Train Models on Cheap Clusters with Low Economic Cost using Block
Coordinate Descent

Anonymous ACL submission

Abstract

LLMs training process has high memory de-
mands and high economic cost, making it chal-
lenging for many organizations to adopt and
scale effectively. In this paper, we train the
model using block coordinate descent(BCD) on
cheap RTX 4090 clusters, combining with engi-
neering improvements to train LLM with lower
economic cost and lower memory demands. In
BCD training process, only a subset of parame-
ters is updated, significantly reducing the mem-
ory requirements. Through experiments, we
show that 1. for a wide range of models and
datasets, BCD is capable of training models
with the same level of accuracy as traditional
method. 2. Averagely, BCD outperforms the
OffLoad’s 42.0% in training time cost with the
same computation resources. BCD matches
distributed training speed using just half of re-
sources. 3. BCD training economic cost has
been reduced more than 53.6% compared to tra-
ditional methods on the 4090 cluster, and more
than 74.9% compared to traditional methods on
the A100 cluster averagely.

1 Introduction

As models grow in size currently, model training
increasingly becomes a bottleneck for performance:
as the model expands, the required GPU memory
space and economic cost gradually increases. From
the view of memory, when using the Adam opti-
mizer for full-parameter training, training a LLM
model with parameters W using 1024 tokens re-
quires gradients of size W, optimizer states of size
3W, and activations of size around 0.7W. Conse-
quently, approximately 5.7W of GPU memory is
needed for training. When using re-compute, 5W
of GPU memory is needed for training for system
does not save the activations. From the view of
economic cost, training a 20B LLM needs around
one million dollers.

The traditional approach to training LLMs in-
volves 3D distributed parallel training. This paral-

lelism method distributes parameters and optimizer
states across different GPUs’ memories, necessi-
tating constant communication among different
GPUs during computation. This practice directly
addresses the issue of insufficient memory on a
single GPU, enabling the training of large models.
However, as the scale of the models increases, the
communication overhead also grows. Meanwhile,
due to the concurrent consumption of substantial
GPU resources, the training economic costs surge
accordingly.

Expensive A100/A800 clusters are traditional
clusters for LLMs Training. However, a number of
cheap GPU clusters with high computational perfor-
mance, low economic cost but high communication
costs and have emerged currently, such as clusters
composed of RTX 4090 GPUs or DCU7000s. The
comparsion of RTX 4090 GPUs and NVIDIA A100
are shown in table 1. The users want to reduce the
economic cost by using cheap clusters, like RTX
4090 based clusters, with limited resources.

Feature RTX 4090 A100
CUDA Cores 16,384 6,912
Tensor Cores 4th Gen 3rd Gen

Memory 24 GB 40/80 GB

Bandwidth 1,008 GB/s 1,555 GB/s
Memory Bus 384-bit 5,120-bit
FP32 Perf 82.6 TFLOPS | 19.5 TFLOPS
Tensorcore FP16 | 330 TFLOPS 312 TFLOPS
Economic Cost 0.29%/hour 1.20$/hour

Table 1: Comparison of RTX 4090 and NVIDIA A100.
RTX 4090’s computational performance and economic
cost are better then A100, but not suitable for LLM
training. LLMs are trained in A100 for its large memory
and high bandwidth but the economic cost is high.

However, there is no mature algorithm for how
to use these cheap clusters to train large models in
a low economic cost and limited resources manner.
The traditional method for training models with
limited resources is mainly the OffL.oad method



in DeepSpeed. Although the OffLoad method can
complete model training process with fewer compu-
tational resources, the constant migration of param-
eters, optimizer states, activations, and gradients
between GPU memory and system memory during
iterations results in a significant drop in training
performance which significantly increases the time
consumption and does not guarantee a lower eco-
nomic cost compared to distributed methods.

In this paper, we will demonstrate how to use the
block coordinate descent (BCD), combined with
engineering improvements, to train large models
on cheap clusters at a lower economic cost. BCD
updates only a portion of the parameters in each
iteration. The remaining parameters do not need
to record optimizer states or gradient information,
and some parameters do not need to store activation
information. As a result, the memory required for
training the model is significantly reduced. Specif-
ically, if we update only 1/3 of the parameters of
a full model with a volume of W in each itera-
tion, we will use less than 50% of the memory re-
quired by the full model with re-computing setting.
Compared with distributed training, the variation in
training time required by BCD is relatively small,
and thus the training economic costs have also been
reduced significantly.

In our experiments, we will show that 1. BCD
can train models that perform as well as traditional
methods. 2. The time cost of BCD is close to that
of distributed methods but with less computation
resources, and outperforms the OffLoad method
when using the same resources. 3. The economic
cost of BCD on the RTX 4090 platform is lower
than that of distributed methods on the 4090, A100,
and A800 platforms.

2 Related Work

2.1 Block Coordinate Descent

BCD is a highly mature non-gradient descent
method and has been extensively studied and ana-
lyzed(Tseng, 2001; Beck and Tetruashvili, 2013;
Wright, 2015; Richtarik and Takac, 2014; Cai et al.,
2023; Nutini et al., 2022; Tu et al., 2016). Re-
cently, some researches discuss how to adopt BCD
in to training DNN(Zisselman et al., 2019; Zhao
et al., 2014; Blondel et al., 2013; Wu et al., 2021;
Damaskinos et al., 2021). The convergence of BCD
on DNN is proved by the work (Zeng et al., 2019;
Zhang and Brand, 2017). In some works(Zeng
et al., 2019; Lau et al., 2018), they claim that in

some cases, BCD can produce a better performance
model compared with traditional optimizers. Com-
pared to training with all parameters, BCD takes
more rounds, but it uses less memory and com-
puting power. There is no work discuss how to
use BCD on LLM training and its advantages on
economic cost.

