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Abstract001

LLMs training process has high memory de-002
mands and high economic cost, making it chal-003
lenging for many organizations to adopt and004
scale effectively. In this paper, we train the005
model using block coordinate descent(BCD) on006
cheap RTX 4090 clusters, combining with engi-007
neering improvements to train LLM with lower008
economic cost and lower memory demands. In009
BCD training process, only a subset of parame-010
ters is updated, significantly reducing the mem-011
ory requirements. Through experiments, we012
show that 1. for a wide range of models and013
datasets, BCD is capable of training models014
with the same level of accuracy as traditional015
method. 2. Averagely, BCD outperforms the016
OffLoad’s 42.0% in training time cost with the017
same computation resources. BCD matches018
distributed training speed using just half of re-019
sources. 3. BCD training economic cost has020
been reduced more than 53.6% compared to tra-021
ditional methods on the 4090 cluster, and more022
than 74.9% compared to traditional methods on023
the A100 cluster averagely.024

1 Introduction025

As models grow in size currently, model training026

increasingly becomes a bottleneck for performance:027

as the model expands, the required GPU memory028

space and economic cost gradually increases. From029

the view of memory, when using the Adam opti-030

mizer for full-parameter training, training a LLM031

model with parameters W using 1024 tokens re-032

quires gradients of size W , optimizer states of size033

3W , and activations of size around 0.7W . Conse-034

quently, approximately 5.7W of GPU memory is035

needed for training. When using re-compute, 5W036

of GPU memory is needed for training for system037

does not save the activations. From the view of038

economic cost, training a 20B LLM needs around039

one million dollers.040

The traditional approach to training LLMs in-041

volves 3D distributed parallel training. This paral-042

lelism method distributes parameters and optimizer 043

states across different GPUs’ memories, necessi- 044

tating constant communication among different 045

GPUs during computation. This practice directly 046

addresses the issue of insufficient memory on a 047

single GPU, enabling the training of large models. 048

However, as the scale of the models increases, the 049

communication overhead also grows. Meanwhile, 050

due to the concurrent consumption of substantial 051

GPU resources, the training economic costs surge 052

accordingly. 053

Expensive A100/A800 clusters are traditional 054

clusters for LLMs Training. However, a number of 055

cheap GPU clusters with high computational perfor- 056

mance, low economic cost but high communication 057

costs and have emerged currently, such as clusters 058

composed of RTX 4090 GPUs or DCU7000s. The 059

comparsion of RTX 4090 GPUs and NVIDIA A100 060

are shown in table 1. The users want to reduce the 061

economic cost by using cheap clusters, like RTX 062

4090 based clusters, with limited resources. 063

Feature RTX 4090 A100
CUDA Cores 16,384 6,912
Tensor Cores 4th Gen 3rd Gen

Memory 24 GB 40/80 GB
Bandwidth 1,008 GB/s 1,555 GB/s

Memory Bus 384-bit 5,120-bit
FP32 Perf 82.6 TFLOPS 19.5 TFLOPS

Tensorcore FP16 330 TFLOPS 312 TFLOPS
Economic Cost 0.29$/hour 1.20$/hour

Table 1: Comparison of RTX 4090 and NVIDIA A100.
RTX 4090’s computational performance and economic
cost are better then A100, but not suitable for LLM
training. LLMs are trained in A100 for its large memory
and high bandwidth but the economic cost is high.

However, there is no mature algorithm for how 064

to use these cheap clusters to train large models in 065

a low economic cost and limited resources manner. 066

The traditional method for training models with 067

limited resources is mainly the OffLoad method 068
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in DeepSpeed. Although the OffLoad method can069

