
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

QUERY-AWARE FLOW DIFFUSION FOR GRAPH-BASED
RAG WITH RETRIEVAL GUARANTEES

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph-based Retrieval-Augmented Generation (RAG) systems leverage intercon-
nected knowledge structures to capture complex relationships that flat retrieval
struggles with, enabling multi-hop reasoning. Yet most existing graph-based meth-
ods suffer from (i) heuristic designs lacking theoretical guarantees for subgraph
quality or relevance and/or (ii) the use of static exploration strategies that ignore
the query’s holistic meaning, retrieving neighborhoods or communities regard-
less of intent. We propose Query-Aware Flow Diffusion RAG (QAFD-RAG), a
training-free framework that dynamically adapts graph traversal to each query’s
holistic semantics. The central innovation is query-aware traversal: during graph
exploration, edges are dynamically weighted by how well their endpoints align
with the query’s embedding, guiding flow along semantically relevant paths while
avoiding structurally connected but irrelevant regions. These query-specific reason-
ing subgraphs enable the first statistical guarantees for query-aware graph retrieval,
showing that QAFD-RAG recovers relevant subgraphs with high probability under
mild signal-to-noise conditions. The algorithm converges exponentially fast, with
complexity scaling with the retrieved subgraph size rather than the full graph.
Experiments on question answering and text-to-SQL tasks demonstrate consistent
improvements over state-of-the-art graph-based RAG methods.

1 INTRODUCTION

Retrieval-Augmented Generation (RAG) enhances language models (LMs) by integrating external
knowledge during generation (Fan et al., 2024; Gao et al., 2023b). A retriever first gathers relevant
information for a query, which is then combined with the input and passed to the generator (Karpukhin
et al., 2020). This is especially useful for question answering (QA) (Karpukhin et al., 2020; Xiong
et al., 2020; Zhu et al., 2021), where added context improves accuracy in domains like healthcare,
law, finance, and education (Xu et al., 2024; Zhang et al., 2023). With recent advances in large LMs
(LLMs), RAG has become central to ethical AI, helping mitigate hallucinations (Tonmoy et al., 2024),
improve transparency (Kim & Lee, 2024), adaptability (Shi et al., 2024; Wang et al., 2023), privacy
(Zeng et al., 2024a;b), fairness (Shrestha et al., 2024), and reliability (Fang et al., 2024a).

Although conventional RAG is effective for unstructured document retrieval, real-world knowledge
often has graph-structured forms—such as database schemas, social networks, and biomedical
repositories. These structures preserve relational information that similarity-based retrieval misses,
including multi-hop dependencies, hierarchies, and complex interactions. Graph-oriented RAG
leverages such properties through techniques such as community detection and graph neural networks
(Edge et al., 2024b; Wang et al., 2024), extending beyond similarity search to capture topological
and semantic relationships (Fan et al., 2024; Gao et al., 2023b). This enables advanced multi-hop
reasoning crucial for tasks such as text-to-SQL generation, scientific discovery, and medical diagnosis,
where understanding relationships is as important as retrieving facts (Chen et al., 2025b; Wigh et al.,
2022; Zhang et al., 2024c). For an overview, see the survey by Han et al. (2024).

However, existing graph-based RAG methods (Han et al., 2024) suffer from heuristic designs lacking
theoretical guarantees for subgraph quality or relevance and/or the use of static exploration strategies
that ignore the query’s holistic meaning during traversal. As shown in Figure 1, GraphRAG (Edge
et al., 2024b) applies uniform community detection regardless of query relevance, while Ligh-
tRAG (Guo et al., 2024) extracts ego-networks around seed nodes without semantic alignment. In

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

GraphRAG LightRAG QAFD-RAG

Figure 1: Comparison of graph-based RAG methods on Wikipedia pages (Apple fruit, Ap-
ple Inc., Amazon River, Amazon.com)1. Query: “Introduce Steve Jobs’s products in Apple.”
GraphRAG (Edge et al., 2024b) retrieves entire communities, mixing relevant nodes (e.g., Mac,
macOS) with irrelevant ones (e.g., Amazon River, Apple fruit). LightRAG (Guo et al., 2024) focuses
on 1-hop neighborhoods, including both relevant nodes (e.g., Steve Jobs, iPhone) and structurally
close but irrelevant ones (e.g., Fuji). QAFD-RAG reweights edges by the query’s holistic meaning,
suppressing irrelevant 1-hop neighborhoods and preventing traversal into the Amazon River, Ama-
zon.com, and Apple fruit clusters. The resulting subgraph is coherent, with edge thickness reflecting
weight and node mass indicating importance (highest, lowest); see the discussion following Eqn. (8).

contrast, QAFD-RAG incorporates query semantics by reweighting edges and propagating mass along
semantically aligned paths. Nodes on the reasoning chain (Apple→Mac→ macOS) are emphasized
with stronger colors, while irrelevant ones (Amazon River, Fuji) fade due to suppressed flow. This
reweighting turns diffusion into a semantic filter, producing compact, interpretable subgraphs aligned
with user intent. By contrast, holistic query-agnostic methods often include irrelevant nodes, omit
distant but relevant information, and return unstructured lists rather than coherent reasoning paths.
Lacking theoretical foundations, these heuristics also yield unpredictable performance.

