
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOKEN DISTILLATION: ATTENTION-AWARE INPUT EM-
BEDDINGS FOR NEW TOKENS

Anonymous authors
Paper under double-blind review

ABSTRACT

Current language models rely on static vocabularies determined at pretraining
time, which can lead to decreased performance and increased computational cost
for domains underrepresented in the original vocabulary. New tokens can be
added to solve this problem, when coupled with a good initialization for their
new embeddings. However, existing embedding initialization methods require
expensive further training or pretraining of additional modules. In this paper, we
propose Token Distillation and show that by distilling representations obtained
using the original tokenization, we can quickly learn high-quality input embeddings
for new tokens. Experimental results with a wide range of open-weight models
show that Token Distillation outperforms even strong baselines.

1 INTRODUCTION

Pretrained language models are trained with a fixed tokenizer that often fragments domain-specific or
novel terms into multiple subtokens. This excessive tokenization not only leads to reduced perfor-
mance on downstream tasks (Rust et al., 2021; Ali et al., 2024) but also increases the computational
(and therefore also financial) cost due to inflated sequence lengths (Ahia et al., 2023; Yamaguchi
et al., 2024a). Although adding new tokens to a model’s vocabulary can reduce over-tokenization, it
is crucial to choose a good initialization for the new embeddings (Gee et al., 2022; Minixhofer et al.,
2022; Dobler & de Melo, 2023; Yamaguchi et al., 2024a).
In this paper, we argue that many recent methods for embedding initialization are fundamentally
limited. Whenever we wish to add a new token to a pretrained model’s vocabulary, this new token may
be split up into multiple subtokens in the original model’s tokenization. However, these subtokens
might not be individually informative about the semantics of the entire new token (consider, e.g.,
<_pal> <at> <able>). The semantics of a word composed of multiple subtokens will largely
not be stored in their raw input embeddings at all – but rather constructed by the Transformer’s
attention/feed-forward layer stack during contextualization (Elhage et al., 2022; Lad et al., 2024).
Therefore, methods that do not exploit the information encoded in Transformer layer weights are at a
serious disadvantage. Motivated by this insight, we propose a novel method for input embedding
initialization that captures information stored in all Transformer layers in addition to the existing
input embeddings. Our method optimizes new token embeddings with a distillation-based objective
to match the model’s behavior compared to when a new token is split up into its original subtokens.
We demonstrate the efficacy of our method, dubbed “Token Distillation”, in Section 5. We illustrate
our method in Figure 1 and describe it in Section 3.
We compare against strong baselines, including standard embedding initialization procedures, training
of the embedding matrices with causal language modeling, as well as pretrained hyper-networks
that predict new token embeddings. Extensive experiments on a wide range of open-weight models,
including question-answering benchmarks and the generation of definitions for the newly added
tokens confirm the effectiveness of our approach. Our experimental setup is detailed in Section 4.
Additionally, we describe related work in Section 2 and explicitly discuss limitations of our method
in Appendix A. In summary, our contributions are as follows.

• We propose Token Distillation, a novel method for providing high-quality input embeddings
when adding new tokens to pretrained language models.

• We motivate our proposed method by describing the fundamental limitations of current embed-
ding initialization methods and empirically verify our claims.

• Extensive experiments and in-depth analyses of our method using a wide range of open-weight
model checkpoints and strong baselines confirm its effectiveness.
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pal at able food is good

palatable food is good

Frozen pretrained LLM

Frozen pretrained LLM

MSE (match behavior)

🔥

❄

❄

🔥 := new token embedding (only this is trained)

:= original subtoken embeddings of new token

:= context sequence token embeddings

:= hidden states using original subtokens

:= hidden states using single new token

:= hidden states of original subtokens (except for 
last one); discarded in loss computation

Figure 1: Illustration of Token Distillation – Given a sequence containing our new target token, we
first obtain the model’s hidden states on that sequence using the original tokenization and then quickly
learn a new embedding by reducing the mean squared error (MSE) between the original hidden states
and the hidden states of the model when using a single token embedding to replace the original
subtokens.

2 BACKGROUND

Most state-of-the-art Large Language Models (LLMs) are trained using a static tokenizer, usually
derived by a byte-pair encoding scheme before model training (Sennrich et al., 2016). However,
a single tokenizer predetermined before model training might not be equally well-suited for the
many different use cases that a model will need to address later on. Suboptimal tokenization of new
languages or domain-specific text increases the cost of further training and inference (Ahia et al.,
2023; Yamaguchi et al., 2024a) and has also been tied to reduced performance (Rust et al., 2021; Ali
et al., 2024).
A solution to this problem is to modify the existing vocabulary to suit the specific needs. However,
simply modifying the vocabulary is insufficient – we also need suitable embeddings for the new
tokens. A common approach is simple random initialization followed by a phase of training only
the new embedding layers on the target corpus to “warm up” the new embedding weights. However,
random initialization of new token embeddings has been widely shown to underperform better
methods (e.g., Gee et al., 2022; Minixhofer et al., 2022; Dobler & de Melo, 2023). This has led to
notable interest in devising ways of obtaining more informative embeddings for new tokens.
A common alternative is to initialize a new token’s embedding as the mean of its subtoken embeddings
(Sachidananda et al., 2021; Koto et al., 2021; Gee et al., 2022) – potentially weighted based on the
subtoken position in the new token (Nakash et al., 2025) – or based on other heuristics (Downey
et al., 2023). Alternatively, a weighted mean of existing embeddings can also be computed based on
similarity scores in auxiliary embedding spaces (Wang et al., 2019; Tran, 2020; Minixhofer et al.,
2022; Ostendorff & Rehm, 2023; Dobler & de Melo, 2023; Liu et al., 2024, inter alia). In fact, most
recent research into embedding initialization for new tokens proposes some variation of a weighted
linear combination or copy of existing embedding vectors (Mosin et al., 2023; Zeng et al., 2023;
Mundra et al., 2024; Yamaguchi et al., 2024a;b; Remy et al., 2024; Goddard & Neto, 2025; Lee
et al., 2025; Singh et al., 2025). Nonetheless, the resulting embeddings still require further tuning to
achieve good results (Minixhofer et al., 2024). We refer to this category of initialization methods as
“model-gradient free”, as they do not consider any training signal from the model.
Only a few methods based on access to model gradients have been investigated in recent years.
Model gradients can be used by directly optimizing just the new token embeddings to minimize a
cross-entropy loss on relevant contexts (Lampinen & McClelland, 2018), the common practice of
training all embeddings while freezing other parts of the model (Artetxe et al., 2020; de Vries &
Nissim, 2021) – potentially only backpropagating through parts of the model (Marchisio et al., 2023)
– or via (pre-)training a hyper-network (Ha et al., 2017) that is able to predict embeddings for new
tokens in the target embedding space (Pinter et al., 2017; Schick & Schütze, 2019; 2020; Teehan
et al., 2024; Minixhofer et al., 2024). Alternatively, using PatchScopes (Ghandeharioun et al., 2024),
“Tokens to Words” (Kaplan et al., 2025) locates layers at which a word fragmented into multiple
subtokens is represented by a single contextual embedding in the residual stream, and then projects
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these hidden states into the input/output embedding spaces via trained mappings. These methods
– hyper-networks in particular – have been shown to yield immediately useful representations but
require additional compute for (pre-)training. In the case of hyper-networks, it additionally might
be necessary to train different hyper-networks for different target domains, further increasing the
complexity.1 Motivated by these difficulties, we propose an alternative method in this paper that does
not require extensive pretraining of an embedding prediction hyper-network or additional modules
and still achieves competitive results, even outperforming pretrained hyper-networks.

3 METHOD: TOKEN DISTILLATION

Our goal is to initialize input embeddings for new tokens such that, when inserted into a frozen
pretrained Transformer, they faithfully reproduce its original behavior – now using a single new token
instead of multiple subtokens. Specifically, we seek an embedding e⋆ for a new token t⋆ such that
all downstream hidden states match those obtained when the model would instead have seen the
original subtokens [t1, . . . , tn], which t⋆ would have been tokenized into according to the original
vocabulary. In what follows, we (1) explain why existing methods fall short and motivate our method,
(2) formalize our method, and (3) describe implementation details.