complete model training process with fewer compu-070

tational resources, the constant migration of param-071

eters, optimizer states, activations, and gradients072

between GPU memory and system memory during073

iterations results in a significant drop in training074

performance which significantly increases the time075

consumption and does not guarantee a lower eco-076

nomic cost compared to distributed methods.077

In this paper, we will demonstrate how to use the078

block coordinate descent (BCD), combined with079

engineering improvements, to train large models080

on cheap clusters at a lower economic cost. BCD081

updates only a portion of the parameters in each082

iteration. The remaining parameters do not need083

to record optimizer states or gradient information,084

and some parameters do not need to store activation085

information. As a result, the memory required for086

training the model is significantly reduced. Specif-087

ically, if we update only 1/3 of the parameters of088

a full model with a volume of W in each itera-089

tion, we will use less than 50% of the memory re-090

quired by the full model with re-computing setting.091

Compared with distributed training, the variation in092

training time required by BCD is relatively small,093

and thus the training economic costs have also been094

reduced significantly.095

In our experiments, we will show that 1. BCD096

can train models that perform as well as traditional097

methods. 2. The time cost of BCD is close to that098

of distributed methods but with less computation099

resources, and outperforms the OffLoad method100

when using the same resources. 3. The economic101

cost of BCD on the RTX 4090 platform is lower102

than that of distributed methods on the 4090, A100,103

and A800 platforms.104

2 Related Work105

2.1 Block Coordinate Descent106

BCD is a highly mature non-gradient descent107

method and has been extensively studied and ana-108

lyzed(Tseng, 2001; Beck and Tetruashvili, 2013;109

Wright, 2015; Richtárik and Takáč, 2014; Cai et al.,110

2023; Nutini et al., 2022; Tu et al., 2016). Re-111

cently, some researches discuss how to adopt BCD112

in to training DNN(Zisselman et al., 2019; Zhao113

et al., 2014; Blondel et al., 2013; Wu et al., 2021;114

Damaskinos et al., 2021). The convergence of BCD115

on DNN is proved by the work (Zeng et al., 2019;116

Zhang and Brand, 2017). In some works(Zeng117

et al., 2019; Lau et al., 2018), they claim that in118

some cases, BCD can produce a better performance 119

model compared with traditional optimizers. Com- 120

pared to training with all parameters, BCD takes 121

more rounds, but it uses less memory and com- 122

puting power. There is no work discuss how to 123

use BCD on LLM training and its advantages on 124

economic cost. 125

2.2 LLM Training 126

2.2.1 Distributed Parallel Training 127

Large-scale parallel training has become the 128

mainstream approach for training large mod- 129

els(Narayanan et al., 2021; Lai et al., 2023). The 130

distributed training of large models primarily relies 131

on 3D parallelism. Large model 3D parallelism is 132

an efficient model training method, with each pa- 133

rameter, optimizer state, and so on, mapped to indi- 134

vidual GPUs. 3D parallelism technology is widely 135

used in various training frameworks, such as Deep- 136

Speed(Holmes et al., 2024; Aminabadi et al., 2022; 137

Rajbhandari et al., 2022) and Megatron. 138

2.2.2 OffLoad Training 139

The OffLoad(Rajbhandari et al., 2021; Narayanan 140

et al., 2021; Aminabadi et al., 2022) mode is a tech- 141

nique that dynamically transfers model parameters, 142

gradients, and optimizer states from the GPU to 143

the CPU or other storage devices to reduce GPU 144

memory usage. It enables training large models on 145

GPUs with limited memory. While this approach 146

significantly improves the feasibility of training 147

large models, but OffLoad leads to slower training 148

speeds. The OffLoad mode is widely used in differ- 149

ent framework, especially the the limited resources 150

cases.(Gao et al., 2024; Zhang et al., 2024; Athlur 151

et al., 2022; Lv et al., 2023). 152

3 Block Coordinate Descent 153

3.1 Adopt BCD into LLM Training 154

The block coordinate descent method advances the 155

training process by reducing memory requirements 156

during training. 157

Take single-GPU training as an example: when 158

a single GPU can fully store the model, the amount 159

of parameters participating in training per iteration 160

can be adjusted based on the remaining available 161

memory of the GPU. In extreme cases, as long as 162

there is enough memory to train a single parameter, 163

training can proceed. For instance, with an RTX 164

4090 (24GB), it is theoretically possible to train 165
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Figure 1: When we partition the model, slicing it by
layers allows for better utilization of optimized computa-
tion kernels (as shown in the right figure). If a portion of
the parameters in each layer are updated simultaneously
(as shown in the left figure), computational performance
decreases, and pre-inference cannot be used to acceler-
ate the forward process.

a 12B Large Language Model. However, train-166

ing model under such extreme conditions incurs167

very high time costs. The standard BCD method168

imposes no mathematical requirements on param-169

eter partitioning, freezing any parameters satisfies170

the algorithm’s needs. In practical, the choice of171

which parameters to freeze must consider the com-172

putational performance benefits provided by the173

architecture and how to reduce memory usage dur-174

ing computation. Computation processes can be175

viewed as combinations of multiple optimized com-176

putational kernel to complete tasks. Thus, parti-177

tioning parameters based on operators is the most178

reasonable approach to freezing parameters.179

In neural networks, most operators are contained180

entirely within the "layer" data structure. Therefore,181

freezing and unfreezing parameters by layers or by182

data structures based on layers, such as blocks in183

ResNet networks, is the most appropriate approach,184

which shown in figure 1. This maximizes the per-185

formance benefits of optimized computation kernel.186

Consequently, we have adapted the general BCD187

method to the specific needs of deep learning, re-188

sulting in the following algorithm 1.189

As illustrated in the algorithm, each iteration190

trains the current parameters to a local convergence.191

During this process, traditional optimization algo-192

rithms, such as SGD and AdamW, are used to it-193

eratively minimize along the given direction. Re-194

garding the choice of optimization algorithm, there195

is no fundamental difference, as all algorithms can196

drive the process forward. However, in practice,197

SGD often achieves better model results compared198

to Adam or AdamW.199

Algorithm 1 Using BCD Training LLM
1: Input: DeepLearning Model model, Traning

Dataset D,and convergence criterion.
2: Initialize: Set k = 0 and Split model into
{submodel1, submodel2, ..., submodelM}.

3: repeat
4: Select a submodel submodelik , ik ∈

{1, 2, . . . ,M} cyclically.
5: Freezing the parameters in submodelj , j ̸=

ik
6: Unfreezing the parameters in submodelik
7: Building optimizer of submodelik . The

opitmizer can be SGD or Adam.
8: Training the model on D until converged.

Only the parameters in submodelik is up-
dated.

9: Increment k ← k + 1.
10: until Convergence criterion is satisfied.
11: Output: Converged model modelk.

3.2 Engineering Improvements 200

3.2.1 Parallel Training 201

When training with BCD in a multi-GPU envi- 202

ronment, it is important to ensure that different 203

computing hardware can fully utilize their compu- 204

tational resources. This means that the comput- 205

ing hardware should be able to maintain the busy 206

state. To achieve above target, both frozen and un- 207

frozen parameter parts should be stored simultane- 208

ously on the same hardware. Common multi-GPU 209

parallelism methods include data parallelism, ten- 210

sor parallelism, and pipeline parallelism. Among 211

them, tensor parallelism and pipeline parallelism 212

are model parallelism approaches, which require 213

further adaptation for BCD. 214

Typically, freezing and unfreezing parameters 215

within a matrix multiplication operation can signif- 216

icantly impact the performance of the computation 217

kernel. When performing tensor parallelism, only 218

part of the parameters are activated in the matrix 219

multiplication, which results in a loss of spatial lo- 220

cality in the computation. Current framework com- 221

putation kernel optimizations are based on layer- 222

based neural network structures for computational 223

performance. What is more, the tenor parallel man- 224

ner would incur the need of communication, which 225

would increase the system burden. 226

On the other hand, pipeline parallelism is de- 227

signed based on layers, which shown in figure 2. 228

So after freezing, it has a performance advantage at 229
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Figure 2: Training a large model one three GPUs. The
model is divided into six submodels. Two submodels are
addressed into one GPU. Different GPUs are paralleled
via pipeline parallel manner. The light blue part is GPU
memory.