Given these limitations, we ask:

Q: Under what conditions can we establish recovery guarantees for retriev-
ing subgraphs that adapt to a query’s holistic meaning in graph-based RAG?

To address this, we turn to graph diffusion theory and in particular flow diffusion—the process
of spreading mass from seed nodes to neighbors along graph edges (Lovász, 1993; Chung, 1997;
Fortunato, 2010; Spielman & Teng, 2013b; Fountoulakis et al., 2023b). Spectral diffusion methods
are effective for clustering and community detection due to strong guarantees and efficiency, but
have not been studied in the presence of queries. We reformulate diffusion for graph-based RAG,
linking flow/traversal to a query’s holistic meaning. Specifically, we propose Query-Aware Flow
Diffusion RAG (QAFD-RAG), a framework for dynamic, query-aware graph traversal via principled
flow diffusion. The main contributions of this work are:

C1: Query-Aware Flow Diffusion Framework: We introduce the first principled flow diffusion
method for graph-based RAG that incorporates query semantics via alignment-based edge weighting.
QAFD-RAG adapts flow probabilities online, guiding traversal toward semantically relevant regions
with complexity scaling with the retrieved subgraph size rather than the full graph (Figures 1 and 2).
C2: Optimization and Statistical Guarantees: We provide the first rigorous analysis of query-

aware traversal with provable guarantees. Our results (Theorem 3) show exponential convergence
to a unique query-dependent stationary distribution, and recovery guarantees (Theorem 7) ensuring
relevant subgraphs are retrieved with high probability under mild signal-to-noise conditions.
C3: Experimental Validation: QAFD-RAG demonstrates superior performance across multiple

benchmarks, consistently outperforming both graph-based RAG and text-to-SQL baselines. On the
UltraDomain QA dataset (Tables 1 and 5), QAFD-RAG leads in 96% of topic–metric comparisons (48
out of 50 evaluated pairs). For multi-hop question answering (Table 3), QAFD-RAG achieves F1/EM
scores of 68.6/53.7 on HotpotQA and 62.3/54.1 on 2WikiMultiHopQA, significantly outperforming

1Code is available at anonymous repository.

2

https://anonymous.4open.science/r/QAFD-E5B6/

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

---Role---
You are a helpful assistant responding to
questions about the data in the tables provided.

---Goal---
Generate a response of the target length and
format that responds to the user's question,
summarizing all information in the input data
tables appropriate for the response length and
format, and incorporating any relevant general
knowledge. If you don't know the answer, just
say so. Do not make anything up. Do not include
information where the supporting evidence for it
is not provided.

---Target response length and format---
<response_type>

---Data tables---
Elaine Benes: <cluster_information>
Women: <cluster_information>
Feminism: <cluster_information>
Feminist Philosophy: <cluster_information>

Step 3: Prompting

Question: What role does feminism play in the book's analysis of Elaine Benes?

High-Level Keywords: "Feminism",
"Philosophy", "Character evaluation"
Low-Level Keywords: "Elaine Benes", "Book
analysis", "Gender roles", "Social commentary"

Step 2: Seed Nodes Selection and
Query Aware Flow Diffusion

Step 1: Keyword Extraction Step 3: Prompting

Sub-graph

Document: Chapter 3. Elaine
Benes: Feminist Icon or Just
One of the Boys?, by Sarah E.
Worth, evaluates Elaine’s role as
a strong, independent woman in
the context of feminist ethics
and cultural representation …

Chunks

Entities and Relationships

Step 1: Document
Chunking

Step 2: Entity and
Relationship Extraction

Knowledge
Graph

In
de

xi
ng

 S
ta

ge

Q
ue

ry
 S

ta
ge

The selected seed nodes are marked in the box.

Figure 2: Two-stage QAFD-RAG framework: the indexing stage builds a KG from documents, and
the query stage applies QAFD to extract and prompt subgraphs for response generation.