3.1 INTUITION

As illustrated in Section 1, individual embeddings for subtokens t1, . . . , tn (e.g., <_pal> <at>
<able>) of a new token t⋆ (e.g., <_palatable>) do not necessarily store the semantics of the
specific concatenated form t⋆. Instead, their contexualized representation is gradually constructed in
the Transformer layers via a neural detokenization process (Elhage et al., 2022; Lad et al., 2024) and
then attended to by other token positions in the sequence, which are influenced by this contextualized
representation. The various prior approaches that solely rely on information encoded in the embedding
matrices of a model thus ignore the crucial functional knowledge stored in the attention and feed-
forward weights of Transformer layers, which imposes a fundamental limitation on their performance.
Precisely pinpointing the specifically involved attention heads is difficult and can require manual
inspection (Elhage et al., 2022). Instead, we propose to distill (Hinton et al., 2015; Snell et al., 2022)
the impact that the multiple subtokens t1, . . . , tn have on other tokens attending to them into a single
token embedding e⋆. Our intuition is as follows: If we identify an embedding e⋆ for t⋆ such that the
model produces similar hidden states in the succeeding positions after seeing t⋆ and t⋆’s original
subtokens t1, . . . , tn, we have extracted the relevant information stored in the model’s Transformer
layers without requiring a specific localization within the model weights. Thus, we propose to
optimize e⋆ by minimizing the mean-squared error between hidden states produced by the input
sequences containing t1, . . . , tn and their counterparts using t⋆. We will show in Section 5 that this
empirically outperforms existing training-free embedding initialization methods, embedding tuning
with a next-token prediction objective, as well as pretrained embedding prediction hyper-networks.
Next, we formally describe our method.

3.2 METHOD DESCRIPTION

Let τ be the tokenizer of a pretrained Transformer. Given a new token string t⋆ with original subtokens
τ(t⋆) = [t1, . . . , tn], we require a small corpus of example sequences s ∈ S each containing the
new token string t⋆. We denote the new tokenizer, which includes t⋆, as τ⋆, and the tokenization
of s using τ or τ⋆ as sτ and sτ⋆ , respectively. The target for learning the embedding of t⋆ are the
hidden states at a specified layer l produced by the language model when processing sτ , which we
denote as H(l)(sτ ). We wish to find an embedding e⋆ for a new token t⋆ such that hidden states
produced by processing the input sequence sτ⋆ instead of sτ are similar to our target H(l)(sτ ). We
denote these new hidden states using our new embedding e⋆ as H(l)

e⋆ (sτ⋆). As the two input sequence
indices are not aligned due to replacing subtokens by a single new token, we define a set of mapped
positions (i, j) ∈ M(sτ , sτ⋆), where i and j are the positions of the same token in sτ⋆ and sτ ,
respectively. Additionally, M(sτ , sτ⋆) only includes pairs (i, j) where position i in sτ⋆ would attend
to t⋆. We use subscripts such as H(l)(sτ )j to signify the hidden state at the j-th token position. We

1Minixhofer et al. (2024) train separate hyper-networks for mistralai/Mistral-7b-v0.1 for En-
glish+Code and multilingual target tokenizers.
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learn e⋆ by minimizing the mean-squared error between hidden states for a given target layer l:

min
e⋆∈Rd

Es∼S

 1

|M|
∑

(i,j)∈M(sτ ,sτ⋆ )

∣∣∣∣∣∣H(l)
e⋆ (sτ⋆)i −H(l)(sτ )j

∣∣∣∣∣∣2
2

 . (1)

In practice, we simply use the last layer’s hidden state but analyze this choice in Section 5.2.

3.3 FURTHER DETAILS

Retrieving relevant contexts for new tokens. Like other methods optimizing embeddings based on
contexts, our method also needs input sequences. Firstly, we note that randomly sampling texts from
a domain-specific or general corpus is inefficient for our goal of learning newly added embeddings:
typically, the new tokens will only make up a small fraction, so most gradient updates will actually
not affect the new input embeddings at all and simply learn to minimize their log-probability in
the case of output embeddings. As we aim to have a fast method, we need a better approach. We
propose two different approaches: (1) Our main approach is to simply retrieve snippets that contain
our target tokens from a domain-specific or general corpus. This can be implemented efficiently
using the algorithm proposed by Aho & Corasick (1975). Then we can truncate the snippets to a
small window around our target token to optimize computational efficiency. (2) For causal language
models, we can simply generate snippets by prompting the model with our target token. We provide
implementation details in Appendix C.7. In our main experiments, we focus on the first approach
but note the availability of the second approach in case a reference corpus is not available. In most
cases of domain and language adaptation, the availability of such a corpus is a reasonable assumption.
Nevertheless, we study an ablation instead using the generative approach in Section 5.2.

Output embeddings. Since our method backpropagates gradients back from the hidden states, we
do not learn output embeddings with our distillation-based objective. In fact, this is not possible,
as our new tokens are not part of the original model that serves as the “teacher”. In practice, for
learning output embeddings, we can simply add a next-token prediction objective just for the output
embeddings at a minimal computational overhead or freely combine our method with any other
method for initializing output embeddings. Recent work suggests that input and output embeddings
should in fact be treated differently (Nakash et al., 2025; Huang et al., 2025). Indeed, the Transformer
architecture can handle tokens that are input-only. Therefore, if not paired with an additional
initialization method for output embeddings, we have the choice of either adding new tokens only to
the input embedding matrix or – for compatibility with existing frameworks – setting their output
embeddings to a vector of zeros.

Hyperparameters. We employ a simple setup and use the AdamW (Kingma & Ba, 2017;
Loshchilov & Hutter, 2019) optimizer for all trainable parameters. We set the batch size to op-
timize throughput and run all experiments on Nvidia H100 80GB GPUs. We do not use weight decay
and maintain a constant learning rate with a linear warmup. For fair comparison, we sweep for the
best learning rate for all methods that require a learning rate. Since our method is aimed to serve
as an “initialization” rather than as full-scale further training, we restrict the number of example
sequences to a maximum of 25 per target token and truncate to a context length of 50 tokens. These
restrictions ensure that our method is quick to run, initializing 2,500 new tokens on a single GPU
in under 10 minutes. We use the same data for all training-based methods, including baselines and
variations of our method. We provide all details in Appendix C.

4 EXPERIMENTAL SETUP

4.1 EVALUATION

Common use cases for adding new tokens to a pretrained model’s tokenizer are language and domain
adaptation, especially for the biomedical domain (Poerner et al., 2020; Gee et al., 2023; Hasan et al.,
2024; Singh et al., 2024; Balde et al., 2024). This is because it is a particularly challenging domain
with highly complex domain-specific terminology, which can serve as a benchmark to stress test
embedding initialization methods. Therefore, we evaluate our method on a collection of standard
benchmarks in the biomedical domain (Pal et al., 2024) and add frequently occurring words as new
tokens. Additionally, for a more in-depth evaluation of the quality of new representations provided
by our methods, we prompt the adapted models to generate definitions for such new tokens and
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evaluate their quality with an LLM-as-a-Judge (Li et al., 2023). We also evaluate Token Distillation
for language adaptation, choosing French as an exemplary language. We evaluate our method on a set
of multiple-choice benchmarks from FrenchBench (Faysse et al., 2025) and add frequently occurring
words as new tokens, as in the biomedical domain adaptation experiments.
Furthermore, to push the limits of embedding initialization methods, we move beyond domain
and language adaptation and apply our method to multi-word tokens, which have recently gained
further interest (Gee et al., 2023; Liu et al., 2025; Huang et al., 2025). We follow the zero-shot
tokenizer transfer setting in our evaluations (Minixhofer et al., 2024), i.e., we evaluate initialization
methods without further training on a corpus, as we want to directly judge the quality of the resulting
representations.
We select target tokens that actually occur frequently in the chosen benchmarks so that we can
effectively judge the quality of newly generated embeddings. We select words that occur more
frequently than a threshold and additionally ensure that all individual benchmarks are represented.
We report the full methodology in Appendix C.1. For our multi-word token experiments, we prompt
gpt-o4-mini-high to generate suitable candidates (full details in Appendix C.3). For our experi-
ments in the biomedical domain, we retrieve contexts from ncbi/pubmed as a reference corpus. For
our experiments on language adaptation to French, we use HuggingFaceFW/fineweb-2. For
our multi-word token experiments, we prompt the original models to generate sequences containing
the new tokens. For the LLM-as-a-Judge evaluations, we use Llama-3.3-70B-Instruct as the
judge model. We evaluate the general correctness of the generated definitions to test the quality and
completeness of the resulting representations as well as semantic similarity with the target model’s
output (Villegas et al., 2025), as inducing as little behavior change as possible can be an important
desideratum.