the computation kernel level. Therefore, pipeline230

parallelism is a more suitable multi-GPU parallel231

approach for training models with BCD.232

3.2.2 Pre-inference233

When the model is sufficiently split, most of the234

model parameters are only involved in the inference235

process and in backward process, they are freezed.236

Meanwhile, due to the increased number of model237

iteration rounds, although the computational cost238

of backward process is reduced, the cost of forward239

process remains unchanged. Therefore, in BCD240

methods, reducing the time required for inference241

is necessary to make it comparable in performance242

to traditional full-parameter training methods.243

When performing model training on clusters244

with high computational performance but low com-245

munication performance (e.g., clusters composed246

of RTX 4090 GPUs or DCUs), we observe that247

these clusters exhibit excessive computational ca-248

pacity, leaving a significant portion of the com-249

putational resources idle. However, large-scale250

utilization of these resources can quickly lead to251

increased costs related to communication, data mi-252

gration, and cluster stability. How to effectively253

utilize such types of cluster resources is a problem254

that requires further consideration.255

To address above problems, we propose a pre-256

inference approach in the context of model training257

using BCD methods to fully utilize these resources.258

Pre-inference refers to the situation where, when259

the training of submodels closer to the label, the260

parameters in the submodels near the data input re- 261

main unchanged. Therefore, these submodels near 262

the data input can be treated as a complete model. 263

In this model, all data is inferred to produce a new 264

dataset, which is then used to train and update the 265

parameters of the submodels, shown in figure 3. 266

Pre-inference is primarily aimed at acceler- 267

ating computation in high-performance, high- 268

communication-cost cluster environments. In such 269

environments, all computational resources can be 270

utilized for submodel inference tasks to construct 271

new datasets, significantly reducing the overall 272

time consumed by inference. When computational 273

resources with high performance and high commu- 274

nication costs are unlimited, the inference cost of 275

fixed submodel parts becomes a fixed time cost. 276

This means that the time to infer a single sample is 277

equal to the sum of the inference time and the cost 278

of a single all-reduce operation.

Figure 3: The process of pre-inference. We Train sub-
model 2 in this case. The parameters in submodel 3 is
fixed. We can inference the Dataset on submodel 3
and gain Dataset1 on high communication cost cluster
on AllReduce manner. Then Using Dataset1 to train
the model composed by submode 1 and submodel 2.
The parameters in submodel 2 is trainable.

279

3.2.3 Reducing Training Dataset 280

According to the scaling law, there exists a certain 281

multiplier relationship among model size, data vol- 282

ume, and computational load. Therefore, when the 283

model size is reduced, the amount of training data 284

required can be moderately decreased, to achieve 285

a balance between computational efficiency and 286

model performance. 287

The process of training using the BCD method 288

can be regarded as training a smaller model. Scal- 289

ing law suggests that the amount of data needed 290

to train this smaller model is not the same as that 291

required for the full model. Furthermore, based on 292

our needs, we can reduce the total amount of data 293

when training submodels, thus reducing inference 294

costs and improving computational speed. 295

To utilize the entire dataset as much as possible, 296

the BCD method can adopt a sampling approach 297
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for training. Sufficient subsets of data are sampled298