GraphRAG (33.4/14.0 and 15.2/7.0, respectively) and LightRAG (8.8/0.0 and 8.2/1.0, respectively).
In text-to-SQL tasks (Tables 4–9), QAFD-RAG attains execution accuracies of 26.7% on SQLite and
23.7% on Snowflake databases, surpassing the Spider-Agent baseline (Lei et al., 2024) (21.5% and
16.3%, respectively) while simultaneously reducing LLM API calls by 31.9–54.5%.

Notation. Rd is the d-dimensional real space, with Rd
+ and Rd

++ its positive and strictly positive
orthants. Vectors and matrices are denoted by bold lowercase and uppercase letters (e.g., a, A), with
elements ai and aij . For A, Ai: and A:j denote its ith row and jth column; A ≻ 0 (⪰ 0) indicates
positive (semi-)definiteness. Vector norms are ∥a∥1 =

∑
i |ai| and ∥a∥ = (

∑
i |ai|2)1/2. Matrix

norms are ∥A∥1 =
∑

ij |aij | and ∥A∥F = (
∑

ij |aij |2)1/2. For n ∈ N, [n] := {1, . . . , n}. Standard
asymptotic notations O,Ω,Θ, o, ω are used with respect to n.

2 METHODOLOGY

2.1 FRAMEWORK OVERVIEW

QAFD-RAG is a training-free, graph-based reasoning framework for RAG tasks. The framework
operates in two phases: an Indexing Stage (IS), which builds a knowledge graph (KG) from raw
documents (Chen et al., 2025a; Guo et al., 2024), and a Query Stage (QS), which introduces our key
contribution—query-aware flow diffusion. This mechanism integrates query semantics into graph
traversal, enabling adaptive retrieval with statistical guarantees. Unlike SOTA RAG methods such as
GraphRAG (Edge et al., 2024b), which applies static community detection, or LightRAG (Guo et al.,
2024), which extracts ego-nets (Figure 1), QAFD-RAG dynamically reweights edges and diffuses
flow according to query alignment, suppressing irrelevant clusters and highlighting reasoning paths.

In IS, IS-Step 1: Document Chunking splits documents into context-preserving chunks; IS-Step 2:
Entity and Relationship Extraction uses LLM prompting to build a structured KG. In QS, QS-Step
1: Keyword Extraction pulls conceptual and surface terms (e.g., Feminism, Elaine Benes) for broad
coverage (Figure 2, Step 1). Next, QS-Step 2: Seed Node Selection and QAFD scores nodes by
similarity to query keywords as detailed in Algorithm 1. For example, in Figure 1, Steve Jobs (0.95),
Apple (0.92), and iPhone (0.88) are selected, while irrelevant ones (e.g., Amazon, 0.15) are excluded.
Top-scoring nodes serve as seeds where mass is injected and propagated via flow diffusion (Figure 2,
Step 2). Edges are dynamically reweighted to blend structure and semantics through the query-aware
edge weighting mechanism described in Section 2.2, suppressing irrelevant expansions (Apple→
Amazon River/fruit) and reinforcing meaningful ones. We formulate this diffusion process as a
constrained optimization problem, solved efficiently via a push–relabel algorithm (Algorithm 2).
Recovery guarantees and algorithm complexity are provided in Section 3. Finally, QS-Step 3:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Response Generation summarizes retrieved communities (e.g., Elaine Benes, Feminism) and prompts
a downstream LLM, yielding grounded, consistent answers along reasoning paths.

2.2 QUERY-AWARE FLOW DIFFUSION

We cast subgraph retrieval as a QAFD problem. Given a natural language query q ∈ Q and a
knowledge graph G = (V, E ,R), with V entities, E edges, andR relations, the task is to retrieve a
subgraph Gq ⊆ G capturing reasoning paths relevant for downstream language model processing. We
first recall flow diffusion from graph diffusion theory (Lovász, 1993; Chung, 1997; Spielman & Teng,
2013b; Fountoulakis et al., 2023b).

Definition 1 (Flow Diffusion). Flow diffusion spreads an initial amount of “mass” or “information”
from seed nodes through a graph along its edges. At each step, mass is divided among neighbors by
edge weights, so strongly connected nodes receive more and weakly connected ones less.