4.2 MODELING

Considered base models. We conduct experiments using a wide range of open-weight model
checkpoints to ensure our results are not merely a function of peculiarities in any specific model’s
embedding space. In particular, we choose the following models: Mistral-7B-v0.1, OLMo-2-7B-1124-
Instruct, Llama-3-8B, Llama-3-8B-Instruct, Llama-3.1-8B, Llama-3.1-8B-Instruct, Llama-3.2-3B,
and Llama-3.2-3B-Instruct. In the remainder of the paper, we denote “-Instruct” variants with a
simple “-i” suffix. Through this extensive evaluation, we study different model families, model sizes
(3B, 7B, and 8B), instruction-tuned and base models, as well as models with separate input/output
embeddings and tied (shared) embeddings between input and output. For our experiments on French
language adaptation, we run experiments with the Mistral-7B-v0.1 and Llama-3-8B(-Instruct) models
and additionally consider Qwen3-8B-Base, which has received more extensive multilingual training.

Baselines. For all results, we report the performance of the unmodified base model using the
original tokenization, which serves as our “Target”. To establish a lower bound, we also report results
for initializing the new token embeddings randomly from a normal distribution with a per-channel
mean and standard deviation of the original embeddings (Hewitt, 2021). Furthermore, we report
results for the commonly used method of taking the subtoken mean (Sachidananda et al., 2021; Koto
et al., 2021; Gee et al., 2022) as initialization for a new token, which has been shown to perform
similarly to more sophisticated initialization methods that also use a weighted average of existing
embeddings (Minixhofer et al., 2024; Yamaguchi et al., 2024b).
Since our proposed method conducts a short optimization on a few reference sequences per new
token, we compare against the common approach of training embeddings using causal language
modeling using the same data. Specifically, we report results for “classic” embedding tuning using
the next-token prediction objective – denoted as NTP (tune all embeddings) – as well as masking
updates to the original embeddings such that only new embeddings are optimized (denoted as just
NTP), which corresponds to the method used by Lampinen & McClelland (2018). These methods
use the subtoken mean as their starting point. A strong alternative method for obtaining embeddings
for new tokens are hyper-networks specifically pretrained for this task. We report results for ZeTT
(Minixhofer et al., 2024) using their provided hyper-network checkpoints. We also compare against
“Tokens to Words” (Kaplan et al., 2025), which relies on PatchScopes (Ghandeharioun et al., 2024) to
extract hidden states and learns mappings from these to the embedding spaces. Unlike our Token
Distillation approach, it hinges on a successful PatchScopes extraction of hidden states for each
particular token. In our experiments, “Tokens to Words” could not be applied to 10–75% of tokens
due failed PatchScope extractions, skewing the comparison with other methods that do not suffer
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Mistral-7B Llama3-8B Llama3-8B-i Llama3.1-8B Llama3.1-8B-i Llama3.2-3B Llama3.2-3B-i OLMo2-7B-i Avg.

Original tokenization 64.5 69.8 70.6 69.2 72.3 60.1 64.4 61.3 66.5

Random (Hewitt, 2021) 57.0±0.6 58.8±0.5 60.6±0.3 59.3±0.5 62.6±0.6 51.6±0.4 55.8±0.2 53.9±0.6 57.5
NTP (tune all embeddings) 55.7±0.5 63.8±0.1 63.8±0.2 62.9±0.4 66.8±0.4 51.5±0.6 55.5±0.5 58.0±0.3 59.8
Mean (Gee et al., 2022) 58.3 63.8 63.4 63.7 66.9 54.2 58.4 58.0 60.8
NTP ((Lampinen et al., 2018)) 61.2±0.4 65.6±0.3 65.3±0.6 66.0±0.5 68.9±0.2 56.6±0.6 61.3±0.5 58.7±0.6 63.0
ZeTT (Minixhofer et al., 2024) 62.7 66.1 66.3 – – – – – –
⋆Token Distillation 62.8±0.5 67.3±0.2 67.6±0.3 67.3±0.5 71.0±0.2 56.2±1.9 63.1±0.2 61.2±0.3 64.6
⋆Token Distillation + NTP 63.0±0.5 67.2±0.3 66.7±1.6 67.2±0.3 70.6±0.4 57.6±0.3 62.2±0.3 59.8±0.5 64.3
⋆Token Distillation + αNTP 62.8±0.5 67.6±0.4 67.8±0.5 67.4±0.4 70.9±0.3 57.9±0.1 62.5±0.6 61.2±0.2 64.7

Table 1: Benchmark results on biomedical domain adaptation for different initialization methods.
We report a macro-average ± standard deviation of the tasks in the Open Medical-LLM leaderboard
(see Section 4.1). The best initialization result for each model is given in boldface, while all results
that are not significantly worse (one-sided Welch’s t-test with Bonferroni correction, p < 0.05)
are underlined. Methods without ±x.x are deterministic. –: We only report results for ZeTT where
pretrained hyper-networks are available. ⋆: Our method(s).

Method Mistral-7B Llama3-8B Llama3-8B-i Llama3.1-8B Llama3.1-8B-i Llama3.2-3B Llama3.2-3B-i OLMo2-7B-i Avg.

Sim Corr Sim Corr Sim Corr Sim Corr Sim Corr Sim Corr Sim Corr Sim Corr Sim Corr

Original tokenization 99.8 96.5 100.0 94.3 100.0 98.4 100.0 94.7 100.0 98.4 100.0 93.2 100.0 93.8 99.4 96.9 99.9 95.8

Random (Hewitt, 2021) 0.0 0.4 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
Mean (Gee et al., 2022) 2.5 4.3 16.8 16.2 17.6 20.7 25.6 25.6 23.2 28.3 15.2 15.2 12.1 14.6 20.1 24.2 16.6 18.6
NTP (tune all embeddings) 26.8 30.3 33.2 39.5 34.4 43.4 28.5 35.0 41.4 50.0 19.7 20.7 18.6 21.1 22.5 26.6 28.1 33.3
NTP ((Lampinen et al., 2018)) 49.8 58.2 45.3 49.6 48.4 58.0 58.6 65.6 60.2 69.9 51.6 58.4 50.0 58.8 52.1 57.0 52.0 59.4
ZeTT (Minixhofer et al., 2024) 63.5 68.6 69.5 73.6 70.7 80.3 – – – – – – – – – – – –
⋆Token Distillation 79.7 85.2 72.7 76.2 79.7 91.0 75.8 80.1 81.6 89.8 0.0 0.0 75.0 83.0 83.8 89.5 68.5 74.4
⋆Token Distillation + NTP 77.3 82.6 68.4 73.8 75.8 86.3 72.3 79.9 77.3 86.1 62.3 69.1 65.2 75.8 65.4 74.6 70.5 78.5
⋆Token Distillation + αNTP 76.8 82.0 71.7 75.2 80.9 91.6 77.5 81.2 81.1 89.5 72.7 79.5 71.9 80.5 81.2 86.9 76.7 83.3

Table 2: Results for prompting models to generate definitions for newly initialized biomedical domain
tokens. We report similarity with the original target model’s definition (Sim) and correctness (Corr)
both judged by Llama-3.3-70B-Instruct. We bold the best (non-target) result in each column.
⋆: Our method(s). For full judge prompting details, see Appendix C.6.

from this limitation. We therefore report its results separately (Appendix B.2); Token Distillation
performs better on average while also covering all added tokens. We run five random seeds for all
methods that include randomness and report the mean and standard deviation.