from the total training dataset, and the submodel is299

trained on these sampled subsets. When training a300

new submodel, a new subset of data is used. This301

approach ensures that the entire training dataset is302

fully utilized while minimizing the computational303

burden on model training caused by large datasets.304

4 Experiments305

We conducted three experiments to demonstrate the306

superiority of BCD: 1. In the Validity Experiment,307

BCD was able to train models with performance308

equivalent to that of full-parameter training. Addi-309

tionally, in this experiment, we also estimated the310

number of iterations required by BCD as a mul-311

tiple of those needed for full-parameter training,312

and we name this multiple as B-F multiplier. 2. In313

the Performance Experiment, we compared BCD’s314

time performance per training iteration with that of315

OffLoad and distributed training methods. Further-316

more, we estimated and compared the total time317

consumption based on B-F multiplier. 3. Based318

on the rental costs, Validity Experiment and Per-319

formance Experiment results obtained on the GTX320

4090, A100, and A800 platforms, we analyzed the321

training economic costs.322

4.1 Experiment Setting323

The experiments were conducted cluster which con-324

sist of a node with 8 A100, a node with 8 A800 and325

4 nodes with 8 RTX 4090. All servers were inter-326

connected using a 2×25Gbps high-speed network.327

In Validity Experiments, we use ResNet 8,328

ResNet 14 on cifar 10, cifar 100 datasets and 0.15B329

GPT 2 on wikitext, Webtext2 dataset.330

We use 1.6B GPT2 (abbr. G-1.6B), 5.4B GPT2331

(abbr. G-5.4B), 10B GPT2 (abbr. G-10B), 20B-332

GPT2 (abbr. G-20B), 1.5B LLama (abbr. L-1.5B),333

6B LLama (abbr. L-6B), 11B LLama (abbr. L-334

11B), 23B LLama (abbr. L-23B) on WebText2 in335

Performance and Economic Cost Experiments.336

In our experiments, to ensure clarity and consis-337

tency, we divided the model into three submodels338

for all BCD experiments. This implies that during339

each iteration, we only update one-third of the full340

parameter set. Additional experiments detailing341

various BCD settings are presented in the Appendix342

for further reference.343

4.2 Validity Experiments 344

4.2.1 Algorithms Setting 345

The experiment includes ResNet series models and 346

a GPT-2 model with 0.15B parameters. The ResNet 347

models were trained on the CIFAR-10 dataset, 348

while the GPT-2 model was trained on the Wikitext 349

and WebText2 datasets. For the optimizer settings, 350

the SGD optimizer is set as learning rate of 0.1, 351

a momentum of 0.9, and a weight decay of 1e-5. 352

The Adam optimizer was set with a learning rate 353

of 1e-4, a weight decay of 1e-5, and default values 354

for the first and second moment estimates. 355

4.2.2 Experimental Results 356

In this experiment, we employed two optimizers, 357

Adam and SGD, and trained the models using 358

both the BCD method and full-parameter updating 359

method. The results are shown in table 2. Over- 360

all, we observe that BCD-based training demon- 361

strates certain advantages. From the perspective 362

of the loss function, the performance of models 363

trained with BCD is superior to those trained with 364

full-parameter updating in most cases. This phe- 365

nomenon has been explained by the work (Zeng 366

et al., 2019). The difference in loss function values 367

across different models and datasets is less than 368

0.1 and the performance gap between the model of 369

BCD and model of full parameters is samll. 370

4.2.3 B-F multiplier 371

Based on the experimental results, to gain the same 372

performance modes, in Adam experiments, we 373

found that the average number of training epochs 374

required by the BCD method is 1.39 times that of 375

full parameters Adam methods, with the worst-case 376

scenario being 2.77 times. We set the Adam’s aver- 377

age B-F (BCD-Full multiplier) multiplier as 1.39 378

and Adam’s the worst B-F multiplier as 2.77. 379

4.3 Performance Experiments 380

In this experiment, we will compare the perfor- 381

mance of the BCD method, the OffLoad method, 382

and distributed training methods in one iteration. 383

Additionally, we will provide the time cost required 384

to fully train the models using these different meth- 385

ods, based on the B-F multiplier. In this part, we 386

only use Adam optimizer to train LLM models 387

for Adam is the main stream LLM optimizer and 388

OffLoad only provides optimized Adam optimizer. 389
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Model
SGD BCD-SGD Adam BCD-Adam

epoch Acc loss epoch Acc loss epoch Acc loss epoch Acc loss

ResNet8 639 86.9 0.1671 395 87.2 0.1783 389 83.1 0.3955 309 86.0 0.2279
ResNet14 323 88.9 0.0708 391 89.0 0.0613 491 85.7 0.0969 372 87.6 0.0527
ResNet20 191 88.7 0.0574 322 88.7 0.0263 768 86.3 0.0269 423 88.3 0.0222
ResNet50 273 90.4 0.0260 251 88.9 0.0120 / / / / / /

ResNet101 286 70.9 0.0691 376 70.1 0.0411 / / / / / /

iter PP loss iter PP loss iter PP loss iter PP loss

GPT2-wiki 111587 6.9639 1.9407 204575 6.9189 1.9343 83690 6.5988 1.8869 232471 6.6263 1.8910
GPT2-web 1045000 28.733 3.3580 2770000 31.285 3.4430 499000 28.735 3.3580 1045000 30.712 3.4240

Table 2: The experimental results BCD method and full parameters training with SGD and Adam optimizer.

4.3.1 Algorithm Setting390

We endeavor to compare different methods using391

identical hardware and model configurations to the392

extent possible. Specifically, for the BCD and Of-393

fLoad methods, we employ the same hardware394

setup for computation and comparison. On the395

other hand, for the distributed training method and396

parallel BCD algorithm, we utilize the minimum397

configuration capable of supporting the training of398

the model for training and comparison purposes.399

The code of OffLoad and distributed experiments400

are from Megatron-LM. The BCD code is also401

modified from Megatron-LM.402

OffLoad Setting In the experiments, the offload403

configuration was set to enable stage 1, offloading404

the optimizer state to the CPU with the device set405

to "cpu" and pin memory enabled as true. Addition-406

ally, communication and computation overlap was407

enabled, along with contiguous gradient storage.408

Distributed Setting In the multi-node environ-409

ment, the experiments were extended to multiple410

nodes. The multi-node configurations used in the411

experiments included two nodes with 8 GPUs, two412

nodes with 16 GPUs, four nodes with 16 GPUs, and413

four nodes with 32 GPUs. The code configuration414

utilized the pipeline-model-parallel-size parameter,415

with the PP-SIZE setting to specify the scale of416

pipeline parallelism, allowing for flexible adjust-417

ment of the parallel granularity to accommodate418

various hardware configurations.419

BCD Setting Due to the setting of our BCD420

experiments, where only one-third of the full pa-421

rameter set is updated at a time, the memory cost422

and the number of GPUs required for BCD are half423

of those needed for distributed methods. In a paral-424

lel BCD setting, we utilize the same configuration425

as the distributed setting for a fair assessment.426

Model #GPU Offload-Adam BCD-Adam

G-1.6B 1 2403 ms 378 ms
G-5.4B 4 4373 ms 1211 ms
G-10B 8 7076 ms 2414 ms
L-1.5B 1 4824 ms 415 ms
L-6.0B 4 6367 ms 941 ms
L-11B 8 7292 ms 1807 ms

Table 3: The time comparison between OffLoad and
BCD in one iteration.

Model
Distributed BCD-Adam

N/G Mem time N/G Mem time

G-1.6B 1/2 24.077 576 ms 1/1 12.038 378 ms
G-5.4B 2/4 81.881 1934 ms 1/4 40.942 1211 ms
G-10B 4/4 160.738 3178 ms 1/8 80.370 2414 ms
G-10B 2/8 160.738 3252 ms 1/8 80.370 2414 ms
G-20B 4/8 312.805 6378 ms 2/8 156.402 3606 ms
L-1.5B 1/2 24.632 423 ms 1/1 11.662 415 ms
L-6.0B 2/4 89.815 1287 ms 1/4 44.908 941 ms
L-8.0B 2/6 120.327 1651 ms 1/6 60.163 1197 ms
L-11B 4/4 175.714 2511 ms 1/8 87.858 1807 ms
L-23B 4/8 347.539 4908 ms 2/8 173.769 3479 ms

Table 4: The time comparison between distributed
method and BCD in one iteration.N/G means the num-
ber of node and the number of GPU per nodes. Mem is
measured in GB (gigabytes).

