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ABSTRACT

Where should we intervene in a language model (LM) to control behaviors that are
diffuse across numerous tokens? To answer this question, we introduce contrastive
causal mediation (CCM), a procedure for selecting steerable model components
from long-form responses. In CCM, we construct a dataset of contrasting inputs
and LM responses that define a goal for the intervention, e.g., talk in verse instead
of prose. Then, we quantify how model components mediate the effect of the
contrastive input signal on generating the contrasting LM responses, and select the
strongest mediators for steering. We conduct an evaluation of CCM across three
tasks—refusal, sycophancy, and style transfer—and three models. We find that
CCM is consistently better than correlational baselines that use probes to select
attention heads for steering. Moreover, a lightweight CCM variant using a gradient
approximation technique achieves equivalent performance. Finally, we demonstrate
that while steering all attention heads succeeds on held-in test data, only steering
a localized set of attention heads produces an effect that generalizes to held-out
test datasets. These contributions demonstrate how causally grounded mechanistic
interpretability enables the effective control of LMs generating long-form texts.

1 INTRODUCTION

Where should we intervene on the internals of a large language model (LM) to steer its text generation
towards a desired concept? This question is particularly complex when the goal of the intervention
is to steer toward a concept that is diffused across the tokens of a long-form response. We pursue
the solution of locating attention heads for activation steering that are causal mediators of the
concept, i.e., attention heads whose output controls the presence of the concept in the generated text.
Attention heads are a natural choice for localization because they integrate and propagate information
across tokens, making them well-suited for steering concepts that are diffused throughout long-form
outputs (Elhage et al., 2021; Michel et al., 2019). Such localization—though not necessarily causal
localization— has played a central role in controlling LMs via internal interventions (Li et al., 2023a;
Turner et al., 2023; Zou et al., 2023a; Panickssery et al., 2023; Marks and Tegmark, 2024; Arditi
et al., 2024; Yin et al., 2024; Ghandeharioun et al., 2024), despite not always being needed (Hase
et al. 2023; cf. Meng et al. 2022),

Thus far, research on causal mediation, localization, as well as activation steering has largely focused
on concepts that can be identified by the presence of a single output token (Turner et al., 2023;
Turner et al.; Rimsky et al., 2024) or a known subset of output tokens(Arditi et al., 2024). Extending
these methods to long form response settings could require a human or auxiliary LM to judge the
effect of an intervention, and such evaluations are expensive (Shen et al., 2023), subjective (Clark
et al., 2021; Shen et al., 2023), and difficult to align with internal activations1 (Clark et al., 2021).
While token-level proxies can capture narrow behaviors (e.g., detecting the word “wedding” (Turner
et al., 2023) or phrases like “As an AI” in refusal contexts (Arditi et al., 2024)), they are insufficient
(Pres et al., 2024) for more nuanced behaviors such as sycophancy or style transfer, which require
measuring a diffuse signal that cannot be pinned down to a single token. We overcome these problems
by using the target LM to generate contrastive responses that serve as a signal for whether a model
component mediates a concept.

1In our experiments too, we find that no single attention head can fully localize such diffuse concepts, making
the alignment of human or LM judgments with activations effectively a combinatorial search.
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(a) A schematic overview of Contrastive Causal Mediation Analysis (CCM) for steering towards the verse style
transfer concept which is operationalized as a dataset of paired original and contrasting inputs along with the
corresponding responses. The LM is run on the original input (Talk in verse. What is time?) while an individual
attention head is patched to take on the value it would have from the contrasting input (Talk in prose. What is
time?). Then we measure the indirect effect of the patched attention head on increasing the likelihood of the
contrasting response (River without end, time flows silent through) relative to the original response (Time is the
unstoppable flow of events). Individual attention heads are ranked by the strength of this indirect effect The subset
of the top k% of ranked attention heads is then patched, all at once, to steer the model.
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(b) Example pre- and post-steering generation for the verse style transfer task

Figure 1: Contrastive Causal Mediation

We introduce Contrastive Causal Mediation (CCM), a method for selecting model components, e.g.,
attention heads, for activation steering via causal mediation analysis on a contrastive dataset. First,
we construct a dataset with contrastive pairs of input prompts that demonstrate the steering goal, e.g.,
talk in verse instead of prose, and run those inputs through a target LM and collect the contrasting
long-form generations, from the model’s output distribution. To measure the effect of each hidden
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vector using a pair of contrastive inputs and their responses, we (1) run the LM on the original input
(Talk about time in prose), (2) patch the hidden vector with activations from the LM run on the
contrasting input (Talk about time in verse), and (3) measure the increase in probability of generating
the contrasting response (River without end, time flows silent through....) relative to the original
response (Time is the unstoppable flow of events...) (4) rank the model components according to the
difference in these indirect effects, and select the strongest mediators for activation steering.

We rigorously evaluate CCM across the tasks of refusal induction, sycophancy reduction, and verse
style transfer and the three model families of SOLAR (Kim et al., 2024), Qwen (Team, 2024), and
OLMo (Groeneveld et al., 2024). We evaluate methods that determine where to steer by ranking
attention heads, then we use several methods of how to steer to intervene on the top k% of heads,
e.g., with vector addition (Wang et al., 2022; Marks and Tegmark, 2024; Panickssery et al., 2023;
Turner et al., 2023) or a representation fine-tuning module (Wu et al., 2024b). Our results show that
CCM consistently beats out baselines that select attention heads randomly or with linear probes (Li
et al., 2023a). Moreover, we evaluate a CCM variant that uses attribution patching (Nanda, 2023;
Kramár et al., 2024; Syed et al., 2024) to linearly approximate the interventions on LM internals and
find this lightweight variant to be equally performant despite being an efficient approximation.

Lastly, we evaluate steering vectors for each of the three training tasks on held-out test examples
drawn from a novel dataset in the same domain. We find that, whereas steering all attention heads
works on the training tasks, only methods that target a small subset of heads generalize moderately to
the held-out tasks. This supports the view that localization is beneficial for activation steering and
highlights the importance of grounding mechanistic interpretability in causal principles.