Our method. As the initial embedding input into our method, we also use the subtoken mean. We
investigate alternatives to this choice in Section 5.2. Our proposed objective can also be combined
with the NTP-based objectives. We report results for combining Token Distillation and NTP. Since the
NTP and Token Distillation objectives have different scales, a simple addition is suboptimal. In fact,
NTP is usually of larger magnitude, which leads it to overpower Token Distillation. Therefore, we
also consider an “autoscaled” variant Token Distillation + αNTP where the NTP loss is scaled by α
= stop_gradient(loss_awedist / loss_ntp) before summing. Here, stop_gradient
prevents gradient flow through the scaling factor α.2

5 RESULTS

5.1 MAIN EXPERIMENTS

Main results. We provide our main results on benchmarks in Table 1 (biomedical domain adapta-
tion) and Table 3 (French language adaptation). In Table 2, we report our experiments on definition
generation for newly added biomedical tokens (reporting similarity to the original target model’s
generation and correctness as judged by a larger LLM). On average, our method outperforms all other
baseline embedding initialization methods. In particular, Token Distillation shows superior results
on benchmarks and in its ability to generate correct definitions, which is indicative of higher-quality
representations. Additionally, Token Distillation also exhibits greater similarity to the original to-
kenization behavior than all other methods, which substantiates our claim that a distillation-based
objective is able to better approximate complex multi-subtoken interactions into a single token
embedding.
Note that even with its very competitive performance, Token Distillation does not fully attain the level
of the original tokenization, which benefits from the massive pretraining of the original model. This is

2Multi-objective optimization is a rich field with extensive literature, we leave a thorough investigation of
alternatives such as GradNorm (Chen et al., 2018) for future work.
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Mistral-7B Llama3-8B Llama3-8B-i Qwen3-8B Avg.

Original tokenization 69.5 69.4 72.1 81.7 73.2

Random (Hewitt, 2021) 51.0 46.1 51.5 62.1 52.7
Mean (Gee et al., 2022) 56.3 58.4 61.7 69.6 61.5
NTP ((Lampinen et al., 2018)) 64.7 67.0 70.1 81.2 70.8
ZeTT (Minixhofer et al., 2024) 66.1 61.3† 65.2† – –
⋆Token Distillation 68.5 68.9 72.9 81.5 72.9

Table 3: Performance on FrenchBench multiple-choice tasks after adding new French tokens. †:
For ZeTT, only Mistral-7B has a multilingual-tuned hypernetwork, while Llama-3-8B(-i) uses the
general English+Code hypernetwork.

expected in our zero-shot tokenizer transfer setting without any further training (see Minixhofer et al.,
2024), although remarkably, Token Distillation is able to outperform the original tokenization when
adding French tokens to Llama-3-8B-Instruct without any training of the Transformer layers. We seek
to directly investigate the embedding initialization quality and the advantages of our distillation-based
objective compared to next-token prediction rather than the effects of further training. However,
results can naturally be improved via further training; we argue that Token Distillation will provide
the best starting point for such further processing. In the following, we analyze various aspects of the
results in further detail.
Note that in Table 2, only for Llama-3.2-3B, Token Distillation has performance on par with
random initialization. Llama-3.2-3B(-i) are the only models in our lineup with tied embedding
weights. Our objective does not explicitly enforce a bound on the norm of the new embedding, which
in this case led to the failure mode of always generating a specific new embedding with very large
norm. Note that this does not always happen for checkpoints with tied weights, as evidenced by the
results for Llama-3.2-3B-i. However, we additionally propose a simple modification to alleviate
the occurrence of this issue by combining Token Distillation with the next-token prediction objective,
which (implicitly) acts as a regularizer on the output embedding norm. In support of our argument that
a subtoken attention distillation objective is superior to next-token prediction for learning new token
embeddings, the combination via a sum of the two objectives (Token Distillation + NTP) generally
yields worse results than Token Distillation alone. However, we can add a dynamic downweighting
factor (see Section 4.2) to the next-token prediction objective (Token Distillation + αNTP), which
mostly alleviates the negative interference while keeping the regularizing effect.

Freezing original embeddings. Vanilla NTP-tuning of all embeddings (denoted as tune all em-
beddings) yields disappointing results, even underperforming the subtoken mean initialization. We
investigate this and observe a degradation of the original token embeddings. Note that for Token
Distillation, we only optimize new token embeddings. Therefore, we also compare against the NTP
baseline, where we similarly optimize only the new token embeddings. NTP outperforms NTP,
supporting our analysis. However, even with this improvement, Token Distillation in turn still further
surpasses NTP.
We note that masking gradient updates to the original embeddings during further training is not
commonly done when adding new token embeddings, even during initial “embedding tuning” phases
where all weights but the embedding layers are frozen. In these phases, the goal is to improve
the initialized embeddings for new tokens or “adapt” the new embedding matrix to the existing
Transformer layers (de Vries & Nissim, 2021). When normally sampling from a large-scale training
corpus, the degradation of original embeddings will be less dramatic, as the number of new tokens
per batch will be much lower. However, this is much less computationally efficient and – at least
initially – still potentially harmful. We leave a further investigation of this as a practically useful
direction for future work.

Hypernetworks. ZeTT, which uses a pretrained hypernetwork, is the strongest baseline we compare
against. We only compare against ZeTT when a pretrained hyper-network by Minixhofer et al. (2024)
is available3. We first note that ZeTT yields quite impressive results, outperforming even our
optimized NTP baseline. Evidently, the pretraining of ZeTT’s hypernetwork has internalized a
better embedding prediction than the iterative gradient descent optimization on selected samples we
employ for NTP. Nevertheless, our proposed method Token Distillation outperforms even ZeTT –

3Minixhofer et al. (2024) do not provide a checkpoint trained specifically for the -instruct variant of
Llama-3-8B but show that a transfer from the base version is possible.
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Mistral-7B Llama3-8B Llama3-8B-i Llama3.1-8B Llama3.1-8B-i Llama3.2-3B Llama3.2-3B-i OLMo2-7B-i Avg.

Original tokenization 93.4 88.1 99.2 91.1 97.8 65.2 90.9 94.0 90.0

Random (Hewitt, 2021) 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0
Mean (Gee et al., 2022) 2.2 4.2 9.1 8.0 11.3 4.2 7.4 7.4 6.7
NTP ((Lampinen et al., 2018)) 34.0 54.3 70.6 49.7 71.6 29.0 53.9 70.0 54.1
ZeTT (Minixhofer et al., 2024) 15.3 25.4 28.4 – – – – – –
⋆Token Distillation 46.3 68.0 86.3 61.8 81.3 31.6 57.5 84.3 64.6
⋆Token Distillation + NTP 48.3 68.0 85.3 60.2 79.7 38.2 63.4 80.9 65.5
⋆Token Distillation + αNTP 46.9 71.0 85.7 62.0 80.1 37.2 66.4 83.7 66.6

Table 4: Correctness of generated definitions for newly initialized multi-word tokens (famous people,
places, entities, sayings and concepts) as judged by Llama-3.3-70B-Instruct.

Mistral-7B Llama-3-8B Llama-3-8B-i Llama-3.1-8B Llama-3.1-8B-i Llama-3.2-3B Llama-3.2-3B-i OLMo-2-7B-i Avg.

⋆Token Distillation (generated data) 62.4 67.1 67.6 67.0 70.1 57.1 62.3 60.9 64.3
⋆Token Distillation (retrieved data) 62.8±0.5 67.3±0.2 67.6±0.3 67.3±0.5 71.0±0.2 56.2±1.9 63.1±0.2 61.2±0.3 64.6

Table 5: Comparison of using data generated from the model instead of retrieving from a corpus. We
only run a single seed with generated data and report average performance on biomedical benchmarks.

without needing any hyper-network pretraining. It is important to note that at inference time, hyper-
network based methods such as ZeTT are actually faster than Token Distillation (and NTP-based
baselines), since only a single forward pass through the hyper-network per token is required. However,
they require expensive pretraining for each new model and – in some cases – target domain. For
example, ZeTT with a hypernetwork pretrained only on English naturally underperforms on language
adaptation to other languages – as this is out of distribution from the hypernetwork training, whereas
the multilingually pretrained variant available for one of the models performs more favorably (see
Table 3). Also, we can actually use ZeTT-generated embeddings as a starting point and further tune
them using our method for even better results. We analyze this possibility in Section 5.2.

5.2 IN-DEPTH ANALYSIS

Multi-word tokens. In Table 4, we report LLM-as-a-Judge results on the correctness of generated
definitions. This tests the limits of our method, as the new tokens are now more complicated, such
as “Software Development” or even common phrases such as “spill the beans”. In this setting, even
the original target model sometimes is not able to generate correct definitions. In turn, the gap of
Token Distillation to the target model is also larger in this experiment. However, Token Distillation
outperforms all other baselines by a very large margin. ZeTT (Minixhofer et al., 2024) in particular
struggles in the multi-word token setup, likely because it is out-of-distribution from the hyper-network
pretraining.

