
Contents lists available at ScienceDirect

Artificial Intelligence

journal homepage: www.elsevier.com/locate/artint

On the computation of mixed strategies for security games with 

general defending requirements

Rufan Bai a, , Haoxing Lin b, Xiaowei Wu c, ,∗, Minming Li d, , Weijia Jia e

a Southeast University, Nanjing, China
b National University of Singapore, Singapore
c University of Macau, Macau, China
d City University of Hong Kong, Hong Kong, China
e BNU-UIC Institute & Beijing Normal University (Zhuhai), Zhuhai, China

A R T I C L E I N F O A B S T R A C T 

Keywords:

Security games

Mixed strategy

Efficient algorithm

Compact representation

Resource allocation

The Stackelberg security game is played between a defender and an attacker, where the defender 
needs to allocate a limited amount of resources to multiple targets in order to minimize the loss 
due to adversarial attacks by the attacker. While allowing targets to have different values, classic 
settings often assume uniform requirements for defending the targets. This enables existing results 
that study mixed strategies (randomized allocation algorithms) to adopt a compact representation

of the mixed strategies.

In this work, we initiate the study of mixed strategies for security games in which the targets can 
have different defending requirements. In contrast to the case of uniform defending requirements, 
for which an optimal mixed strategy can be computed efficiently, we show that computing the 
optimal mixed strategy is NP-hard for the general defending requirements setting. However, we 
show strong upper and lower bounds for the optimal mixed strategy defending result. Additionally, 
we extend our analysis to study uniform attack settings on these security games.

We propose an efficient close-to-optimal Patching algorithm that computes mixed strategies using 
only a few pure strategies. Furthermore, we study the setting when the game is played on a network 
and resource sharing is enabled between neighboring targets. We show the effectiveness of our 
algorithm in various large real-world datasets, addressing both uniform and general defending 
requirements.

1. Introduction

Stackelberg security games have recently garnered significant interest from the game theory community and combinatorial opti-

mization experts due to their extensive applications in real-world scenarios, such as patrolling [1,2], forest protection [3,4], defense 
coordination [5]. These classic security games typically model the interaction as a Stackelberg game [6,7], involving two players: the 
defender (leader) who commits to a defending strategy, and the attacker (follower), who observes and then reacts to this strategy. This 
paper concentrates on zero-sum games [8,9], where the objective is to defend multiple valuable targets. Each target 𝑢 is associated 
with a value 𝛼𝑢, indicating the potential loss due to a successful attack on the target, and a threshold 𝜃𝑢 , representing the resources 

* Corresponding author.

E-mail addresses: rfbai@seu.edu.cn (R. Bai), haoxing.lin@comp.nus.edu.sg (H. Lin), xiaoweiwu@um.edu.mo (X. Wu), minming.li@cityu.edu.hk (M. Li), 
jiawj@uic.edu.cn (W. Jia).

https://doi.org/10.1016/j.artint.2025.104297

Received 4 April 2024; Received in revised form 11 November 2024; Accepted 1 February 2025 

Artiϧcial Intelligence 341 (2025) 104297 

Available online 10 February 2025 
0004-3702/© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
http://orcid.org/0009-0009-9059-8141
http://orcid.org/0000-0002-5766-2115
http://orcid.org/0000-0002-7370-6237
mailto:rfbai@seu.edu.cn
mailto:haoxing.lin@comp.nus.edu.sg
mailto:xiaoweiwu@um.edu.mo
mailto:minming.li@cityu.edu.hk
mailto:jiawj@uic.edu.cn
https://doi.org/10.1016/j.artint.2025.104297
https://doi.org/10.1016/j.artint.2025.104297


R. Bai, H. Lin, X. Wu et al. 

required to defend the target. A target 𝑢 is considered secure if it receives resources at least 𝜃𝑢 , preventing any loss from attacks. 
Under this framework, the defender must strategize the allocation of limited resources across targets, while the attacker selects a 
target based on the defender’s allocation. The defender’s goal is to minimize the potential loss, which we define as the defending 
result of the allocation strategy.

The allocation strategies are often categorized into pure strategies and mixed strategies. An allocation is termed a pure strategy when 
it is deterministic, and a mixed strategy when it is randomized. Formally, a mixed strategy is defined as a probability distribution 
over a set of pure strategies. It is a common observation that mixed strategies yield defending results superior to those of the best 
pure strategy.

Example 1.1. Consider a scenario with targets {𝑎, 𝑏, 𝑐, 𝑑}, each having a defending requirement (threshold) of 1. The values for 
targets {𝑎, 𝑏, 𝑐} are 3, and for target 𝑑, it is 1. With a total resource 𝑅 = 2, every pure strategy leads to a defending result of 3, as 
there will always be one target among {𝑎, 𝑏, 𝑐} with insufficient defending resources. In contrast, a mixed strategy that applies each 
of the three pure strategies (1,1,0,0), (1,0,1,0), and (0,1,1,0) with probability 1∕3 achieves a defending result of 1.

Most existing works on mixed strategies in security games assume uniform thresholds [4,10–12], where all targets have the same 
defending requirements, i.e. 𝜃𝑢 = 1,∀𝑢 ∈ 𝑉 . The example we show above has uniform thresholds. This allows for the representation of 
each mixed strategy through their corresponding compact representation, where the allocation to targets is no longer binary. Instead, a 
target receiving resources below its threshold is considered fractionally defended when evaluating the loss from an attack. Korzhyk et 
al. [12] demonstrated that any compact representation can be converted into a mixed strategy using 𝑂(𝑛2) pure strategies that achieves 
the same defending result as the compact representation, where 𝑛 is the number of targets. In this paper, we explore scenarios with 
non-uniform target thresholds, i.e., varying defending requirements among targets. Consider, for instance, the allocation of vaccines 
to cities (targets) in a virus defense scenario, where the defending requirement for each city depends on its population, leading to 
significant variance. This raises a critical question about the applicability of compact representation under these conditions:

Can every compact representation be transformed into a mixed strategy that achieves the same defending result when targets have general 
thresholds?

Regrettably, we show that this may not always be feasible.

1.1. Our contribution

We show that when targets have different defending requirements, the set of compact representations and mixed strategies are 
no longer equivalent. We henceforth refer to a compact representation as a fractional strategy. We formalize mixed and fractional 
strategies in security games with varied defending requirements, and explore their relationships and distinctions.

Mixed vs. fractional. A key contribution of our study is the theoretical exploration of the relation between mixed and fractional 
strategies. We denote the defending result of the optimal mixed strategy using total resource 𝑅 as OPT𝑚(𝑅), and that of the optimal 
fractional strategy as OPT𝑓 (𝑅). We establish that while computing OPT𝑚(𝑅) is NP-hard, it holds that OPT𝑚(𝑅) ≥ OPT𝑓 (𝑅). Given 
that OPT𝑓 (𝑅) can be determined through linear programming, it serves as a lower bound for OPT𝑚(𝑅). Crucially, we demonstrate 
that for any given total resource 𝑅, a mixed strategy can be identified with a defending result no greater than OPT𝑓 (𝑅 − 𝜃max), 
where 𝜃max represents the highest threshold among the targets. Furthermore, we introduce a polynomial-time algorithm capable of 
computing such a mixed strategy that uses 𝑂(𝑛2) pure strategies. Interestingly, for uniform thresholds, the mixed strategy achieves a 
defending result OPT𝑓 (𝑅), i.e., our analysis re-produces the result of Korzhykcp et al. [12]. By proving the convexity of the function 
OPT𝑓 (⋅), we infer that when 𝑅 significantly exceeds 𝜃max, the values of OPT𝑚(𝑅) and OPT𝑓 (𝑅) closely converge, admitting a very 
small additive gap (see Section 3.3 for more details). Therefore, we establish the near-equivalence between mixed and fractional 
strategies in security games with general defending requirements.

Algorithm with small support. In practical applications, a mixed strategy employing a limited number of pure strategies is often 
preferable. For instance, deploying a mixed strategy that utilizes 𝜔(𝑛) pure strategies becomes impractical when the number of 
targets 𝑛 is large. Therefore, our research focuses on devising mixed strategies with small supports. Inspired by the Double Oracle 
algorithm by Jain et al. [13] and the column generation techniques [14–16], we introduce the Patching algorithm. This algorithm 
iteratively identifies and incorporates new pure strategies to enhance the defense of poorly protected nodes within the current mixed 
strategy framework. We demonstrate that, for a given set of pure strategies 𝐷 with bounded size, our algorithm computes an optimal 
mixed strategy with support 𝐷 in polynomial time relative to |𝐷|.
Resource sharing. Our investigation extends to scenarios involving resource sharing within a network, a concept inspired by applica-

tions in patrolling and surveillance camera deployment [17–19]. In such models, targets are depicted as network nodes, allowing for 
the sharing of a portion of resources allocated to neighboring nodes during an attack. While similar studies (e.g. [20]) have explored 
models with general thresholds focusing solely on pure strategies, our work delves into the implications of resource sharing. We 
reveal that the gap between OPT𝑚(𝑅) and OPT𝑓 (𝑅) can become arbitrarily large with resource sharing, undermining the feasibility 
of approximating mixed strategies from rounding the fractional ones. Nonetheless, the Patching algorithm remains applicable, effi-

ciently computing mixed strategies within this context. We further ascertain that, under specific conditions, the algorithm is capable 
of making progress toward reducing the defending result.

Artiϧcial Intelligence 341 (2025) 104297 

2 



R. Bai, H. Lin, X. Wu et al. 

Table 1
Summary of existing models.

Model Limited Budget Threshold Mixed Strategy Resource Sharing Attack Type 
Yes No General Uniform Yes No Duplicated Reallocate Adversary Uniform 

Kiekintveld et al. [11] ✓ ✓ ✓ ✓
Korzhy et al. [12] ✓ ✓ ✓ ✓
Bai et al. [19] ✓ ✓ ✓ ✓ ✓
Bai et al. [24] ✓ ✓ ✓ ✓ ✓ ✓

An et al. [25] ✓ ✓ ✓ ✓
Vorobeychik et al. [17] ✓ ✓ ✓ ✓
Conitzer et al. [36] ✓ ✓ ✓ ✓
Aspnes et al. [21] ✓ ✓ ✓ ✓
Kumar et al. [22] ✓ ✓ ✓ ✓
Gan et al. [27] ✓ ✓ ✓ ✓ ✓
Li et al. [20] ✓ ✓ ✓ ✓ ✓
Yin et al. [18] ✓ ✓ ✓ ✓ ✓

Ours (isolated) ✓ ✓ ✓ ✓ ✓
Ours (shared) ✓ ✓ ✓ ✓ ✓ ✓

Uniform attack. We further extend our analysis to deal with uniform attacks, wherein the attacker attacks each target with equal 
probability. In this scenario, we show that the optimal mixed strategy is a pure strategy, and its computation (even without resource 
sharing), is NP-hard. Nonetheless, we identify a tight connection between the model and the knapsack problem, using which we 
establish lower and upper bounds for the defending results: OPTuni

𝑓 (𝑅) ≤ OPTuni
𝑚 (𝑅) ≤ OPTuni

𝑓 (𝑅− 𝜃max).

Experiments. To validate our theoretical findings, we conducted comprehensive experiments using several large real-world datasets. 
The outcomes demonstrate the Patching algorithm’s efficiency in computing mixed strategies with small support, such as utilizing only 
5 pure strategies. These strategies significantly enhance the defending results beyond those achievable with optimal pure strategies 
and approach optimality in numerous instances.

The remainder of this paper is organized as follows: Section 2 provides a detailed model description. Sections 3.1 to 3.3 delve into 
the relation between mixed and fractional strategies, laying the groundwork for our theoretical contributions. Section 3.5 discusses 
some challenges encountered in the resource-sharing context. The Patching algorithm is detailed in Section 4. The results for uniform 
attacks are presented in Section 5, which are followed by a presentation of our experimental findings in Section 6.

1.2. Other related works

Motivated by applications aimed at halting the spread of viruses, network security games with contagious attacks have garnered 
considerable attention in recent years [21,22,9,23,19,24]. In these models, an attack on a node can propagate to its neighbors, 
with the loss evaluated across all affected nodes. Aspnes et al. [21] conceptualized the inoculation challenge as a network security 
game, analyzing the pure Nash equilibrium with a focus on uniform thresholds. Kumar et al. [22] extended this work to consider 
general thresholds but did not account for the common real-world constraint of limited resources. Several studies have addressed 
security games under a limited budget [19,24–26], emphasizing the finite nature of defending resources. Additionally, some research 
has explored security games with resource-sharing mechanisms [27,20]. Gan et al. [27] introduced a network security game where 
allocating resources to a target also benefits its neighbors. Li et al. [20] proposed a model where a node’s defense capability is 
determined by both its allocated resources and a linear combination of resources from its neighbors. Kroupa et al. [28] studied the 
continuous games and proposed a type of multiple oracle algorithm. There are investigations into security games where resource 
sharing is dynamic, requiring time for neighboring nodes to share resources [29,18], and studies on multi-defender games, with each 
defender responsible for a single target [30–32]. There are also some studies on multiple defender Stackelberg security games that 
consider robust solutions [33], focus on resource allocation based on risk sharing [34], or tackle scheduling problems [35].

To facilitate a clear comparison with closely related models, we summarize the main features of these models in Table 1.

2. Preliminaries

In this section we present the model we study. We define our model in the most general form, i.e., including the network structure 
and with resource sharing, and consider the model without resource sharing as a restricted setting. We model the network as an 
undirected connected graph 𝐺(𝑉 ,𝐸), where each node 𝑢 ∈ 𝑉 has a threshold 𝜃𝑢 that represents the defending requirement, and a 
value 𝛼𝑢 that represents the possible damage due to an attack at node 𝑢. Each edge 𝑒 ∈ 𝐸 is associated with a weight 𝑤𝑢𝑣, which 
represents the efficiency of resource sharing between the two endpoints. We use 𝑁(𝑢) ∶= {𝑣 ∈ 𝑉 ∶ (𝑢, 𝑣) ∈ 𝐸} to denote the set of 
neighbors for node 𝑢 ∈ 𝑉 . We use 𝑛 and 𝑚 to denote the number of nodes and edges in the graph 𝐺, respectively. For any integer 𝑖, 
we use [𝑖] to denote {1,2,… , 𝑖}.

Artiϧcial Intelligence 341 (2025) 104297 

3 



R. Bai, H. Lin, X. Wu et al. 

The defender has a total resource of 𝑅 that can be distributed to nodes in 𝑉 . We use 𝑟𝑢 to denote the defending resource1 allocated 
to node 𝑢. Thus we have 

∑
𝑢∈𝑉 𝑟𝑢 ≤𝑅.

Definition 2.1 (Pure strategy). We use 𝐫 = {𝑟𝑢}𝑢∈𝑉 to denote a pure strategy and Ω𝑝(𝑅) = {𝐫 ∈ [0,𝑅]𝑉 ∶ ‖𝐫‖ =
∑

𝑢∈𝑉 𝑟𝑢 ≤ 𝑅}2 to 
denote the collection of pure strategies using resource 𝑅. When 𝑅 is clear from the context, we use Ω𝑝 to denote Ω𝑝(𝑅).

We consider resource sharing in our model. That is, when node 𝑢 is under attack, it can receive 𝑤𝑢𝑣 ⋅ 𝑟𝑣 units of resource shared 
from each of its neighbors 𝑣 ∈𝑁(𝑢).

Definition 2.2 (Defending power). Given pure strategy 𝐫, the defending power of node 𝑢 is defined as 𝜋𝑢(𝐫) = 𝑟𝑢 +
∑

𝑣∈𝑁(𝑢)𝑤𝑢𝑣 ⋅ 𝑟𝑣. 
We use 𝝅(𝐫) = (𝜋𝑢(𝐫))𝑢∈𝑉 to denote defending powers of nodes.