4.3.2 Experimental Result 427

The comparsion between OffLoad and BCD 428

Based on the experimental results, table 3, there 429

is a great performance difference between the Of- 430

fLoad and BCD methods on the GPT-2 and LLaMA 431

models, particularly in terms of time efficiency and 432

scalability, where each method exhibits distinct 433

characteristics. Our method outperforms the Of- 434

fLoad method in both performance and scalability. 435

Compared with OffLoad, the BCD method 436

avoids frequent communication between devices 437

by freezing some parameters in GPU memory and 438

only updating the parts that need to be computed. 439
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This design not only significantly reduces commu-440

nication overhead but also allows for more compu-441

tational resources to be retained in memory for the442

actual training tasks. So, the BCD method exhibits443

better scalability in multi-GPU environments.444

It is noteworthy that, even with the offload mode445

enabled, the current OffLoad is unable to fully446

leverage GPU resources for training models larger447

than 10B in a pipeline manner. While using the448

offload stage3 mode could theoretically enable data449

parallelism for >10B larger-scale models, officially,450

such an interface is not provided. Additionally,451

due to the involvement of cross-node training, this452

mode on >10B model would be slower.453

The comparsion between Distributed method454

and BCD Based on the experimental results, for455

the G-1.6B model, the iteration time of the BCD456

method on a single GPU is 378.49 ms, while the it-457

eration time for traditional distributed single-node458

2-GPU training is 576 ms, resulting in a perfor-459

mance improvement of approximately 1.52 times.460

For larger models, such as G-10B, the iteration461

time of the BCD method on eight GPUs is 2414.32462

ms, while the iteration times for traditional dis-463

tributed four-node 16-GPU and two-node 16-GPU464

configurations are 3178 ms and 3252 ms, respec-465

tively, showing improvements of 1.32 times and466

1.35 times. For even larger models, such as G-20B,467

the iteration time of the BCD method on a two-468

node 16-GPU configuration is approximately 1.76469

times faster than that of the traditional distributed470

four-node 32-GPU configuration.471

From all the experimental results, the perfor-472

mance improvement in iteration time for the BCD473

method ranges from 1.52 times to 1.76 times, with474

an average improvement of approximately 1.41475

times. This result indicates that the BCD method476

not only performs exceptionally well on smaller477

models but also shows significant performance ad-478

vantages in the distributed training of larger models,479

requiring fewer GPU hours per iteration.480

4.3.3 Full Training Analysis481

The total training time can be calculated by mul-482

tiplying the number of iterations by the iteration483

time per round. Considering that full-parameter484

training for 10B and 20B models requires an eco-485

nomic cost close to $100,000, which is difficult to486

bear, we estimate the overall training time using487

the Adam’s average B-F multiplier and the worst488

B-F multiplier. As described in the B-F multiplier489

section, the Adam’s average B-F multiplier is 1.39.490

Figure 4: Training time of GPT and LLaMA models
using different methods at various model scales.

Therefore, for BCD-Adam, the ratio of the one 491

iteration training time multiplied by 1.39 to the 492

one iteration training time of the full-parameter 493

Adam training method (including OffLoad and dis- 494

tributed methods) can be considered as the ratio of 495

the training time for BCD-based models to that for 496

full-parameter models. The results are shown in the 497

figure 4, showing that averagely, BCD outperforms 498

the OffLoad’s 42.0% in training time cost with the 499

same computation resources. BCD matches dis- 500

tributed training speed using just half of resources. 501

For the worst-case scenario, we replace the average 502

B-F multiplier in the above calculation with the the 503

worst B-F multiplier, which is 2.77. This leads to 504

the conclusion that, in the worst-case scenario, the 505

training speed of BCD-Adam, using half computa- 506

tional resources, is 48.9% slower than distributed 507

methods but more than 112.5% faster than OffLoad 508

methods using equivalent resources averagely. 509

4.4 Economic Cost Experiments 510

In this section, experiments were conducted us- 511

ing GPT-2 models of various parameter scales. 512

Through training economic cost analysis, we 513

demonstrated that our proposed method offers sig- 514

nificant economic cost advantages compared to tra- 515

ditional methods. 516

4.4.1 The Rental Costs of GPUs 517

Currently, the market price ratio of 4090, A800, 518

and A100 is approximately 1:2.5:4, with more 519

detailed pricing information provided in the ap- 520

pendix. In this section, we refer to the rental costs 521

from Wuwen Xingqiong Intelligent Technology 522

Co., Ltd., which are as follows: $0.29/hour for 523

a single RTX 4090 GPU, $1.20/hour for a single 524

A100 GPU, and $0.69/hour for a single A800 GPU. 525

The total training cost is the product of the num- 526

ber of training rounds, the training time per round, 527
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the number of GPUs used, and the rental cost.528

The GPU hour details on different platform can529

be found in the appendix.530

4.4.2 Economic Cost Analysis531

G-1.6B G-5.4B G-10B G-20B
N/G cost ↓ N/G cost ↓ N/G cost ↓ N/G cost ↓

Full Update 1/2 0% 1/8 0% 2/8 0% 4/8 0%

BCD(The worst) 1/1 56.5% 1/4 30.1% 1/8 -2.8% 2/8 29.4%
BCD(Average) 1/1 80.4% 1/4 68.5% 1/8 53.6% 2/8 68.3%

Table 5: The training cost reduction of BCD compared
to full-parameter updates across different models on
RTX 4090 cluster. N/G means the number of node and
the number of GPU per nodes.