Retrieved vs. generated data. In Section 3, we discuss generating contexts containing our new
tokens by prompting the model to generate some text containing the new token. In our main
experiments, we instead retrieve relevant contexts from a corpus. We compare the two approaches
in Table 5. In general, data generation performs slightly worse than retrieving contexts but is still
competitive, outperforming next-token prediction objective on retrieved contexts and even pretrained
hyper-works from ZeTT. This highlights the applicability of our method even in scenarios where
no corpus containing relevant contexts might be available. For example, we use context generation
instead of retrieval in our multi-word token experiments in Table 4.

Choice of initial embedding for Token Distillation. We find that the subtoken mean initialization
as starting point yields better results than random initialization (see “Random + Token Distillation” in
Table 6). If a pretrained embedding prediction hyper-network is available, we can instead use these
predicted embeddings as the starting point. We run this experiment using ZeTT; this combination
further improves performance compared to using the subtoken mean (see Table 6). We also compare
refining the hypernetwork embeddings with NTP. This greatly improves over NTP but yields only
minimal gains over using the hypernetwork embeddings themselves without further NTP.

Different distillation objectives. Our main proposed method Token Distillation computes the
distillation objective based on a mean-squared error (MSE) of last layer hidden states. A natural
question is whether we can also use the “traditional” knowledge distillation objective (Hinton et al.,
2015) based on the Kullback-Leibler divergence (KL-Div) (Kullback & Leibler, 1951). We analyze
this and report the results in Table 7. We additionally include computing the MSE between logits
instead of hidden states. For the KL-Div based results, we include different variations of combining
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the objective with a NTP-based objective. In general, the choice of distillation objective does not
matter much. This is hardly surprising, as the logits are merely a linear projection (potentially with
an additional normalization layer) of the hidden state; the log-probabilities used for KL-Div are then
in turn merely an additional log-normalization via log-softmax. Combining the KL-based results
with NTP-based objectives follows similar trends as their combinations with hidden state MSE-based
objectives. We opt for the MSE on hidden states for two reasons: (1) In terms of implementation
convenience, the objectives with a projection to logits over the vocabulary require a masking step for
the “student” model, as the original “teacher” model does not have the new tokens in its vocabulary.
(2) Choosing hidden states allows us to explore other layers than just the last one with potentially
large computational speedups – we explore this next.

Mistral-7B Llama-3-8B Llama-3-8B-i Avg.

Original Tokenization 64.5 69.8 70.6 68.3

Random (Hewitt, 2021) 56.7 58.7 60.6 58.6
Mean (Gee et al., 2022) 58.3 63.8 63.4 61.8
ZeTT (Minixhofer et al., 2024) 62.7 66.1 66.3 65.0

(Mean +) NTP++ 61.5 65.9 65.4 64.3
ZeTT + NTP 62.8 66.1 66.8 65.3

⋆Random + Token Distillation 62.5 65.3 65.9 64.6
⋆ (Mean +) Token Distillation 63.5 67.3 68.0 66.3
⋆ZeTT + Token Distillation 64.2 67.9 68.4 66.8

⋆ (Mean +) Token Distillation + αNTP 63.2 67.2 68.4 66.3
⋆ZeTT + Token Distillation + αNTP 64.1 67.9 68.7 66.9

Table 6: Biomedical benchmark results with dif-
ferent starting points for Token Distillation. We
report results for models where a pretrained hy-
pernetwork from ZeTT is available and report
the same single seed for all methods.

Figure 2: Average performance on biomedical
benchmarks with different target layers of Llama-
3-8B-Instruct for Token Distillation.

Target layer. In our main experiments, we apply the Token Distillation objective on the hidden
states after the last layer. However, the last hidden state might not be the most optimal, as it might
be overspecialized for next-token prediction (Rogers et al., 2020). In Figure 2, we plot the average
performance on our biomedical benchmark datasets using Llama-3-8B-Instruct while varying
the target layer for extracting hidden states for our Token Distillation objective. Indeed we do see a
slight downward trend as we approach the last layer – choosing a different layer than the last one can
further boost our already strong results. We repeat the analysis with Llama-3.1-8B-Instruct
in Appendix B.3 with matching results.
Interestingly, good results can already be achieved with very early layers, e.g., after layer four. This
suggests that much of the subtoken-specific contextual information is already added to the residual
stream in early layers, which echoes findings of previous work (Vulić et al., 2020; Elhage et al., 2022;
Lad et al., 2024; Nakash et al., 2025; Kaplan et al., 2025). This opens up an avenue to further speed
up our method by terminating the forward pass after our target layer (and also saving that compute
on the backward pass), which can be much faster if we select early target layers. We leave further
exploration of this as an exciting direction for future work. For our main experiments, we choose to
keep the last layer because this choice does not necessitate a model-specific sweep over target layers.
Also, the last layer is a principled choice, as it guarantees that no subtoken interactions that are only
modeled in later layers are excluded from the objective.

6 CONCLUSION

In this work, we have described a fundamental limitation of many existing embedding initialization
methods, which only exploit knowledge stored in a model’s embedding matrices, whereas much of
the knowledge about token compositions actually resides in the Transformer layers (Elhage et al.,
2022; Lad et al., 2024). To address this limitation, we have proposed Token Distillation, which
systematically incorporates this knowledge via distilling contextual information from hidden states.
Experimental results confirm that our method not only clearly outperforms “simple” aggregation of
embedding matrix rows but also yields better performance than training embeddings using traditional
causal language modeling as well as hyper-networks extensively pretrained for new token embedding
prediction (Minixhofer et al., 2024). In future work, we believe research into embedding initialization
should move beyond an aggregation of information stored in the embedding tables. In particular,
a more localized identification of subtoken contextualization (e.g., specific attention heads that
aggregate subtokens) is a promising direction for a more targeted distillation objective.
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A LIMITATIONS

We have already highlighted and analyzed various choices and potential weaknesses of our method in
Section 5.1 and Section 5.2. Nevertheless, we find that our method outperforms even very strong
baselines. However, we now want to explicitly summarize and expand on the limitations of our
method.

Unknown tokens. Since the motivation for the distillation-based objective is to match the original
model’s behavior, our method is generally not applicable if the original model cannot meaningfully
process a new token. Note that this specifically limits the applicability of our method for adapting a
model’s vocabulary to a completely unseen language, although in current pretraining regimes, many
languages do end up being seen to a certain extent due to imperfect filtering mechanisms or deliberate
inclusion.

Learning rate. Since our method involves gradient descent, we require setting a learning rate.
However, as can be seen in Figure 2, our method seems to afford a wide range of viable learning rates
that achieve good results, rendering the tuning of this hyperparameter less critical.

Only input embeddings. As discussed in Section 3, our method only addresses the task of inducing
input embeddings, since our distillation objective is not applicable to output embeddings. Our method
can be freely combined with any other method for obtaining valid output embeddings. Alternatively,
new tokens can be added only in the input embeddings, since the Transformer architecture does allow
for input tokens which do not occur in the output vocabulary (although this assumption is made in
some popular implementations).

Short subword tokens. We find that our method does not work well for lexically ambiguous tokens,
i.e., tokens with many different meanings in different contexts. These are often short subwords like
<ed> or <fer> that occur in many words. This also means that our method is not ideal to initialize
embeddings for an entirely new vocabulary that contains such new subwords. However, these tokens
could be initialized using other methods (e.g. Minixhofer et al., 2024), while our method is applied to
the rest.

Impact of chosen reference snippets. The reference corpus for retrieving contexts for training with
the distillation objective can bias the resulting learned embeddings. Consider the word “tender”,
which in general means gentle or soft, but in the financial domain describes a specific type of buy offer.
Note however that this can also be beneficial, as the resulting representations are now specialized
to the target domain. Additionally, if such an effect is undesired, we can use our proposed data
generation scheme via prompting the model to generate contexts containing the new word. This can
be interpreted as distillation training on samples from the original model’s learned data distribution
of samples containing the new word.
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B ADDITIONAL RESULTS

B.1 DIFFERENT DISTILLATION OBJECTIVES

We report results for using different distillation objective variants in Table 7. The difference between
hidden state or logit-based distillation as well as the differences between MSE and KL based
distillation is not significant. However, our chosen approach of hidden state distillation using MSE
has the additional advantage of allowing the use of earlier hidden states, offering significant speedups
(see Figure 2 and Figure 3).