Definition 2.3 (Defending status). Given a pure strategy 𝐫, we use 𝐱(𝐫) ∈ {0,1}𝑉 to denote the defending status of nodes under 𝐫, 
where for each node 𝑢 we have 𝑥𝑢(𝐫) = 1 if 𝜋𝑢 ≥ 𝜃𝑢, i.e., node 𝑢 is well defended; and 𝑥𝑢(𝐫) = 0 if 𝜋𝑢 < 𝜃𝑢, i.e., node 𝑢 is not well 
defended.

Each pure strategy 𝐫 has a unique defending status 𝐱(𝐫) but different strategies can have the same defending status.

Definition 2.4 (Defending result). Given a pure strategy 𝐫, when node 𝑢 ∈ 𝑉 is under attack, the loss is given by 𝐿𝑝(𝑢, 𝐫) = 𝛼𝑢 if 𝑥𝑢(𝐫) =
0; 𝐿𝑝(𝑢, 𝐫) = 0 otherwise. The defending result of strategy 𝐫 is defined as the maximum loss due to an attack: 𝐿𝑝(𝐫) = max𝑢∈𝑉 {𝐿𝑝(𝑢, 𝐫)}.

We use 𝐫∗ to denote the optimal pure strategy, i.e., the pure strategy that has the minimum defending result 𝐫∗=argmin𝐫∈Ω𝑝
{𝐿𝑝(𝐫)}. 

The corresponding defending result is defined as OPT𝑝 =𝐿𝑝(𝐫∗).

Definition 2.5 (Mixed strategy). A mixed strategy is denoted by (𝐷,𝐩), where 𝐷 ⊆Ω𝑝 is a subset of pure strategies and 𝐩 is a probability 
distribution over 𝐷. For each 𝐫 ∈𝐷, we use 𝑝(𝐫) to denote the probability that pure strategy 𝐫 is used.

A mixed strategy is a randomized algorithm that applies pure strategies with certain probabilities. Note that 
∑

𝐫∈𝐷 𝑝(𝐫) = 1. We 
can also interpret 𝐩 as a |𝐷| dimension vector with ‖𝐩‖ = 1. We use

Ω𝑚(𝑅) = {(𝐷,𝐩) ∶𝐷 ⊆Ω𝑝(𝑅),𝐩 ∈ [0,1]|𝐷|,‖𝐩‖ = 1}

to denote the collection of all mixed strategies using total resource 𝑅. When 𝑅 is clear from the context, we use Ω𝑚 to denote Ω𝑚(𝑅).

Definition 2.6 (Defending status of mixed strategy). Given a mixed strategy (𝐷,𝐩), we use 𝑥𝑢(𝐷,𝐩) =
∑

𝐫∈𝐷 𝑝(𝐫) ⋅ 𝑥𝑢(𝐫) to denote the 
defending status of node 𝑢 ∈ 𝑉 under (𝐷,𝐩). In other words, 𝑥𝑢(𝐷,𝐩) is the probability that node 𝑢 is well defended under mixed 
strategy (𝐷,𝐩). We use 𝐱(𝐷,𝐩) = (𝑥𝑢(𝐷,𝐩))𝑢∈𝑉 ∈ [0,1]𝑉 to denote the defending status of (𝐷,𝐩).

Definition 2.7 (Defending result of mixed strategy). Given mixed strategy (𝐷,𝐩), we use 𝐿𝑚(𝑢, (𝐷,𝐩)) = (1 − 𝑥𝑢(𝐷,𝐩)) ⋅ 𝛼𝑢 to denote 
the (expected) loss when node 𝑢 is under attack. The defending result is defined as 𝐿𝑚(𝐷,𝐩) = max𝑢∈𝑉 {𝐿𝑚(𝑢, (𝐷,𝐩))}.

We use (𝐷∗,𝐩∗) to denote the optimal mixed strategy, i.e., the mixed strategy with the minimum defending result. The corre-

sponding defending result is defined as OPT𝑚 =𝐿𝑚(𝐷∗,𝐩∗).
Next we define the fractional strategies. Technically, a fractional strategy is not a strategy, but a pure strategy equipped with a 

fractional valuation of defending loss. In the remaining of this paper, when a pure strategy is evaluated by its fractional loss, we call 
it a fractional strategy.

Definition 2.8 (Fractional loss). Given a pure strategy 𝐫 ∈Ω𝑝, we evaluate the fractional loss when node 𝑢 is attacked by 𝐿𝑓 (𝑢, 𝐫) =
(1 −min{𝜋𝑢(𝐫)∕𝜃𝑢,1}) ⋅ 𝛼𝑢. The fractional defending result is defined as 𝐿𝑓 (𝐫) = max𝑢∈𝑉 {𝐿𝑓 (𝑢, 𝐫)}.

In a fractional strategy, if a node 𝑢 has defending power 𝜋𝑢, then we assume that min{𝜋𝑢∕𝜃𝑢,1} fraction of the node is defended. 
Thus when node 𝑢 is under attack, the loss is given by (1 − min{𝜋𝑢∕𝜃𝑢,1}) ⋅ 𝛼𝑢. We use �̃�∗ to denote the optimal fractional strategy, 
i.e., the strategy with minimum 𝐿𝑓 (�̃�∗). The corresponding defending result is defined as OPT𝑓 . We use OPT𝑝(𝑅),OPT𝑚(𝑅) and 
OPT𝑓 (𝑅) to denote the defending result of the optimal pure, mixed and fractional strategy using total resource 𝑅, respectively. When 
𝑅 is clear from the context, we simply use OPT𝑝,OPT𝑚 and OPT𝑓 .

Next we use an example to illustrate the difference between mixed strategy and fractional strategy.

1 As in [20,19], we assume the resource can be allocated arbitrarily in our model.
2 Throughout this paper we use ‖ ⋅ ‖ to denote the 𝐿1 norm of a vector.

Artiϧcial Intelligence 341 (2025) 104297 

4 



R. Bai, H. Lin, X. Wu et al. 

Example 2.9. Consider an instance involving three targets, with their thresholds and values detailed in the table below. With a total 
resource of 𝑅 = 4, the optimal mixed strategy applies each of the pure strategies (3,0,1) and (0,3,1) with a probability of 12 , resulting 

in a defending result of 1. In contrast, the compact representation 
(
15
8 ,

15
8 ,

1
4

)
yields a defending result of 34 , demonstrating that no 

mixed strategy can achieve this same defending result.

Target a b c 
Value 2 2 1 
Threshold 3 3 1 

The following lemma implies that the optimal fractional strategy has a defending result at most that of the optimal mixed strategy.

Lemma 2.10. For any problem instance, we have OPT𝑝 ≥ OPT𝑚 ≥ OPT𝑓 .

Proof. Note that every pure strategy 𝐫 is also a mixed strategy (with 𝐷 = {𝐫} and 𝑝(𝐫) = 1). Hence the first inequality trivially holds. 
In the following, we show that for any mixed strategy (𝐷,𝐩), we can find a fractional strategy �̃� using the same total resource 𝑅 such 
that 𝐿𝑚(𝐷,𝐩) ≥𝐿𝑓 (�̃�).

Let 𝑟𝑢 =
∑

𝐫∈𝐷 𝑝(𝐫) ⋅ 𝑟𝑢 be the expected resource node 𝑢 receives under (𝐷,𝐩). Let �̃� = (𝑟𝑢)𝑢∈𝑉 be the resulting fractional strategy. 
Note that we have 𝜋𝑢(�̃�) =

∑
𝐫∈𝐷 𝑝(𝐫) ⋅ 𝜋𝑢(𝐫). Furthermore, ‖�̃�‖ ≤𝑅, i.e., it uses a total resource at most 𝑅. Observe that when node 

𝑢 is under attack we have

𝐿𝑚(𝑢, (𝐷,𝐩)) = (1 − 𝑥𝑢(𝐷,𝐩)) ⋅ 𝛼𝑢
=(1 −

∑
𝐫∈𝐷 𝑝(𝐫) ⋅ 𝑥𝑢(𝐫)) ⋅ 𝛼𝑢

≥(1 −
∑

𝐫∈𝐷 𝑝(𝐫) ⋅min{𝜋𝑢(𝐫)∕𝜃𝑢,1}) ⋅ 𝛼𝑢
≥(1 −min{

∑
𝐫∈𝐷 𝑝(𝐫) ⋅ 𝜋𝑢(𝐫)∕𝜃𝑢,1}) ⋅ 𝛼𝑢 =𝐿𝑓 (𝑢, �̃�).

It means that 𝐿𝑚(𝐷,𝐩) ≥𝐿𝑓 (�̃�) since above relation holds for each node, which implies that OPT𝑚 ≥ OPT𝑓 . □

3. Computation of strategies

In this section we consider the computation of the optimal pure, mixed and fractional strategies, and also analyze some properties 
regarding the optimal defending results of different strategies.

3.1. Optimal pure and fractional strategy

We remark that our model is equal to the “single threshold” model of [20]. We thus use their algorithm (that runs in polynomial 
time) to compute an optimal pure strategy. Roughly speaking, in their algorithm a target defending result 𝛼 is fixed and the goal is to 
decide whether it is possible to defend all nodes 𝐴(𝛼) = {𝑢 ∈ 𝑉 ∶ 𝛼𝑢 > 𝛼} with value larger than 𝛼. For every fixed 𝛼 the above decision 
problem can be solved by solving a feasibility LP with constraints 

∑
𝑢∈𝑉 𝑟𝑢 ≤ 𝑅 and 𝑟𝑢 +

∑
𝑣∈𝑁(𝑢)𝑤𝑢𝑣 ⋅ 𝑟𝑣 ≥ 𝜃𝑢 for every 𝑢 ∈ 𝐴(𝛼). 

Combining the above subroutine with a binary search on 𝛼 ∈ {𝛼𝑢}𝑢∈𝑉 ∪ {0} yields a polynomial time algorithm for computing the 
optimal pure strategy, i.e., with the minimum achievable defending result 𝛼.

The computation of the optimal fractional strategy can be done efficiently by solving the following linear program (LP𝑓 (𝑅)), 
where we introduce a variable 𝑟𝑢 for each node 𝑢 ∈ 𝑉 that represents the resource 𝑢 receives, and a variable 𝐿 for the defending 
result.

(LP𝑓 (𝑅)) minimize 𝐿 

subject to
∑

𝑢∈𝑉 𝑟𝑢 ≤𝑅,

(1 − (𝑟𝑢 +
∑

𝑣∈𝑁(𝑢)𝑤𝑢𝑣 ⋅ 𝑟𝑣)∕𝜃𝑢) ⋅ 𝛼𝑢 ≤𝐿, ∀𝑢 ∈ 𝑉

By solving the above LP we get the optimal fractional strategy �̃�∗, whose defending result OPT𝑓 is the optimal objective of the 
LP. From Lemma 2.10, we have OPT𝑓 ≤ OPT𝑚, i.e., we can use OPT𝑓 as a lower bound for the defending result of the optimal mixed 
strategy (which is NP-hard to compute, as we will show later). In the following we show that the optimal objective of the above LP 
is a convex function of the total resource 𝑅.

Lemma 3.1 (Convexity). Given resource 𝑅1 and 𝑅2, we have

OPT𝑓 (𝑅1) + OPT𝑓 (𝑅2) ≥ 2 ⋅ OPT𝑓
(
1
2 (𝑅1 +𝑅2)

)
.

Artiϧcial Intelligence 341 (2025) 104297 

5 



R. Bai, H. Lin, X. Wu et al. 

Proof. Let �̃�∗𝟏 and �̃�∗𝟐 be the optimal fractional strategies given resource 𝑅1 and 𝑅2, respectively. Note that (�̃�∗𝟏 ,OPT𝑓 (𝑅1)) and 
(�̃�∗𝟐 ,OPT𝑓 (𝑅2)) are feasible solutions to (LP𝑓 (𝑅1)) and (LP𝑓 (𝑅2)), respectively. Let �̃� = 1

2 ⋅ (�̃�∗𝟏 + �̃�∗𝟐 ). In the following we show that 
(�̃�, 12 ⋅ (OPT𝑓 (𝑅1) + OPT𝑓 (𝑅2))) is a feasible solution to (LP𝑓 (

1
2 (𝑅1 + 𝑅2))). The first constraint of the LP trivially holds because ‖�̃�‖ = 1

2 ⋅ (‖�̃�∗1‖+ ‖�̃�∗2‖) ≤ 1
2 (𝑅1 +𝑅2). By the feasibility of (�̃�∗𝟏 ,OPT𝑓 (𝑅1)) and (�̃�∗𝟐 ,OPT𝑓 (𝑅2)), we have the following relations:

(1 − 𝜋𝑢(�̃�∗𝟏 )∕𝜃𝑢) ⋅ 𝛼𝑢 ≤ OPT𝑓 (𝑅1), ∀𝑢 ∈ 𝑉

(1 − 𝜋𝑢(�̃�∗𝟐 )∕𝜃𝑢) ⋅ 𝛼𝑢 ≤ OPT𝑓 (𝑅2), ∀𝑢 ∈ 𝑉 .

Combining the two sets of inequalities we get

(1 − 1
2 (𝜋𝑢(�̃�

∗
𝟏 ) + 𝜋𝑢(�̃�∗𝟐 ))∕𝜃𝑢) ⋅ 𝛼𝑢 ≤

1
2 ⋅ (OPT𝑓 (𝑅1) + OPT𝑓 (𝑅2)),∀𝑢 ∈ 𝑉 .

Since we have 𝜋𝑢(�̃�) =
1
2 (𝜋𝑢(�̃�

∗
𝟏 ) + 𝜋𝑢(�̃�∗𝟐 )), we conclude that (�̃�, 12 (OPT𝑓 (𝑅1) + OPT𝑓 (𝑅2))) is a feasible solution to (LP𝑓 (

1
2 (𝑅1 +

𝑅2))). Consequently the optimal objective of the LP has

OPT𝑓 (
1
2 (𝑅1 +𝑅2)) ≤

1
2 ⋅ (OPT𝑓 (𝑅1) + OPT𝑓 (𝑅2)).

Rearranging the inequality concludes the proof. □

3.2. Hardness for computing mixed strategies

We have shown that the optimal pure and fractional strategies can be computed efficiently. Unfortunately, we show that computing 
the optimal mixed strategy is NP-hard, even in the isolated model, i.e., when 𝑤𝑢𝑣 = 0 for all (𝑢, 𝑣) ∈𝐸.

Theorem 3.2. Unless 𝑃 =𝑁𝑃 , there does not exist any polynomial time algorithm that given a graph 𝐺(𝑉 ,𝐸) and resource 𝑅 computes 
the optimal mixed strategy, even under the isolated model.

Proof. We prove the hardness result by a reduction from the Even Partition problem, which is known to be NP-complete [37]. Given 
a set of numbers 𝐴 = {𝑎1, 𝑎2, ..., 𝑎𝑛}, the problem is to decide whether 𝐴 can be partitioned into two subsets of equal sum. Given set 
𝐴, we construct the instance of the defending problem as follows. Let 𝐺(𝑉 ,𝐸) be a graph with 𝑉 = [𝑛] and 𝐸 = ∅. For each node 
𝑖 ∈ 𝑉 we set 𝜃𝑖 = 𝑎𝑖 and 𝛼𝑖 = 1. We set the total resource 𝑅 = 1

2
∑

𝑖∈𝐴 𝑎𝑖.
Obviously if 𝐴 can be partitioned into two sets 𝐴1 and 𝐴2 of equal sum, then both of them have sum equals to 𝑅. Then we can 

define two pure strategies: the first strategy allocates resource 𝑟𝑖 = 𝜃𝑖 for each 𝑖 ∈ 𝐴1; the second one allocates resource 𝑟𝑖 = 𝜃𝑖 for 
each 𝑖 ∈ 𝐴2. Then we define a mixed strategy that applies each of these two strategies with probability 0.5. It is easy to check that 
the defending result is 0.5 since the defending status of each node is 0.5. Hence if 𝐴 has an even partition, we have OPT𝑚(𝑅) ≤ 0.5.