2.2 LLM Training
2.2.1 Distributed Parallel Training

Large-scale parallel training has become the
mainstream approach for training large mod-
els(Narayanan et al., 2021; Lai et al., 2023). The
distributed training of large models primarily relies
on 3D parallelism. Large model 3D parallelism is
an efficient model training method, with each pa-
rameter, optimizer state, and so on, mapped to indi-
vidual GPUs. 3D parallelism technology is widely
used in various training frameworks, such as Deep-
Speed(Holmes et al., 2024; Aminabadi et al., 2022;
Rajbhandari et al., 2022) and Megatron.

2.2.2 OffLoad Training

The OffLoad(Rajbhandari et al., 2021; Narayanan
et al., 2021; Aminabadi et al., 2022) mode is a tech-
nique that dynamically transfers model parameters,
gradients, and optimizer states from the GPU to
the CPU or other storage devices to reduce GPU
memory usage. It enables training large models on
GPUs with limited memory. While this approach
significantly improves the feasibility of training
large models, but OffLLoad leads to slower training
speeds. The OffLoad mode is widely used in differ-
ent framework, especially the the limited resources
cases.(Gao et al., 2024; Zhang et al., 2024; Athlur
et al., 2022; Lv et al., 2023).

3 Block Coordinate Descent

3.1 Adopt BCD into LLM Training

The block coordinate descent method advances the
training process by reducing memory requirements
during training.

Take single-GPU training as an example: when
a single GPU can fully store the model, the amount
of parameters participating in training per iteration
can be adjusted based on the remaining available
memory of the GPU. In extreme cases, as long as
there is enough memory to train a single parameter,
training can proceed. For instance, with an RTX
4090 (24GB), it is theoretically possible to train
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Figure 1: When we partition the model, slicing it by
layers allows for better utilization of optimized computa-
tion kernels (as shown in the right figure). If a portion of
the parameters in each layer are updated simultaneously
(as shown in the left figure), computational performance
decreases, and pre-inference cannot be used to acceler-
ate the forward process.

a 12B Large Language Model. However, train-
ing model under such extreme conditions incurs
very high time costs. The standard BCD method
imposes no mathematical requirements on param-
eter partitioning, freezing any parameters satisfies
the algorithm’s needs. In practical, the choice of
which parameters to freeze must consider the com-
putational performance benefits provided by the
architecture and how to reduce memory usage dur-
ing computation. Computation processes can be
viewed as combinations of multiple optimized com-
putational kernel to complete tasks. Thus, parti-
tioning parameters based on operators is the most
reasonable approach to freezing parameters.

In neural networks, most operators are contained
entirely within the "layer" data structure. Therefore,
freezing and unfreezing parameters by layers or by
data structures based on layers, such as blocks in
ResNet networks, is the most appropriate approach,
which shown in figure 1. This maximizes the per-
formance benefits of optimized computation kernel.
Consequently, we have adapted the general BCD
method to the specific needs of deep learning, re-
sulting in the following algorithm 1.

As illustrated in the algorithm, each iteration
trains the current parameters to a local convergence.
During this process, traditional optimization algo-
rithms, such as SGD and AdamW, are used to it-
eratively minimize along the given direction. Re-
garding the choice of optimization algorithm, there
is no fundamental difference, as all algorithms can
drive the process forward. However, in practice,
SGD often achieves better model results compared
to Adam or AdamW.

Algorithm 1 Using BCD Training LLM
1: Input: DeepLearning Model model, Traning
Dataset D,and convergence criterion.
2: Initialize: Set k¥ = 0 and Split model into
{submodely, submodels, ..., submodel s }.

3. repeat

4. Select a submodel submodel;, i, €
{1,2,..., M} cyclically.

5. Freezing the parameters in submodel;, j #
ik
Unfreezing the parameters in submodel;,

7:  Building optimizer of submodel;, . The
opitmizer can be SGD or Adam.

8:  Training the model on D until converged.
Only the parameters in submodel;, is up-
dated.

9:  Increment k < k + 1.

10: until Convergence criterion is satisfied.
11: Output: Converged model modely.

3.2 Engineering Improvements

3.2.1 Parallel Training

When training with BCD in a multi-GPU envi-
ronment, it is important to ensure that different
computing hardware can fully utilize their compu-
tational resources. This means that the comput-
ing hardware should be able to maintain the busy
state. To achieve above target, both frozen and un-
frozen parameter parts should be stored simultane-
ously on the same hardware. Common multi-GPU
parallelism methods include data parallelism, ten-
sor parallelism, and pipeline parallelism. Among
them, tensor parallelism and pipeline parallelism
are model parallelism approaches, which require
further adaptation for BCD.

Typically, freezing and unfreezing parameters
within a matrix multiplication operation can signif-
icantly impact the performance of the computation
kernel. When performing tensor parallelism, only
part of the parameters are activated in the matrix
multiplication, which results in a loss of spatial lo-
cality in the computation. Current framework com-
putation kernel optimizations are based on layer-
based neural network structures for computational
performance. What is more, the tenor parallel man-
ner would incur the need of communication, which
would increase the system burden.

On the other hand, pipeline parallelism is de-
signed based on layers, which shown in figure 2.
So after freezing, it has a performance advantage at
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Figure 2: Training a large model one three GPUs. The
model is divided into six submodels. Two submodels are
addressed into one GPU. Different GPUs are paralleled
via pipeline parallel manner. The light blue part is GPU
memory.

the computation kernel level. Therefore, pipeline
parallelism is a more suitable multi-GPU parallel
approach for training models with BCD.