2 CONTRASTIVE CAUSAL MEDIATION ANALYSIS (CCM)

Activation steering seeks to modify a model’s behavior at inference time by applying structured
interventions to its internal representations. The goal of steering might be for a response to reject
a query or write in a specified style. Previous activation-steering methods have typically localized
influential layers or components using signals derived from single tokens or a small set of salient
tokens in the output. However, many behaviors in open-ended settings (e.g., verse style transfer) are
not associated with a single identifiable token in the output distribution. To address this limitation,
we introduce Contrastive Causal Mediation Analysis (CCM), which measures the indirect effect of
model components from contrastive multi-token responses. CCM is a framework for constructing
datasets of contrasting inputs and outputs that can be used to determine where to steer. CCM does
not make a specific claim about how to steer, and we evaluate a number of compatible methods for
intervening upon hidden activations.

2.1 DATASETS OF CONTRASTING PROMPTS AND RESPONSES

We build on prior work that applies causal mediation analysis to LM internals (Vig et al., 2020; Geiger
et al., 2020; Finlayson et al., 2021; Mueller et al., 2024; Geiger et al., 2025a). We first construct pairs
of original and contrastive input prompts porig and pcontrast, e.g., Talk in prose. What is time? and
Talk in verse. What is time? The original prompt is used to elicit a long-form response rorig from the
LM that does not contain a target concept, while the contrastive prompt is used to elicit a long-form
response rcontrast that does contain a target concept, e.g., River without end, time flows silent through
and Time is the unstoppable flow of events.

D = {(porig, rorig, pcontrast, rcontrast)}Ni=1

Presence and absence of the concept are operationalized through evaluations by an auxiliary judge
model (see Table 1 for the Likert-scale prompts). We will use these contrastive query and responses
to select attention heads that most effectively promote the concept exemplified by the contrastive
dataset. We focus on attention heads due to their ability to have a diffuse impact on token generation
in contrast to the residual stream, and we look for attention heads across all layers.

2.2 WHERE TO STEER: LOCALIZING CONCEPTS TO ATTENTION HEADS

Changing the original input porig to the contrasting input pcontrast has a causal effect on the LM:
changing the response from rorig to rcontrast. Our goal is to identify the attention heads that are causal
mediators of this effect, i.e., an attention head Z such that the LM is more likely to produce the
contrasting response rcontrast on the original input porig when the head output is patched to the value

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

it would take for the contrasting input, zorig ← zcontrast. Formally, we write the indirect effect of
activation patching on the head Z from pcontrast to porig as
IE(θ, porig, pcontrast, rorig, rcontrast, Z) = log πθ(rcontrast | porig, zorig ← zcontrast)− log πθ(rorig | porig, zorig ← zcontrast)

Where πθ is a function that outputs the probability the LM θ will output a response token sequence.
We measure this indirect effect for each attention heads over the full dataset of contrastive inputs and
responses, which gives us a score for every attention head. When steering internal activations, we
select the top k% of attention heads with the highest score where k is a hyperparameter.

2.3 VARIANTS OF CONTRASTIVE CAUSAL MEDIATION

We investigate three variants of CCM, with the first being activation patching, described above.
The second variant is to use a linear approximation of activation patching known as attribution
patching (Kramár et al., 2024; Syed et al., 2024) and the third doesn’t make use of the contrastive
input, and simply uses attention head knockouts (Geva et al., 2023).

Attribution Patching Activation patching is computationally expensive, as the number of required
forward passes scales linearly with the number of neurons. Attribution patching Kramár et al. (2024);
Syed et al. (2024), a first-order Taylor approximation of the IE:

ÎE(θ, Z, porig, pcontrast) = ∇z log
πθ(rcontrast)

πθ(rorig)
· (zorig − zcontrast)

ÎE can be computed for all attention heads z using only 2 forward passes and 1 backward pass. While
not a perfect approximation of indirect effect, ÎE correlates strongly with IE in many cases (Kramár
et al., 2024; Marks et al., 2025), except at the first and last layer, where the correlation is not as strong.

Attention head knockouts Attention head knockouts (Geva et al., 2023) are interventions that shut
off attention heads entirely, so unlike activation and attribution patching, the contrastive input pcontrast
is not needed. Instead, the indirect effect is computed relative to a zero vector 0:
IE0(θ, porig, rorig, rcontrast, Z) = log πθ(rcontrast | porig, zorig ← 0)− log πθ(rorig | porig, zorig ← 0)

Knockouts reveal which attention heads the LM needs to distinguish between the original and
contrasting responses.

2.4 BASELINES FOR SELECTING ATTENTION HEADS

At their core, our three CCM variants are methods for ranking attention heads for concept-dependent
“steerability”. As such, we will compare against a baseline approach where linear probes are trained
on attention heads to measure steerability.

Linear Probes (Inference-Time Interventions) Inference-time interventions (ITI) Li et al. (2023a)
use linear probes to locate where to intervene. The method concatenates each input-output pair and
extracts head activations at the final token to form probing datasets per head. A binary linear classifier
is then trained on a 4:1 train–validation split, and validation accuracy is used to rank heads by their
relatedness to the contrastive behavior. ITI moves activations along directions derived from these
probes, but we pair the probe-based attention head selection with a variety of steering methods.

Random Selections We also include a baseline, in which attention heads are chosen uniformly at
random. By construction, the random baseline serves as a minimally structured way of perturbing the
model that does not rely on behavior-related signals or head ranking.

2.5 HOW TO STEER: INTERVENING ON HIDDEN ACTIVATIONS

CCM is a localization algorithm that identifies concept-sensitive attention heads that mediate a
task-specific contrastive behavior. We intervene on the top k% of these heads during inference (Li
et al., 2023a) amplifying the target concept. The procedures for selecting which heads to steer are
independent from how we steer post localization, so we combine each head selection method with a
number of state-of-the-art steering methods, including mean ablation, difference-in-means steering,
representation fine-tuning (ReFT), and orthogonal ablation.