On the other hand, we show that if 𝐴 does not have an even partition, then OPT𝑚(𝑅) > 0.5. Let 𝑅′ be the maximum sum of 
numbers in 𝐴 that is at most 𝑅. Since 𝐴 does not have an even partition, we have 𝑅′ <𝑅. Moreover, in every pure strategy the total 
threshold of nodes that are well defended is at most 𝑅′ . In other words, for every 𝐫 ∈ Ω𝑝(𝑅), there is a corresponding 𝐫′ ∈ Ω𝑝(𝑅′)
with 𝐱(𝐫′) = 𝐱(𝐫). Thus we have OPT𝑚(𝑅) = OPT𝑚(𝑅′). Observe that since 𝑅′ <𝑅 = 1

2 ⋅
∑

𝑖∈𝑉 𝜃𝑖, in any fractional strategy using total 
resource 𝑅′, there must exist a node 𝑖 ∈ 𝑉 with 𝑟𝑖 < 0.5 ⋅ 𝜃𝑖. Consequently, we have OPT𝑓 (𝑅′) > 0.5. Finally, by Lemma 2.10, we 
have OPT𝑚(𝑅) = OPT𝑚(𝑅′) ≥ OPT𝑓 (𝑅′) > 0.5, as claimed.

In conclusion, we have OPT𝑚(𝑅) ≤ 0.5 if and only if 𝐴 admits an even partition. Since the reduction is in polynomial time, we 
know that the computation of the optimal mixed strategy is NP-hard. □

3.3. A strong upper bound for isolated model

While computing the optimal mixed strategy is NP-hard, we can use OPT𝑓 (𝑅) to give a lower bound on OPT𝑚(𝑅). In other words, 
if a mixed strategy has a defending result close to OPT𝑓 (𝑅), then it is close-to-optimal. However, if the lower bound is loose, then 
no such mixed strategy exists. Therefore, it is crucial to know whether this lower bound is tight. In this section, we show that in the 
isolated model, we can give a strong upper bound on OPT𝑚(𝑅), which shows that OPT𝑓 (𝑅) is an almost tight lower bound when 𝑅
is large.

Theorem 3.3. In the isolated model, given any instance 𝐺(𝑉 ,𝐸) and a total resource 𝑅, we have

OPT𝑚(𝑅) ≤ OPT𝑓 (𝑅− 𝜃max),

where 𝜃max =max𝑢∈𝑉 {𝜃𝑢} is the maximum threshold of the nodes.

Before presenting the proof, we remark that by convexity of the function OPT𝑓 (⋅), we have

OPT𝑓 (𝑅− 𝜃max) ≤
𝑅− 𝜃max

𝑅 
⋅ OPT𝑓 (𝑅) +

𝜃max

𝑅 
⋅ OPT𝑓 (0)

Artiϧcial Intelligence 341 (2025) 104297 

6 



R. Bai, H. Lin, X. Wu et al. 

=OPT𝑓 (𝑅) +
𝜃max

𝑅 
⋅
(
max
𝑢∈𝑉

{𝛼𝑢} − OPT𝑓 (𝑅)
)
.

In other words, when 𝑅 ≫ 𝜃max, OPT𝑓 (𝑅) and OPT𝑓 (𝑅 − 𝜃max) have very similar values. Hence combining Lemma 2.10 and 
Theorem 3.3, we have strong upper and lower bounds on OPT𝑚(𝑅) when 𝑅 ≫ 𝜃max. Furthermore, we remark that following our 
analysis, it can be verified that if 𝜃𝑢 = 𝜃max for all nodes 𝑢 ∈ 𝑉 and 𝑅 is divisible by 𝜃max, then we can prove the stronger result 
OPT𝑚(𝑅) = OPT𝑓 (𝑅). Moreover, there exists a mixed strategy (𝐷,𝐩) with |𝐷| = 𝑂(𝑛2) that achieves this defending result. In other 
words, our analysis also reproduces the result of [12]. We prove Theorem 3.3 by showing the following lemma.

Lemma 3.4. Given any vector 𝐟 ∈ [0,1]𝑉 with 
∑

𝑢∈𝑉 𝑓𝑢 ⋅𝜃𝑢 ≤𝑅−𝜃max, we can compute in polynomial time a mixed strategy (𝐷,𝐩) ∈ Ω𝑚(𝑅)
with |𝐷| =𝑂(𝑛2) such that 𝐱(𝐷,𝐩) = 𝐟 .

In particular, let �̃�∗ be the optimal fractional strategy using resource 𝑅−𝜃max. Note that in the isolated model we have 𝜋𝑢(�̃�∗) = 𝑟∗𝑢 . 
Let 𝐟 ∈ [0,1]𝑉 be defined by 𝑓𝑢 =min{𝑟∗𝑢∕𝜃𝑢,1}, for all 𝑢 ∈ 𝑉 . That is, 𝑓𝑢 is the fraction node 𝑢 is defended in the fractional strategy. 
Then 𝐟 satisfies the condition of Lemma 3.4, and hence there exists a mixed strategy (𝐷,𝐩) ∈ Ω𝑚(𝑅) with 𝐱(𝐷,𝐩) = 𝐟 . Hence we have

OPT𝑚(𝑅) ≤𝐿𝑚(𝐷,𝐩) = max
𝑢∈𝑉

{(1 − 𝑥𝑢(𝐷,𝐩)) ⋅ 𝛼𝑢}

=max
𝑢∈𝑉

{(1 − 𝑓𝑢) ⋅ 𝛼𝑢} =𝐿𝑓 (�̃�∗) = OPT𝑓 (𝑅− 𝜃max).

3.4. Proof of Lemma 3.4

We prove the lemma by giving a polynomial time algorithm that given the vector 𝐟 computes the mixed strategy (𝐷,𝐩) with 
the claimed properties. For uniform thresholds (when 𝜃𝑢 = 𝜃max for all nodes 𝑢 and 𝑅 is divisible by 𝜃max), we can have the same 
guarantee when 

∑
𝑢∈𝑉 𝑓𝑢 ⋅ 𝜃𝑢 ≤ 𝑅. Intuitively, we prove the lemma by showing that for any subset of nodes, we can use 𝑂(𝑛) pure 

strategies to increase their defending status by the same amount. It can be shown that any vector 𝐟 ∈ [0,1]𝑉 can be decomposed into 
𝑂(𝑛) “canonical” vectors, where a vector is canonical if all its non-zero dimensions have the same value. Therefore by expressing 
each canonical component of 𝐟 using 𝑂(𝑛) pure strategies, the total number of strategies used is 𝑂(𝑛2).

For convenience of discussion, we first introduce the following notations.

Notations. In the isolated model, it makes no sense to allocate resource 𝑟𝑢 ∈ (0, 𝜃𝑢) to a node 𝑢. Thus we only consider pure strategies 
𝐫 with 𝑟𝑢 ∈ {0, 𝜃𝑢} for all 𝑢 ∈ 𝑉 , and let Ω̃𝑝(𝑅) be the collection of such pure strategies using total resource at most 𝑅. For a vector 
𝐟 ∈ [0,1]𝑉 , we use 𝑉max(𝐟) = {𝑢 ∈ 𝑉 ∶ 𝑓𝑢 =max𝑣∈𝑉 {𝑓𝑣}} to denote the set of nodes 𝑢 with maximum 𝑓𝑢, and 𝑉0(𝐟) = {𝑢 ∈ 𝑉 ∶ 𝑓𝑢 = 0}. 
In addition, given vector 𝐟 , we define MaxTop(𝐟) ⊆ 𝑉 to be a set of nodes with total threshold at most 𝑅 as follows. We initialize 
MaxTop(𝐟)← ∅ and then greedily include nodes 𝑢 ∈ 𝑉 ⧵ MaxTop(𝐟) with maximum 𝑓𝑢 value (break ties by the index of nodes) into 
MaxTop(𝐟) as long as 𝑓𝑢 > 0 and the resulting set of nodes has total threshold at most 𝑅.

Algorithm 1: MaxTop(𝐟 ).
Input: the fractional strategy 𝐟

1 initialize 𝑀 ← ∅ ; 
2 while 𝑀 ≠ 𝑉 ⧵ 𝑉0(𝐟 ) do

3 𝑢← argmax𝑣∈𝑉 ⧵𝑀{𝑓𝑣} ; 
4 if 𝜃𝑢 +

∑
𝑣∈𝑀 𝜃𝑣 ≤𝑅 then

5 𝑀 ←𝑀 ∪ {𝑢} ; 
6 else

7 return 𝑀

Output: a set of nodes with total threshold at most 𝑅.

Notice that there exists a pure strategy 𝐫 ∈ Ω̃𝑝(𝑅) that defends (and only defends) the nodes in MaxTop(𝐟) simultaneously. 
Furthermore, unless MaxTop(𝐟) contains all nodes with non-zero 𝑓 values, i.e., 𝑀 = 𝑉 ⧵ 𝑉0(𝐟), the total resource 𝐫 uses is ‖𝐫‖ =

∑
𝑢∈MaxTop(𝐟) 𝜃𝑢 > 𝑅 − 𝜃max. Note that for uniform thresholds, we have ‖𝐫‖ = |MaxTop(𝐟)| ⋅ 𝜃max = 𝑅, which means that all 

resources are used up in each pure strategy 𝐫 ∈ Ω̃𝑝(𝑅).

3.4.1. Overview

Let 𝐟 (0) be the vector 𝐟 given in Lemma 3.4. Recall that our goal is to find 𝑂(𝑛2) pure strategies 𝐷 ⊆ Ω̃𝑝(𝑅) and associate a 
probability 𝑝(𝐫) to each 𝐫 ∈𝐷 satisfying3

3 Formally, we need equality here. However, given any mixed strategy whose total probability is 1− 𝜖, we can add a dummy pure strategy (that allocates 0 resource 
to every node) with probability 𝜖 without changing the defending result.

Artiϧcial Intelligence 341 (2025) 104297 

7 



R. Bai, H. Lin, X. Wu et al. ∑
𝐫∈𝐷 𝑝(𝐫) ≤ 1, (1)

such that 𝐱(𝐷,𝐩) = 𝐟 (0). We implement this goal by progressively including new pure strategies (with certain probabilities) into 𝐷 as 
long as

𝐱(𝐷,𝐩) ≤ 𝐟 (0). (2)

In particular, we let 𝐟 = 𝐟 (0) − 𝐱(𝐷,𝐩) be the residual vector, which will be dynamically updated when we include new pure 
strategies into 𝐷. The goal is to eventually decrease 𝐟 to the all-zero vector 𝟎. In such case our algorithm terminates and outputs the 
mixed strategy (𝐷,𝐩). Our algorithm works in iterations. In each iteration, the algorithm includes 𝑂(𝑛) pure strategies into 𝐷,4 and 
guarantees that the inclusion of new strategies increases |𝑉max(𝐟)|+ |𝑉0(𝐟)| by at least one. It can also be verified that throughout the 
whole algorithm |𝑉max(𝐟)| and |𝑉0(𝐟)| never decrease. The algorithm terminates when |𝑉max(𝐟)|+ |𝑉0(𝐟)| > 𝑛, in which case we have 
𝑉max(𝐟) ∩ 𝑉0(𝐟) ≠ ∅, which implies 𝑉max(𝐟) = 𝑉0(𝐟) = 𝑉 , i.e., 𝐟 is an all-zero vector.

Phase A. A natural idea is to include the pure strategy 𝐫 that defends the nodes MaxTop(𝐟), i.e., those with largest 𝑓 values, into 𝐷
and give it an appropriate probability satisfying conditions (1) and (2). In particular, suppose 𝑉max(𝐟) ⊆MaxTop(𝐟). We continuously 
increase 𝑝(𝐫) (which decreases 𝑓𝑢 for all 𝑢 ∈ MaxTop(𝐟) at the same rate) until one of the following two events happens

(a) the maximum 𝑓 value of nodes in MaxTop(𝐟) is the same as max𝑣∉MaxTop(𝐟){𝑓𝑣}; or

(b) 𝑓𝑢 = 0 for some 𝑢 ∈ MaxTop(𝐟).

In Case-(a), we increase |𝑉max(𝐟)| by at least one; in Case-(b), we increase |𝑉0(𝐟)| by at least one without decreasing |𝑉max(𝐟)|. In 
either case, we can finish the iteration with |𝑉max(𝐟)|+ |𝑉0(𝐟)| increased by at least one. The subtle case is when 𝑉max(𝐟) ⊊MaxTop(𝐟). 
In such case, the strategy 𝐫 (that defends nodes in MaxTop(𝐟)) falls short of defending all nodes in 𝑉max(𝐟). As a consequence, we can 
only have 𝑝(𝐫) = 0 because any 𝑝(𝐫) > 0 may result in a decrease in |𝑉max(𝐟)|. Hence, when this happens, our algorithm enters Phase 
B.

Phase B. Observe that 𝑉max(𝐟) ⊊ MaxTop(𝐟) is equivalent to 
∑

𝑢∈𝑉max(𝐟) 𝜃𝑢 > 𝑅. We show that in this case, we can find 𝑂(𝑛) pure 
strategies and associate a probability to each of them such that after including these strategies to 𝐷, we can decrease 𝑓𝑢 for each 
𝑢 ∈ 𝑉max(𝐟) by

𝜖 ∶= max 
𝑢∈𝑉max(𝐟)

{𝑓𝑢} − max 
𝑣∉𝑉max(𝐟)

{𝑓𝑣}. (3)

The following lemma is the key to find these 𝑂(𝑛) pure strategies.

Lemma 3.5. Given any vector 𝐭 ∈ {0, 𝜖}𝑉 with 
∑

𝑢∈𝑉max(𝐭) 𝜃𝑢 > 𝑅, we can find 𝑂(|𝑉max(𝐭)|) pure strategies 𝑇 ⊆ Ω̃𝑝(𝑅) such that ‖𝐫‖ >
𝑅− 𝜃max,∀𝐫 ∈ 𝑇 . For uniform thresholds, we further have ‖𝐫‖=𝑅. Moreover, there exists an integer 𝑐 > 0 such that

𝐭 = 𝜖

𝑐
⋅
∑

𝐫∈𝑇 𝐱(𝐫).

We define 𝐭 as 𝑡𝑢 = 0 for all 𝑢 ∉ 𝑉max(𝐟); 𝑡𝑢 = 𝜖 for all 𝑢 ∈ 𝑉max(𝐟), where 𝜖 is as defined in (3). Then by Lemma 3.5, we can find 
𝑂(|𝑉max(𝐭)|) = 𝑂(𝑛) pure strategies 𝑇 with the above properties. By assigning probability 𝑝(𝐫) = 𝜖∕𝑐 for each 𝐫 ∈ 𝑇 and including 
these strategies into 𝐷, we can decrease 𝑓𝑢 for 𝑢 ∈ 𝑉max(𝐟) by 𝜖. As a consequence, including these new pure strategies increases |𝑉max(𝐟)| by at least one. Hence when this iteration finishes we have |𝑉max(𝐟)|+ |𝑉0(𝐟)| increased by at least one. Observe that in the 
next iteration we also have 𝑉max(𝐟) ⊊MaxTop(𝐟). In other words, the algorithm stays in Phase B until it terminates.