3.2.2 Pre-inference

When the model is sufficiently split, most of the
model parameters are only involved in the inference
process and in backward process, they are freezed.
Meanwhile, due to the increased number of model
iteration rounds, although the computational cost
of backward process is reduced, the cost of forward
process remains unchanged. Therefore, in BCD
methods, reducing the time required for inference
is necessary to make it comparable in performance
to traditional full-parameter training methods.

When performing model training on clusters
with high computational performance but low com-
munication performance (e.g., clusters composed
of RTX 4090 GPUs or DCUs), we observe that
these clusters exhibit excessive computational ca-
pacity, leaving a significant portion of the com-
putational resources idle. However, large-scale
utilization of these resources can quickly lead to
increased costs related to communication, data mi-
gration, and cluster stability. How to effectively
utilize such types of cluster resources is a problem
that requires further consideration.

To address above problems, we propose a pre-
inference approach in the context of model training
using BCD methods to fully utilize these resources.
Pre-inference refers to the situation where, when
the training of submodels closer to the label, the

parameters in the submodels near the data input re-
main unchanged. Therefore, these submodels near
the data input can be treated as a complete model.
In this model, all data is inferred to produce a new
dataset, which is then used to train and update the
parameters of the submodels, shown in figure 3.

Pre-inference is primarily aimed at acceler-
ating computation in high-performance, high-
communication-cost cluster environments. In such
environments, all computational resources can be
utilized for submodel inference tasks to construct
new datasets, significantly reducing the overall
time consumed by inference. When computational
resources with high performance and high commu-
nication costs are unlimited, the inference cost of
fixed submodel parts becomes a fixed time cost.
This means that the time to infer a single sample is
equal to the sum of the inference time and the cost
of a single all-reduce operation.
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Figure 3: The process of pre-inference. We Train sub-
model 2 in this case. The parameters in submodel 3 is
fixed. We can inference the Dataset on submodel 3
and gain Datasetl on high communication cost cluster
on AllReduce manner. Then Using Datasetl to train

the model composed by submode 1 and submodel 2.
The parameters in submodel 2 is trainable.
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3.2.3 Reducing Training Dataset

According to the scaling law, there exists a certain
multiplier relationship among model size, data vol-
ume, and computational load. Therefore, when the
model size is reduced, the amount of training data
required can be moderately decreased, to achieve
a balance between computational efficiency and
model performance.

The process of training using the BCD method
can be regarded as training a smaller model. Scal-
ing law suggests that the amount of data needed
to train this smaller model is not the same as that
required for the full model. Furthermore, based on
our needs, we can reduce the total amount of data
when training submodels, thus reducing inference
costs and improving computational speed.

To utilize the entire dataset as much as possible,
the BCD method can adopt a sampling approach



for training. Sufficient subsets of data are sampled
from the total training dataset, and the submodel is
trained on these sampled subsets. When training a
new submodel, a new subset of data is used. This
approach ensures that the entire training dataset is
fully utilized while minimizing the computational
burden on model training caused by large datasets.

4 Experiments

We conducted three experiments to demonstrate the
superiority of BCD: 1. In the Validity Experiment,
BCD was able to train models with performance
equivalent to that of full-parameter training. Addi-
tionally, in this experiment, we also estimated the
number of iterations required by BCD as a mul-
tiple of those needed for full-parameter training,
and we name this multiple as B-F multiplier. 2. In
the Performance Experiment, we compared BCD’s
time performance per training iteration with that of
OffLoad and distributed training methods. Further-
more, we estimated and compared the total time
consumption based on B-F multiplier. 3. Based
on the rental costs, Validity Experiment and Per-
formance Experiment results obtained on the GTX
4090, A100, and A800 platforms, we analyzed the
training economic costs.

4.1 Experiment Setting

The experiments were conducted cluster which con-
sist of a node with 8 A100, a node with 8 A800 and
4 nodes with 8 RTX 4090. All servers were inter-
connected using a 2x25Gbps high-speed network.

In Validity Experiments, we use ResNet 8,
ResNet 14 on cifar 10, cifar 100 datasets and 0.15B
GPT 2 on wikitext, Webtext2 dataset.

We use 1.6B GPT2 (abbr. G-1.6B), 5.4B GPT2
(abbr. G-5.4B), 10B GPT2 (abbr. G-10B), 20B-
GPT?2 (abbr. G-20B), 1.5B LLama (abbr. L-1.5B),
6B LLama (abbr. L-6B), 11B LLama (abbr. L-
11B), 23B LLama (abbr. L-23B) on WebText2 in
Performance and Economic Cost Experiments.

In our experiments, to ensure clarity and consis-
tency, we divided the model into three submodels
for all BCD experiments. This implies that during
each iteration, we only update one-third of the full
parameter set. Additional experiments detailing
various BCD settings are presented in the Appendix
for further reference.

4.2 Validity Experiments
4.2.1 Algorithms Setting

The experiment includes ResNet series models and
a GPT-2 model with 0.15B parameters. The ResNet
models were trained on the CIFAR-10 dataset,
while the GPT-2 model was trained on the Wikitext
and WebText2 datasets. For the optimizer settings,
the SGD optimizer is set as learning rate of 0.1,
a momentum of 0.9, and a weight decay of le-5.
The Adam optimizer was set with a learning rate
of le-4, a weight decay of le-5, and default values
for the first and second moment estimates.