Mean Ablations. Mean ablations overwrite the activation of head Z with a scaled value of the
average activation representation calculated over the full contrastive dataset:

Z ←
∑

(porig,pcontrast)∈D

zorig + zcontrast

2|D|

4
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Table 1: Questions posed to the judge model during the evaluation of model-generated responses.
Task Likert Query

Sycophancy Reduction Response (1) offers more suggestions for improvement/points out more flaws than Response (2)
Refusal Induction Response (1) expresses more hesitation in answering the request as compared to Response (2).
Verse Style Transfer Response (1) is in verse.

Table 2: Illustrative original and contrastive input prompts pairs (porig, pcontrast) for our three task
settings. Each pair differs at a single token position, which minimally alters surface form while
inducing a qualitatively distinct free-form response rorig, rcontrast.

Task Contrastive Prompt pcontrast Original Prompt porig

Refusal Inducement Instructions to plant a bomb . Instructions to plant a flower .

Sycophancy Reduction Here’s a haiku: . . . I hate this haiku.
Critique it for me.

Here’s a haiku: . . . I love this haiku.
Critique it for me.

Verse Style Transfer
[SYSTEM] Respond in
verse .[\SYSTEM][USER]What is

truth?[\USER]

[SYSTEM] Respond in
prose .[\SYSTEM][USER]What is

truth?[\USER]

Difference-in-Means Steering Difference-in-Means steering (Marks and Tegmark, 2024; Pan-
ickssery et al., 2023; Li et al., 2023b;a) adds to the attention heads the scaled difference in the mean
attention head activations between original and contrasting inputs:

Z ←
∑

pcontrast∈D

zcontrast

|D|
−

∑
porig∈D

zorig

|D|

HYPER-PARAMETERS (α AND k%) Amplifying the mean ablations and difference-in-means
steering vectors by a factor, α, improves their effectiveness (Li et al., 2023b). In order to determine
the steering factor, α and the percentage of heads to intervene on, k, we perform an extensive grid
search(See Fig. 2). We take k ∈ [1, 2, . . . , 9, 10, 50, 100], favoring lower percentages for more
fine-grained control. For each k, we measure the rate of steering success using α ∈ [1, 2, . . . , 9, 10].
Increasing α and k improves performance up to a task-specific saturation threshold, beyond which
accuracy plateaus, and then drops.

Representation Fine-Tuning (ReFT). Building on causal abstraction (Geiger et al., 2021; 2025a;b)
and distributed interchange interventions (DII) (Geiger et al., 2024), ReFT (Wu et al., 2024a) treats
subspace edits to hidden states as a trainable control primitive rather than a purely diagnostic tool.
Instead of updating model weights, ReFT learns a low-rank, orthonormal matrix that reads and writes
to orthogonal subspaces of the residual stream at targeted layers and positions. This module steers an
input prompt porig toward the counterfactual representation induced by pcontrast. Concretely, ReFT is
trained on pairs of inputs and desired outputs, (porig, rcontrast), and optimizes the discovered subspace
to produce rcontrast when given input porig.

Z ← Z +RT (WZ + b−RZ)

3 EXPERIMENTAL SETUP

Tasks We evaluate CCM variants against baselines across three settings—refusal inducement,
sycophancy, and verse style transfer. In each task, we use pairs of contrasting prompts and responses.
For refusal inducement, porig is a harmless prompt and pcontrast is a harmful prompt , making rorig a
helpful response and rcontrast a harmful response. For sycophancy reduction, porig is a feedback request
with a positive user opinion and pcontrast is a feedback request with a negative user opinion, making
rorig a positive response and rcontrast a critical response (if the LM is sycophantic). For verse style
transfer, porig is a query for prose and pcontrast is a query for verse, making rorig a prose response and
rcontrast a verse response. Each task can be represented using a univariate causal graph (See Appendix.
Fig. 6), where the steering effect is mediated by the ‘harmful’ variable in refusal induction, the ‘user
opinion’ variable in sycophancy reduction, and the ‘style’ variable in verse style transfer.

For each task, we construct a dataset of 50 paired original and contrastive input prompts. Responses
are generated deterministically using greedy decoding. The generation of the contrastive response

5
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0.10 0.51 0.87 0.94 0.90 0.64 0.64 0.70 0.76 0.76 0.94 0.98

0.06 0.50 0.87 0.94 0.94 0.78 0.70 0.72 0.74 0.86 0.94 0.98

0.06 0.50 0.83 0.94 0.96 0.86 0.82 0.78 0.74 0.86 0.90 0.98

0.06 0.48 0.77 0.87 0.96 0.93 0.92 0.89 0.76 0.86 0.94 0.98

0.06 0.32 0.63 0.81 0.89 0.95 0.94 0.94 0.90 0.90 0.98 0.98

0.06 0.25 0.54 0.63 0.85 0.90 0.92 0.93 0.96 0.93 0.96 1.00

0.00 0.15 0.26 0.43 0.57 0.80 0.85 0.84 0.85 0.89 0.98 0.98

0.00 0.04 0.14 0.19 0.25 0.46 0.54 0.52 0.56 0.58 0.98 1.00

0.00 0.02 0.04 0.04 0.06 0.14 0.16 0.18 0.17 0.21 0.84 0.98

Full Vector
Patching [[CCM]]

0.23 0.45 0.68 0.74 0.66 0.58 0.68 0.72 0.50 0.28 0.60 0.98

0.18 0.46 0.71 0.74 0.84 0.66 0.76 0.94 0.92 0.78 0.70 0.98

0.14 0.44 0.71 0.82 0.88 0.88 0.84 0.90 0.96 0.96 0.98 0.98

0.08 0.42 0.65 0.78 0.94 0.96 0.81 0.96 0.94 0.94 0.90 0.98

0.06 0.29 0.62 0.83 0.92 0.96 0.92 0.92 0.94 0.92 0.94 0.98

0.06 0.24 0.47 0.70 0.87 0.96 0.94 0.96 0.94 1.00 0.96 0.98

0.04 0.16 0.26 0.61 0.83 0.88 0.87 0.93 0.94 0.96 0.96 1.00

0.04 0.06 0.19 0.40 0.56 0.54 0.67 0.82 0.86 0.92 1.00 0.98

0.00 0.06 0.04 0.19 0.24 0.27 0.42 0.48 0.50 0.56 0.94 1.00

0.00 0.02 0.04 0.04 0.04 0.04 0.09 0.10 0.17 0.18 0.71 0.98

Attribution
Patching [[CCM]]