3.4.2. Proof of Lemma 3.5

Let 𝐭 ∈ {0, 𝜖}𝑉 be the vector given in Lemma 3.5, and 𝑘 = |𝑉max(𝐭)| be the number of non-zero coordinates. To prove Lemma 3.5, 
we will show that there exists 𝑇 ⊆ Ω̃𝑝(𝑅) satisfying following conditions:

(a) each 𝐫 ∈ 𝑇 defends only nodes in 𝑉max(𝐭), i.e., 𝑟𝑢 = 0 if 𝑢 ∉ 𝑉max(𝐭);
(b) each 𝐫 ∈ 𝑇 uses total resource ‖𝐫‖ >𝑅− 𝜃max;

(c) there exists an integer 𝑐 such that for every node 𝑢 ∈ 𝑉max(𝐭), the number of pure strategies in which 𝑢 is well defended is |{𝐫 ∈ 𝑇 ∶ 𝑟𝑢 = 𝜃𝑢}| = 𝑐;

(d) |𝑇 | ≤ 𝑘.

Since strategies in 𝑇 defend only nodes in 𝑉max(𝐭) and each node in 𝑉max(𝐭) is defended by the same number of pure strategies, we 
have 𝐭 = 𝜖

𝑐
⋅
∑

𝐫∈𝑇 𝐱(𝐫), as claimed in Lemma 3.5. We remark that condition (a) and (b) are relatively easy to satisfy. The tricky part 
is to satisfy condition (c) using only 𝑘 strategies (condition (d)). We accomplish the mission by proposing the following algorithm.

4 As we may include the same pure strategy into 𝐷 multiple times in different iterations, 𝐷 would be a multi-set of pure strategies, in which if a pure strategy 
appears several times, they are regarded as different strategies and can have different probabilities.

Artiϧcial Intelligence 341 (2025) 104297 

8 



R. Bai, H. Lin, X. Wu et al. 

In the following, we present the ideas for computing 𝑇 .

Let {𝑢1,… , 𝑢𝑘} be the nodes in 𝑉max(𝐭), indexed by their IDs. Suppose MaxTop(𝐭) = {𝑢1,… , 𝑢𝑖}, where 𝑖 < 𝑘. That is, 
∑𝑖

𝑗=1 𝜃𝑢𝑗 ≤𝑅

but 
∑𝑖+1

𝑗=1 𝜃𝑢𝑗 > 𝑅. Then we first include the strategy that defends node in MaxTop(𝐭) and try to find other strategies to defend 
the remaining nodes {𝑢𝑖+1,… , 𝑢𝑘}. Now suppose that 

∑𝑘
𝑗=𝑖+1 𝜃𝑢𝑗 ≤ 𝑅 − 𝜃max. Then the pure strategy 𝐫 that defends only nodes in 

{𝑢𝑖+1,… , 𝑢𝑘} does not satisfy condition (b). To ensure condition (b) holds, we include nodes {𝑢1, 𝑢2,…} into the set of nodes to be 
defended by 𝐫, until we have ‖𝐫‖ > 𝑅 − 𝜃max (for uniform thresholds, we have ‖𝐫‖ = 𝑅). In particular, Algorithm 2 computes the 
maximal set of nodes (starting from 𝑢𝑖) to be defended, and also returns the end position 𝑗, i.e., 𝑢𝑗−1 is defended but 𝑢𝑗 is not. Suppose 
(𝑀,𝑗) is returned by CycleMaxTop(𝐭, 𝑖). The main idea is to include the strategy that defends nodes in 𝑀 , and then recursively call 
CycleMaxTop(𝐭, 𝑗) to compute the next strategy. If for some call of CycleMaxTop(𝐭, 𝑖), the returned end position 𝑗 = 1, then we know 
that the pure strategies we have computed thus far defend all nodes the same number of times. Unfortunately, we cannot guarantee 
that this will happen, let alone guaranteeing this to happen in 𝑂(𝑘) rounds.

Fortunately, we have the following important observation. Every time when we call the function CycleMaxTop(𝐭, 𝑖), we check 
whether such a call (with the same parameters 𝐭 and 𝑖) has been made before. If yes, then the set of pure strategies computed since 
the first call to CycleMaxTop(𝐭, 𝑖) (inclusive) till the second call (exclusive) must have defended all nodes in 𝑉max(𝐭) the same number 
of times: the first strategy defends a sequence of nodes starting from node 𝑢𝑖 , and the last strategy defends a sequence of nodes ending 
at node 𝑢𝑖−1. In such case we extract this subset of pure strategies and return it as the desired set 𝑇 . We summarize the steps in 
Algorithm 3.

Algorithm 2: CycleMaxTop(𝐭, 𝑖).
1 initialize 𝑀 ← ∅ ; // suppose 𝑉max(𝐭) = {𝑢1 ,… , 𝑢𝑘} ; 
2 while

∑
𝑢∈𝑀 𝜃𝑢 ≤𝑅− 𝜃max do

3 𝑀 ←𝑀 ∪ {𝑢𝑖} ; 
4 𝑖← 1 + (𝑖 mod 𝑘) ; 
5 return (𝑀 , 𝑖)

Algorithm 3: FindT(𝐭).
Input: 𝑉max(𝐭)

1 suppose 𝑉max(𝐭) = {𝑢1,… , 𝑢𝑘} ; 
2 initialize 𝑇 ← ∅ and 𝑖← 1 ; 
3 while True do

4 (𝑀,𝑖)← CycleMaxTop(𝐭, 𝑖) ; 
5 let 𝐫 be defined as follows:

6 𝑟𝑢 = 𝜃𝑢 if 𝑢∈𝑀 and 𝑟𝑢 = 0 otherwise ; 
7 if 𝐫 ∈ 𝑇 then

8 remove all strategies in 𝑇 that are included before 𝐫 ; 
9 pick an arbitrary 𝑢∈ 𝑉max(𝐭), and set 𝑐← |{𝐫 ∈ 𝑇 ∶ 𝑟𝑢 = 𝜃𝑢}| ; 

10 return (𝑇 ,𝑐) ; 
11 else

12 𝑇 ← 𝑇 ∪ {𝐫}

Output: a set of strategy 𝑇 that defends all nodes in 𝑉max(𝐭) with same number of times 𝑐.

Proof of Lemma 3.5. As argued above, it suffices to show that the computed set of pure strategies meet conditions (a) - (d). By the 
way the strategies are generated conditions (a) and (b) are easily satisfied. Condition (c) is satisfied because when we observe that 
function CycleMaxTop(𝐭, 𝑖) is called for the second time with the same parameters, we keep only the strategies they are computed 
between these two calls. As shown above, these pure strategies defend all nodes in 𝑉max(𝐭) the same number of times. Finally, condition 
(d) is satisfied because we call the function CycleMaxTop(𝐭, 𝑖) only for 𝑖 ∈ [𝑘]. Thus within 𝑘+ 1 calls we must have found two calls 
with the same input parameter 𝑖, in which case Algorithm 3 terminates and outputs at most 𝑘 strategies (line 7 - 9). □

3.4.3. The complete algorithm

We summarize the steps of our algorithm in Algorithm 4, which takes as input the nodes 𝑉 (where each 𝑢 ∈ 𝑉 has threshold 𝜃𝑢), 
a resource bound 𝑅 and a vector 𝐟 (0), and outputs a mixed strategy with properties stated in Lemma 3.4.

Each while loop of Algorithm 4 correspond to one iteration of our algorithm. In Particular, line 4 - 9 correspond to Phase A of 
the algorithm, during which we add one new pure strategy in each iteration; line 10 - 15 correspond to Phase B of the algorithm, 
which is called only if 𝑉max(𝐟) ⊊MaxTop(𝐟). In such case, we let 𝐭 be defined as we stated in Section 3.4.1, and call the sub-routine 
FindT(𝐭) (the detailed description of the algorithm is included in the appendix) to compute the set of pure strategies 𝑇 ⊆ Ω̃𝑝(𝑅) and 
the constant 𝑐 as stated in Lemma 3.5. We include the pure strategies in 𝑇 into 𝐷, and give each of them probability 𝜖∕𝑐, which 
finishes the iteration.

Artiϧcial Intelligence 341 (2025) 104297 

9 



R. Bai, H. Lin, X. Wu et al. 

Algorithm 4: Compute Mixed Strategy.

Input: 𝑉 , {𝜃𝑢}𝑢∈𝑉 , 𝑅, and 𝐟 (0) ∈ [0,1]𝑉
1 𝐷← ∅, 𝐟 ← 𝐟 (0) ; 
2 while ‖𝐟‖ ≠ 𝟎 do

3 𝑀 ← MaxTop(𝐟 ) ; 
4 if 𝑉max(𝐟 ) ⊆𝑀 then

5 let 𝐫 be defined as follows:

6 𝑟𝑢 = 𝜃𝑢 if 𝑢∈𝑀 and 𝑟𝑢 = 0 otherwise ; 
7 𝐷←𝐷 ∪ {𝐫} ; 
8 𝑝(𝐫)←min{max𝑢∈𝑀{𝑓𝑢} −max𝑣∉𝑀{𝑓𝑣},min𝑢∈𝑀{𝑓𝑢}} ; 
9 update 𝐟 ← 𝐟 − 𝑝(𝐫) ⋅ 𝐱(𝐫) ; 

10 else

11 𝜖←max𝑢∈𝑉max (𝐟 ){𝑓𝑢} −max𝑣∉𝑉max (𝐟 ){𝑓𝑣} ; 
12 let 𝐭 be defined as 𝑡𝑢 = 𝜖 if 𝑢 ∈ 𝑉max(𝐟 ) and 𝑡𝑢 = 0 otherwise ; 
13 (𝑇 , 𝑐)← FindT(𝐭) ; 
14 𝐷←𝐷 ∪ 𝑇 ; 
15 set 𝑝(𝐫)← 𝜖∕𝑐 for all 𝐫 ∈ 𝑇 update 𝐟 ← 𝐟 − 𝜖∕𝑐 ⋅

∑
𝐫∈𝑇 𝐱(𝐫) ; 

16 return (𝐷,𝐩)
Output: The mixed strategy (𝐷,𝐩)

3.4.4. Analysis

We first prove the correctness of our algorithm, i.e., the mixed strategy (𝐷,𝐩) returned by Algorithm 4 satisfies

(1) 𝐱(𝐷,𝐩) = 𝐟 (0);
(2) 𝐷 =𝑂(𝑛2);
(3)

∑
𝐫∈𝐷 𝑝(𝐫) ≤ 1.

The first condition is easy to show because our algorithm always guarantees that 𝐱(𝐷,𝐩) ≤ 𝐟 (0), and terminates only if 𝐟 = 𝐟 (0) −
𝐱(𝐷,𝐩) is an all-zero vector. Following the arguments we have presented, in each iteration of Phase A we include one pure strategy into 
𝐷; in each iteration of Phase B we include 𝑂(𝑛) pure strategies into 𝐷 (by Lemma 3.5). Since each iteration increases |𝑉max(𝐟)|+ |𝑉0(𝐟)|
by at least one and our algorithm terminates when |𝑉max(𝐟)|+ |𝑉0(𝐟)| > 𝑛 (in which case we have 𝐟 = 𝟎), we conclude that there are 
at most 𝑛 iterations. Hence |𝐷| =𝑂(𝑛2).

Next we show that 
∑

𝐫∈𝐷 𝑝(𝐫) ≤ 1. We analyze total probability in two cases, depending on whether algorithm ever enters Phase 
B.

Let 𝑢 ∈ 𝑉max(𝐟 (0)) be an arbitrary node with maximum 𝑓𝑢 in 𝐟 (0). Throughout the whole algorithm, we can guarantee 𝑢 ∈ 𝑉max(𝐟)
for any 𝐟 , because we never decrease 𝑓𝑢 to a value that is lower than the second largest 𝑓 value. Hence if Algorithm 4 never enters 
Phase B, then we have∑

𝐫∈𝐷 𝑝(𝐫) = 𝑓𝑢 ≤ 1.

Now suppose that Algorithm 4 terminates at Phase B. The important observation here is that in such case we have 
∑

𝑢∈𝑀 𝜃𝑢 >

𝑅− 𝜃max for every 𝑀 that is returned by MaxTop(𝐟) in line 3, because 
∑

𝑢∈𝑀 𝜃𝑢 ≤𝑅− 𝜃max happens only if MaxTop(𝐟) = 𝑉 ⧵ 𝑉0(𝐟), 
in which case the algorithm never enters Phase B. Consequently for each 𝐫 ∈𝐷 we have ‖𝐫‖ > 𝑅− 𝜃max (for uniform thresholds we 
have ‖𝐫‖ =𝑅). Recall that 𝐟 (0) is defined such that for some �̃�∗ ∈ Ω𝑝(𝑅− 𝜃max), 𝑓

(0)
𝑢 =min{𝑟∗𝑢∕𝜃𝑢,1} for all 𝑢 ∈ 𝑉 . Also recall that for 

each 𝑢 ∈ 𝑉 we have∑
𝐫∈𝐷

(𝑝(𝐫) ⋅ 𝑟𝑢) = 𝜃𝑢 ⋅ 𝑥𝑢(𝐷,𝐩) = 𝜃𝑢 ⋅ 𝑓
(0)
𝑢 .

It follows that∑
𝑢∈𝑉

∑
𝐫∈𝐷

(𝑝(𝐫) ⋅ 𝑟𝑢) =
∑
𝑢∈𝑉

(𝜃𝑢 ⋅ 𝑓 (0)
𝑢 ) ≤

∑
𝑢∈𝑉

𝑟∗𝑢 ≤𝑅− 𝜃max. (4)

On the other hand, we have∑
𝑢∈𝑉

∑
𝐫∈𝐷

(𝑝(𝐫) ⋅ 𝑟𝑢) =
∑
𝐫∈𝐷

(𝑝(𝐫) ⋅ ‖𝐫‖) > (𝑅− 𝜃max) ⋅
∑
𝐫∈𝐷

𝑝(𝐫). (5)

Combining (4) and (5), we have 
∑

𝐫∈𝐷 𝑝(𝐫) < 1.

For uniform thresholds we have∑
𝑢∈𝑉

∑
𝐫∈𝐷

(𝑝(𝐫) ⋅ 𝑟𝑢) =
∑
𝑢∈𝑉

(𝜃𝑢 ⋅ 𝑓 (0)
𝑢 ) =

∑
𝑢∈𝑉

𝑟∗𝑢 =𝑅, (6)

and

Artiϧcial Intelligence 341 (2025) 104297 

10 



R. Bai, H. Lin, X. Wu et al. ∑
𝑢∈𝑉

∑
𝐫∈𝐷

(𝑝(𝐫) ⋅ 𝑟𝑢) =
∑
𝐫∈𝐷

(𝑝(𝐫) ⋅ ‖𝐫‖) =𝑅 ⋅
∑
𝐫∈𝐷

𝑝(𝐫). (7)

Combining (6) and (7), we have 
∑

𝐫∈𝐷 𝑝(𝐫) = 1.

Complexity. Now we analyze the complexity of Algorithm 4. It is easy to check that 𝑉max(𝐟), 𝑉0(𝐟), MaxTop(𝐟) and CycleMaxTop(𝐭, 𝑖)
can be computed in 𝑂(𝑛 log𝑛) time. From the proof of Lemma 3.5, we know that Algorithm 3 executes in 𝑂(𝑛) rounds. Thus each call 
to FindT(𝐭) finishes in 𝑂(𝑛2 log𝑛) time. Finally, since there are 𝑂(𝑛) iterations, and in each iteration FindT(𝐭) is called at most once, 
the total complexity of Algorithm 4 is 𝑂(𝑛3 log𝑛).