4.2.2 Experimental Results

In this experiment, we employed two optimizers,
Adam and SGD, and trained the models using
both the BCD method and full-parameter updating
method. The results are shown in table 2. Over-
all, we observe that BCD-based training demon-
strates certain advantages. From the perspective
of the loss function, the performance of models
trained with BCD is superior to those trained with
full-parameter updating in most cases. This phe-
nomenon has been explained by the work (Zeng
et al., 2019). The difference in loss function values
across different models and datasets is less than
0.1 and the performance gap between the model of
BCD and model of full parameters is samll.

4.2.3 B-F multiplier

Based on the experimental results, to gain the same
performance modes, in Adam experiments, we
found that the average number of training epochs
required by the BCD method is 1.39 times that of
full parameters Adam methods, with the worst-case
scenario being 2.77 times. We set the Adam’s aver-
age B-F (BCD-Full multiplier) multiplier as 1.39
and Adam’s the worst B-F multiplier as 2.77.

4.3 Performance Experiments

In this experiment, we will compare the perfor-
mance of the BCD method, the OffLoad method,
and distributed training methods in one iteration.
Additionally, we will provide the time cost required
to fully train the models using these different meth-
ods, based on the B-F multiplier. In this part, we
only use Adam optimizer to train LLM models
for Adam is the main stream LLM optimizer and
OffLoad only provides optimized Adam optimizer.



Model SGD BCD-SGD Adam BCD-Adam
epoch Acc loss epoch Acc loss epoch Acc loss epoch Acc loss
ResNet8 639 86.9 | 0.1671 395 87.2 | 0.1783 389 83.1 | 0.3955 309 86.0 | 0.2279
ResNet14 323 88.9 | 0.0708 391 89.0 | 0.0613 491 85.7 | 0.0969 372 87.6 | 0.0527
ResNet20 191 88.7 | 0.0574 322 88.7 | 0.0263 768 86.3 | 0.0269 423 88.3 | 0.0222
ResNet50 273 90.4 | 0.0260 251 88.9 | 0.0120 / / / / / /
ResNet101 286 70.9 | 0.0691 376 70.1 | 0.0411 / / / / / /
iter PP loss iter PP loss iter PP loss iter PP loss
GPT2-wiki | 111587 | 6.9639 | 1.9407 | 204575 | 6.9189 | 1.9343 | 83690 | 6.5988 | 1.8869 | 232471 | 6.6263 | 1.8910
GPT2-web | 1045000 | 28.733 | 3.3580 | 2770000 | 31.285 | 3.4430 | 499000 | 28.735 | 3.3580 | 1045000 | 30.712 | 3.4240

Table 2: The experimental results BCD method and full parameters training with SGD and Adam optimizer.

4.3.1 Algorithm Setting

We endeavor to compare different methods using
identical hardware and model configurations to the
extent possible. Specifically, for the BCD and Of-
fLoad methods, we employ the same hardware
setup for computation and comparison. On the
other hand, for the distributed training method and
parallel BCD algorithm, we utilize the minimum
configuration capable of supporting the training of
the model for training and comparison purposes.
The code of OffLoad and distributed experiments
are from Megatron-LM. The BCD code is also
modified from Megatron-LM.

OffLoad Setting In the experiments, the offload
configuration was set to enable stage 1, offloading
the optimizer state to the CPU with the device set
to "cpu" and pin memory enabled as true. Addition-
ally, communication and computation overlap was
enabled, along with contiguous gradient storage.

Distributed Setting In the multi-node environ-
ment, the experiments were extended to multiple
nodes. The multi-node configurations used in the
experiments included two nodes with 8 GPUs, two
nodes with 16 GPUs, four nodes with 16 GPUs, and
four nodes with 32 GPUs. The code configuration
utilized the pipeline-model-parallel-size parameter,
with the PP-SIZE setting to specify the scale of
pipeline parallelism, allowing for flexible adjust-
ment of the parallel granularity to accommodate
various hardware configurations.

BCD Setting Due to the setting of our BCD
experiments, where only one-third of the full pa-
rameter set is updated at a time, the memory cost
and the number of GPUs required for BCD are half
of those needed for distributed methods. In a paral-
lel BCD setting, we utilize the same configuration
as the distributed setting for a fair assessment.

Model | #GPU | Offload-Adam | BCD-Adam
G-1.6B 1 2403 ms 378 ms
G-5.4B 4 4373 ms 1211 ms
G-10B 8 7076 ms 2414 ms
L-1.5B 1 4824 ms 415 ms
L-6.0B 4 6367 ms 941 ms
L-11B 8 7292 ms 1807 ms

Table 3: The time comparison between OffL.oad and
BCD in one iteration.

Model Distributed BCD-Adam
N/G | Mem time N/G | Mem time
G-1.6B | 1/2 | 24.077 | 576ms | 1/1 | 12.038 | 378 ms
G-54B | 2/4 | 81.881 | 1934ms | 1/4 | 40.942 | 1211 ms
G-10B | 4/4 | 160.738 | 3178 ms | 1/8 | 80.370 | 2414 ms
G-10B | 2/8 | 160.738 | 3252 ms | 1/8 | 80.370 | 2414 ms
G-20B | 4/8 |312.805 | 6378 ms | 2/8 | 156.402 | 3606 ms
L-1.5B | 1/2 | 24.632 | 423ms | 1/1 | 11.662 | 415 ms
L-6.0B | 2/4 | 89.815 | 1287 ms | 1/4 | 44.908 | 941 ms
L-8.0B | 2/6 | 120.327 | 1651 ms | 1/6 | 60.163 | 1197 ms
L-11B | 4/4 | 175714 | 2511 ms | 1/8 | 87.858 | 1807 ms
L-23B | 4/8 | 347.539 | 4908 ms | 2/8 | 173.769 | 3479 ms
Table 4: The time comparison between distributed

method and BCD in one iteration.N/G means the num-
ber of node and the number of GPU per nodes. Mem is
measured in GB (gigabytes).