Mistral-7B Llama-3-8B Llama-3-8B-i Llama-3.1-8B Llama-3.1-8B-i Llama-3.2-3B Llama-3.2-3B-i OLMo-2-7B-i Avg.

⋆Token Distillation-Logits 63.0±0.4 67.2±0.3 67.5±0.8 67.3±0.2 70.7±0.5 57.4±0.3 62.8±0.7 60.2±0.2 64.5

⋆Token Distillation + NTP 63.0±0.5 67.2±0.3 66.7±1.6 67.2±0.3 70.6±0.4 57.6±0.3 62.2±0.3 59.8±0.5 64.3
⋆Token Distillation + αNTP 62.8±0.5 67.6±0.4 67.8±0.5 67.4±0.4 70.9±0.3 57.9±0.1 62.5±0.6 61.2±0.2 64.7
⋆Token Distillation 62.8±0.5 67.3±0.2 67.6±0.3 67.3±0.5 71.0±0.2 56.2±1.9 63.1±0.2 61.2±0.3 64.6

⋆Token Distillation (KL) + NTP 62.3±0.4 66.7±0.2 66.4±0.3 66.7±0.7 70.1±0.4 57.3±0.2 62.1±0.6 59.7±0.3 63.9
⋆Token Distillation (KL) + αNTP 62.8±0.5 67.1±0.4 66.3±1.2 67.1±0.2 70.5±0.4 57.5±0.5 62.5±0.2 60.5±0.5 64.3
⋆Token Distillation (KL) 63.0±0.2 67.3±0.2 67.2±0.2 67.1±0.2 70.8±0.5 57.5±0.4 62.7±0.3 60.5±0.6 64.5

Table 7: Comparison of different variations of our distillation objective with results on biomedical
benchmarks. We bold the best result in each column and underline all results that are not significantly
worse (one-sided Welch’s t-test with Bonferroni correction, p < 0.05). ⋆: Our method(s).

B.2 RESULTS FOR “TOKENS TO WORDS” (KAPLAN ET AL., 2025)

We report results for the method from “Tokens to Words” (Kaplan et al., 2025) in Table 8 and Table 9
alongside our method and other baselines. Note that the “Tokens to Words” method only initializes
embeddings for tokens where a PatchScopes (Ghandeharioun et al., 2024) extraction using a special
prompt to identify hidden layers is successful. It is difficult to apply their method if the extraction
is not successful. To give the fairest assessment of the method, we do not add these “unsuccessful”
tokens to the vocabulary when using “Tokens to Words”. However, this likely overestimates the
method’s performance, since the model now uses more of the original embeddings during testing,
which have been tuned during massive pretraining. On average on our biomedical domain adaptation
results, roughly 10–20% of the total tokens did not have a successful PatchScopes extraction, varying
across models (up to 35% in the case of Llama-3.2-3B and 40% in the case of OLMo-2-7B-i). On
our French language adaptation experiments, this is even more severe, ranging from 50% to 75% of
unsuccessful extractions.

B.3 DIFFERENT TARGET LAYERS FOR TOKEN DISTILLATION

We repeat the analysis of the best target layer for Token Distillation from Section 5.2 in Fig-
ure 3 for Llama-3.1-8B-Instruct instead of Llama-3-8B-Instruct. Our analysis for
Llama-3-8B-Instruct in Section 5.2 applies.

Mistral-7B Llama3-8B Llama3-8B-i Llama3.1-8B Llama3.1-8B-i Llama3.2-3B Llama3.2-3B-i OLMo2-7B-i Avg.

Original tokenization 64.5 69.8 70.6 69.2 72.3 60.1 64.4 61.3 66.5

Random (Hewitt, 2021) 57.0±0.6 58.8±0.5 60.6±0.3 59.3±0.5 62.6±0.6 51.6±0.4 55.8±0.2 53.9±0.6 57.5
NTP (tune all embeddings) 55.7±0.5 63.8±0.1 63.8±0.2 62.9±0.4 66.8±0.4 51.5±0.6 55.5±0.5 58.0±0.3 59.8
Mean (Gee et al., 2022) 58.3 63.8 63.4 63.7 66.9 54.2 58.4 58.0 60.8
Tokens to Words (Kaplan et al., 2025) (61.7) (64.3) (65.0) (63.9) (66.6) (57.3) (61.5) (59.5) (62.5)
NTP ((Lampinen et al., 2018)) 61.2±0.4 65.6±0.3 65.3±0.6 66.0±0.5 68.9±0.2 56.6±0.6 61.3±0.5 58.7±0.6 63.0
ZeTT (Minixhofer et al., 2024) 62.7 66.1 66.3 – – – – – –
⋆Token Distillation + NTP 63.0±0.5 67.2±0.3 66.7±1.6 67.2±0.3 70.6±0.4 57.6±0.3 62.2±0.3 59.8±0.5 64.3
⋆Token Distillation 62.8±0.5 67.3±0.2 67.6±0.3 67.3±0.5 71.0±0.2 56.2±1.9 63.1±0.2 61.2±0.3 64.6
⋆Token Distillation + αNTP 62.8±0.5 67.6±0.4 67.8±0.5 67.4±0.4 70.9±0.3 57.9±0.1 62.5±0.6 61.2±0.2 64.7

Table 8: Benchmark results on biomedical domain adaptation for different initialization methods.
We report a macro-average ± standard deviation of the tasks in the Open Medical-LLM leaderboard
(see Section 4.1). The best initialization result for each model is given in boldface, while all results
that are not significantly worse (one-sided Welch’s t-test with Bonferroni correction, p < 0.05)
are underlined. Methods without ±x.x are deterministic. –: We only report results for ZeTT where
pretrained hyper-networks are available. (...): T2W is able to extract representations for only
60%–90% of added biomedical tokens. We still report results for completeness but note that this
comparison overestimates the method’s performance compared to the other methods shown. ⋆: Our
method(s).
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Mistral-7B Llama3-8B Llama3-8B-i Qwen3-8B Avg.

Original tokenization 69.5 69.4 72.1 81.7 73.2

Random (Hewitt, 2021) 51.0 46.1 51.5 62.1 52.7
Mean (Gee et al., 2022) 56.3 58.4 61.7 69.6 61.5
Tokens to Words (Kaplan et al., 2025) (64.8) (62.6) (66.6) (82.2) (69.1)
NTP ((Lampinen et al., 2018)) 64.7 67.0 70.1 81.2 70.8
ZeTT (Minixhofer et al., 2024) 66.1 61.3† 65.2† – –
⋆Token Distillation 68.5 68.9 72.9 81.5 72.9

Table 9: Performance on FrenchBench multiple-choice tasks. †: For ZeTT, only Mistral-7B has a
multilingual-tuned hypernetwork, while Llama-3-8B(-i) uses the general English+Code hypernetwork.
(...): T2W is able to extract representations for only 25%–50% of added French tokens. We still
report results for completeness but note that this comparison overestimates the method’s performance
compared to the other methods shown.

Figure 3: Analysis of varying the target layer for the Token Distillation objective. We report the
average performance on the biomedical benchmarks for Llama-3.1-8B-Instruct.

C IMPLEMENTATION DETAILS

C.1 TOKEN SELECTION FOR DOMAIN ADAPTATION

When using benchmarks to evaluate the quality of new token embeddings, it is crucial to ensure that
the new tokens actually occur frequently enough to affect the performance if the new embeddings are
poor. See, e.g., the “Random” baseline for randomly initialized embeddings, which still performs
better than random chance on the benchmarks in Table 1.