3.5. Mixed strategy with resource sharing

As we have shown above, in the isolated model we can give a strong upper bound OPT𝑚(𝑅) by OPT𝑓 (𝑅 − 𝜃max). It would be 
natural to ask whether similar upper bounds hold under the non-isolated model, i.e., when defending resource can be shared between 
neighboring nodes. Unfortunately, we show that when resource sharing is allowed, we do not have such guarantees, even if we allow 
the mixed strategy to use several times more resource than the fractional strategy.

Lemma 3.6. For any constant 𝛽 > 1, there exists an instance for which OPT𝑚(𝛽 ⋅𝑅) >OPT𝑓 (𝑅).

Proof. Consider a complete bipartite graph 𝐺(𝑈 ∪𝑉 ,𝐸), where |𝑈 | = 2𝛽 ⋅𝑅, |𝑉 | = 4𝛽2 ⋅𝑅 and all edges (𝑢, 𝑣) ∈𝐸 =𝑈 ×𝑉 have the 
same weight 𝑤𝑢𝑣 = 1∕|𝑈 |. Let 𝜃𝑢 = 𝛼𝑢 = 1 for all 𝑢 ∈𝑈 ∪ 𝑉 .

Observe that there exists a fractional strategy (using total resource 𝑅) that allocates 1∕(2𝛽) resource to each of the nodes in 
𝑈 , under which every node in 𝑈 and 𝑉 has defending power 1∕(2𝛽). Therefore, the defending result of this fractional strategy is 
1− 1∕(2𝛽), which implies that OPT𝑓 (𝑅) ≤ 1− 1∕(2𝛽). Next we show that for every 𝐫 ∈Ω𝑝(𝛽 ⋅𝑅), the number of well defended nodes 
is at most 2𝛽 ⋅𝑅. Suppose otherwise, there must exist a well defended node 𝑢 with 𝑟𝑢 <

𝛽⋅𝑅 
2𝛽⋅𝑅 = 0.5. Hence

𝜋𝑢(𝐫) = 𝑟𝑢 +
∑

𝑣∈𝑁(𝑢)𝑤𝑢𝑣 ⋅ 𝑟𝑣

≤ 𝑟𝑢 +
1 

2𝛽⋅𝑅 ⋅ (𝛽 ⋅𝑅− 𝑟𝑢) <
1
2 +

1
2 = 1.

However, since 𝑢 is well defended, we must have 𝜋𝑢(𝐫) ≥ 1, which is a contradiction.

Hence for any pure strategy 𝐫 ∈ Ω𝑝(𝛽 ⋅𝑅), we have ‖𝐱(𝐫)‖ ≤ 2𝛽 ⋅𝑅. Consequently for any mixed strategy (𝐷,𝐩) ∈ Ω𝑚(𝛽 ⋅𝑅), we 
have ‖𝐱(𝐷,𝐩)‖ ≤ 2𝛽 ⋅𝑅 (because 𝐱(𝐷,𝐩) is a linear combination of defending statuses of pure strategies). Hence there must exist a 
node 𝑢 for which

𝑥𝑢(𝐷,𝐩) ≤
2𝛽⋅𝑅 |𝑈 |+|𝑉 | = 2𝛽⋅𝑅 

2𝛽⋅𝑅+4𝛽2⋅𝑅 < 1 
2𝛽 .

Therefore, OPT𝑚(𝛽 ⋅𝑅) > 1 − 1∕(2𝛽) ≥ OPT𝑓 (𝑅). □

4. Small support mixed strategies

So far, we evaluate the quality of a mixed strategy only by its defending result without considering its support size |𝐷|. Intuitively, 
the larger support a mixed strategy has, the more likely the strategy can balance the defending status among all nodes. However, in 
practice, it is usually preferable to have mixed strategies (𝐷,𝐩) with a small 𝐷 for efficiency purpose. In this section, we study the 
computation of mixed strategies that have good defending results and small support. In particular, we propose the Patching algorithm 
that computes mixed strategies with an upper bound on the support size, but also have good defending results. By Theorem 3.2, we 
know that computing the optimal mixed strategy is NP-hard. Moreover, by the reduction we can see that even computing the optimal 
mixed strategy with |𝐷| = 2 is NP-hard. However, we have the following very helpful observations. We show that deciding if a set of 
nodes can be defended simultaneously using one pure strategy is polynomial-time solvable. Throughout this section we fix 𝐺(𝑉 ,𝐸)
to be the graph instance and 𝑅 to be the total resource.

Lemma 4.1. Given a set of nodes 𝑆 ⊆ 𝑉 , deciding if there exists 𝐫 ∈Ω𝑝 with 𝑥𝑢(𝐫) = 1 for all 𝑢 ∈ 𝑆 is polynomial-time solvable. Moreover, 
if they exist, we can compute one in polynomial time.

Proof. We can reduce the problem of defending all nodes in 𝑆 with one pure strategy (using total resource 𝑅) to solving the following 
feasibility LP. In particular, we introduce the variable 𝑟𝑢 to denote the resource allocated to node 𝑢. We introduce the constraints that 
total resource used is at most 𝑅, and that each node 𝑢 ∈ 𝑆 has defending power at least 𝜃𝑢.

minimize 0

subject to 
∑

𝑢∈𝑉 𝑟𝑢 ≤𝑅,

𝑟𝑢 +
∑

𝑣∈𝑁(𝑢)𝑤𝑣𝑢 ⋅ 𝑟𝑣 ≥ 𝜃𝑢, ∀𝑢 ∈ 𝑆

Artiϧcial Intelligence 341 (2025) 104297 

11 



R. Bai, H. Lin, X. Wu et al. 

Algorithm 5: Patching.

Input: the number of iterations 𝑑 and optimal pure strategy 𝐫∗
1 𝐷← {𝐫∗} ; 
2 for 𝑖 = 2,3,… , 𝑑 do

3 𝐩← ProbLP(𝐷) ; 
4 compute the loss vector 𝐿𝑚 of mixed strategy (𝐷,𝐩) ; 
5 𝐫 ← FindR(𝐿𝑚) ; 
6 if ‖𝐫‖ ≠ 0 then

7 𝐷←𝐷 ∪ {𝐫} ; 

8 𝐩← ProbLP(𝐷); 
9 return (𝐷,𝐩)

Output: mixed strategy set (𝐷,𝐩)

𝑟𝑢 ≥ 0, ∀𝑢 ∈ 𝑉 .

If the above LP is infeasible then there does not exist a pure strategy that can defend all nodes in 𝑆 ; otherwise any feasible solution 
to the LP is the desired pure strategy. □

While computing the optimal mixed strategy is NP-hard, we show that for a small set of pure strategies 𝐷, computing the optimal 
mixed strategy with support 𝐷 is polynomial-time solvable.

Lemma 4.2. Given a set of pure strategies 𝐷⊆Ω𝑝, the optimal mixed strategy (𝐷,𝐩∗) with support 𝐷 can be computed in time polynomial 
in |𝐷| and 𝑛.

Proof. Since 𝐷 is fixed, the problem is to decide the probability 𝑝(𝐫) for each 𝐫 ∈ 𝐷, such that the defending result is as small 
as possible. We first compute the defending status 𝐱(𝐫) for each 𝐫 ∈ 𝐷. Then we transform this problem into an LP, in which the 
probabilities {𝑝(𝐫)}𝐫∈𝐷 and 𝐿 are variables.

minimize 𝐿

subject to 
∑

𝐫∈𝐷 𝑝(𝐫) = 1,

(1 −
∑

𝐫∈𝐷 𝑝(𝐫) ⋅ 𝑥𝑢(𝐫)) ⋅ 𝛼𝑢 ≤𝐿, ∀𝑢 ∈ 𝑉

𝑝(𝐫) ≥ 0, ∀𝐫 ∈𝐷.

It can be verified that the optimal solution to the above LP corresponds to the mixed strategy with support 𝐷 that has minimum 
loss. The first and third sets of constraints guarantee that {𝑝(𝐫)}𝐫∈𝐷 is a feasible probability distribution over 𝐷. The second set of 
constraints guarantees that the final defending result is minimum. □

4.1. The Patching algorithm

Following the above observations, we propose the local-search based algorithm that progressively and efficiently computes a 
mixed strategy with small support and good defending result. Our algorithm takes as input an iteration bound 𝑑, terminates after 
𝑑 search steps and outputs a mixed strategy (𝐷,𝐩) with |𝐷| ≤ 𝑑. For convenience of notation we use 𝐿𝑚(𝑢) to denote 𝐿𝑚(𝑢, (𝐷,𝐩)), 
when the mixed strategy (𝐷,𝐩) is clear from the context.

Intuitively speaking, our algorithm starts from a mixed strategy (𝐷,𝐩) and tries to include a new pure strategy 𝐫 into 𝐷, so that 
the optimal mixed strategy with support 𝐷 ∪ {𝐫} is likely to achieve a better defending result. As shown in Lemma 4.2, as long as |𝐷| is small, computing the optimal mixed strategy with support 𝐷 can be done efficiently by solving an LP. We denote this sub-

routine by ProbLP(𝐷). Our main idea is to add the new strategy to patch the poorly defended nodes up based on their current losses. 
Borrowing some ideas from the proof of Lemma 3.4, we compute the maximal set of nodes 𝑀 with largest losses under the current 
mixed strategy (𝐷,𝐩), and use Lemma 4.1 to compute a new pure strategy that defends these nodes. As we will show in the next 
section, as long as the maximum loss of nodes in 𝑀 is larger than that of nodes not in 𝑀 , our algorithm can always make progress 
in decreasing the defending result. Otherwise we randomly permute the nodes in 𝑉 and try to include a random new pure strategy 
into 𝐷. We introduce the FindR(𝐿𝑚) subroutine for the computation of the new pure strategy, for a given loss vector 𝐿𝑚. Note that if 
it fails to compute a new pure strategy, an all-zero vector will be returned. We summarize the main steps of the Patching algorithm 
in Algorithm 5. Initially we set the strategy set 𝐷 to be a singleton containing only the optimal pure strategy and the algorithm 
terminates after 𝑑 iterations.

Next we introduce the details of the sub-routine FindR. As discussed, given the loss vector 𝐿𝑚 , the idea is to first locate the nodes 
with large losses and then generate a new pure strategy that enhances the defending statuses of these poorly defended nodes. We 
thus use similar ideas as in the proof of Lemma 3.4 to compute the maximal set of nodes to be defended. However, since resource 
sharing is considered, the procedure is slightly more complicated.

Artiϧcial Intelligence 341 (2025) 104297 

12 



R. Bai, H. Lin, X. Wu et al. 

Algorithm 6: FindR.

Input: the loss vector 𝐿𝑚 with current strategy set 𝐷
1 let 𝑀 ← SharedMaxTop(𝐿𝑚) ; 
2 if ∃ 𝐫 ∈𝐷 ∶ 𝑥𝑢(𝐫) = 1 for all 𝑢∈𝑀 then

3 𝐿𝑚 ← random vector in [0,1]𝑉 and 𝑀 ← SharedMaxTop(𝐿𝑚) ; 
4 if ∃ 𝐫 ∈𝐷 ∶ 𝑥𝑢(𝐫) = 1 for all 𝑢∈𝑀 then

5 return {0}𝑉

6 let 𝐫 be the pure strategy that defends all nodes in 𝑀 ; 
7 return 𝐫

Output: new pure strategy 𝐫

Given any integer 𝑘 > 0, we can identify the Top-𝑘 nodes 𝑆 with maximal losses in 𝐿𝑚, and check whether it is possible to 
defend all nodes in 𝑆 by solving an LP (see Lemma 4.1). Using a binary search on 𝑘 we can identify the maximum 𝑘 for which the 
corresponding set of nodes 𝑆 can be defended. Let SharedMaxTop(𝐿𝑚) be these nodes. The sub-routine FindR(𝐿𝑚) first computes 
𝑀 ← SharedMaxTop(𝐿𝑚) and tries to include the pure strategy 𝐫 that defends all nodes in 𝑀 . If there already exists a strategy in 
𝐷 that defends all nodes in 𝑀 , then it is unnecessary to include 𝐫 because its inclusion will not help in decreasing the defending 
result. In such case we do a random permutation on 𝑉 (by replacing 𝐿𝑚 with a random vector in [0,1]𝑉 ), and compute another pure 
strategy. As mentioned, if we fail to find a new pure strategy after the random permutation, then the sub-routine returns the trivial 
defending strategy {0}𝑉 . We summarize the steps of FindR(𝐿𝑚) in Algorithm 6.

Complexity. Observe that every call to SharedMaxTop involves 𝑂(log𝑛) computations of some feasibility LPs with 𝑂(𝑛) variables. 
Therefore, the total complexity of the FindR algorithm is bounded by 𝑂(log𝑛) computations of LP solvings. Note that the complexity 
of each iteration of the Patching algorithm is dominated by the FindR sub-routine (recall that ProbLP can be done by solving one 
LP). As a consequence, the total complexity of Patching is bounded by 𝑂(𝑑 log𝑛) computations of LP solvings, where 𝑑 is the number 
of iterations.

4.2. Effectiveness

As we will show in our experiments (Section 6), the Patching algorithm achieves close-to-optimal defending results on several large 
datasets. In this section, we theoretically analyze the algorithm and formalize the condition under which our algorithm is guaranteed 
to make progress in terms of decreasing the defending result. Our analysis also sheds lights into why random permutation could help 
improve the performance of the algorithm.

Consider any iteration of the Patching algorithm. Suppose (𝐷,𝐩) is the current mixed strategy and 𝐿𝑚 is the loss vector. In line 
5 of Algorithm 5, we call the sub-routine FindR. In the sub-routine we compute the maximal set of nodes that can be defended 
𝑀 ← SharedMaxTop(𝐿𝑚) (line 1 of Algorithm 6). The following lemma states that as long as 𝑀 contains all nodes with maximum 
loss (in which case Δ𝐿 > 0), our algorithm can always make progress in decreasing the defending result.

Lemma 4.3. Let 𝐫 be the pure strategy that defends all nodes in 𝑀 . Including 𝐫 into 𝐷 decreases the defending result of the current mixed 
strategy (𝐷,𝐩) by at least Δ𝐿 

Δ𝐿+𝛼max
⋅𝐿𝑚(𝐷,𝐩), where

𝛼max =max
𝑢∈𝑉

{𝛼𝑢} and Δ𝐿 =max
𝑢∈𝑀

{𝐿𝑚(𝑢)} −max
𝑢∉𝑀

{𝐿𝑚(𝑢)}.

Proof. Let 𝜖 = Δ𝐿 
Δ𝐿+𝛼max

and 𝐷′ =𝐷∪{𝐫}. We show that there exists a mixed strategy with support 𝐷′ that achieves defending result 
(1− 𝜖) ⋅𝐿𝑚(𝐷,𝐩). Specifically, we define the mixed strategy (𝐷′,𝐩′) as follows. Let 𝑝′(𝐫) = 𝜖; for each 𝐫′ ∈𝐷, let 𝑝′(𝐫′) = (1− 𝜖) ⋅𝑝(𝐫′). 
Since ‖𝐩‖ = 1, we have

‖𝐩′‖ = 𝜖 + (1 − 𝜖) ⋅ ‖𝐩‖ = 1.

Thus (𝐷′,𝐩′) is a feasible mixed strategy. For each 𝑣 ∉𝑀 , since 𝑣 is not defended by the new strategy 𝐫, we have

𝐿𝑚(𝑣, (𝐷′,𝐩′)) =
(
1 −

∑
𝐫∈𝐷′ 𝑝′(𝐫) ⋅ 𝑥𝑣(𝐫)

)
⋅ 𝛼𝑣

=
(
1 −

∑
𝐫∈𝐷 𝑝

′(𝐫) ⋅ 𝑥𝑣(𝐫)
)
⋅ 𝛼𝑣

=
(
1 − (1 − 𝜖) ⋅

∑
𝐫∈𝐷 𝑝(𝐫) ⋅ 𝑥𝑣(𝐫)

)
⋅ 𝛼𝑣

=(1 − 𝜖) ⋅𝐿𝑚(𝑣, (𝐷,𝐩)) + 𝜖 ⋅ 𝛼𝑣

≤(1 − 𝜖) ⋅ (𝐿𝑚(𝐷,𝐩) − Δ𝐿) + 𝜖 ⋅ 𝛼max = (1 − 𝜖) ⋅𝐿𝑚(𝐷,𝐩).