G-1.6B G-5.4B G-10B G-20B
N/G cost ↓ N/G cost ↓ N/G cost ↓ N/G cost ↓

Full Update 1/1 0% 1/2 0% 1/4 0% 1/8 0%

BCD(The worst) 1/1 75.1% 1/4 45.6% 1/8 44.4% 2/8 57.3%
BCD(Average) 1/1 88.8% 1/4 75.5% 1/8 74.9% 2/8 80.8%

Table 6: The training cost reduction of BCD on 4090
clusters compared to full-parameter updates on A100
cluster across different models. N/G means the number
of node and the number of GPU per nodes.

G-1.6B G-5.4B G-10B G-20B
N/G cost ↓ N/G cost ↓ N/G cost ↓ N/G cost ↓

Full Update 1/1 0% 1/2 0% 1/4 0% 1/8 0%

BCD(The worst) 1/1 61.1% 1/4 9.9% 1/8 7.0% 2/8 28.5%
BCD(Average) 1/1 82.5% 1/4 59.4% 1/8 58.1% 2/8 67.7%

Table 7: The training cost reduction of BCD on 4090
clusters compared to full-parameter updates on A800
cluster across different models. N/G means the number
of node and the number of GPU per nodes.

In tabel 5, we can observe that, on average,532

the BCD algorithm takes a time close to (or even533

slightly better than) that required for full-parameter534

Adam training. However, considering that the BCD535

method utilizes only half of the number of GPUs,536

the training cost of BCD is less than half of that537

of full-parameter training. In the worst-case sce-538

nario for BCD, the time spent by BCD is less than539

double that of full-parameter training, but the eco-540

nomic cost is reduced by half. Therefore, the BCD541

algorithm has a significant advantage in economic542

cost compared to full-parameter training on a 4090543

cluster. Additionally, the GPU Hours of the BCD544

method are also reduced, showing a decreasing545

trend across all configurations compared to full-546

parameter training.547

On the A100 GPU, the per-iteration training time548

for the GPT-2 model with parameter sizes of 1.6B,549

5.4B, 10B, and 20B is 1064 ms, 2952 ms, 5772 ms,550

and 11222 ms, respectively. On the A800 GPU, 551

the per-iteration training time for the GPT-2 model 552

with parameter sizes of 1.6B, 5.4B, 10B, and 20B 553

is 1122 ms, 3126 ms, 6042 ms, and 11722 ms, 554

respectively. 555

Table 6 and table 7 show the economic cost re- 556

ductions between full parameters updating on A100 557

and A800 cluster. They show that both on average 558

and in the worst-case scenarios, BCD training on 559

4090 GPUs results in substantial economic cost 560

reductions compared to full-parameter training on 561

A100/800 GPUs. 562

Since RTX 4090 and A800 GPUs are intercon- 563

nected using PCIe, which has limited bandwidth, 564

the communication cost increases rapidly as the 565

model size grows. Therefore, the BCD method, 566

which requires less bandwidth, results in a larger 567

economic cost reduction in larger model training 568

cases. In the 1.6B cases, half of the GPU memory 569

of A100 and A800 remains unused, leading to a 570

waste of resources. As a result, the BCD method 571

achieves a significant economic cost reduction. 572

5 Discussion 573

BCD is capable of training with fewer resources 574

while keeping the training time controllable, re- 575

sulting in significant cost reductions. This enables 576

BCD to utilize older-generation GPU platforms 577

that have been phased out for training scenarios 578

(such as V100) and non-top-tier GPU platforms of 579

the current era (like 4090) for training purposes. 580

Additionally, it lowers the economic cost barrier 581

for the development of large-scale models. Further- 582

more, BCD enables platforms of current scale to 583

challenge larger models. 584

6 Conclusion 585

In this paper, we demonstrate using block coor- 586

dinate descent (BCD) with engineering improve- 587

ments to train large models cheaply on high per- 588

formance, high communication cost and low eco- 589

nomic cost clusters. BCD updates a portion of 590

parameters per iteration, reducing memory needs. 591

Experiments show: 1) BCD trains models as well 592

as traditional methods. 2) BCD’s time cost nears 593

distributed methods with fewer resources, outper- 594

forming OffLoad with same resources. 3) BCD 595

uses less money on RTX 4090 than distributed 596

training on 4090, A100, and A800 platforms. 597
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Limitations598

Despite the significant advantages of our method599

in training large-scale models on low-cost clus-600

ters, several limitations remain:1)Although BCD601

reduces training costs and memory usage, its se-602

quential parameter updates may introduce addi-603

tional computational overhead. Future work could604

explore optimizing its parallelization strategy to605

improve training efficiency. 2)Due to financial con-606

straints, we have not conducted full-scale training607

on ultra-large models (e.g., 100B-parameter mod-608

els), and its applicability at this scale remains to be609

verified. 3)The experimental setup for BCD was610

limited to a two-node, 16-GPU (RTX 4090) config-611

uration, without extension to larger-scale clusters.612

Therefore, its scalability in settings beyond four-613

node, 32-GPU configurations still requires further614

investigation, and its adaptability to more powerful615

computing resources, such as A100 or H100 GPUs,616

warrants further exploration.617
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A Experiments747

A.1 Model Setting748

The parameter scales, configurations, and mem-749

ory usage of the two models are shown in table750

8. To ensure the fairness and comparability of the751

results, we strictly kept the model hyperparameters752

consistent across different experimental setups, in-753

cluding the learning rate, batch size, and optimizer754

(Adam). In terms of computational precision, all755

experiments were conducted using FP32 training to756

avoid the introduction of additional variables from757

mixed-precision or lower-precision computations 758

that could affect the results.