Therefore, we select all whole words from the chosen benchmarks that are not already existing tokens
in the original vocabulary. We exclude tokens that include digits or any of the characters in the
following string in order to reduce noise:

1 "[]{}()<>.,;:!?@#$%^&*+_=|\/"

Additionally, to exclude very rare words that would not be commonly used as new tokens, we apply the
following two filters: (1) We exclude words that appear fewer than five times across all benchmarks,
and (2) we exclude words that occur fewer than 25 times in a sample of 768,000 documents from
a domain-specific reference corpus (we use ncbi/pubmed for biomedical benchmarks). The full
list of new words will be available in our GitHub repository. For illustrative purposes, we provide a
random sample of 100 added tokens here:
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[gangrene, emphysema, Alkaline, pleural, psychoanalysis, paracervical,
glandular, acidosis, reticular, two-factor, hyperplasia, bicarbonate,
atopy, reactant, Riboflavin, lipoprotein, long-term, Chediak-Higashi,
attenuated, pruritus, immunohistochemistry, calcifications,
Staphylococcal, aspirin, bromide, mechanistic, cytosol, insufficiency,
arouse, thyroidectomy, Fallopian, primum, retrograde, febrile,
Cytomegalovirus, molar, cryptogenic, inorganic, deceleration,
Amikacin, gluconate, inhaler, Cushing, discordant, Epstein-Barr,
intraocular, VLDL, tomography, supraclavicular, glucocorticoids,
pyruvate, occluded, pigmented, neutrophil, irradiation,
pharmaceuticals, cementum, LDL-cholesterol, postpartum, contractile,
prostatectomy, deafness, septic, analgesics, tonsils, side-to-side,
Prostaglandin, hoarseness, acuity, vena, dislocated, inciting,
haloperidol, eczema, remnant, innervation, heartburn, elicited,
yellowish, amylase, antihypertensive, ossification, redness, Giardia,
placenta, trigeminal, Spearman, squamous, perioperative, abdominis,
photosynthetic, transcribed, thymoma, condylar, furosemide, exudate,
kJ, afebrile, non-exposed, unrestrained]

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

C.2 TOKEN SELECTION FOR FRENCH LANGUAGE ADAPTATION

We use a similar approach as described in Appendix C.1 but use HuggingFaceFW/fineweb-2
as a domain-specific reference corpus for filtering rare words and add words that appear in our chosen
benchmarks from FrenchBench (Faysse et al., 2025). We also provide a random sample of 100 added
tokens for illustrative purposes here:

[excitation, pelvienne, biblique, préserver, ratisse, coiffants, narine,
mutuellement, sentira, ventilateurs, Réalisez, Accédez, relaient,
inclinée, trébuche, structurer, pissenlit, contenants, débutant,
annulation, mucus, accueillir, grossiers, sérums, œuf, Enfin,
victoire, recevrez, balayer, vendez, officiel, agression, Penser,
suspendue, versez, socialement, scientifiques, chirurgical,
Voulez-vous, doués, poursuivi, glacière, boîtier, purifier, rocheuse,
profitant, connaissent, partenaires, cuisent, paresseux,
considérations, mèche, substitut, relaxante, célébrité, culpabilité,
visuel, convulsions, correcteurs, en-dessous, alcoolisée,
développeront, mètres, fabriquer, imperméables, vapeur, granuleux,
lier, nuage, creusez, opérations, entourent, ressentant, extérieurs,
intenter, métropolitaine, chutes, arrière-plan, miettes, flaque,
renforcera, entonnoir, acheté, brillant, courtier, kiwi, texturée,
brouette, diminuera, débutants, plaire, quitté, appétit, abîmer,
équilibrée, avancez, pratiquent, inconvénient, restants, offriront]

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

C.3 MULTI-WORD TOKEN GENERATION

We prompted gpt-o4-mini-high (as of April 7, 2025) with the following prompt:

1 f"""Provide a list of entities, places, people, concepts, phrases or
phrasings, idioms, or other terms that span multiple words, at least
two and maximum five. Provide them in JSON format grouped by category
and at least 100 per category. Ensure that you do not shorten
coherent names just to fit them into the five word limit."""

↪→
↪→
↪→
↪→

We refined this prompt to exclude common failure modes through trial-and-error. We will include the
list of resulting multi-word tokens in our GitHub repository.

C.4 OPEN MEDICAL-LLM LEADERBOARD EXPERIMENTS

For evaluation, we use the lm-evaluation-harness (Biderman et al., 2024) library at the
version 0.4.7. We use 5-shot evaluation on a single Nvidia H100 GPU using bfloat16 precision.
Specifically, we use the following command:

lm_eval --model hf \
--model_args pretrained=$MODEL_PATH,dtype="bfloat16" \
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--tasks
medmcqa,medqa_4options,mmlu_anatomy,mmlu_clinical_knowledge,
mmlu_college_biology,mmlu_college_medicine,mmlu_medical_genetics,
mmlu_professional_medicine,pubmedqa \

↪→
↪→
↪→
--num_fewshot 5 \
--device cuda:0 \
--batch_size 8

This evaluates the task of the Open Medical-LLM Leaderboard (Pal et al., 2024; Jin et al., 2019;
2020; Hendrycks et al., 2021; Pal et al., 2022). All code and a lock-file with specific versions will be
available in our GitHub repository.

C.5 FRENCHBENCH EXPERIMENTS

As for the Open Medical-LLM Leaderboard Experiments, we use the lm-evaluation-harness
(Biderman et al., 2024) library at the version 0.4.7 and use 5-shot evaluation on a single Nvidia
H100 GPU with bfloat16 precision. We evaluate on the multiple-choice tasks from FrenchBench
(Faysse et al., 2025) and use letters (e.g., A, B, C or D) as the answer choices. Specifically, we use the
following command:

lm_eval --model hf \
--model_args pretrained=$MODEL_PATH,dtype="bfloat16" \
--tasks french_bench_boolqa_ab,french_bench_vocab_abcd,

french_bench_xnli_abc,french_bench_arc_challenge_abcd,
french_bench_grammar_abcd,french_bench_fquadv2_bool_ab,
french_bench_topic_based_nli_abc,
french_bench_reading_comp_abcd \

--num_fewshot 5 \
--device cuda:0 \
--batch_size 8

C.6 LLM-AS-A-JUDGE EXPERIMENTS

For generating definitions for a particular new token, we use the prompt “The word <new_token>
is defined as” following Teehan et al. (2024), where <new_token> is replaced by the string repre-
sentation of the new token (with whitespace stripped from the left side). We use greedy decoding.
Our evaluation considers the model checkpoint corresponding to the best learning rate from the
experiments described in Appendix C.4 for each method.
LLM-as-a-Judge evaluations are not perfect – see for example in Table 2 the similarity scores (Sim)
of the target model (measuring similarity with the target model), which should obviously always
be 100%, but turn out to be 99.4% / 99.8% in the case of OLMo-2-7B-i and Mistral-7B,
respectively. Nevertheless, these results (which we report as a sanity check on the judge quality) are
very close to correct, which is encouraging.
We use meta-llama/Llama-3.3-70B-Instruct as the judge model and run it using
bfloat16 layer-parallel inference over two H100 GPUs using HuggingFace transformers.
We use prompts adapted from Li et al. (2023) and Villegas et al. (2025) for evaluating the general
correctness of generated definitions as well as the similarity with the original model.
For correctness evaluation, we use the following prompt:

f"""<|start_header_id|>system<|end_header_id|>

You are a pattern-following assistant that can only answer with "Yes" or
"No". Your goal is to determine whether a provided definition for a
given word is correct. The definition should be on topic and specific
but does not need to be
exhaustive.<|eot_id|><|start_header_id|>user<|end_header_id|>

↪→
↪→
↪→
↪→

Remember to answer with one word either "Yes" or "No".

### Instruction:
Determine if the provided definition for the word "{token.lstrip()}" is

correct.↪→
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### Definition {token.lstrip()}:
{line["model_definition"].strip()}

### Is the provided definition correct, specific, and on topic (Yes or
No)?:<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"""↪→

For similarity with the original target model’s definition, we use this prompt:

1 f"""<|start_header_id|>system<|end_header_id|>
2

3 You are a pattern-following assistant that can only answer with "Yes" or
"No". Your goal is to determine whether a predicted definition
conveys a similar enough meaning to the ground truth definition
provided for a given
word.<|eot_id|><|start_header_id|>user<|end_header_id|>

↪→
↪→
↪→
↪→

4

5 Remember to answer with one word either "Yes" or "No".
6

7 ### Instruction:
8 Determine if the predicted definition conveys a similar meaning to the

ground truth definition. The word is "{token.lstrip()}".↪→
9

10 ### Ground truth definition:
11 {line["target_definition"].strip()}
12

13 ### Predicted definition:
14 {line["model_definition"].strip()}
15

16 ### Does the predicted definition convey a similar meaning to the ground
truth definition (Yes or
No)?:<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"""

↪→
↪→

C.7 GENERATION OF RELEVANT CONTEXTS

When generating contexts that contain a new token, we prompt the model with the beginning-of-
sequence (BOS) token followed by the textual representation of the new token. Using the new token
<palatable> as an example, our prompt is then: “<s> palatable”. Note that we add a prefix space
after the BOS token <s>. We then sample N new sequences of length L, where N and L are the
same as in the settings we use for context retrieval from an existing corpus (in this work we use
N = 25 and L = 50). We sample using the standard sampling settings of each model from the
transformers (Wolf et al., 2020) library.