For each 𝑢 ∈𝑀 , we have

𝐿𝑚(𝑢, (𝐷′,𝐩′)) =
(
1 −

∑
𝐫∈𝐷′ 𝑝′(𝐫) ⋅ 𝑥𝑢(𝐫)

)
⋅ 𝛼𝑢

Artiϧcial Intelligence 341 (2025) 104297 

13 



R. Bai, H. Lin, X. Wu et al. 

=
(
1 − (1 − 𝜖) ⋅

∑
𝐫∈𝐷 𝑝(𝐫) ⋅ 𝑥𝑢(𝐫) − 𝜖 ⋅ 1

)
⋅ 𝛼𝑢

= (1 − 𝜖) ⋅𝐿𝑚(𝑢, (𝐷,𝐩)) ≤ (1 − 𝜖) ⋅𝐿𝑚(𝐷,𝐩).

Hence we have 𝐿𝑚(𝐷′,𝐩′) ≤ (1 − 𝜖) ⋅𝐿𝑚(𝐷,𝐩). So given 𝐷′ =𝐷 ∪ {𝐫}, when our algorithm computes the optimal mixed strategy 
with support 𝐷′, its defending result must be at most (1 − 𝜖) ⋅𝐿𝑚(𝐷,𝐩), as claimed by the lemma. □

By Lemma 4.3, we can see that as long as all nodes with maximum loss can be defended by one pure strategy, the Patching
algorithm can always decrease the defending result. When the nodes with maximum loss are too many and no pure strategy can 
defend them all, we randomly permute the nodes to compute a random pure strategy to be included in 𝐷. As we observed from 
our empirical study, such random permutations are crucial as otherwise the algorithm may get stuck in the early stage during the 
execution.

5. Uniform attacks

In contrast to the adversarial attack scenarios discussed in the preceding section—where the attacker targets a specific node 
to maximize the defender’s loss—this section explores the case of uniform attacks. Note that the adversarial attack model and the 
uniform attack model correspond to the cases when the attacker is fully rational and fully irrational, respectively. Under uniform 
attacks, each node is equally likely to be attacked, regardless of its defense status. Next, we introduce definitions and notations for 
the uniform attack setting. The network is again represented as an undirected connected graph 𝐺(𝑉 ,𝐸) with 𝑛 nodes.

Definition 5.1 (Defending result of uniform attack). Given a strategy 𝐫, the defending power of node 𝑢 is 𝜋𝑢(𝐫) = 𝑟𝑢 +
∑

𝑣∈𝑁(𝑢)𝑤𝑢𝑣 ⋅ 𝑟𝑣. 
For a pure strategy, the defending status 𝑥𝑢(𝐫) of 𝑢 is the indicator of whether 𝜋𝑢(𝐫) ≥ 𝜃𝑢; for a fractional strategy, the defending 
status �̃�𝑢(𝐫) = min{ 𝜋𝑢(𝐫)

𝜃𝑢
,1}. For a pure strategy, the loss at a node 𝑢 is defined as 𝐿𝑝(𝑢, 𝐫) = 𝛼𝑢 ⋅ (1 − 𝑥𝑢(𝐫)). The overall defending 

result is then expressed as:

𝐿uni
𝑝 (𝐫) = 1

𝑛 
∑
𝑢∈𝑉

𝐿𝑝(𝑢, 𝐫).

The losses under fractional strategy 𝐫 are defined similarly: 𝐿𝑓 (𝑢, 𝐫) = 𝛼𝑢 ⋅ (1 − �̃�𝑢(𝐫)) and 𝐿uni
𝑓

(𝐫) = 1
𝑛 
∑

𝑢∈𝑉 𝐿𝑓 (𝑢, 𝐫).

To illustrate the distinction between adversarial and uniform attacks, consider the following example:

Example 5.2. Echoing Example 2.9, consider three targets with values and thresholds listed in the table below. With total resource 
𝑅 = 5, an optimal pure strategy is (4,0,1), resulting in a defending outcome of OPT𝑝 = 2 under an adaptive attack. However, under 
a uniform attack, the expected loss diminishes to 23 , as node 𝑏 will be attacked only with probability 1∕3. Note that for this example 
the optimal fractional strategy is (1,3,1), with OPT𝑓 = 1

2 .

Target a b c 
Value 2 2 1 
Threshold 4 3 1 

As in Section 2, we use OPTuni
𝑝 , OPTuni

𝑚 , and OPTuni
𝑓 to represent the defending results of the optimal pure, mixed, and fractional 

strategies under uniform attacks. The other notations are defined in a similar way. As the example above shows, the optimal defending 
results by pure and fractional strategies might be different. However, we show that for uniform attacks, the optimal mixed strategy 
is a pure strategy.

5.1. Equivalence and hardness of mixed and pure strategies

Unlike the case of adversarial attacks, we show that for uniform attacks, the mixed strategies do not have advantage over pure 
strategies.

Lemma 5.3. For uniform attacks, every mixed strategy (𝐷,𝐩) can be transformed into a pure strategy, whose defending result is at most that 
of the mixed strategy.

Proof. Recall that the loss of a node 𝑢 under a mixed strategy (𝐷,𝐩) is the expected loss of the node under the distribution 𝐩 over 
pure strategies 𝐷:

Artiϧcial Intelligence 341 (2025) 104297 

14 



R. Bai, H. Lin, X. Wu et al. 

𝐿𝑚(𝑢, (𝐷,𝐩)) = 𝛼𝑢 ⋅ (1 − 𝑥𝑢(𝐷,𝐩))

= 𝛼𝑢 ⋅ (1 −
∑
𝐫∈𝐷

𝑝(𝐫) ⋅ 𝑥𝑢(𝐫)) =
∑
𝐫∈𝐷

𝑝(𝐫) ⋅𝐿𝑝(𝑢, 𝐫).

By linearity of expectation we also have

𝐿uni
𝑚 (𝐷,𝐩) = 1

𝑛 
∑
𝑢∈𝑉

𝐿𝑚(𝑢, (𝐷,𝐩)) =
∑
𝐫∈𝐷

𝑝(𝐫) ⋅𝐿uni
𝑝 (𝐫).

Therefore, there must exist a pure strategy in 𝐷 whose defending result is at most that of (𝐷,𝐩), which concludes the proof. □

Since every pure strategy can be interpreted as a mixed strategy with |𝐷| = 1, the above lemma implies that the optimal mixed 
and pure strategies are equivalent. Thus in the following we only study pure strategies and fractional strategies. We first show that 
computing the optimal pure strategy is NP-hard, even in the isolated model or the uniform threshold model.

Theorem 5.4. Unless 𝑃 =𝑁𝑃 , there does not exist any polynomial-time algorithm that, given a graph 𝐺(𝑉 ,𝐸) and resource 𝑅, computes 
the optimal pure strategy, even under the isolated model or the uniform threshold model.

Proof. We first show the hardness result under the isolated model. We prove the hardness result through a reduction from the 
Knapsack problem. In an instance of the knapsack problem, we have a capacity 𝐶 and a set of items {𝑒1, 𝑒2,… , 𝑒𝑛}, where each item 
𝑒𝑖 has value 𝑣𝑖 and size 𝑠𝑖. The goal is to find a subset of items whose total size is at most the capacity 𝐶 while its total value is 
maximized. Given the instance we construct an instance 𝐺(𝑉 ,𝐸) under the isolated model as follows. Let 𝑉 = {𝑢1, 𝑢2,… , 𝑢𝑛}, where 
each node 𝑢𝑖 has value 𝛼𝑢𝑖 = 𝑣𝑖 and threshold 𝜃𝑢𝑖 = 𝑠𝑖. Let the capacity 𝐶 =𝑅. The defending result of any pure strategy 𝐫 is given by

𝐿uni
𝑝 (𝐫) = 1

𝑛 
∑
𝑢∈𝑉

𝐿𝑝(𝑢, 𝐫) =
1
𝑛 
⋅

(∑
𝑢∈𝑉

𝛼𝑢 −
∑

𝑢∈𝑉 ∶𝑟𝑢≥𝜃𝑢

𝛼𝑢

)
.

Therefore, minimizing the defending result is equivalent to find a subset of nodes whose total threshold is at most 𝑅, while its 
total value is maximized. Hence there is a one-one correspondence between a pure strategy and a solution to the knapsack problem. 
Since the reduction can be done in polynomial time, we conclude that the computation of optimal pure strategy is NP-hard, even in 
the isolated model.

Next we prove that the problem is NP-hard under the uniform threshold model, when resource sharing is enabled. We prove the 
result by a reduction from the Maximum Coverage problem, in which we have a set of elements 𝑈 = {𝑒1, 𝑒2,… , 𝑒𝑛} and a collection of 
sets {𝑆1, 𝑆2,… , 𝑆𝑚}, where each set 𝑆𝑖 ⊆ 𝑈 covers some elements. The goal is to pick 𝑘 sets, where 𝑘 is a parameter of the problem, 
that covers a maximum number of elements.

Given any instance of the maximum coverage problem, we construct a uniform threshold instance 𝐺(𝑉 ,𝐸) with 𝑛 + 𝑚 nodes, 
where the first 𝑛 nodes represent the 𝑛 elements and the last 𝑚 nodes represent the 𝑚 sets. Specifically, let 𝑉 = {𝑢1, 𝑢2,… , 𝑢𝑛+𝑚}, 
where 𝛼𝑢𝑖 = 1 for all 𝑖 ≤ 𝑛 and 𝛼𝑢𝑖 = 0 for all 𝑖 > 𝑛. Let there be an edge between 𝑢𝑖 and 𝑢𝑛+𝑗 with weight 1 if 𝑒𝑖 is contained in set 𝑆𝑗
(in the maximum coverage problem). We call 𝑢𝑖 an element-node if 𝑖 ≤ 𝑛, set-node if 𝑖 > 𝑛. Finally, let 𝑅 = 𝑘.

Clearly, the optimal pure strategy for the problem will ensure that a maximum number of element-nodes are well defended. 
Therefore, it is optimal to only place defending resources on the set-nodes, since one unit of resource on node 𝑢𝑛+𝑗 protects all 
elements covered by 𝑆𝑗 . Hence computing the optimal pure strategy corresponds to finding 𝑘 sets that covers most elements. Since 
the reduction can be done in polynomial time, the result follows. □

5.2. Pure and fractional strategies in the isolated model

As we have shown above, for the isolated model, the problem of computing the optimal pure strategy is equivalent to the knapsack 
problem. Therefore when the defending thresholds of all nodes are integers, the optimal pure strategy can be efficiently computed 
using dynamic programming, yielding a complexity of 𝑂(𝑛𝑅). For general (non-integer) thresholds, the problem can be solved by the 
following Mixed Integer Linear Program (MILP)5:

(LPuni
𝑓

(𝑅)) minimize 𝐿 

subject to
∑

𝑢∈𝑉 𝑟𝑢 ≤𝑅,

𝑟𝑢 ≥ 𝜃𝑢 ⋅ 𝑥𝑢, ∀𝑢 ∈ 𝑉

1
𝑛 ⋅

∑
𝑢∈𝑉 (1 − 𝑥𝑢) ⋅ 𝛼𝑢 ≤𝐿

𝑥𝑢 ∈ {0,1}, ∀𝑢 ∈ 𝑉

5 By changing the second set of constraints to 𝑟𝑢 +
∑

𝑣∈𝑁(𝑢)𝑤𝑢𝑣 ⋅ 𝑟𝑣 ≥ 𝜃𝑢 ⋅ 𝑥𝑢 , ∀𝑢 ∈ 𝑉 , we can use the MILP to solve the non-isolated model.

Artiϧcial Intelligence 341 (2025) 104297 

15 



R. Bai, H. Lin, X. Wu et al. 

Here, for each node 𝑢 ∈ 𝑉 , we introduce an integer variable 𝑥𝑢 ∈ {0,1} indicating whether 𝑟𝑢 ≥ 𝜃𝑢, which is exactly the defending 
status of the node under the pure strategy. This MILP facilitates the computation of the optimal pure strategy and its corresponding 
value OPTuni

𝑝 (𝑅).
For the fractional strategy in the uniform attack setting, we relax the integer constraint on 𝑥𝑢 to allow continuous values (𝑥𝑢 ∈

[0,1]), where 𝑥𝑢 represents the defending status of 𝑢 under the fractional strategy. Therefore by solving the LP (in polynomial time), 
the optimal solution gives an optimal fractional strategy, with an objective equal to OPTuni

𝑓 (𝑅).
In fact, by the connection we have established in the proof of Theorem 5.4 between the defending problem and the knapsack 

problem, the computation of fractional strategy is equivalent to the fractional knapsack problem, in which an item can be selected 
fractionally. For the fractional knapsack problem, it is well known that the greedy algorithm that selects items continuously in de-

scending order of density (𝑣𝑖∕𝑠𝑖) until the total (fractional) size reaches 𝑅 gives an optimal solution. Therefore, the optimal fractional 
strategy can be computed in 𝑂(𝑛 log𝑛) time. Since in the optimal fractional defending strategy, the decrease in defending result per 
unit of defending resource is diminishing, the defending result is a convex function of the total resource 𝑅. Thus we have the following 
lemma immediately (we can also prove the lemma using a proof similar to that of Lemma 3.1).

Lemma 5.5 (Convexity). Given resource 𝑅1 and 𝑅2, we have

OPTuni
𝑓 (𝑅1) + OPTuni

𝑓 (𝑅2) ≥ 2 ⋅ OPTuni
𝑓

(
1
2 (𝑅1 +𝑅2)

)
.

While it is NP-hard to compute the optimal pure strategy, we can use OPTuni
𝑓 (𝑅) to provide a lower bound on OPTuni

𝑝 (𝑅). We 
further show that we can give an upper bound for OPTuni

𝑝 (𝑅) similar to Theorem 3.3, echoing the result for adversarial attack from 
Section 3.3.

Theorem 5.6. In the isolated model, for any instance 𝐺(𝑉 ,𝐸) and total resource 𝑅, we have

OPTuni
𝑝 (𝑅) ≤ OPTuni

𝑓 (𝑅− 𝜃max),

where 𝜃max =max𝑢∈𝑉 {𝜃𝑢} is the maximum threshold among the nodes.

Proof. As we have argued above, the optimal fractional strategy can be computed by first sorting all nodes in descending order of 
density 𝛼𝑢∕𝜃𝑢, and then allocate resources continuously in the sorted order until the resource is used up. Therefore, among the nodes 
that receive resources, at most one of them (e.g., the last node) is fractionally defended. Let 𝑆 be the set of nodes that are fully 
defended, i.e., those with 𝑟𝑢 = 𝜃𝑢. The total resource allocated to nodes in 𝑆 is larger than 𝑅 − 𝜃max but at most 𝑅. Hence we can 
define a pure strategy 𝐫 with resource 𝑅 that defends all nodes in 𝑆 , which implies

OPTuni
𝑝 (𝑅) ≤𝐿uni

𝑝 (𝐫) = OPTuni
𝑓 (

∑
𝑢∈𝑆

𝜃𝑢) ≤ OPTuni
𝑓 (𝑅− 𝜃max). □

By the convexity of the function OPTuni
𝑓 (⋅), we also have

OPTuni
𝑓 (𝑅− 𝜃max) ≤ OPTuni

𝑓 (𝑅) +
𝜃max

𝑅 
⋅ (max

𝑢∈𝑉
{𝛼𝑢} − OPTuni

𝑓 (𝑅)),

which implies that when 𝑅≫ 𝜃max, the values of OPT𝑓 (𝑅) and OPT𝑓 (𝑅− 𝜃max) are very close.