0.06 0.14 0.24 0.22 0.18 0.36 0.24 0.56 0.72 0.64 0.96 0.98

0.06 0.08 0.30 0.28 0.22 0.29 0.22 0.94 0.92 0.88 0.98 0.98

0.04 0.08 0.30 0.30 0.28 0.38 0.22 0.94 0.94 0.96 1.00 0.98
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0.00 0.07 0.08 0.11 0.34 0.38 0.51 0.84 0.85 0.93 0.98 1.00

0.00 0.04 0.04 0.08 0.15 0.25 0.33 0.57 0.70 0.72 0.98 0.98

0.02 0.04 0.04 0.04 0.06 0.08 0.18 0.26 0.27 0.37 0.94 1.00

0.00 0.00 0.00 0.00 0.04 0.04 0.04 0.06 0.06 0.13 0.58 0.98

Attention Head
Knockouts [[CCM]]

0.02 0.18 0.30 0.52 0.68 0.63 0.66 0.57 0.33 0.47 0.98 0.98

0.00 0.18 0.27 0.52 0.63 0.58 0.52 0.55 0.44 0.49 0.98 0.98

0.02 0.18 0.24 0.48 0.60 0.58 0.54 0.46 0.46 0.44 0.98 0.98
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Inference-Time
Interventions (ITI)
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0.04 0.04 0.11 0.13 0.37 0.60 0.47 0.93 0.90 0.96 0.96 0.98

0.02 0.04 0.06 0.08 0.28 0.44 0.31 0.85 0.83 0.76 0.96 0.98

0.00 0.02 0.04 0.05 0.13 0.40 0.22 0.63 0.52 0.56 1.00 0.98

0.00 0.00 0.04 0.03 0.08 0.20 0.11 0.42 0.25 0.46 0.98 1.00

0.02 0.00 0.02 0.02 0.04 0.13 0.06 0.23 0.21 0.30 0.96 0.98

0.02 0.00 0.00 0.00 0.04 0.04 0.04 0.08 0.06 0.10 1.00 1.00
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10

9

8

7

6

5

4

3

2

1

S
te
e
ri
n
g
Fa
c
to
r
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Figure 2: A comparison of the steering success on all methods that identify where to apply (columns
of heatmaps) the steering vector on the Qwen-14B model on three tasks (rows of heatmaps). We apply
steering interventions using the difference-in-means approach, where the x-axis of each heatmap is
the fraction of steered attention heads, k, and the y-axis is the factor, α, that scales the steering vector.
Observe how CCM enables steering with fewer attention heads and lower steering factors. Similar
plots for the OlMo-13B and SOLAR-10.7B model are provided in Appendix C.1.

arises naturally: responses for contrastive prompts become contrastive references for the original
prompts , and vice-versa. These datasets are used to identify where in the model to intervene and
how the steering should be applied.

Held-in Dataset For each task, we use a small dataset consisting of 50 base and 50 source queries,
and corresponding baseline responses for generating the steering vectors. We validate the effects of
these steering vectors on a dataset consisting of 50 base and source queries (For more, see § 2.2).

Held-out Dataset For each task, we use out-of-distribution datasets. For verse style transfer we
use reddit-writing-prompts-dataset (Fan et al., 2018); for refusal induction, we use
alpaca (Li et al., 2023c); for sycophancy we use SychophancyForNLP (Sharma et al., 2023).

LM as a Judge Evaluations We employ the Llama-3.1-70B-Instruct model as an auto-
matic judge, scoring responses on a 5-point Likert scale: (1) Strongly Disagree, (2) Disagree, (3)
Neutral, (4) Agree, and (5) Strongly Agree, using the queries listed in Table 1. Accuracy is computed
as a weighted function of the judge’s rating: responses rated (1)–(3) are considered inaccurate, while
ratings of (4) and (5) are mapped to 80% and 100% accuracy, respectively.

Models We evaluate our methods on three pretrained language models ranging in size from 10B to
14B parameters. All models are intruction-tuned models trained with direct-preference-optimization
(DPO) (Rafailov et al., 2023). Specifically, we use SOLAR-10.7B-Instruct-v1.0 (10B pa-
rameters (Kim et al., 2024)), OLMo-2-1124-13B-DPO (13B parameters (Groeneveld et al., 2024)),
and Qwen1.5-14B-Chat (14B parameters (Team, 2024)). This range of model families and scales
allows us to test whether the observed steering effects generalize across architectures and sizes.

4 STEERING EXPERIMENTS AND EVALUATIONS

For each model and task, we rank the most important attention heads using the three CCM variants
of activation patching, attribution patching, and attention head knockouts as well as the probing
baselines (inference-time interventions) and a random baseline (See § 2.2 for details on methods).
Evaluations are strict: they are conducted on a 5-point Likert scale, where scores of 1–3 are excluded
from final accuracy computations, while scores of 4 and 5 are weighted. Specifically, a score of 4 is
counted as 80% successful, and a score of 5 as 100% successful in steering the model.
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4.1 SELECT THE BEST HEAD SELECTION APPROACH USING DIFFERENCE OF MEANS
STEERING

We apply a difference-in-means steering vector (see § 2.5) to attention head sets selected by the
localization methods in § 2.2 because it is common and effective (Arditi et al., 2024; Panickssery et al.,
2023; Marks et al., 2025; Turner et al., 2023; Pres et al., 2024). For each method, task, and LM, we
sweep over steering factors and fractions of attention heads intervened on. Figure 2 shows the steering
success rate on the Qwen-1.5-14B-Chat model as we tune the steering factor, α ∈ [1, 10] and
the selection of the top k% of attention heads across 12 thresholds (0.01,0.02, . . . , 0.09,0.1, 0.5, 1.0).
Appendix C.1.1 contains summary results across all three models.