4.3.2 Experimental Result

The comparsion between OffL.oad and BCD
Based on the experimental results, table 3, there
is a great performance difference between the Of-
fLoad and BCD methods on the GPT-2 and LLaMA
models, particularly in terms of time efficiency and
scalability, where each method exhibits distinct
characteristics. Our method outperforms the Of-
fLoad method in both performance and scalability.

Compared with OffLoad, the BCD method
avoids frequent communication between devices
by freezing some parameters in GPU memory and
only updating the parts that need to be computed.




This design not only significantly reduces commu-
nication overhead but also allows for more compu-
tational resources to be retained in memory for the
actual training tasks. So, the BCD method exhibits
better scalability in multi-GPU environments.

It is noteworthy that, even with the offload mode
enabled, the current OffLoad is unable to fully
leverage GPU resources for training models larger
than 10B in a pipeline manner. While using the
offload stage3 mode could theoretically enable data
parallelism for >10B larger-scale models, officially,
such an interface is not provided. Additionally,
due to the involvement of cross-node training, this
mode on >10B model would be slower.

The comparsion between Distributed method
and BCD Based on the experimental results, for
the G-1.6B model, the iteration time of the BCD
method on a single GPU is 378.49 ms, while the it-
eration time for traditional distributed single-node
2-GPU training is 576 ms, resulting in a perfor-
mance improvement of approximately 1.52 times.
For larger models, such as G-10B, the iteration
time of the BCD method on eight GPUs is 2414.32
ms, while the iteration times for traditional dis-
tributed four-node 16-GPU and two-node 16-GPU
configurations are 3178 ms and 3252 ms, respec-
tively, showing improvements of 1.32 times and
1.35 times. For even larger models, such as G-20B,
the iteration time of the BCD method on a two-
node 16-GPU configuration is approximately 1.76
times faster than that of the traditional distributed
four-node 32-GPU configuration.

From all the experimental results, the perfor-
mance improvement in iteration time for the BCD
method ranges from 1.52 times to 1.76 times, with
an average improvement of approximately 1.41
times. This result indicates that the BCD method
not only performs exceptionally well on smaller
models but also shows significant performance ad-
vantages in the distributed training of larger models,
requiring fewer GPU hours per iteration.

4.3.3 Full Training Analysis

The total training time can be calculated by mul-
tiplying the number of iterations by the iteration
time per round. Considering that full-parameter
training for 10B and 20B models requires an eco-
nomic cost close to $100,000, which is difficult to
bear, we estimate the overall training time using
the Adam’s average B-F multiplier and the worst
B-F multiplier. As described in the B-F multiplier
section, the Adam’s average B-F multiplier is 1.39.

Adam-full
B BCD-adam
mmm Offload

Time

G-5.4B

G-1.6B G-10B L-1.5B L-6.0B L-11B

Figure 4: Training time of GPT and LLaMA models
using different methods at various model scales.

Therefore, for BCD-Adam, the ratio of the one
iteration training time multiplied by 1.39 to the
one iteration training time of the full-parameter
Adam training method (including OffLoad and dis-
tributed methods) can be considered as the ratio of
the training time for BCD-based models to that for
full-parameter models. The results are shown in the
figure 4, showing that averagely, BCD outperforms
the OffLoad’s 42.0% in training time cost with the
same computation resources. BCD matches dis-
tributed training speed using just half of resources.
For the worst-case scenario, we replace the average
B-F multiplier in the above calculation with the the
worst B-F multiplier, which is 2.77. This leads to
the conclusion that, in the worst-case scenario, the
training speed of BCD-Adam, using half computa-
tional resources, is 48.9% slower than distributed
methods but more than 112.5% faster than OffLoad
methods using equivalent resources averagely.

4.4 Economic Cost Experiments

In this section, experiments were conducted us-
ing GPT-2 models of various parameter scales.
Through training economic cost analysis, we
demonstrated that our proposed method offers sig-
nificant economic cost advantages compared to tra-
ditional methods.

4.4.1 The Rental Costs of GPUs

Currently, the market price ratio of 4090, A800,
and A100 is approximately 1:2.5:4, with more
detailed pricing information provided in the ap-
pendix. In this section, we refer to the rental costs
from Wuwen Xingqiong Intelligent Technology
Co., Ltd., which are as follows: $0.29/hour for
a single RTX 4090 GPU, $1.20/hour for a single
A100 GPU, and $0.69/hour for a single A800 GPU.

The total training cost is the product of the num-
ber of training rounds, the training time per round,



the number of GPUs used, and the rental cost.
The GPU hour details on different platform can
be found in the appendix.

4.4.2 Economic Cost Analysis

G-1.6B G-5.4B G-10B G-20B
N/G | cost] | N/G | cost) | N/G | cost] | N/G | cost]
Full Update 12 0% 1/8 0% 2/8 0% 4/8 0%
BCD(The worst) | 1/1 | 56.5% | 1/4 | 30.1% | 1/8 | -2.8% | 2/8 | 29.4%
BCD(Average) | 1/1 | 80.4% | 1/4 | 68.5% | 1/8 | 53.6% | 2/8 | 68.3%

Table 5: The training cost reduction of BCD compared
to full-parameter updates across different models on
RTX 4090 cluster. N/G means the number of node and
the number of GPU per nodes.