6. Experimental evaluation

In this section we perform the experimental evaluation of our algorithms on several real-world graph datasets whose sizes range 
from 1000 nodes to 260𝑘 nodes (see Table 2). All the datasets are downloaded from SNAP by Stanford [38]. Unless otherwise specified, 
we set the parameters of instances as follows.6 For each of these datasets, we set the value 𝛼𝑢 of each node 𝑢 to be an independent 
random integer chosen uniformly at random from [1,9]. We set the threshold 𝜃𝑢 of each node 𝑢 differently for different sets of 
experiments. We set the weight 𝑤𝑢𝑣 of each edge (𝑢, 𝑣) ∈𝐸 to be an independent random real number chosen from [0,1]. We set the 
total resource 𝑅 = 0.2 ⋅

∑
𝑢∈𝑉 𝜃𝑢 by default, and will evaluate the results for different settings of total resource.

In the experiments we mainly evaluate the effectiveness of the Patching algorithm. Additionally we test and report the mixed 
strategies we stated in Section 3.3, and compare their defending results and support sizes with that of the mixed strategies returned 
by Patching. As we have shown in Section 3, for the same problem instance we always have OPT𝑚 ≥ OPT𝑓 . Thus in our experiments 
we mainly use OPT𝑓 as the baseline to evaluate the performance of the mixed strategies.

Experiment environment. We perform our experiments on an AWS Ubuntu 18.04 machine with 32 threads and 128 GB RAM without 
GPU. We use Gurobi optimizer as our solver for the LPs.

6 We remark that for different settings of the parameters, e.g., wider ranges for the values and thresholds, or smaller values of 𝑅, the experimental results are very 
similar.

Artiϧcial Intelligence 341 (2025) 104297 

16 



R. Bai, H. Lin, X. Wu et al. 

Table 2
Number of nodes and edges of the datasets.

Dataset Email-S Facebook Ca-AstroPh Email-L Twitter Amazon 
# Nodes 1,005 4,039 18,772 36,692 81,306 262,111 
# Edges 25,571 88,234 198,110 367,662 1,768,149 1,234,877 

Fig. 1. Defending Results of Mixed Strategies by Patching in the Uniform Threshold Isolated Model when 𝑅= 0.2 ⋅
∑

𝑢∈𝑉 𝜃𝑢 . 

6.1. Adversarial attack: uniform threshold in the isolated model

We first consider the most basic setting with uniform thresholds and without resource sharing. The same setting was also considered 
in [11,12]. That is, we set 𝜃𝑢 = 1 for all nodes 𝑢 ∈ 𝑉 and 𝑤𝑢𝑣 = 0 for all edges (𝑢, 𝑣) ∈𝐸, in this subsection. Under this setting it can 
be shown that OPT𝑚 = OPT𝑓 for all instances of the problem [11,12]. Thus we measure the effectiveness of the Patching algorithm 
by comparing the defending result of the returned mixed strategy with OPT𝑓 . For each dataset, we report the defending result of the 
mixed strategy returned by Patching(𝑑), for increasing values of 𝑑 ∈ [1,30]. Note that for 𝑑 = 1, the mixed strategy uses the optimal 
pure strategy 𝐫∗ with probability 1. For general 𝑑, the returned mixed strategy uses |𝐷| ≤ 𝑑 pure strategies. The results are presented 
as Fig. 1.

From Fig. 1, we observe that the defending result rapidly decreases in the first few iterations of the algorithm, and gradually 
converges to the optimal defending result OPT𝑓 . Specifically, within the first 5 iterations, the defending result of the mixed strategy 
is already within a 5% difference with the optimal one in most datasets. After 30 iterations, the defending result is almost identical 
to the optimal one in all datasets.

We also evaluate the results under different total resource, by setting 𝑅 = 0.1 ⋅
∑

𝑢∈𝑉 𝜃𝑢. From Fig. 2, we observe a similar phe-

nomenon as in Fig. 1: the defending result decreases rapidly within the first few iterations, and then gradually converge to that of the 
optimal fractional strategy. After 120 iterations, the defending result is almost identical to the optimal one in all datasets. As expected, 
when the amount of total resource is smaller, the support of the mixed strategy will increase: recall that when 𝑉max(𝐟) ⊊MaxTop(𝐟)
(which is more likely to happen when 𝑅 is small), we need to do a random permutation on the nodes to find a new pure strategy. 
Therefore the algorithm takes more iterations to eventually converge.

The experiment demonstrates the effectiveness of our algorithm on computing mixed strategies that have small support sizes and 
are close-to-optimal.

6.2. Adversarial attack: general thresholds in the isolated model

Next we consider the more general setting with non-uniform thresholds, in which the threshold 𝜃𝑢 ∈ [1,10] is chosen uniformly at 
random for each node 𝑢 ∈ 𝑉 . As we have shown in Theorem 3.2, computing the optimal mixed strategy in this case is NP-hard. On 
the other hand, we have shown in Section 3.3 that for any instance we always have OPT𝑓 (𝑅) ≤ OPT𝑚(𝑅) ≤ OPT𝑓 (𝑅− 𝜃max), where 
the maximum threshold 𝜃max ≤ 10 in our experiments.

The experimental results are reported in Fig. 3 and Fig. 4, for 𝑅 = 0.2 ⋅
∑

𝑢∈𝑉 𝜃𝑢 and 𝑅 = 0.1 ⋅
∑

𝑢∈𝑉 𝜃𝑢, respectively. As we can 
observe, the results are very similar to the uniform threshold case we have considered in the previous experiments: the defending 
results of the algorithm quickly converge to that of the optimal fractional strategy, where the convergence is faster when 𝑅 is larger. 
Nevertheless, both experiments confirm our theoretical analysis in Section 3.3: when 𝑅 is sufficiently large (compared with 𝜃max), 

Artiϧcial Intelligence 341 (2025) 104297 

17 



R. Bai, H. Lin, X. Wu et al. 

Fig. 2. Defending Results of Mixed Strategies by Patching in Uniform Threshold Isolated Model when 𝑅= 0.1 ⋅
∑

𝑢∈𝑉 𝜃𝑢 . 

Fig. 3. Defending Results of Mixed Strategies by Patching in General Threshold Isolated Model when 𝑅= 0.2 ⋅
∑

𝑢∈𝑉 𝜃𝑢 . 

the optimal mixed strategy should have defending result close to OPT𝑓 (𝑅). Furthermore, the experiment demonstrates that even for 
general thresholds, Patching returns mixed strategies that are close-to-optimal, and uses very few pure strategies.

Recall that in Section 3.3 we show that there exists a mixed strategy (𝐷,𝐩) ∈ Ω𝑚(𝑅) whose defending result 𝐿𝑚(𝐷,𝐩) = OPT𝑓 (𝑅−
𝜃max). In our experiments, we implement the algorithm and report the defending result and the support size to verify its correctness. 
The results are presented in Table 3, where (𝐷,𝐩) is the mixed strategy our algorithm computes, and (𝐷,𝐩∗) is the optimal mixed 
strategy with support 𝐷 (which can be computed by solving an LP, as we have shown in Lemma 4.2). Note that due to long computation 
time, we did not finish the computing of 𝐿𝑚(𝐷,𝐩∗) for the Twitter and Amazon datasets (too many variables). In the table, we also 
compare them with the mixed strategies returned by Patching(𝑑) with 𝑑 ∈ {5,30}. Consistent with our theoretical analysis, for all 
datasets we have

OPT𝑓 (𝑅− 𝜃max) =𝐿𝑚(𝐷,𝐩) ≥𝐿𝑚(𝐷,𝐩∗) ≥ OPT𝑓 (𝑅).

From the above results we can see that compared to (𝐷,𝐩), the Patching algorithm is able to compute mixed strategies with very 
small support, e.g., 30 vs. 2500+ for large datasets, while guaranteeing a defending result that is very close.

We also compare the time to compute 𝐿𝑚(𝐷,𝐩) and the running time (in seconds) of Patching in Table 4. As we can observe 
from the table, compared to the computation of 𝐿𝑚(𝐷,𝐩), the running time of Patching is less sensitive to the size of the network. 
Consequently for large datasets the Patching algorithm runs several times faster than computing 𝐿𝑚(𝐷,𝐩). In conclusion, the Patching

Artiϧcial Intelligence 341 (2025) 104297 

18 



R. Bai, H. Lin, X. Wu et al. 

Fig. 4. Defending Results of Mixed Strategies by Patching in General Threshold Isolated Model when 𝑅= 0.1 ⋅
∑

𝑢∈𝑉 𝜃𝑢 . 

Table 3
Defending Results of Mixed Strategies in Different Datasets.

Email-S Facebook Ca-AstroPh Email-L Twitter Amazon 
OPT𝑓 (𝑅− 𝜃max) 4.161 4.32 4.281 4.273 4.285 4.293 
𝐿𝑚(𝐷,𝐩) 4.161 4.32 4.281 4.273 4.285 4.293 
𝐿𝑚(𝐷,𝐩∗) 4.147 4.316 4.28 4.273 – – |𝐷| 268 671 1900 2592 6052 9957 
OPT𝑓 (𝑅) 4.139 4.314 4.28 4.273 4.285 4.293

Patching(5) 4.41 4.5 4.5 4.5 4.5 4.5 
Patching(30) 4.161 4.326 4.29 4.291 4.324 4.319 

Table 4
Running Time Comparison (in seconds).

Email-S Facebook Ca-AstroPh Email-L Twitter Amazon 
𝐿𝑚(𝐷,𝐩) 0.2 3.2 57 214 1027 9370 
Patching(5) 0.3 0.8 3.3 6.5 14 45 
Patching(30) 2.3 8.2 37 73 165 523 

algorithm computes mixed strategies that use way fewer pure strategies than (𝐷,𝐩) while having similar defending results. Further-

more, its running time is also much smaller in large datasets.

6.3. Adversarial attack: general thresholds with resource sharing

Finally, we evaluate the performance of the Patching algorithm on the network defending problem with resource sharing. In 
contrast to the isolated model, with resource sharing we can no longer guarantee OPT𝑚 ≈ OPT𝑓 , even if 𝑅 is sufficiently large (see 
Section 3.5 for the hard instance). In other words, the lower bound OPT𝑓 we compare our mixed strategy with can possibly be much 
smaller than the optimal defending result OPT𝑚 of mixed strategies. Moreover, with resource sharing we must set 𝑅 to be smaller 
compared with previous experiments. If we set 𝑅 = 0.2 ⋅

∑
𝑢∈𝑉 𝜃𝑢 as before, the defending result is 0, because when resource can 

be shared, it requires a much smaller amount of resource to fully defend all nodes. For this reason, we set 𝑅 = 0.1 ⋅
∑

𝑢∈𝑉 𝜃𝑢 for 
the Email-EU and CA-AstroPh datasets, and 𝑅 = 0.015 ⋅

∑
𝑢∈𝑉 𝜃𝑢 for the Facebook dataset, because slightly larger values of 𝑅 will 

result in OPT𝑝(𝑅) = 0. The experimental results are reported as Fig. 5. As discussed in Section 4, computing mixed strategies for the 
non-isolated model involves solving LPs with Θ(𝑛) variables, which can be quite time consuming. Thus we only manage to run the 
experiments on the three small datasets.

From Fig. 5, we observe similar phenomenons as in the isolated model: the defending result decreases dramatically in the first 
5 iterations, and after around 10 iterations the defending result is close to what it will eventually converge to. However, different 
from the isolated model, now we can no longer guarantee that the defending results of the mixed strategies are close to OPT𝑓 , the 
lower bound for OPT𝑚. As discussed above, one possible reason can be that OPT𝑓 is much smaller than OPT𝑚. Unfortunately, unless 

Artiϧcial Intelligence 341 (2025) 104297 

19 



R. Bai, H. Lin, X. Wu et al. 

Fig. 5. Patching in the Non-isolated Model. 

Table 5
Defending Results under Uniform Attack with Uniform Thresholds.

Dataset Email-S Facebook Ca-AstroPh Email-L Twitter Amazon 
OPTuni

𝑓
(𝑅) 3.1363 3.306 3.272 3.2742 3.28254 3.28745 

OPTuni
𝑝

(𝑅) 3.1363 3.3077 3.2722 3.2743 3.28256 3.28746 
OPTuni

𝑓
(𝑅− 𝜃max) 3.143 3.308 3.2724 3.2744 3.28264 3.28748 

Table 6
Defending Results under Uniform Attack with General Thresholds.

Dataset Email-S Facebook Ca-AstroPh Email-L Twitter Amazon 
OPTuni

𝑓
(𝑅) 2.488 2.6257 2.6078 2.6084 2.6144 2.6122 

OPTuni
𝑝

(𝑅) 2.489 2.6259 2.6079 2.6085 2.6144 2.6122 
OPTuni

𝑓
(𝑅− 𝜃max) 2.5 2.6287 2.6085 2.6088 2.6145 2.6123 

there is way to give a tighter lower bound for OPT𝑚, there is no way to find out whether the mixed strategy Patching(30) returns is 
close-to-optimal or not. We believe that this would be an interesting topic to study, and we leave it as the future work.

6.4. Uniform attack

In this section, we evaluate the defending results of different strategies under the uniform attack setting, verifying the theoretical 
results.

We start by considering the most basic setting with uniform thresholds in the isolated model. The parameter settings are the same 
as in Section 6.1. Recall from Lemma 5.3 that for uniform attacks the defending result of any mixed strategy is at least that of a 
pure strategy. Therefore we only evaluate the defending results of the optimal pure and fractional strategies, both of which can be 
computed via a reduction to the knapsack problem, as we have argued in Section 5. Given resource 𝑅, we compare OPTuni

𝑝 (𝑅) with 
OPTuni

𝑓 (𝑅) and OPTuni
𝑓 (𝑅− 𝜃max). The results are shown in Table 5.

From Table 5, we observe that the defending result of the optimal pure strategy is almost equal to that of the optimal fractional 
strategy7 and is less than OPTuni

𝑓 (𝑅− 𝜃max) in all datasets. This demonstrates that OPTuni
𝑓 (𝑅− 𝜃max) is an upper bound of OPTuni

𝑝 (𝑅), 
verifying the correctness of Lemma 5.6.

We also consider the setting with non-uniform thresholds, where 𝜃𝑢 is chosen uniformly at random from [1,10] for each node 
𝑢 ∈ 𝑉 . As observed from Table 6, the results are very similar to the case of uniform thresholds.

Finally, we compare OPTuni
𝑓 (𝑅) and OPTuni

𝑝 (𝑅) in the general threshold setting when resource sharing is allowed. Unlike the 
isolated model, with resource sharing, we can no longer guarantee OPTuni

𝑝 (𝑅) ≤ OPTuni
𝑓 (𝑅 − 𝜃max). Furthermore, since computing 

the optimal pure strategy for the non-isolated model involves solving an MILP with Θ(𝑛) integer variables, which is time-consuming, 
we only ran experiments on the three small datasets. The results are shown in Table 7 (the parameter settings are the same as in 
Section 6.3).

From Table 7, we observe that there is a noticeable gap between OPTuni
𝑝 (𝑅) and OPTuni

𝑓 (𝑅), which shows that there is an integrality 
gap between the integral and fractional defending status. As we have shown in the proof of Theorem 5.4, when resource can be shared 
between neighboring nodes, the problem has a connection with the maximum coverage problem, which is not only NP-hard, but also 
admit a gap in the optimal integral solution and optimal fractional solution. Therefore, the experimental results are again consistent 
with our theoretical analysis.