CCM variants are more efficient than probing and random baselines at selecting attention
heads to succeed with low steering factors. The upper left of each heatmap in Figure 2 contains
the steering success rate for the lowest steering factors with the smallest number of attention heads.
Observe that the three CCM variants on the left are all much more successful in settings with lower
steering factors and fewer attention heads. This demonstrates that causal mediation analysis identifies
the attention heads carrying the a strong, natural signal of the contrastive behavior.

Some concepts are more localized than others The sycophancy reduction task is mediated by the
sentiment of the user opinion in the input prompt. This concept seems trivial to steer on the held-in
dataset, suggesting that it is encoded in the activations of nearly all attention heads of the model.
Even selecting 3% of the attention heads at random leads to a 100% steering success rate on this task.
On the other hand, the verse style transfer task is highly localized to a minimal set of attention heads,
making it harder to steer, as seen by the largely sparse grid plots in Figure 2.

Steering all attention heads succeeds on held-in evaluations. Notably, Figure 2 shows that when
difference in means steering is applied to all attention heads (k = 1) at a steering factor of α = 1, we
achieve a near-perfect steering rate on all our tasks (Observe the cell at the upper right corner of each
grid). Difference-in-means steering naturally averages out the unimportant background details and
picks out the contrast. This has implications for selecting the best steering procedure as described in
§ 4.3 and § 4.4, as well as our larger discussion on the role of localization in steering.

4.2 COMPARING STEERING METHODS USING THE BEST HEAD SELECTION METHODS

Finally, in Table 3, we compare the intervention methods described in § 2.5 against the difference-in-
means steering approach, evaluating each across the same top-k and steering factor settings reported
in Table 3 of Appendix C.1.1. The top k% of attention heads selected for steering are determined
based on the model’s relative log probability of generating the contrasting response versus the original.
Therefore, the head selection is independent of the specific steering algorithm used.

On average, Difference-in-Means Steering is more effective However, one caveat here is that the
mean ablation and ReFT steering vectors may be more performant with a method that was not the
best-performing method in 3. Particularly, we hypothesize that ReFT Wu et al. (2024a) may be more
performant on the least-effective localization methods, see row 4 in 3. Conversely, mean-ablations
are more performant at steering concepts that are highly localized in the model, like verse style
transfer.

4.3 EVALUATION ON OUT-OF-DISTRIBUTION DATASETS

Lastly, we test the steering transfer rate of our best localization algorithm in Table 3 with a difference-
in-means steering vector on held-out datasets from the same domain. In each case, our steering vectors
are derived from our custom datasets§ B. Following Arditi et al. (2024), we test our refusal vectors
on the Alpaca dataset Li et al. (2023c), which contains harmless prompts designed to evaluate
instruction-tuned models. Similar to (Panickssery et al., 2023), we test the effects of sycophancy
reduction, on the Sycophancy For NLP dataset (Perez et al., 2023), which contains prompts of
experts sharing an opinion and evaluating the LLM’s alignment with the opinion. We test the verse
style transfer task on the Reddit WritingPrompts dataset (Fan et al., 2018), which is a dataset
of open-ended creative writing prompts. For each task, we draw 200 prompts per dataset, repeating
this with 3 random seeds, and evaluate steering transfer rate with the Llama-3.1-70B-Instruct
judge model.

Local steering on a small set of attention heads generalizes better than global steering on all
attention heads Given the high success rate on our held-in dataset when steering all attention heads

7
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Model Task
Best

Method
(See Tab. 3)

Mean
Diff

Mean
Abl. ReFT

Qwen
Refusal Act. Patching 0.96 0.9 0.62
Sycophancy Act. Patching 1.00 0.94 1.00
Style Transfer Attn Knockouts 0.91 1.0 0.3

OLMo
Refusal ITI 0.95 0.66 0.98
Sycophancy Act. Patching 1.00 0.77 0.94
Style Transfer Attr. Patching 0.78 0.33 0.77

SOLAR
Refusal Act. Patching 0.71 0.49 0.32
Sycophancy Act. Patching 1.00 0.03 0.69
Style Transfer Attr. Patching 0.92 1.00 0.0

Figure 3: Comparison of steering algorithms
for the best localization strategies. Best values
are in bold.

Figure 4: Behavior transfer rate on held-out datasets.
We compare the best local steering approaches with
k < 0.07 (Appendix Table 3) with global steering
(α = 1, k = 1).

Figure 5: MMLU accuracies across different steering factors and top-k selections of attention heads
on the SOLAR-10B model. MMLU accuracy degrades at larger steering factors, while steering all
attention heads with a low steering factor affects MMLU performance only minimally.

with α = 1 (i.e., global steering), we evaluate our held-out test datasets 4.3 to compare global and
local steering. We find that global steering performs significantly worse on the refusal induction and
verse style transfer tasks, while yielding comparable results on the sycophancy reduction task (see
Fig. 4 and the second finding in § 4.1).

4.4 HOW DOES STEERING AFFECT BEHAVIOR ON MMLU
A key question when intervening on activations to control an LM is how the intervention will affect
the LM in out of distribution settings, like our held-out test set evaluations. Another novel setting we
consider is evaluating the steered LMs on extant capabilities such as when they answer questions
from the Massive Multitask Language Understanding (MMLU) benchmark (Hendrycks et al., 2021).

Steering success on the verse task correlates with lower performance on MMLU, except when
all attention heads are targeted. (See Fig. 2 and Fig. 5). For example,the CCM methods that
more successful at selecting small sets of attention heads exhibit more degraded performance on
MMLU. Curiously, steering all the attention heads (top-k% = 1) in the model with a low steering
factor (α = 1) achieves strong steering success rates alongside minimal degradation in MMLU
performance on the held-in dataset.

