 0.6556 0.8536 0.7328 0.6174 0.7000 0.8123 0.6730 0.6274 0.6352 0.6757 0.7711 0.7213
EUR  PRSformer-ME none 0.7867 0.8431 07674 0.7157 0.6654 0.6069 0.6222 0.5995 0.6458 0.5818 0.6981 0.7487 0.6683 0.6246 0.6125 0.6447 0.6404 0.7146
EUR  PRSformer-ME sex 0.7972 0.8418 0.7996 0.7330 0.6651 0.6249 0.6254 0.6088 0.7259 0.5768 0.6991 0.8044 0.6687 0.6296 0.6347 0.6476 0.7302 0.7197
EUR  PRSformer-ME sex+age 07993 0.8420 0.8224 07549 0.7124 0.7265 0.6668 0.8565 0.7425 0.6271 0.7002 0.8120 0.6758 0.6315 0.6433 0.6763 0.7766 0.7097
AFR  PRSformer  none 0.6219 0.6391 05676 0.5447 05928 0.5241 05122 -  0.5404 <05 0.5726 0.6727 0.5559 0.5913 <0.5 0.5401 05118 0.6008
AFR  PRSformer  sex 0.6346 0.6496 0.6153 0.5709 05983 0.5630 0.5207 -  0.6500 <0.5 0.5755 0.7473 0.5674 0.5932 <0.5 0.5554 0.6068 0.6054
AFR  PRSformer  sex+age  0.6412 0.6589 0.6964 0.5997 0.6161 0.7445 0.5699 -  0.6917 <0.5 05790 0.7695 0.5797 0.5968 0.5322 0.5971 0.6923 0.6110
AFR  PRSformer-ME none 0.6269 0.6986 0.6997 0.6397 0.6285 0.5660 0.5605 —  0.6140 0.5410 0.6217 0.6939 0.5822 0.6026 0.5844 0.5902 0.6398 0.6550
AFR  PRSformer-ME sex 0.6576 0.7046 0.7431 0.6834 0.6215 0.5971 0.5779 -  0.7007 0.5460 0.6145 07559 0.5872 0.6070 0.6243 0.6021 0.7026 0.6577
AFR  PRSformer-ME sex+age  0.6446 0.7092 0.7893 0.7150 0.6647 0.7662 0.6350 —  0.7346 0.6374 0.6217 0.7782 0.5972 0.6108 0.6563 0.6494 0.7688 0.6463
LAT  PRSformer  none 0.7437 0.7459 0.7060 0.6832 0.6216 0.5712 0.5871 0.6526 0.6063 0.5610 0.6674 0.7482 0.6449 0.6283 0.5579 0.6184 0.6181 0.6994
LAT  PRSformer  sex 0.7599 0.7491 0.7486 0.7055 0.6261 0.6042 0.5882 0.6641 0.6930 0.5689 0.6674 0.8000 0.6512 0.6299 0.5751 0.6262 0.6982 0.7088
LAT  PRSformer  sex+age  0.7573 0.7580 0.7875 0.7316 0.6490 07516 0.6226 0.8390 0.7225 0.6270 0.6697 0.8135 0.6601 0.6299 0.5985 0.6661 0.7613 0.7083
LAT  PRSformer-ME none 07521 0.7732 07568 0.7256 0.6539 0.5979 0.6166 0.6553 0.6536 0.6038 0.6842 07581 0.6396 0.6397 0.6346 0.6291 0.6685 0.7270
LAT PRSformer-ME  sex 0.7649 0.7762 0.7915 0.7427 0.6548 0.6300 0.6210 0.6756 0.7335 0.5962 0.6827 0.8081 0.6601 0.6417 0.6387 0.6294 0.7382 0.7279
LAT  PRSformer-ME sex+age  0.7642 0.7792 0.8170 0.7658 0.6819 0.7671 0.6601 0.8588 0.7616 0.6700 0.6900 0.8222 0.6713 0.6426 0.6522 0.6736 0.7962 0.7241
SAS  PRSformer _ none 0.8180 0.6640 0.7667 0.7341 0.6423 0.6052 0.5693 —  0.5656 0.5999 0.6630 0.6705 0.6209 0.5999 0.5754 0.6974 0.6383 0.5421
SAS  PRSformer  sex 0.8183 0.6550 0.7756 0.7496 0.6330 0.6455 0.5805 -  0.6754 0.5857 0.6618 0.7377 0.6224 0.6053 0.5843 0.6865 0.7393 0.5915
SAS  PRSformer  sex+age 0.8042 0.6685 0.8185 07536 0.7044 07479 0.5993 -  0.6860 0.6193 0.6684 0.7479 0.6186 0.6146 0.5867 0.6862 0.7593 0.5706
SAS  PRSformer-ME none 0.8002 0.6852 07612 0.7503 0.6858 0.5974 0.6009 -  0.6196 0.5828 0.7061 0.6907 0.6269 0.5813 0.5972 0.6969 0.6885 0.5146
SAS  PRSformer-ME sex 0.8108 0.6743 0.7784 0.7813 0.6663 0.6666 0.5935 - 07053 0.6221 0.6732 0.7452 0.6230 0.6069 0.6042 0.6653 0.7423 0.5492
SAS  PRSformer-ME sex+age  0.8096 0.6796 0.8231 0.7737 0.7561 0.7632 0.6104 -  0.7097 0.6559 0.6748 0.7580 0.6325 0.6032 0.6041 0.6861 0.7701 0.5348
EAS  PRSformer _ none = 06507 0.6937 0.5406 0.5902 0.5566 05463 0.7431 0.6144 0.5184 0.6282 0.6535 0.6167 05731 0.5846 0.6204 0.5770 0.6809
EAS  PRSformer  sex ~ 06357 0.7357 0.6136 0.6106 0.5808 0.5425 0.7208 0.6893 <0.5 0.5928 0.7335 0.6182 0.5642 0.5986 0.6027 0.6541 0.6659
EAS  PRSformer  sex+age ~ 06588 0.7585 0.6612 0.6153 0.7759 0.5902 0.8856 0.7164 0.5640 0.5932 0.7491 0.6298 0.5773 0.6154 0.6607 0.7467 0.6860
EAS  PRSformer-ME none — 07121 0.7487 0.5019 0.6518 0.6085 0.5602 0.6973 0.6573 0.5860 0.6256 0.6876 0.6355 0.5929 0.6386 0.6545 0.6176 0.7085
EAS  PRSformer-ME sex ~ 07001 0.7828 0.5988 0.6385 0.6380 0.5725 0.6981 0.7295 0.6081 0.5960 0.7518 0.6331 0.5973 0.6379 0.6345 0.6918 0.6938
EAS  PRSformer-ME sex+age — 07157 0.7964 0.6455 0.6222 0.7978 0.6193 0.8587 0.7450 0.6586 0.6001 0.7729 0.6449 0.5972 0.6662 0.6980 0.7742 0.7041
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction claim the development of a scalable Transformer
(PRSformer) for disease prediction from large-scale genotypes, outperforming linear and
summary-statistic methods, demonstrating benefits of non-linearity at scale and multitask
learning, and improving cross-ancestry generalization. These claims are supported by the
experimental results presented in Section 4 and associated figures/tables.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Section 5 explicitly discusses limitations, namely the inability to share the
private dataset and the need for future work on interpretability methods.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors

should reflect on how these assumptions might be violated in practice and what the

implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

27



Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper presents an empirical study based on a novel architecture and its
experimental validation. It does not include theoretical results, theorems, or formal proofs.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

» The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides substantial detail on the model architecture (Section
3.2, Fig 1), datasets and filtering (Section 3.3, Appendix A), variant selection (Section
3.4, Appendix A-B, and D), training procedure (Section 3.5), baseline implementations
(Section 3.6, Appendix C), and hyperparameter selection (Section 3.5, and Appendix F,
Supplementary Tables F5-F10). The GitHub repository containing the model architecture is
also referenced in Section 5.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: The paper states the dataset is from a large, private biobank and cannot be
shared publicly (Section 3.3, Section 5). The implementation code has been released with the
accepted version (Section 5), although reproducing the main experimental results remains
infeasible without access to the private data.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 3 provides details on data splits (3.3), variant selection (3.4), training
procedure including optimizer and scheduler (3.5), and model architecture (3.2). Appendix
F and associated supplementary tables provide extensive details on hyperparameter tuning
and selection.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]

Justification: Figures 2 and E1-E3 report performance metrics (AUROC, AUPRC) with error
bars explicitly defined as 95% confidence intervals calculated via 10k bootstraps. P-values
for significance testing (one-sided paired bootstrap test) comparing PRSformer to LDPred2
are also provided (Section 4.1, Figure 2 caption).

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section 3.5 mentions training was performed on four NVIDIA A100 GPUs
using Distributed Data Parallel and FP16 for 2 epochs (=~ 120, 000 gradient updates). While
total wall-clock time isn’t explicitly stated, the key hardware and training duration metrics
are provided.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research fully conforms to the NeurIPS Code of Ethics. It uses consented
data under IRB approval (Section 3.3, 5) and discusses ethical considerations like data
privacy, potential misuse, and fairness (Section 5).

Guidelines:
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* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Section 5 discusses potential positive impacts (disease prediction/discovery)
and negative impacts/risks (genomic data misuse, discrimination). It also touches upon
fairness across populations and responsible deployment.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: The paper uses sensitive genomic data. Safeguards mentioned include using
data from a private biobank under IRB approval (Section 3.3, Section 5) and explicitly
stating that the trained models are withheld to mitigate misuse potential (Section 5).

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

31



12.

13.

14.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The primary asset is the private biobank data obtained under IRB protocol.
The methods use standard libraries/techniques (e.g., PyTorch, AdamW) or cited methods
(e.g., LDPred2 [5]], NATTEN [[12,44]) for which explicit license discussion within the paper

text is not standard practice or necessary. No other major external assets requiring specific
license attribution appear to be used.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces a new model architecture (PRSformer), which is well-
documented (Section 3.2, Figure 1, and Appendix F). Furthermore, the code is available
at GitHub (Section 5). However, no new publicly released datasets are provided with the
submission (data is private and trained models are withheld).

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The research uses existing data from a biobank where individuals previously
consented to participate in research (Section 3.3 and 5). The study did not involve new
recruitment, direct interaction with human subjects, or crowdsourcing.

Guidelines:
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15.

16.

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: The paper explicitly states that the data was utilized under an IRB-approved
protocol (Sections 3.3) and references the use of consented research participant data (Section
5). Given it’s secondary analysis of existing, likely de-identified data under IRB over-
sight, specific risks incurred by this study are minimal and typically covered by the initial
consent/IRB review; the paper focuses on broader ethical considerations of genomic data
(Section 5).

Guidelines:
» The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core methodology involves a custom Transformer architecture (PRS-
former) with neighborhood attention, trained directly on genotype data. No LLMs were
used as a core component of the method development or experiments.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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