Algorithm 1 Seed Node Selection

Input: Query q, graph G = (V, E ,R), number of
seeds N

Output: Seed entities SV ⊆ V with |SV | = N
1: Extract keywords Kq from q using an LLM
2: Compute keyword embeddings eq,i ← h(wi)
3: Compute entity embeddings ev ← h(kv)
4: for v ∈ V do

score(v, q) := max
i=1,...,|Kq|

Hsim(eq,i, ev). (1)

5: end for
6: Let s(N) be the N -th largest score and set

SV := {v ∈ V : score(v, q) ≥ s(N)}. (2)

7: return SV

Intuitively, flow diffusion resembles water or
dye moving through pipes: most flow fol-
lows stronger pipes (high-weight edges), lit-
tle through weaker ones. While well stud-
ied in clustering and community detection,
it has not been explored in the presence of
queries. We reformulate diffusion for graph-
based RAG, linking traversal to query seman-
tics. The first step is seed node selection,
as seeds are usually assumed a priori in dif-
fusion methods (Spielman & Teng, 2013b;
Wang et al., 2017; Yang & Fountoulakis, 2023;
Fountoulakis et al., 2023b). Seed selection
identifies query-relevant entities as starting
points for flow diffusion. We adopt a seman-
tic similarity–based approach, treating seed
utility as approximately additive for indepen-
dent scoring. Formally, let Q be the query
space and W the vocabulary space. Define g : Q → 2W mapping a query q ∈ Q to keywords
Kq := {w1, . . . , w|Kq|} via LLM prompting (Appendices A4, A5). Let KV := {kv : v ∈ V} be
node identifiers. We define an embedding function h :W ∪KV → Rd mapping query keywords and
nodes to Rd:

Eq := {h(wi)}
|Kq|
i=1 = {eq,i ∈ Rd}|Kq|

i=1 , EV := {h(kv)}v∈V = {ev ∈ Rd}v∈V . (3)

We then define a similarity function Hsim : Rd × Rd → R for semantic relatedness, with common
choices including cosine similarity e·e′/∥e∥∥e′∥, dot product e·e′, or RBF kernel exp(−γ∥e−e′∥2).
The relevance score of a node v for query q is the maximum similarity across keywords via (1).
We then select the N highest-scoring entities via (2), breaking ties arbitrarily. For small graphs,
keywords and seeds can often be extracted in one LLM prompt (Appendix A5). For large graphs
(e.g., Table 11), we apply Algorithm 1, which runs in O(|V| · |Kq| · d+ |V| logN).

Dynamic Query-Aware Edge Weights. Given seeds SV and query q ∈ Q, we perform flow diffusion
to extract reasoning subgraphs. Traditional diffusion methods use static edge weights that ignore
query context, leading to uniform exploration regardless of semantic relevance. Our key insight is to
make edges "query-aware gates" that modulate flow strength based on both structural connectivity
and query alignment, enabling theoretical guarantees for subgraph recovery. For each q ∈ Q, edge
(u, v) ∈ E , and a, b ≥ 0, the query-aware edge weights are

w̄(q, u, v) := Hsim(h(u), h(v)) ◦ (a+ b · (Hsim(h(u), h(q)) ◦Hsim(h(v), h(q)))) , (4)

where h(·) is the embedding function, Hsim a similarity measure, ◦ a binary operation (addition or
multiplication), and a, b ≥ 0 hyperparameters.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

We explore three variants that balance structural and semantic signals differently:

w̄Mean(q, u, v) :=
1
3 (Hsim(h(u), h(v)) +Hsim(h(u), h(q)) +Hsim(h(v), h(q))) , (5a)

w̄Product(q, u, v) := Hsim(h(u), h(v)) ·Hsim(h(u), h(q)) ·Hsim(h(v), h(q)), (5b)

w̄Hybrid(q, u, v) := Hsim(h(u), h(v)) · (a+ b (Hsim(h(u), h(q)) +Hsim(h(v), h(q)))) . (5c)

Here, Hsim(h(u), h(v)) captures structural (node–node) similarity, while Hsim(h(u), h(q)) ◦
Hsim(h(v), h(q)) measures query relevance to nodes u and v. The multiplicative interaction in
Product and Hybrid amplifies edges between query-relevant nodes while exponentially suppressing
edges to irrelevant regions, transforming diffusion into a semantic filter. Weights are computed
online: when a query arrives, we first compute its embedding and then update only the edge weights
w̄(q, u, v) encountered during traversal. In experiments, w̄Hybrid(q, u, v) yields slightly better results.