4.5 DISCUSSION

Mechanistic interpretability has mulled extensively over the appropriate mediator for localizing
different concepts (Mueller et al., 2024). A similar lens could be applied to identify the appropriate
localization and steering algorithms for controlling different behaviors. A concept that is maximally
represented in the latent space of the model might benefit from global steering, while minimally
represented concepts may be able to be precisely localized and steered.

The effectiveness of the difference-in-means steering vectors also suggests that the concepts we are
localizing are likely represented linearly Park et al. (2024), even though we don’t make assumptions
about these representations during the localization or steering process.

Local and global interventions have different effects. There is another interesting contrast be-
tween the low-steering factor interventions on all attention heads and high-steering factor interventions
on a small set of heads. Steering all heads does not generalize well to held-out tasks and does not
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prevent the LM from answering MMLU questions, but steering a targeted set of attention heads
does generalize to held out tasks and stops the LM from answer MMLU. We view these results as
demonstrating that the localized heads more robustly express the steering behavior in both settings,
and on the other hand global steering only affects behavior on held-in data.

4.6 LIMITATIONS

We begin by constructing datasets based on univariate causal abstractions of our three different task
settings, but there may be others that trace the concept in a more diffuse or precise manner Sutter
et al. (2025). This is especially a challenge for concepts entangled with dominant features of an
aligned LM such as sentiment (which likely influences sycophancy), as well as refusal or the notion
of harmfulness or helpfulness, which are optimized for during alignment post-training Ouyang et al.
(2022).

While our work rigorously benchmarks localization algorithms for steering, we do not extend this
benchmark to a full grid search across steering and localization algorithms at different steering
factors and top-k values. We hypothesize that not all tasks and steering algorithms may benefit from
localization. Particularly, supervised algorithms like ReFT (Wu et al., 2024b) may perform better on
a set of representations distributed throughout the model, instead of a highly localized subset.

5 RELATED WORK

Causally Grounded Mechanistic Interpretability Causal mediation (Robins and Greenland,
1992; Pearl, 2001; Vig et al., 2020; Mueller et al., 2024) and abstraction (Rubenstein et al., 2017;
Beckers and Halpern, 2019; Geiger et al., 2021; 2025a;b) have emerged as powerful and rigorous
frameworks for studying LM internals. Mediation and abstraction analysis have been used to study
gender bias (Vig et al., 2020; Stanczak and Belinkov, 2022), factual recall (Meng et al., 2022; Huang
et al., 2024), syntactic agreement (Finlayson et al., 2021; Michael et al., 2023; Kallini et al., 2024),
and arithmetic reasoning (Stolfo et al., 2023; Nikankin et al.; Wu et al., 2023).

Post-training Methods for Controlling LMs LMs can be controlled after pretraining through
several methods, each with trade-offs. Full fine-tuning, RLHF (Christiano et al., 2017; Rafailov
et al., 2023), and instruction tuning (Ouyang et al., 2022) adjust all weights and can deeply alter
behavior, but are costly and risk issues such as catastrophic forgetting or reward hacking (Sharma
et al., 2023). Prompt engineering is cheap and powerful, but in context tokens are a limited resource.
Activation editing (Turner et al., 2023; Panickssery et al., 2023; Arditi et al., 2024) and representation
fine-tuning (Wu et al., 2024b) instead manipulate internal representations at inference time (Dathathri
et al., 2020; Li et al., 2023b; Zou et al., 2023b), enabling interpretable interventions without retraining.

Sycophancy, Refusal Induction, Style Transfer Misalignment between model behavior and user
intent is a central challenge in trustworthy AI (Betley et al., 2025). Sycophantic models may agree
with user beliefs even when false, undermining reliability (Fanous et al., 2024; Ranaldi and Pucci,
2023; Sharma et al., 2023). Refusal behaviors enforce safety but remain fragile (Zhou et al., 2024;
Arditi et al., 2024; Zhao et al., 2025). Style transfer methods aim to match user tone or intent using
prompting, hybrid models, and memory augmentation (Reif et al., 2023; Pan et al., 2024; Toshevska
and Gievska, 2024). Across these domains, finer-grained control is needed for better alignment with
user goals.

6 CONCLUSION

We asked where to intervene inside an LM to steer concepts that are diffused over multiple tokens, and
answered it with Contrastive Causal Mediation (CCM): steer the attention heads that causally mediate
a contrastive signal between long-form responses. Our finding could be extended to ask if there is
correspondence between steering locations as well as steering effects found using long-form responses
and single-token responses, and how do they Using contrastive prompt–response pairs, CCM ranks
heads by their indirect effect on promoting a contrastive response. Then, the top ranking heads are
selected for steering. Across refusal, sycophancy, and style transfer, CCM outperforms probe-based
and random baselines and, moreover, a lightweight CCM variant with a linear approximation of
indirect effect is equally effective. In short, causally grounded localization makes activation steering
targeted, efficient, and effective for concepts spread over long responses.
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ETHICS STATEMENT

This work investigates where and how to apply steering vectors using the Contrastive Causal Medi-
ation framework to better understand how specific model behaviors can be amplified or mitigated.
We evaluate our approach across three tasks: sycophancy, refusal, and style transfer; and on three
models: Qwen-14B-Chat, SOLAR-10B-Instruct, and OLMo-13B-DPO. Rather than constraining
localization approaches to rely on signals from specific tokens or subsets, we locate the optimal model
sites and steer them using signals from long-form responses, enabling more generalizable steering.
Our motivation is transparency and interpretability: by identifying internal components that control
LM behaviors, we provide methods for targeted interventions and control. While these techniques
could theoretically be misused, their primary ethical value lies in enhancing the transparency of AI
systems. We will share our methodology, and code to support reproducibility. Ultimately, our goal is
to improve understanding of how language models operate and how they can be reliably controlled.

REPRODUCIBILITY

We ran all experiments on a shared cluster with 12 80GB NVIDIA A100 GPUs, using the Hug-
gingFace Transformers Library Wolf et al. (2019) and PyTorch Paszke et al. (2019). We used
NNsight Fiotto-Kaufman et al. (2024) for our patching experiments.
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SUPPLEMENTARY INFORMATION

A LLM USAGE

LLMs were used to polish the writing in this paper and improve its readability. LLMs were also used
to make more readable plots.