7 If 𝑅 is divisible by 𝜃max, then the two defending results are equal.

Artiϧcial Intelligence 341 (2025) 104297 

20 



R. Bai, H. Lin, X. Wu et al. 

Table 7
Defending Results in the Non-isolated Model.

Dataset Email-S Facebook Ca-AstroPh 
OPTuni

𝑓
(𝑅) 0.3578 0.046 0.71 

OPTuni
𝑝

(𝑅) 0.403 0.11 1.22 

7. Conclusion and future works

In this work, we study mixed strategies for security games with general threshold and quantify its advantage against pure strategies 
under adversarial attack and uniform attack. For both attack types, we show that it is NP-hard to compute the optimal mixed strategy 
in general and provide strong upper and lower bounds for the optimal defending result of mixed strategies for the isolated model. 
For adversarial attack, we propose the Patching algorithm for the computation of mixed strategies with theoretical guarantees. For 
uniform attack, we prove that the defending result of the optimal mixed strategy is equal to that of the optimal pure strategy, whose 
computation is NP-hard, even under the isolated model or the uniform threshold model.

Regarding future work, we believe that it would be most interesting to study mixed strategies against contagious attacks [19] 
and imperfect attackers [39]. The uniform attack setting and adversarial attack setting are two extreme cases of the quantal response 
model, i.e., the cases when the attacker is fully rational and fully irrational, respectively. Therefore, generalizing our results to quantal 
response model would be a very interesting future topic. Finally, since many real-world security games are not zero-sum, the problem 
of computing the mixed strategies with general defending requirement for non-zero-sum games is also worthwhile studying.

CRediT authorship contribution statement

Rufan Bai: Writing – original draft, Validation, Project administration, Methodology, Investigation, Formal analysis, Conceptual-

ization. Haoxing Lin: Writing – review & editing, Data curation. Xiaowei Wu: Writing – original draft, Supervision, Methodology.

Minming Li: Writing – review & editing. Weijia Jia: Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgement

This research was funded by the National Natural Science Foundation of China (62402103) and the Natural Science Foundation of 
Jiangsu Province (BK20241273). This project was partially funded by the National Natural Science Foundation of China (52102400, 
62203123), the Sustainable Development Science and Technology Project of Shenzhen Science and Technology Innovation Commis-

sion KCXFZ2020122-1173411032. Xiaowei Wu is funded by the Science and Technology Development Fund (FDCT), Macau SAR (file 
no. 0014/2022/AFJ, 0085/2022/A, and SKL-IOTSC-2024-2026). Weijia Jia is partially funded by the Chinese National Research Fund 
(NSFC) (62272050), and Zhuhai Science-Tech Innovation Bureau (2320004002772), and in part by the Interdisciplinary Intelligence 
SuperComputer Center of Beijing Normal University (Zhuhai).

Data availability

Data will be made available on request.

References

[1] E. Shieh, B. An, R. Yang, M. Tambe, C. Baldwin, J. DiRenzo, B. Maule, G. Meyer, PROTECT: a deployed game theoretic system to protect the ports of the United 
States, in: AAMAS, IFAAMAS, 2012, pp. 13–20.

[2] W. Guo, X. Wu, L. Wang, X. Xing, D. Song, PATROL: provable defense against adversarial policy in two-player games, in: USENIX Security Symposium, USENIX 
Association, 2023, pp. 3943–3960.

[3] F. Fang, P. Stone, M. Tambe, When security games go green: designing defender strategies to prevent poaching and illegal fishing, in: IJCAI, AAAI Press, 2015, 
pp. 2589–2595.

[4] A. Sinha, F. Fang, B. An, C. Kiekintveld, M. Tambe, Stackelberg security games: looking beyond a decade of success, in: IJCAI, ijcai.org, 2018, pp. 5494–5501.

[5] J. Gan, E. Elkind, S. Kraus, M.J. Wooldridge, Defense coordination in security games: equilibrium analysis and mechanism design, Artif. Intell. 313 (2022) 
103791.

[6] T.H. Nguyen, R. Yang, A. Azaria, S. Kraus, M. Tambe, Analyzing the effectiveness of adversary modeling in security games, in: AAAI, AAAI Press, 2013.

[7] J. Gan, H. Xu, Q. Guo, L. Tran-Thanh, Z. Rabinovich, M.J. Wooldridge, Imitative follower deception in Stackelberg games, in: EC, ACM, 2019, pp. 639–657.

[8] A. Alshamsi, F.L. Pinheiro, C.A. Hidalgo, Optimal diversification strategies in the networks of related products and of related research areas, Nat. Commun. 9 (1) 
(2018) 1328.

[9] J. Tsai, T.H. Nguyen, M. Tambe, Security games for controlling contagion, in: AAAI, AAAI Press, 2012.

[10] K.C. Nguyen, T. Alpcan, T. Basar, Security games with incomplete information, in: ICC, IEEE, 2009, pp. 1–6.

Artiϧcial Intelligence 341 (2025) 104297 

21 

http://refhub.elsevier.com/S0004-3702(25)00016-5/bib33D2B2920FF53BDD37D337F287F1B1A0s1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bib33D2B2920FF53BDD37D337F287F1B1A0s1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bib0AA0AB4835BE79507574F805FA3A0E3Cs1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bib0AA0AB4835BE79507574F805FA3A0E3Cs1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bibDD7D7AD053B3595A7DBA14379AA6DEF6s1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bibDD7D7AD053B3595A7DBA14379AA6DEF6s1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bibEC6DD879BDB9CBC6A40A3E2609FBC8A4s1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bibE325F81074AB6B00272D88E11F54286Es1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bibE325F81074AB6B00272D88E11F54286Es1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bib38E15626F5DA632D4D20963228E582B7s1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bib3CF464AB9EDA375DF020BD1E3FC99F9Ds1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bibCD244A7B79BAA629CC84A6457CBB4F25s1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bibCD244A7B79BAA629CC84A6457CBB4F25s1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bib566B3D4DBA67ECEEC0B175FFFB795ED6s1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bib29DDF8D31BBEACF9C88E7760768F4D17s1


R. Bai, H. Lin, X. Wu et al. 

[11] C. Kiekintveld, M. Jain, J. Tsai, J. Pita, F. Ordóñez, M. Tambe, Computing optimal randomized resource allocations for massive security games, in: AAMAS (1), 
IFAAMAS, 2009, pp. 689–696.

[12] D. Korzhyk, V. Conitzer, R. Parr, Complexity of computing optimal Stackelberg strategies in security resource allocation games, in: AAAI, AAAI Press, 2010.

[13] M. Jain, D. Korzhyk, O. Vanek, V. Conitzer, M. Pechoucek, M. Tambe, A double oracle algorithm for zero-sum security games on graphs, in: AAMAS, 2011, 
pp. 327–334.

[14] M. Jain, V. Conitzer, M. Tambe, Security scheduling for real-world networks, in: AAMAS, IFAAMAS, 2013, pp. 215–222.

[15] Z. Wang, Y. Yin, B. An, Computing optimal monitoring strategy for detecting terrorist plots, in: AAAI, AAAI Press, 2016, pp. 637–643.

[16] J. Gan, B. An, Y. Vorobeychik, B. Gauch, Security games on a plane, in: AAAI, AAAI Press, 2017, pp. 530–536.

[17] Y. Vorobeychik, B. An, M. Tambe, S.P. Singh, Computing solutions in infinite-horizon discounted adversarial patrolling games, in: ICAPS, AAAI, 2014.

[18] Y. Yin, H. Xu, J. Gan, B. An, A.X. Jiang, Computing optimal mixed strategies for security games with dynamic payoffs, in: IJCAI, AAAI Press, 2015, pp. 681–688.

[19] R. Bai, H. Lin, X. Yang, X. Wu, M. Li, W. Jia, Defending against contagious attacks on a network with resource reallocation, Proc. AAAI Conf. Artif. Intell. 35 
(2021).

[20] M. Li, L. Tran-Thanh, X. Wu, Defending with shared resources on a network, in: AAAI, AAAI Press, 2020, pp. 2111–2118.

[21] J. Aspnes, K.L. Chang, A. Yampolskiy, Inoculation strategies for victims of viruses and the sum-of-squares partition problem, in: SODA, SIAM, 2005, pp. 43–52.

[22] V.S.A. Kumar, R. Rajaraman, Z. Sun, R. Sundaram, Existence theorems and approximation algorithms for generalized network security games, in: ICDCS, IEEE 
Computer Society, 2010, pp. 348–357.

[23] D. Acemoglu, A. Malekian, A.E. Ozdaglar, Network security and contagion, J. Econ. Theory 166 (2016) 536–585.

[24] R. Bai, H. Lin, X. Yang, X. Wu, M. Li, W. Jia, Stackelberg security games with contagious attacks on a network: reallocation to the rescue, J. Artif. Intell. Res. 77 
(2023) 487–515.

[25] B. An, et al., Security games with surveillance cost and optimal timing of attack execution, in: AAMAS, IFAAMAS, 2013, pp. 223–230.

[26] Y. Vorobeychik, J. Letchford, Securing interdependent assets, Auton. Agents Multi-Agent Syst. 29 (2) (2015) 305–333.

[27] J. Gan, B. An, Y. Vorobeychik, Security games with protection externalities, in: AAAI, AAAI Press, 2015, pp. 914–920.

[28] T. Kroupa, T. Votroubek, Multiple oracle algorithm to solve continuous games, in: GameSec, in: Lecture Notes in Computer Science, vol. 13727, Springer, 2022, 
pp. 149–167.

[29] N. Basilico, N. Gatti, F. Amigoni, Leader-follower strategies for robotic patrolling in environments with arbitrary topologies, in: AAMAS (1), IFAAMAS, 2009, 
pp. 57–64.

[30] J. Lou, Y. Vorobeychik, Equilibrium analysis of multi-defender security games, in: IJCAI, AAAI Press, 2015, pp. 596–602.

[31] J. Gan, E. Elkind, M.J. Wooldridge, Stackelberg security games with multiple uncoordinated defenders, in: AAMAS, International Foundation for Autonomous 
Agents and Multiagent Systems Richland, ACM, SC, USA, 2018, pp. 703–711.

[32] J. Gan, E. Elkind, S. Kraus, M.J. Wooldridge, Mechanism design for defense coordination in security games, in: AAMAS, International Foundation for Autonomous 
Agents and Multiagent Systems, 2020, pp. 402–410.

[33] D. Mutzari, Y. Aumann, S. Kraus, Robust solutions for multi-defender Stackelberg security games, in: IJCAI, ijcai.org, 2022, pp. 433–439.

[34] Z. Song, C.K. Ling, F. Fang, Multi-defender security games with schedules, in: International Conference on Decision and Game Theory for Security, Springer, 
2023, pp. 65–85.

[35] C.-W. Shao, Y.-F. Li, C.-Y. Shen, S.-Z. Liu, Z. Yang, Risk-sharing mechanism design in non-cooperative multi-defender Stackelberg defense resources allocation 
game, IEEE Trans. Autom. Sci. Eng. (2023).

[36] V. Conitzer, T. Sandholm, Computing the optimal strategy to commit to, in: EC, ACM, 2006, pp. 82–90.

[37] I.P. Gent, T. Walsh, Phase transitions and annealed theories: number partitioning as a case study, in: ECAI, Citeseer, 1996, pp. 170–174.

[38] J. Leskovec, A. Krevl, SNAP datasets: Stanford large network dataset collection, http://snap.stanford.edu/data, Jun. 2014. (Accessed 1 January 2022).

[39] J. Zhang, Y. Wang, J. Zhuang, Modeling multi-target defender-attacker games with quantal response attack strategies, Reliab. Eng. Syst. Saf. 205 (2021) 107165.

Artiϧcial Intelligence 341 (2025) 104297 

22 

http://refhub.elsevier.com/S0004-3702(25)00016-5/bib2C6345F76E55D234BE81E12574B14A4Bs1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bib2C6345F76E55D234BE81E12574B14A4Bs1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bibF014956B1D5181F4D3DD8C0D075B7395s1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bib6152F1D8097E015B0EF9A474F82B7CBFs1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bib6152F1D8097E015B0EF9A474F82B7CBFs1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bib1E7F725FC0FB65FC5182FFE35AF07C2Bs1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bibF4AC788F7485A98C433C66AD6B2855B2s1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bibEF63A8EF3FEBA46E8687DA0B70A254A0s1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bibB147915E8043338309ED7CEC30C88483s1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bibC8FF601221A1F2085A636906CAAC88FFs1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bib15F7F388AE2E083F91891217FCCB1496s1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bib15F7F388AE2E083F91891217FCCB1496s1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bib9A0A33E64E9113764ACC097B0F88FE6Cs1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bib4194BFB6622F474B289F85D5A95D233Fs1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bibEAB26150C5B11126C9773C33AA2D848Bs1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bibEAB26150C5B11126C9773C33AA2D848Bs1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bibC0AA3668C3DB451EA2B6C241E2A7D9C0s1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bibD7EF3561278055F13944185D469B64DDs1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bibD7EF3561278055F13944185D469B64DDs1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bib9891627E8B86968BAD1877A8F3526FD0s1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bib9CD23F9C6AF1EF831225653914492EF6s1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bib56C79F07F6AB3ABBE44162D3F69079B5s1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bibF0B6C728220D077D5C74F5490E28DC6Ds1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bibF0B6C728220D077D5C74F5490E28DC6Ds1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bib38F2A5F8334DC88A00A7C2CA5241C9CEs1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bib38F2A5F8334DC88A00A7C2CA5241C9CEs1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bibB6A50B640B56299F10BBD37B691EA90Bs1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bib0D3E927A857B4B240EF7483498C06B77s1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bib0D3E927A857B4B240EF7483498C06B77s1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bib670214CD99E3E62A055E22C0C7684EFAs1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bib670214CD99E3E62A055E22C0C7684EFAs1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bib749391CCA674B56ECBDC7C7D17C06E54s1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bib47DF61FF44BFEFCADFEAC31E13CF159Es1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bib47DF61FF44BFEFCADFEAC31E13CF159Es1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bib321FE409E0E64F233CAC789D57A5EBC6s1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bib321FE409E0E64F233CAC789D57A5EBC6s1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bibE5A173AA2F2D0A8246FBC20306FEC2A1s1
http://refhub.elsevier.com/S0004-3702(25)00016-5/bibF8BA6E1C35E67ACF525059C5B3485E57s1
http://snap.stanford.edu/data
http://refhub.elsevier.com/S0004-3702(25)00016-5/bib28BEC2BB013A8FA2988DFAA4276A5310s1

	On the computation of mixed strategies for security games with general defending requirements
	1 Introduction
	1.1 Our contribution
	1.2 Other related works

	2 Preliminaries
	3 Computation of strategies
	3.1 Optimal pure and fractional strategy
	3.2 Hardness for computing mixed strategies
	3.3 A strong upper bound for isolated model
	3.4 Proof of Lemma 3.4
	3.4.1 Overview
	Phase A.
	Phase B.

	3.4.2 Proof of Lemma 3.5
	3.4.3 The complete algorithm
	3.4.4 Analysis
	Complexity.


	3.5 Mixed strategy with resource sharing

	4 Small support mixed strategies
	4.1 The Patching algorithm
	4.2 Effectiveness

	5 Uniform attacks
	5.1 Equivalence and hardness of mixed and pure strategies
	5.2 Pure and fractional strategies in the isolated model

	6 Experimental evaluation
	6.1 Adversarial attack: uniform threshold in the isolated model
	6.2 Adversarial attack: general thresholds in the isolated model
	6.3 Adversarial attack: general thresholds with resource sharing
	6.4 Uniform attack

	7 Conclusion and future works
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	Data availability
	References