Model #GPU L H A Mem

G-1.6B 1 30 2048 16 24.077

G-5.4B 4 28 3968 32 81.881

G-10B 8 56 3968 32 160.738

G-20B 16 110 3968 32 312.805

L-1.5B 1 30 2048 16 24.632

L-6.0B 4 32 4096 32 89.815

L-11B 8 64 4096 32 175.714

L-23B 16 128 4096 32 347.539

Table 8: In the table, L represents the number of lay-
ers in the Transformer model, H denotes the dimension
of the hidden layers, and A stands for the number of
attention heads. Mem is measured in GB (gigabytes).
Additionally, the L-1.5B model has a feed-forward net-
work (FFN) size of 5050, while other LLaMA models
have an FFN size of 9200.

759

A.2 Dataset compress Experiments 760

This part will show the impact of reducing the train- 761

ing dataset size to the reduced training scale per 762

epoch in BCD. According to the Scaling Law, to 763

achieve optimal model performance, there should 764

be a proportional relationship among computa- 765

tional resources, training dataset size, and model 766

size. Based on the Scaling Law, when training each 767

submodel, as the scale of the submodel decreases, 768

the corresponding training dataset resources should 769

also be reduced accordingly. This experiment is 770

conducted to test this hypothesis. 771

A.2.1 Model Setting 772

We conducted this experiments on ResNet 14 and 773

GPT 2 model for its faster convergence speed. All 774

model settings are the same with the setting with 775

ResNets experiments and LLM experiments. 776

A.2.2 Algorithm Setting 777

We conducted this experiments on BCD with SGD 778

and Adam optimizer and full parameters SGD and 779

Adam optimizer. All algorithms setting are the 780

same with the ResNets experiments and LLM ex- 781

periments. 782

A.2.3 Dataset Setting 783

We use cifar 10 and Wikitext dataset as benchmark. 784

In each epoch, we re-sampling 90% dataset in all 785

training dataset. We also use all training dataset 786

results as the benchmarks. 787
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A.2.4 Results788

The results are shown in table 9 and 10. The dif-789

ference in tables is the dataset sampling rate, opti-790

mizer.791

#SR #UFP Opt #epoch Acc Loss Mem

0.9 1/3 SGD 40 68.9% 1.9312 1013.58MB

1 1/3 SGD 44 69.1% 1.9343 1013.58MB

1 1 SGD 24 69.6% 1.9407 1824.45MB

0.9 1/3 Adam 60 67.5% 1.9110 1216.30MB

1 1/3 Adam 50 66.2% 1.8910 1216.30MB

1 1 Adam 18 65.9% 1.8869 2432.60MB

Table 9: The GPT 2 model performance with different
training dataset size and different training methods.

#SR #UFP #epoch Acc Loss Mem

0.9 1/3 427 88.7% 0.0616 1.12MB

1 1/3 391 89.0% 0.0613 1.12MB

1 1 323 88.9% 0.0708 2.01MB

Table 10: The ResNet 14 model performance with differ-
ent training dataset size and different training methods.

A.2.5 Analysis792

From the experimental results presented in table793

9 and table 10, it can be observed that reducing794

the training dataset size by 10% has a minimal im-795

pact on model performance under the BCD frame-796

work. Compared to training with the full dataset,797

sampling 90% of the data leads to only a slight798

decrease in final accuracy. For example, in the799

GPT-2 training experiments, when using the SGD800

optimizer, the accuracy of the model trained with801

the full dataset is 69.1%, whereas the accuracy of802

the model trained with 90% of the sampled data803

is 68.9%, showing only a 0.2% reduction. Under804

the Adam optimizer, the model trained with 90%805

of the sampled data even achieves a slightly higher806

accuracy than the one trained with the full dataset807

(67.5% vs. 66.2%), suggesting that in certain cases,808

reducing the training dataset size may contribute to809

improved optimizer stability during convergence.810

For the ResNet-14 model, reducing the training811

dataset by 10% results in only a 0.3% accuracy812

drop, from 89.0% to 88.7%, while the loss value813

remains nearly the same (0.0613 vs. 0.0616). This814

indicates that the data sampling strategy has a simi-815

larly negligible effect on convolutional neural net-816

works. Additionally, the results show that models817

trained on the full dataset tend to converge in fewer818

epochs. This suggests that reducing the training819

dataset may slightly affect the convergence speed,820

but its overall impact on final model performance 821

remains limited. 822

A.3 Unfrozen Parts Experiments 823

#UFP Opt #epoch Acc Loss Mem

1 SGD 24 69.6% 1.9407 1824.45MB

1/2 SGD 40 67.1% 1.9033 1216.30MB

1/3 SGD 44 69.1% 1.9343 1013.58MB

1/4 SGD 50 67.5% 1.9109 912.23MB

1 Adam 18 65.9% 1.8869 2432.60MB

1/2 Adam 40 66.3% 1.8924 1520.38MB

1/3 Adam 50 66.2% 1.8910 1216.30MB

1/4 Adam 60 66.8% 1.8995 1064.26MB

Table 11: The performance of GPT2 models with differ-
ent scales of frozen parameters under various optimiz-
ers.