QAFD’s Primal–Dual Formulation. Given approaches for seed nodes and dynamic weight compu-
tations w̄(q, u, v), we formulate flow diffusion (Definition 1) as a constrained optimization problem
that minimizes total flow cost while enforcing mass conservation at each node. Let f ∈ R|E| denote
edge flows, W̄(q) ∈ R|E|×|E| the diagonal matrix of query-aware edge weights, and B ∈ R|V|×|E|

the incidence matrix of G. The optimization is

min
f∈R|E|

1

2
f⊤W̄(q)f subj. to ∆+BW̄(q)f ≤ T, ∀q ∈ Q. (6)

Here, ∆ ∈ R|V| encodes source mass injection and T ∈ R|V| represents sink capacities. We note
that in previous formulations (Wang et al., 2017; Fountoulakis et al., 2020b; 2023b), W̄(q) is query-
independent and, in most cases, is restricted to be the identity matrix. Following Definition 1, the
sink capacity vector T determines how much mass each node can hold before diffusing to neighbors.
A common choice is degree-based capacity where Tv = degree(v), which allows high-degree nodes
to accumulate more mass proportional to their connectivity, though uniform capacity Tv = β for
some constant β > 0 provides an alternative that treats all nodes equally regardless of their structural
prominence. The source vector ∆ controls the initial mass distribution across nodes, with a common
choice ∆v = α

∑
u∈V Tu for source nodes v ∈ SV and ∆v = 0 otherwise, where α > 0 controls

source strength.

The corresponding Lagrangian of (6) with multiplier vector x ∈ R|V|
+ is

L(f ,x; q) = 1
2 f

⊤W̄(q)f + x⊤ (∆+BW̄(q)f −T
)
, ∀q ∈ Q. (7)

Taking ∂L/∂f = 0 gives the primal-dual relation f = −Bx. Substituting this into (7) and setting
L(q) = BW̄(q)B⊤ yields the dual problem

min
x∈R|V|

+

F (x; q) := 1
2x

⊤L(q)x+ x⊤(T−∆), ∀q ∈ Q. (8)

It is often more convenient to use (8), which incorporates the T and ∆ constraints into the objective.
The solution provides node importance scores x ∈ R|V|

+ , indicating each entity’s query relevance.
Intuitively, f represents edge flow strength—thicker edges in Figure 1(right)—while x denotes node
mass or importance, shown by color in Figure 1(right): greener nodes are most relevant, yellow least,
with intermediate shades indicating moderate importance.

Algorithm 2 performs coordinate-wise optimization updates on the dual objective (8) for a query
and seed node. We set ∆v = α

∑
u∈V Tu for v ∈ SV and ∆v = 0 otherwise. At each step, a node

v with excess mass (mv > Tv) is chosen uniformly at random and xv is increased to reduce the
objective. The mass vector m tracks the gradient of F (x), initialized as m = ∆ at x = 0 with
∇F (0) = T−∆. More generally, m = ∆−L(q)x, linking to∇F (x, q) = T−m. The condition
mv > Tv is equivalent to ∂F/∂xv < 0, ensuring updates decrease the objective. Push operations
enforce complementary slackness: active xv > 0 correspond to nodes at capacity (mv = Tv),
satisfying dual optimality.

Locality Preservation and On-Demand Computation. After selecting seedource nodes SV , Algo-
rithm 2 preserves the locality of flow diffusion while enabling online graph traversal. This property is

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

crucial for large-scale KGs with millions of nodes. Unlike SOTA RAGs (Edge et al., 2024a), which
requires full preprocessing, QAFD-RAG dynamically discovers relevant entities and relationships
during traversal. When mass flows from node v to its neighbors, the algorithm: (i) computes query-
aware edge weights w̄(q, v, u) on-demand via (4); (ii) retrieves embeddings eu and properties only
when mass reaches u; and (iii) determines sink capacities Tu dynamically. This lazy evaluation
makes complexity scale with the explored subgraph rather than the full graph.

Algorithm 2 Query-Aware Flow Diffusion

Input: Graph G = (V, E) with node embeddings
{ev}v∈V , seed node s ∈ V (via Algorithm 1),
query q and embedding eq ← h(q), α, ϵ ≥ 0.

Output: Node importance scores x ∈ R|V|

1: Initialize m← 0, x← 0
2: Set sink capacities Tv = deg(v) for all v ∈ V
3: Set source mass ms = α ·

∑
v∈V Tv

4: while
∑

v max(0,mv − Tv) > ϵ do
5: Select v ∈ {u : mu > Tu} u.a.r.
6: excess← mv − Tv , wv ← 0
7: for u ∈ neighbors(v) do
8: Compute w̄(q, v, u) using Eq. (4)
9: wv ← wv + w̄(q, v, u)