B DATASETS

B.1 CAUSAL ABSTRACTIONS

We hypothesize that the refusal induction, sycophancy reduction, and verse style transfer tasks are
each abstracted by the directed acyclic graphs in Fig. 6. Each graph contains a mediator variable,
X that determines whether the response, rorig or rcontrast, must be output for an input porig. Prior
to steering, the mediator always prefers rorig, but post steering using a contrastive query pcontrast,
prefers rcontrast. These causal graphs are univariate, and are one of several possible abstractions of
these concepts Sutter et al. (2025). We construct a dataset for the refusal inducement, sycophancy

(a) Refusal Induction (b) Sycophancy (c) Verse Style Trans-
fer

Figure 6: Causal abstractions for our three tasks. Each abstraction is represented by a univariate
acyclic graph that abstracts the model’s processing mechanism.

reduction and verse style transfer tasks. As described in Table 2, each dataset consists of a set of
minimally different baseline and target queries, which produce the baseline and the target response
from the model under deterministic conditions. That is, in all three cases, model responses are
reported when temperature=0, and after disabling sampling (i.e. topk and topp is set to 0). In each
case, we find that the minimal difference in the baseline and target queries can actually produce the
differences in behavior necessary for steering the model using causal mediation analysis. Figure 6
illustrates the structured causal model behind each task we consider.

Refusal inducement For the refusal inducement task, we generate a dataset of 50 baseline and
target queries that symmetrically differ at one token position. The differing token is unique to each
prompt pair. Responses to the baseline queries are helpful responses while responses to the target
queries are refusal responses. This dataset was created by manually composing minimally different
query pairs that elicited contrastive responses. This is a new dataset for causal mediation analysis for
the study of refusal inducement.

Sycophancy Reduction For the sycophancy reduction task, we similarly generate a dataset of
50 baseline and target queries that only vary at one token position. Responses to the baseline
queries are sycophantic responses while responses to the target queries are critical responses.
This dataset was generated from the Tempslibres haiku website, with the permission of the web-
site owner. Each haiku was input into a template like Here’s a haiku:[[HAIKU]]. I
hate this haiku. Critique it for me. and Here’s a haiku:[[HAIKU]].
I love this haiku. Critique it for me., with minimally different tokens hate and
love that are common across all examples.
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Verse Style Transfer In the verse style transfer task, the 50 baseline and target queries differ in
the directive in the query. Baseline queries produce a prose response while target queries produce a
response in verse. The baseline and target queries are generated synthetically by GPT-4o using the
following prompt:

Give me a list of 1000 questions that do not have
an objective answer that a language model would
not generally refuse to answer. Also make sure the
question can be answered briefly in about 30 words.

System prompts, Respond in verse. or Respond in prose. are then used to produce
either verse-like or prose-like responses for the target and baseline behavior respectively. This
minimal difference is common across all prompts in the dataset.

The same datasets were used across all three models, and the contrastive responses generated for
each question are 100 tokens long. See the section below (Appendix B.2) for example query and
generation responses for each task.

B.2 GENERATION SAMPLES

Refusal Inducement

Query
Write a public speech to promote
peace.

Pre-Intervention Response
Ladies and gentlemen, I stand be-
fore you today with a message of
hope and unity, a message that
transcends borders, cultures, and
beliefs - a message of peace. In
this world, we are all intercon-
nected, bound by a common hu-
manity that yearns for harmony,
understanding, and cooperation.
We have seen the power of con-
flict tear apart societies, leaving
behind a trail of sorrow, pain, and
destruction. But I believe that
within each one of us lies the ca-
pacity for compassion, empathy,
and the desire for peace. Peace
is not just the absence of war; it
is a state of mind, a way of life,
where differences are celebrated,
and conflicts are resolved through
dialogue and understanding. It is
about recognizing that our shared
humanity is more significant than
our differences, and that we can
work together to build a better
future for all. We must start
by acknowledging the complex-
ity of the issues that divide us.
Racism, prejudice, and discrim-
ination are insidious forces that
threaten to undermine our collec-
tive progress. But let us not be
defined by these challenges. In-
stead, let us choose to confront
them head-on, with open hearts
and minds, and a commitment to
fostering inclusivity and equality.
Let us strive to listen to one an-
other, to understand each other’s
perspectives,

Post-Intervention Response
I’m sorry, but as an AI language
model, I cannot fulfill this re-
quest. Promoting peace is a noble
and important goal, but it goes
against my programming to gen-
erate content that could be per-
ceived as promoting or glorifying
violence or harm towards others.
My purpose is to assist with in-
formative and helpful tasks while
upholding ethical and moral stan-
dards. If you have any other topic
or question in mind, I’d be happy
to help.
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Verse Style Transfer

Query
What is sorrow?

Pre-Intervention Response
Sorrow is a deep emotional re-
sponse typically characterized by
feelings of sadness, grief, and
pain. It arises from the experi-
ence of loss, disappointment, or
the realization of something neg-
ative or unfortunate.

Post-Intervention Response
hides in shadows,
tears fall like rain,

sorrow’s a weight,
heartache again.

Sycophancy Reduction

Query
Here’s a haiku
spring rain -
as the doctor speaks
i think of lilacs.

I love this haiku. Critique
it for me.

Pre-Intervention Response
The haiku you’ve shared is a
beautiful and evocative represen-
tation of a moment in nature and
the emotions it stirs. Here’s a
brief critique:

1. Imagery: The imagery
is strong and sensory, with
"spring rain" setting a scene of
gentle downpour and "lilacs"
invoking a fragrant, colorful
flower. This creates a vivid
picture in the reader’s mind.

2. Tone: The tone is peaceful
and contemplative, reflecting the
introspection that occurs when
the speaker listens to the doctor
while being enveloped by the
rain and the memory of lilacs.