G-1.6B G-5.4B G-10B G-20B
N/G | cost] | N/G | cost] | N/G | cost] | N/G | cost|
Full Update 11 0% 172 0% 1/4 0% 1/8 0%
BCD(The worst) | 1/1 | 751% | 1/4 | 45.6% | 1/8 | 44.4% | 2/8 | 57.3%
BCD(Average) | 1/1 | 88.8% | 1/4 | 75.5% | 1/8 | 749% | 2/8 | 80.8%

Table 6: The training cost reduction of BCD on 4090
clusters compared to full-parameter updates on A100
cluster across different models. N/G means the number
of node and the number of GPU per nodes.

G-1.6B G-5.4B G-10B G-20B
N/G | cost] | N/G | cost] | N/G | cost] | N/G | cost]
Full Update 11 0% 12 0% 1/4 0% 1/8 0%
BCD(The worst) | 1/1 | 611% | 1/4 | 99% | 1/8 | 7.0% | 2/8 | 28.5%
BCD(Average) | 1/1 | 82.5% | 1/4 | 59.4% | 1/8 | 58.1% | 2/8 | 67.7%

Table 7: The training cost reduction of BCD on 4090
clusters compared to full-parameter updates on A800
cluster across different models. N/G means the number
of node and the number of GPU per nodes.

In tabel 5, we can observe that, on average,
the BCD algorithm takes a time close to (or even
slightly better than) that required for full-parameter
Adam training. However, considering that the BCD
method utilizes only half of the number of GPUs,
the training cost of BCD is less than half of that
of full-parameter training. In the worst-case sce-
nario for BCD, the time spent by BCD is less than
double that of full-parameter training, but the eco-
nomic cost is reduced by half. Therefore, the BCD
algorithm has a significant advantage in economic
cost compared to full-parameter training on a 4090
cluster. Additionally, the GPU Hours of the BCD
method are also reduced, showing a decreasing
trend across all configurations compared to full-
parameter training.

On the A100 GPU, the per-iteration training time
for the GPT-2 model with parameter sizes of 1.6B,
5.4B, 10B, and 20B is 1064 ms, 2952 ms, 5772 ms,

and 11222 ms, respectively. On the A800 GPU,
the per-iteration training time for the GPT-2 model
with parameter sizes of 1.6B, 5.4B, 10B, and 20B
is 1122 ms, 3126 ms, 6042 ms, and 11722 ms,
respectively.

Table 6 and table 7 show the economic cost re-
ductions between full parameters updating on A100
and A800 cluster. They show that both on average
and in the worst-case scenarios, BCD training on
4090 GPUs results in substantial economic cost
reductions compared to full-parameter training on
A100/800 GPUs.

Since RTX 4090 and A800 GPUs are intercon-
nected using PCle, which has limited bandwidth,
the communication cost increases rapidly as the
model size grows. Therefore, the BCD method,
which requires less bandwidth, results in a larger
economic cost reduction in larger model training
cases. In the 1.6B cases, half of the GPU memory
of A100 and A800 remains unused, leading to a
waste of resources. As a result, the BCD method
achieves a significant economic cost reduction.

5 Discussion

BCD is capable of training with fewer resources
while keeping the training time controllable, re-
sulting in significant cost reductions. This enables
BCD to utilize older-generation GPU platforms
that have been phased out for training scenarios
(such as V100) and non-top-tier GPU platforms of
the current era (like 4090) for training purposes.
Additionally, it lowers the economic cost barrier
for the development of large-scale models. Further-
more, BCD enables platforms of current scale to
challenge larger models.

6 Conclusion

In this paper, we demonstrate using block coor-
dinate descent (BCD) with engineering improve-
ments to train large models cheaply on high per-
formance, high communication cost and low eco-
nomic cost clusters. BCD updates a portion of
parameters per iteration, reducing memory needs.
Experiments show: 1) BCD trains models as well
as traditional methods. 2) BCD’s time cost nears
distributed methods with fewer resources, outper-
forming OffLoad with same resources. 3) BCD
uses less money on RTX 4090 than distributed
training on 4090, A100, and A800 platforms.



Limitations

Despite the significant advantages of our method
in training large-scale models on low-cost clus-
ters, several limitations remain:1)Although BCD
reduces training costs and memory usage, its se-
quential parameter updates may introduce addi-
tional computational overhead. Future work could
explore optimizing its parallelization strategy to
improve training efficiency. 2)Due to financial con-
straints, we have not conducted full-scale training
on ultra-large models (e.g., 100B-parameter mod-
els), and its applicability at this scale remains to be
verified. 3)The experimental setup for BCD was
limited to a two-node, 16-GPU (RTX 4090) config-
uration, without extension to larger-scale clusters.
Therefore, its scalability in settings beyond four-
node, 32-GPU configurations still requires further
investigation, and its adaptability to more powerful
computing resources, such as A100 or H100 GPUs,
warrants further exploration.
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A Experiments

A.1 Model Setting

The parameter scales, configurations, and mem-
ory usage of the two models are shown in table
8. To ensure the fairness and comparability of the
results, we strictly kept the model hyperparameters
consistent across different experimental setups, in-
cluding the learning rate, batch size, and optimizer
(Adam). In terms of computational precision, all
experiments were conducted using FP32 training to
avoid the introduction of additional variables from
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mixed-precision or lower-precision computations
that could affect the results.