10: end for
11: xv ← xv + excess/wv , mv ← Tv

12: for u ∈ neighbors(v) do
13: mu ← mu+excess · w̄(q, v, u)/wv

14: end for
15: end while
16: return x

Extension to Multi-Subquery Formulation.
For complex queries requiring multi-hop reason-
ing, a single embedding via (4) may be insuf-
ficient. We address this by decomposing such
queries into multiple subqueries, as they often
involve distinct reasoning aspects solvable in-
dependently and then combined. For example,
the Spider 2.0 (Lei et al., 2024) query "Please
help me find the film category with the highest
total rental hours in cities whose names either
start with ’A’ or contain a hyphen." decomposes
into filtering cities, linking to addresses and cus-
tomers, finding rentals, mapping rentals to films,
and identifying film categories with the highest
totals. This decomposition enables more effec-
tive embeddings during traversal by handling
reasoning aspects independently before aggrega-
tion. Given a complex query q, we decompose it
into K subqueries QK = {q1, q2, . . . , qK} us-
ing LLM-based decomposition (see Prompt 5),
where each qi captures a specific reasoning as-
pect. We then apply flow diffusion to each sub-
query independently: for each qk, we compute

w̄(qk, u, v) = Hsim(h(u), h(v)) ◦ [a+ b · (Hsim(h(u), h(qk)) ◦Hsim(h(v), h(qk)))] . (9)

We then solve the flow optimization problem for each subquery. From (8), we obtain

min
x(k)∈R|V|

+

F (x(k); qk) :=
1
2 (x

(k))⊤L(k)(qk)x
(k) + (x(k))⊤(T(k) −∆(k)), ∀qk ∈ QK . (10)

Here, L(k)(qk) = BW̄(k)(qk)B
⊤ is the weighted Laplacian for qk, with W̄(k)(qk) denoting the

diagonal matrix of edge weights w̄(qk, u, v). The solution yields subquery-specific importance scores
x(k), with support V(k)

support = {v ∈ V : x
(k)
v > ϵ}, where ϵ > 0 filters out negligible values. The final

retrieved subgraph combines all subqueries, Gq =
⋃K

k=1 Gqk , where each Gqk is built from V(k)
support

and its edges. See Figure 5 for an illustrative example.

3 OPTIMIZATION AND STATISTICAL GUARANTEES

We now provide theoretical guarantees for Algorithm 2, focusing on convergence and locality.

Lemma 2. Let x(k)∗ be the optimal solution of (10). The support of each iterate generated by
Algorithm 2 is contained within supp(x(k)∗). Moreover, | supp(x(k)∗)| ≤ ∥∆(k)∥1.

Let d̄ be the maximum degree of a node in supp(x∗). Since each iteration only touches a node
u ∈ supp(x∗) and its neighbors, Lemma 2 implies that the number of nodes ever explored is at most
∥∆∥1. Thus, if ∥∆∥1 is small and d̄ does not scale linearly with n, Algorithm 2 remains local, with
subgraph size controlled by ∥∆∥1.

Theorem 3. For subquery qk, assume | supp(x(k)∗)| < |V|, where x(k)∗ solves (10). After

τ (k) = O
(
∥∆(k)∥1 γ(k)

η(k) log
1
ξ

)
, where γ(k) = maxu∈supp(x(k)∗)

∑
v∼u w̄(qk, u, v) and η(k) ≥

min(u,v)∈supp(Bx(k)∗) w̄(qk, u, v), we obtain E
[
F
(
x(k),τ(k)

; qk

)]
− F

(
x(k)∗; qk

)
≤ ξ.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Corollary 4. Algorithm 2 converges to x(k)∗ in O(d̄ · ∥∆∥1 · log(1/ϵ)) iterations, where d̄ is the
maximum degree in the KG, ∥∆∥1 is the total injected mass, and ϵ is the desired accuracy.

Theorem 3 shows that convergence depends on γ(k)/η(k), where γ(k) is the maximum query-aware
weighted degree and η(k) the minimum edge weight in the optimal support. Since w̄(qk, u, v) is
query-dependent, convergence adapts to each subquery’s semantics—unlike traditional diffusion with
static weights. The runtime to reach an ϵ-accurate solution is O(d̄∥∆∥1 α

β log 1
ϵ). If d̄, ∥∆∥1, and

α/β are sublinear in n, Algorithm 2 achieves sublinear time, scaling to large KGs. This improves over
exhaustive subgraph and graph-based RAG methods with O(|V|2) complexity, showing QAFD-RAG
combines efficiency with semantic adaptability.

Statistical Guarantees under a Random Graph Model. Under appropriate signal-to-noise condi-
tions, we can provide guarantees about the quality of recovered reasoning paths.

Our analysis relies on a probabilistic framework where the embeddings eu, ev , and eqk for relevant
nodes and queries follow a structured random model. While this assumption may seem restrictive,
these embeddings can capture diverse node and query characteristics beyond simple text. The
mathematical foundations for analyzing node-attributed graphs have been extensively developed in
prior work on graph clustering (Reid & Yuval, 2009; Allen-Zhu et al., 2013; Andersen et al., 2016; Shi
et al., 2017; Wang et al., 2017; Fountoulakis et al., 2020a; Liu & Gleich, 2020) and diffusion processes
(Fountoulakis et al., 2020b; Yang & Fountoulakis, 2023; Fountoulakis et al., 2021). Our novelty lies
in incorporating query semantics into this framework, allowing us to analyze how query-dependent
edge weights shape traversal dynamics and to provide the subgraph recovery guarantees.