C.8 ISOLATED PER-TOKEN OPTIMIZATION VS. JOINT OPTIMIZATION

When implementing Token Distillation, we have the choice of performing the optimization process
for each new input embedding separately or simply allowing updates to all new input embeddings at
the same time.
For the experiments in this paper, we utilize the joint optimization approach. However, we also
implemented the isolated optimization of each new embedding for initial experiments. In this setting,
gradients are only propagated to a single input embedding (corresponding to the target token of the
retrieved snippet), even if other new target tokens also occur in that snippet.
In our exploratory experiments, we found that the joint approach yields slightly better results and
conjecture that this is because we are able to have more total gradient updates per target token due to
co-occurrence in a particular snippet. As an added benefit, the joint approach has less implementation
complexity.

C.9 HYPERPARAMETERS

We use AdamW (Kingma & Ba, 2017; Loshchilov & Hutter, 2019) optimization for all trainable
parameters (the new token embeddings) with a batch size of 16, which maximizes throughput on our
used Nvidia H100 80GB GPUs. We do not incorporate any weight decay and maintain a constant
learning rate schedule with a linear warmup for the first half of the training steps. For fair comparison,
we sweep for the best learning rate for each method that requires a learning rate. We use the same
data for all training-based methods, including baselines and variations of our method.
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C.10 MODELS

We use the models Mistral-7B-v0.1 (Jiang et al., 2023), OLMo-7B-1124-Instruct
(OLMo et al., 2025), Llama-3-8B, Llama-3-8B-Instruct, Llama-3.1-8B,
Llama-3.1-8B-Instruct, Llama-3.2-3B, Llama-3.2-3B-Instruct (Grattafiori
et al., 2024) and Qwen/Qwen3-8B-Base (Yang et al., 2025).

D COMPUTE BUDGET & RUNTIME

We report the average training time for Token Distillation as well as NTP for initializing the new
biomedical domain tokens per model in Table 10. We also report the number of new tokens per
model. These differ slightly, as we build an initial fixed candidate list, which is then filtered against
the existing vocabularies of each model.

Additional computational budget. Since Token Distillation includes an additional forward pass
through the model for generating “teacher” hidden states, we do see this overhead reflected in the run
times. A forward pass can be approximated as taking one third of the computational cost of a complete
forward-backward pass – which roughly matches our measured run times. Note however that – as
demonstrated in Section 5.2 – Token Distillation can be significantly sped up while potentially even
improving results by choosing an earlier target layer than the last one, yielding even faster run times
than NTP.
However, our main version of Token Distillation is slightly more expensive than NTP – even though
both have the same data budget. Thus, we also run the baseline NTP with an additional epoch to
compensate for the additional teacher forward pass that Token Distillation uses. Note that this in fact
significantly overcompensates for the additional budget Token Distillation uses. We report the results
in Table 11. NTP is not able to take any major advantage of an additional epoch, yielding similar
results to using a single epoch. Investigating the loss curves, we find that the training converges
towards the beginning of the second epoch.4

We believe that this is at least partly due to the fundamental limitation of next-token prediction for
our task of learning a single new embedding for an already pretrained model. Instead of matching
model behavior between seeing the single new and the multiple original subtokens, NTP simply
adjusts weights to maximize the likelihood of the given sequences. Consider “<new_token> is a
football player”, where we want <new_token> to represent <Messi>: NTP will only be able to learn
a generic embedding from this sequence that will capture semantics from many different (American
football and soccer) players. Our proposed distillation objective Token Distillation however is able to
learn a more specific representation, as it has access to hidden states from the sequence “Messi is a
football player”, which capture more specific details necessary for a good representation.
To demonstrate, we also run Token Distillation for an additional epoch. Token Distillation is in fact
able to take advantage of a second pass over the data, in some case with major improvements in
the benchmark results. This illustrates the richer training signal that our distillation-based objective
provides. Remarkably, for OLMo-2-7B-i, Token Distillation now is actually able to match the
original model with the original tokenization while instead using the new tokenization.

Init Method Llama-3.1-8B Llama-3.1-8B-i Llama-3.2-3B Llama-3.2-3B-i Llama-3-8B Llama-3-8B-i Mistral-7B OLMo-2-7B-i

NTP 08:44 08:49 05:52 05:18 08:43 08:46 06:01 07:40
Token Distillation 11:31 11:33 07:38 08:07 12:00 11:29 09:09 10:22

# new tokens 2589 2589 2589 2589 2589 2589 2637 2591

Table 10: Minimum training times (mm:ss) on the domain adaptation token initialization experiments
for each model and initialization method measured over three runs. We report the minimum, as we
run experiments on a shared cluster. We use a single H100 80GB GPU. We also include the number
of new tokens for each model type.

Token Distillation versus hyper-networks. Comparing the computational budget with ZeTT
(Minixhofer et al., 2024), ZeTT sees 3.2 billion tokens during hyper-network pretraining, while Token
Distillation sees only 3.2 million tokens (for initializing 2,600 new tokens), less than 1% of ZeTT’s
budget – still Token Distillation outperforms ZeTT. In return, ZeTT is faster at inference time (in

4Note that we do not anneal the learning rate to zero, so this is not an artifact of the learning rate schedule.
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Mistral-7B Llama-3-8B Llama-3-8B-i Llama-3.1-8B Llama-3.1-8B-i Llama-3.2-3B Llama-3.2-3B-i OLMo-2-7B-i Avg.

Target 64.5 69.8 70.6 69.2 72.3 60.1 64.4 61.3 66.5

NTP (1 epoch) 61.2±0.4 65.6±0.3 65.3±0.6 66.0±0.5 68.9±0.2 56.6±0.6 61.3±0.5 58.7±0.6 63.0
⋆Token Distillation (1 epoch) 62.8±0.5 67.3±0.2 67.6±0.3 67.3±0.5 71.0±0.2 56.2±1.9 63.1±0.2 61.2±0.3 64.6

NTP (2 epoch) 61.0 66.1 65.4 65.9 68.7 56.7 61.5 58.9 63.0
⋆Token Distillation (2 epoch) 63.2 68.5 68.9 67.7 71.8 58.4 63.6 61.3 65.4

Table 11: Comparison of different initialization methods for domain adaptation. We report a macro-
average of the tasks in the Open Medical-LLM leaderboard (see Section 4.1). The best non-target
result for each model is given in boldface. We only run a single seed for the two epoch variants.

our experiments on a single H100 80GB GPU, ZeTT took less than a minute). In future work, we
believe that investigating an Token Distillation-style objective for hyper-network pretraining would
be beneficial, as our experiments show that this significantly outperforms next-token prediction for
learning new embeddings (ZeTT uses next-token prediction).

A note on downstream computational speedups. Over-tokenization is not only associated with
reduced downstream task performance (Rust et al., 2021; Ali et al., 2024) but also with increased
computational cost due to longer sequence lengths (Ahia et al., 2023; Yamaguchi et al., 2024a). This
computational cost is reduced when reducing over-tokenization by adding new (commonly occurring)
tokens to the vocabulary. Importantly, for input embeddings, the reduction in computational cost
is completely independent of the actual quality of the embeddings for the newly added tokens (for
a given fixed sequence of text). The same computational speedups are achieved by using Random
initialization and much better methods such as ZeTT (Minixhofer et al., 2024) or our proposed
Token Distillation. Of course, the actual quality of any predictions made conditioned on a sequence
containing such new tokens does heavily depend on the embedding quality. Therefore, in this work,
we focus on direct evaluation of the quality of produced embeddings.

E USE OF LLMS

LLMs were used for LLM-as-a-Judge style evaluation, as discussed in the paper. LLMs were also
used for formatting of Section 3 (gpt-o4-mini-high), intermittently while writing the code for
experimentation (VSCode Copilot autocomplete), as well as for the creation of scripts that aggregate
the final results into tables and figures. All LLM-generated code has been checked for correctness.
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