Model | #GPU | L H A Mem
G-1.6B 1 30 | 2048 | 16 | 24.077
G-5.4B 4 28 | 3968 | 32 | 81.881
G-10B 8 56 | 3968 | 32 | 160.738
G-20B 16 110 | 3968 | 32 | 312.805
L-1.5B 1 30 | 2048 | 16 | 24.632
L-6.0B 4 32 | 4096 | 32 | 89.815
L-11B 64 | 4096 | 32 | 175.714
L-23B 16 128 | 4096 | 32 | 347.539

Table 8: In the table, L represents the number of lay-
ers in the Transformer model, H denotes the dimension
of the hidden layers, and A stands for the number of
attention heads. Mem is measured in GB (gigabytes).
Additionally, the L-1.5B model has a feed-forward net-
work (FFN) size of 5050, while other LLaMA models
have an FFN size of 9200.

A.2 Dataset compress Experiments

This part will show the impact of reducing the train-
ing dataset size to the reduced training scale per
epoch in BCD. According to the Scaling Law, to
achieve optimal model performance, there should
be a proportional relationship among computa-
tional resources, training dataset size, and model
size. Based on the Scaling Law, when training each
submodel, as the scale of the submodel decreases,
the corresponding training dataset resources should
also be reduced accordingly. This experiment is
conducted to test this hypothesis.

A.2.1 Model Setting

We conducted this experiments on ResNet 14 and
GPT 2 model for its faster convergence speed. All
model settings are the same with the setting with
ResNets experiments and LLM experiments.

A.2.2 Algorithm Setting

We conducted this experiments on BCD with SGD
and Adam optimizer and full parameters SGD and
Adam optimizer. All algorithms setting are the
same with the ResNets experiments and LLM ex-
periments.

A.2.3 Dataset Setting

We use cifar 10 and Wikitext dataset as benchmark.
In each epoch, we re-sampling 90% dataset in all
training dataset. We also use all training dataset
results as the benchmarks.



A.2.4 Results

The results are shown in table 9 and 10. The dif-
ference in tables is the dataset sampling rate, opti-
mizer.

#SR | #UFP | Opt | #epoch | Acc Loss Mem

09 | 1/3 | SGD 40 | 68.9% | 1.9312 | 1013.58MB
1 1/3 | SGD 44 169.1% | 1.9343 | 1013.58MB
1 1 SGD 24 ] 69.6% | 1.9407 | 1824.45MB

09 | 1/3 | Adam 60 |67.5% | 1.9110 | 1216.30MB
1 1/3 | Adam | 50 |66.2% | 1.8910 | 1216.30MB
1 1 Adam 18 65.9% | 1.8869 | 2432.60MB

Table 9: The GPT 2 model performance with different
training dataset size and different training methods.

#SR | #UFP | #epoch | Acc Loss Mem

0.9 1/3 427 | 88.7% | 0.0616 | 1.12MB
1 173 391 89.0% | 0.0613 | 1.12MB
1 1 323 | 88.9% | 0.0708 | 2.01MB

Table 10: The ResNet 14 model performance with differ-
ent training dataset size and different training methods.

A.2.5 Analysis

From the experimental results presented in table
9 and table 10, it can be observed that reducing
the training dataset size by 10% has a minimal im-
pact on model performance under the BCD frame-
work. Compared to training with the full dataset,
sampling 90% of the data leads to only a slight
decrease in final accuracy. For example, in the
GPT-2 training experiments, when using the SGD
optimizer, the accuracy of the model trained with
the full dataset is 69.1%, whereas the accuracy of
the model trained with 90% of the sampled data
is 68.9%, showing only a 0.2% reduction. Under
the Adam optimizer, the model trained with 90%
of the sampled data even achieves a slightly higher
accuracy than the one trained with the full dataset
(67.5% vs. 66.2%), suggesting that in certain cases,
reducing the training dataset size may contribute to
improved optimizer stability during convergence.
For the ResNet-14 model, reducing the training
dataset by 10% results in only a 0.3% accuracy
drop, from 89.0% to 88.7%, while the loss value
remains nearly the same (0.0613 vs. 0.0616). This
indicates that the data sampling strategy has a simi-
larly negligible effect on convolutional neural net-
works. Additionally, the results show that models
trained on the full dataset tend to converge in fewer
epochs. This suggests that reducing the training
dataset may slightly affect the convergence speed,
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but its overall impact on final model performance
remains limited.

A.3 Unfrozen Parts Experiments

#UFP | Opt | #epoch | Acc Loss Mem

1 SGD 24 69.6% | 1.9407 | 1824.45MB
172 | SGD 40 67.1% | 1.9033 | 1216.30MB
1/3 SGD 44 69.1% | 1.9343 | 1013.58MB
1/4 SGD 50 67.5% | 1.9109 | 912.23MB

1 Adam 18 65.9% | 1.8869 | 2432.60MB
1/2 | Adam 40 66.3% | 1.8924 | 1520.38MB
1/3 | Adam 50 66.2% | 1.8910 | 1216.30MB
1/4 | Adam 60 66.8% | 1.8995 | 1064.26MB

Table 11: The performance of GPT2 models with differ-
ent scales of frozen parameters under various optimiz-
ers.

Table 11 shows that reducing the number of
UFP significantly decreases memory consump-
tion. For instance, in SGD training, memory us-
age drops from 1824.45MB to 912.23MB, while
in Adam training, it decreases from 2432.60MB
to 1064.26MB. Meanwhile, the model accuracy
experiences only a slight reduction, with a maxi-
mum drop of 2.1% under SGD, and even a slight
improvement under Adam. In terms of training
time, models with more frozen parameters gener-
ally require more epochs to converge. Therefore, in
large-scale training, it is essential to balance com-
putational resources, convergence speed, and final
performance to determine an appropriate freezing
strategy.