Definition 5. Given a schema graph with node set V , for each query qk, define Rk ⊆ V as the
set of relevant nodes (tables/columns required by the query) with rk = |Rk|. The random graph
generation is governed by the following edge probabilities: for each pair of nodes (u, v), edges are
independently drawn with probability ρ1 if u, v ∈ Rk, with probability ρ2 if exactly one node is inRk,
and otherwise follow the original schema structure. For each node u ∈ V , we have eu = µu + zu,
where µu ∈ Rd is a deterministic vector, and zu ∈ Rd is random noise with independent mean-zero
sub-Gaussian coordinates zuℓ, each having variance proxy σℓ:

Prob(|zuℓ| ≥ t) ≤ 2 exp

(
− t2

2σ2
ℓ

)
∀t ≥ 0.

For each qk, let eqk = µqk +zqk , using the same noise model. For nodes in the relevant setRk, we set
µu = µv = µqk for all u, v ∈ Rk. Finally, for query qk, we define w̄(qk, u, v) = w̄Product(qk, u, v),
where Hsim(a,b) = exp(−γ∥a− b∥2) is an RBF-kernel similarity function. We also allow distinct
bandwidths γi for each factor in w̄Product.

Note that this formulation is chosen for simplicity of analysis. In practice, other measures–such as
cosine similarity–can be used depending on the application. Throughout, we define

σ̂ := max
1≤ℓ≤d

σℓ and µ̂ := min
u∈Rk, v /∈Rk

∥µu − µv∥. (11)

Assumption A (Knowledge Graph Structure and Signal-to-Noise). The knowledge graph satisfies
the following: (1) Entities relevant to a query qi form a connected subgraphRi; (2) The embedding
space preserves semantic similarity with signal-to-noise ratio µ̂/σ̂ = ω(

√
d log |V|); (3) Variance

concentrates as
∑d

ℓ=1 σ
2
ℓ/σ̂

2 = O(log |V|); and (4) Irrelevant entities have embeddings well-
separated from query embeddings.

Lemma 6 (Query-Aware Edge Weight Separation). Under Assumption A, if the similarity function
parameters satisfy γiσ̂2 = o(log−1 |V|) for i ∈ {1, 2, 3}, then with probability at least 1−O(|V|−2):
(i) For all u, v ∈ Rk, w̄(qk, u, v) ≥ (1 − o(1)); (ii) For all u ∈ Rk, v ∈ V \ Rk, w̄(qk, u, v) ≤
exp(−ω(log |V|)).

Lemma 6 shows that under the signal-to-noise conditions in Assumption A, query-aware edge weights
w̄(qk, u, v) separate relevant nodesRk from irrelevant ones V \ Rk. With similarity parameters γi
scaled inversely with log |V|, the lemma guarantees with high probability that (i) edges withinRk

remain essentially unchanged, preserving reasoning paths, while (ii) edges between relevant and
irrelevant nodes become exponentially small, blocking diffusion into contextually irrelevant regions.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Comparison of QAFD-RAG and baselines across five GPT-4o–scored dimensions (0–100).
Rows are grouped by dataset; columns are metrics. Each cell shows mean (± std) over 5 independent
evaluations. Best scores per dataset/metric are bolded. To be continued in Appendix A2.1.1.

Dataset Method Comprehensive. Diversity Logicality Relevance Coherence
Agriculture GraphRAG 87.30 (±4.46) 82.85 (±4.73) 90.80 (±5.84) 94.01 (±6.62) 90.08 (±3.23)

LightRAG 83.65 (±5.97) 77.71 (±7.34) 88.85 (±3.76) 93.55 (±4.16) 88.67 (±2.57)
RAPTOR 83.32 (±8.67) 76.65 (±12.08) 89.54 (±3.63) 94.56 (±3.41) 89.47 (±3.01)
HippoRAG 82.51 (±5.14) 76.26 (±9.23) 88.84 (±3.26) 94.09 (±2.48) 88.79 (±2.73)
QAFD-RAG 89.93 (±3.36) 84.95 (±4.26) 92.10 (±2.53) 95.67 (±3.28) 92.00 (±1.62)