Table 11 shows that reducing the number of 824

UFP significantly decreases memory consump- 825

tion. For instance, in SGD training, memory us- 826

age drops from 1824.45MB to 912.23MB, while 827

in Adam training, it decreases from 2432.60MB 828

to 1064.26MB. Meanwhile, the model accuracy 829

experiences only a slight reduction, with a maxi- 830

mum drop of 2.1% under SGD, and even a slight 831

improvement under Adam. In terms of training 832

time, models with more frozen parameters gener- 833

ally require more epochs to converge. Therefore, in 834

large-scale training, it is essential to balance com- 835

putational resources, convergence speed, and final 836

performance to determine an appropriate freezing 837

strategy. 838

A.4 Market Price Statistics for GPUs 839

According to publicly available information from 840

various computing rental service providers, Au- 841

toDL Cloud Computing offers RTX 4090 at 842

$0.31/hour and A800 80GB at $0.88/hour. Parallel 843

Technology provides A100 80GB at $2.25/hour 844

and RTX 4090 at $0.50/hour. AnyGPU offers 845

RTX 4090 at $0.40/hour. AI Galaxy Cloud lists 846

RTX 4090 at $0.19/hour and A100 80GB at 847

$1.12/hour. Hengyuan Cloud provides A100 80GB 848

at $1.39/hour, A800 80GB at $1.25/hour, and RTX 849

4090 at $0.22/hour. It should be noted that rental 850

prices may vary based on market supply and de- 851

mand, rental duration, and other factors, with the 852

official platform information serving as the defini- 853

tive reference. 854
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G-1.6B G-5.4B G-10B G-20B
GPUh ↓ GPUh ↓ GPUh ↓ GPUh ↓

Full Update 0% 0% 0% 0%

BCD(The worst) 56.1% 13.3% -2.8% 29.4%

BCD(Average) 80.2% 60.9% 53.6% 68.2%

Table 12: Reduction in GPU hours using BCD com-
pared to full parameter updates across different models
on an RTX 4090 cluster.

G-1.6B G-5.4B G-10B G-20B
GPUh ↓ GPUh ↓ GPUh ↓ GPUh ↓

Full Update 0% 0% 0% 0%

BCD(The worst) 1.5% -127.0% -131.8% -78.0%

BCD(Average) 55.6% -2.4% -4.5% 19.7%

Table 13: Reduction in GPU hours using BCD on an
RTX 4090 cluster compared to full-parameter updates
on an A100 cluster across different models.

G-1.6B G-5.4B G-10B G-20B
GPUh ↓ GPUh ↓ GPUh ↓ GPUh ↓

Full Update 0% 0% 0% 0%

BCD(The worst) 6.4% -114.7% -121.6% -70.5%

BCD(Average) 57.8% 3.2% 0.08% 23.1%

Table 14: Reduction in GPU hours using BCD on 4090
clusters compared to full-parameter updates on an A800
cluster across different models.

A.5 GPU Hour Analysis855

Based on the data presented in tables 12, 13, and 14,856

the performance of the BCD method varies across857

different model scales, demonstrating both signifi-858

cant advantages and certain limitations. During the859

training of G-1.6B and G-20B models, the BCD860

method effectively reduces GPU hours. However,861

for G-5.4B and G-10B models, its GPU computa-862

tion time is comparable to that of full-parameter863

training, and in some cases, even slightly higher.864

This indicates that the optimization of computa-865

tional overhead in the BCD method still has room866

for improvement.867

B UFP experiments868

In this experiment, UFP (Unfrozen Parts) refers869

to the proportion of model parameters that remain870

trainable during training. By freezing a certain871

proportion of parameters in different experimental872

settings (e.g., 1/2, 1/3, 1/4, 1/5), we analyze the im-873

pact of parameter freezing on memory usage and874

training efficiency. Freezing part of the parame-875

ters reduces gradient computations and optimizer876

state storage, thereby lowering memory consump-877

tion, while potentially affecting training time and 878

final model performance. This section focuses on 879

investigating the memory usage and training time 880

variations of GPT-2 and LLaMA models under dif- 881

ferent UFP configurations. 882

B.0.1 UFP experiments 883

UFP setting 884

In this section of the experiment, we froze 1/2, 885

1/3, 1/4, and 1/5 of the parameters, and the memory 886

usage is as follows. 887

Figure 5: This figure presents the approximate memory
usage percentage of GPT-2 and LLaMA models with
different parameter scales under various freezing ratios,
considering only the parameters, gradients, and opti-
mizer states.

Experimental Result

Figure 6: This figure presents the average training time
per iteration for GPT-2 and LLaMA models when un-
freezing different scales of parameters using the BCD
method. The time is measured in milliseconds (ms).

888

Model #GPU t-1/3 t-1/4 t-1/5

G-1.6B 1 378.49 331.7375 305.52

G-5.4B 4 1210.61 1070.81 996.47

G-10B 8 2414.32 2207.405 2036.528

Table 15: This table presents the average training time
per iteration for the GPT-2 model when unfreezing dif-
ferent scales of parameters using the BCD method. For
example, t-1/3 represents the average training time per
iteration when unfreezing one-third of the parameters.
The time is measured in milliseconds (ms).

Analysis The experimental results indicate that 889

as the proportion of frozen parameters increases, 890
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Model #GPU t-1/3 t-1/4 t-1/5

L-1.5B 1 414.81 331.81 276.266

L-6.0B 4 941.44 895.7075 835.798

L-11B 8 1807.11 1738.2525 1574.92

Table 16: This table presents the average training time
per iteration for the LLaMA model when unfreezing dif-
ferent scales of parameters using the BCD method. For
example, t-1/3 represents the average training time per
iteration when unfreezing one-third of the parameters.
The time is measured in milliseconds (ms).

the time per iteration shows a decreasing trend.891

This trend has been validated across different892

model scales and GPU configurations.893

From the data, it can be observed that for both894

GPT-2 and LLaMA models, freezing more param-895

eters leads to a reduction in computation time per896

iteration, with the effect being more pronounced897

in smaller models. This suggests that in resource-898

constrained environments, freezing a portion of899

the parameters can effectively reduce memory con-900

sumption and computational overhead per iteration.901

However, it may require more iterations to achieve902

convergence.903

Furthermore, as the model size increases, the904

absolute training time also rises, but the reduc-905

tion in iteration time due to parameter freezing906

remains significant. This further demonstrates that907

in large-scale model training, adopting an appro-908

priate parameter freezing strategy can alleviate the909

computational burden per iteration under resource910

constraints. However, the total training time and911

final model performance must be carefully consid-912

ered to determine the optimal freezing ratio.913
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