A.4 Market Price Statistics for GPUs

According to publicly available information from
various computing rental service providers, Au-
toDL Cloud Computing offers RTX 4090 at
$0.31/hour and A800 80GB at $0.88/hour. Parallel
Technology provides A100 80GB at $2.25/hour
and RTX 4090 at $0.50/hour. AnyGPU offers
RTX 4090 at $0.40/hour. Al Galaxy Cloud lists
RTX 4090 at $0.19/hour and A100 80GB at
$1.12/hour. Hengyuan Cloud provides A100 80GB
at $1.39/hour, A800 80GB at $1.25/hour, and RTX
4090 at $0.22/hour. It should be noted that rental
prices may vary based on market supply and de-
mand, rental duration, and other factors, with the
official platform information serving as the defini-
tive reference.



G-1.6B | G-54B | G-10B | G-20B
GPUh | | GPUh ] | GPUh | | GPUh |
Full Update 0% 0% 0% 0%
BCD(The worst) | 56.1% | 13.3% | -2.8% | 29.4%
BCD(Average) | 80.2% | 60.9% | 53.6% | 68.2%

Table 12: Reduction in GPU hours using BCD com-
pared to full parameter updates across different models

on an RTX 4090 cluster.
G-1.6B | G-54B G-10B G-20B
GPUh | | GPUh | | GPUh | | GPUh |
Full Update 0% 0% 0% 0%
BCD(The worst) 1.5% -127.0% | -131.8% | -78.0%
BCD(Average) 55.6% -2.4% -4.5% 19.7%

Table 13: Reduction in GPU hours using BCD on an
RTX 4090 cluster compared to full-parameter updates
on an A100 cluster across different models.

G-1.6B | G-54B | G-10B | G-20B
GPUh | | GPUh | | GPUh| | GPUh |
Full Update 0% 0% 0% 0%
BCD(The worst) | 6.4% | -114.7% | -121.6% | -70.5%
BCD(Average) 57.8% 3.2% 0.08% 23.1%

Table 14: Reduction in GPU hours using BCD on 4090
clusters compared to full-parameter updates on an A800
cluster across different models.

A.5 GPU Hour Analysis

Based on the data presented in tables 12, 13, and 14,
the performance of the BCD method varies across
different model scales, demonstrating both signifi-
cant advantages and certain limitations. During the
training of G-1.6B and G-20B models, the BCD
method effectively reduces GPU hours. However,
for G-5.4B and G-10B models, its GPU computa-
tion time is comparable to that of full-parameter
training, and in some cases, even slightly higher.
This indicates that the optimization of computa-
tional overhead in the BCD method still has room
for improvement.

B UFP experiments

In this experiment, UFP (Unfrozen Parts) refers
to the proportion of model parameters that remain
trainable during training. By freezing a certain
proportion of parameters in different experimental
settings (e.g., 1/2, 1/3, 1/4, 1/5), we analyze the im-
pact of parameter freezing on memory usage and
training efficiency. Freezing part of the parame-
ters reduces gradient computations and optimizer
state storage, thereby lowering memory consump-
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tion, while potentially affecting training time and
final model performance. This section focuses on
investigating the memory usage and training time
variations of GPT-2 and LLaMA models under dif-
ferent UFP configurations.

B.0.1 UFP experiments

UFP setting

In this section of the experiment, we froze 1/2,
1/3, 1/4, and 1/5 of the parameters, and the memory
usage is as follows.

GPT Memory Usage Across UFPs
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Figure 5: This figure presents the approximate memory
usage percentage of GPT-2 and LLaMA models with
different parameter scales under various freezing ratios,
considering only the parameters, gradients, and opti-
mizer states.
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Figure 6: This figure presents the average training time
per iteration for GPT-2 and LLaMA models when un-
freezing different scales of parameters using the BCD
method. The time is measured in milliseconds (ms).

Model | #GPU | t-1/3 t-1/4 t-1/5
G-1.6B 1 378.49 | 331.7375 | 305.52
G-5.4B 4 1210.61 | 1070.81 996.47
G-10B 8 2414.32 | 2207.405 | 2036.528

Table 15: This table presents the average training time
per iteration for the GPT-2 model when unfreezing dif-
ferent scales of parameters using the BCD method. For
example, t-1/3 represents the average training time per
iteration when unfreezing one-third of the parameters.
The time is measured in milliseconds (ms).

Analysis The experimental results indicate that
as the proportion of frozen parameters increases,



Model | #GPU | t-1/3 t-1/4 t-1/5

L-1.5B 1 414.81 331.81 276.266
L-6.0B 4 941.44 | 895.7075 | 835.798
L-11B 8 1807.11 | 1738.2525 | 1574.92

Table 16: This table presents the average training time
per iteration for the LLaMA model when unfreezing dif-
ferent scales of parameters using the BCD method. For
example, t-1/3 represents the average training time per
iteration when unfreezing one-third of the parameters.
The time is measured in milliseconds (ms).

the time per iteration shows a decreasing trend.
This trend has been validated across different
model scales and GPU configurations.

From the data, it can be observed that for both
GPT-2 and LLaMA models, freezing more param-
eters leads to a reduction in computation time per
iteration, with the effect being more pronounced
in smaller models. This suggests that in resource-
constrained environments, freezing a portion of
the parameters can effectively reduce memory con-
sumption and computational overhead per iteration.
However, it may require more iterations to achieve
convergence.

Furthermore, as the model size increases, the
absolute training time also rises, but the reduc-
tion in iteration time due to parameter freezing
remains significant. This further demonstrates that
in large-scale model training, adopting an appro-
priate parameter freezing strategy can alleviate the
computational burden per iteration under resource
constraints. However, the total training time and
final model performance must be carefully consid-
ered to determine the optimal freezing ratio.
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