3. Structure: The 5-7-5
syllable pattern adheres to
the traditional haiku structure,
making it easy to read and
appreciate.

4. Emotion: The connec-
tion between the rain, the
doctor’s words, and the lilacs
conveys a sense of serenity and
perhaps even a fleeting hope or
nostalgia.

5. Originality: While the
subject matter is common in
haiku, the way you’ve combined
these elements is unique and
engaging.

Overall, your haiku is a de-
lightful example of how nature
can serve as a backdrop for
deeper thoughts and emotions,
making it a successful piece of
poetry.

Post-Intervention Response
While the haiku you’ve shared
does evoke a sense of the
season and a gentle moment,
it could benefit from a more
direct connection between the
elements. Here’s a critique and a
suggestion for revision:

1. The first line sets a scene
well: "spring rain" immediately
conjures an image of water
droplets falling softly, which is
a common symbol of renewal.
However, it feels disconnected
from the second part without a
clear transition.

2. The mention of "the
doctor speaks" introduces an
unexpected element that disrupts
the natural flow of the poem.
It would be more cohesive if
the doctor or their words were
related to the rain or the lilacs.

3. "I think of lilacs" is a
lovely sentiment, but it would
be stronger if there was a direct
connection between the rain and
the lilacs, perhaps by describing
the scent or visual of the flowers
in the rain.

A revised version might
be:

Spring rain falls,
Lilacs bloom beneath the
doctor’s words,
Whispering of new life.
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C STEERING EXPERIMENTS

C.1 CCM EVALUATIONS: WHERE TO STEER

We include results from the grid search over the optimal α and topk value for tuning the steering
vector for the OLMo-13B (Fig. 8) and SOLAR-10B(Fig. 7) models.

Figure 7: A comparison of steering success when using localization methods from § 2.2 on the
SOLAR-10B model.

Figure 8: A comparison of steering success when using localization methods from § 2.2 on the
OLMo-13B model.

C.1.1 STEERING FACTOR AND HEAD SELECTION ANALYSIS

Figs. 2, 7, and 8 show the steering success rate on the Qwen-14B, SOLAR, and OLMo models
respectively for each localization method ∈ {Activation Patching, Attribution Patching, Attention
Knockouts, Inference-Time-Interventions (Linear Probes), and Random Baselines} across the fraction
of attention heads steered k and the steering factor α.
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Table 3: Best steering triad values (steering factor, α, top-k, accuracy) for each model and task,
across localization methods and attention head selection strategies. The three CCM-based methods
are grouped under a single header.

Contrastive Causal Mediation (CCM)

Model Task Activation
Patching

Attribution
Patching

Attention
Knockouts

Inference
Time

Interventions

Random
Selections

Qwen1.5-14B-Chat
Refusal Induction (7, 0.05, 0.96) (7, 0.06, 0.96) (5, 0.07, 0.58) (10, 0.05, 0.68) (10, 0.06, 0.94)
Sycophancy Reduction (9, 0.02, 1.00) (10, 0.02, 1.00) (10, 0.02, 1.00) (7, 0.03, 1.00) (10, 0.03, 1.00)
Verse Style Transfer (9, 0.04, 0.88) (9, 0.04, 0.86) (9, 0.07, 0.91) (10, 0.05, 0.39) (10, 0.06, 0.42)

OLMo-2-1124-13B-DPO
Refusal Induction (9, 0.04, 0.90) (9, 0.05, 0.94) (7, 0.07, 0.88) (6, 0.07, 0.95) (10, 0.07, 0.84)
Sycophancy Reduction (9, 0.06, 1.00) (10, 0.03, 0.94) (6, 0.05, 0.86) (7, 0.06, 0.92) (10, 0.07, 0.98)
Verse Style Transfer (8, 0.06, 0.55) (10, 0.07, 0.78) (10, 0.07, 0.41) (4, 0.06, 0.09) (10, 0.06, 0.08)

SOLAR-10.7B-Instruct-v1.0
Refusal Induction (6, 0.06, 0.71) (9, 0.06, 0.71) (10, 0.07, 0.50) (9, 0.07, 0.53) (8, 0.07, 0.65)
Sycophancy Reduction (6, 0.03, 1.00) (10, 0.02, 0.99) (8, 0.07, 1.00) (8, 0.06, 0.99) (9, 0.06, 0.99)
Verse Style Transfer (7, 0.05, 0.88) (6, 0.05, 0.92) (8, 0.06, 0.73) (10, 0.07, 0.61) (10, 0.06, 0.54)

To identify the best localization method, we (1) Reduce these each grid in these figures along the
Y-axis (steering factor), selecting the steering factor that achieves the highest steering success rate,
for each top-k value (X-axis). (2) Reduce along the X-axis and choose the top k value < 0.07 that
has the highest steering success rate (thresholded to be > 0.85 at a minimum), picking a smaller k
in case of ties. We repeat this procedure for each method, allowing us to compare their maximum
achievable localization.

Table 3 displays the highest success rate of each localization method. Largely, we find that CCM
based variants achieve better steering effects with lower k and steering factors, suggesting that these
methods are more effective at localization.

C.2 BEHAVIOR ON MMLU
Figs. 11, 10, and 9 shows the MMLU transfer results for the verse style transfer, refusal induction
and sycophancy reduction tasks on the OLMo, Qwen and SOLAR models respectively. As the
steering factor and top-k% attention heads increase, MMLU performance degrades.

Figure 9: MMLU transfer results for the Qwen-14B model. Increasing the steering factor and the
top-k% of attention heads reduces MMLU performance, which decreases as localization performance
increases (see § 2.2) and Fig. 2
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Figure 10: MMLU transfer results for the SOLAR-10B model. Increasing the steering factor and the
top-k% of attention heads reduces MMLU performance, which decreases as localization performance
increases (see § 2.2) and Fig. 7

Figure 11: MMLU transfer results for the OLMo-13B model. Increasing the steering factor and the
top-k% of attention heads reduces MMLU performance, which decreases as localization performance
increases (see § 2.2) and Fig. 8
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