Biology GraphRAG 85.76 (±10.80) 81.05 (±10.39) 88.94 (±11.70) 93.00 (±12.50) 88.57 (±11.10)
LightRAG 83.92 (±4.13) 78.28 (±6.46) 88.40 (±4.24) 93.31 (±5.42) 88.09 (±2.86)
RAPTOR 83.57 (±6.20) 77.10 (±9.41) 88.33 (±5.62) 93.62 (±6.42) 88.67 (±4.21)
HippoRAG 83.07 (±4.15) 76.91 (±7.25) 88.07 (±3.69) 93.62 (±3.53) 88.52 (±2.90)
QAFD-RAG 89.44 (±3.92) 85.13 (±4.11) 91.19 (±4.20) 95.05 (±4.71) 91.33 (±2.59)

Cooking GraphRAG 86.23 (±7.00) 79.10 (±8.72) 90.79 (±2.68) 95.14 (±2.91) 90.63 (±1.75)
LightRAG 82.11 (±7.56) 74.97 (±9.46) 87.49 (±5.82) 92.27 (±5.88) 87.98 (±4.09)
RAPTOR 83.15 (±6.99) 75.30 (±9.79) 88.52 (±5.12) 93.59 (±5.48) 88.83 (±3.87)
HippoRAG 82.52 (±4.55) 74.13 (±7.25) 88.40 (±3.20) 93.71 (±2.66) 88.57 (±2.61)
QAFD-RAG 89.25 (±3.82) 83.42 (±5.25) 91.35 (±2.73) 95.45 (±2.83) 91.58 (±2.04)

History GraphRAG 84.18 (±10.30) 78.88 (±9.97) 88.18 (±11.63) 92.35 (±13.51) 88.40 (±10.71)
LightRAG 82.24 (±6.04) 76.42 (±7.51) 86.98 (±5.75) 92.18 (±6.17) 87.18 (±4.24)
RAPTOR 82.08 (±7.43) 75.59 (±9.75) 87.67 (±4.63) 92.94 (±4.93) 88.13 (±3.58)
HippoRAG 80.45 (±6.95) 74.61 (±8.22) 86.37 (±6.36) 91.54 (±8.22) 86.97 (±4.77)
QAFD-RAG 87.75 (±3.96) 83.14 (±4.40) 90.04 (±3.93) 93.77 (±6.25) 90.55 (±2.37)

Legal GraphRAG 84.96 (±9.72) 78.74 (±10.28) 88.67 (±8.58) 91.01 (±10.90) 88.44 (±5.77)
LightRAG 79.63 (±11.25) 67.63 (±11.86) 86.06 (±7.47) 90.77 (±10.17) 86.12 (±6.10)
RAPTOR 81.43 (±9.67) 64.97 (±13.91) 88.34 (±6.54) 93.29 (±9.18) 87.70 (±6.16)
HippoRAG 82.23 (±8.85) 64.28 (±11.31) 88.56 (±7.64) 93.60 (±9.45) 87.95 (±6.39)
QAFD-RAG 86.19 (±5.86) 77.14 (±7.42) 90.06 (±5.06) 93.30 (±9.66) 89.99 (±3.35)

Theorem 7 (Query-Aware Subgraph Recovery). Under the conditions of Lemma 6, assume that
either (i) the induced subgraph on Rk is connected, or (ii) ρ1 ≥ (4+ϵ) log rk

δ2(rk−1) for some δ ∈ (0, 1)

and ϵ > 0. If the source mass is set as ∆(k)
s = (1 + β)

∑
u∈Rk

Tu for any β > 0, then with high
probability we have

Rk ⊆ supp(x(k)), and
∑

u∈supp(x(k))\Rk

Tu ≤ β
∑
u∈Rk

Tu. (12)

Theorem 7 shows that query-aware flow diffusion reliably recovers the query-relevant subgraph
Rk with controlled precision. It provides two guarantees: Complete recovery (Rk ⊆ supp(x(k)))
ensures all semantically relevant nodes to query qk receive positive flow and are included, so no
essential information is lost. Limited leakage (

∑
u∈supp(x(k))\Rk

Tu ≤ β
∑

u∈Rk
Tu) bounds flow

escaping into irrelevant regions. The trade-off parameter β controls this balance: smaller β enforces
tighter focus, while larger β allows peripheral context at some cost to precision. Together, these
results show that QAFD-RAG’s query-aware edge weighting acts as a semantic filter, concentrating
flow on relevant reasoning paths while minimizing diffusion to unrelated regions.

4 EXPERIMENTAL EVALUATION

We evaluate QAFD-RAG against strong baselines on knowledge graph question-answering and text-
to-SQL benchmarks, with a particular emphasis on query-aware retrieval performance and schema
linking capabilities. Code is available at anonymous repository.

4.1 KNOWLEDGE GRAPH QUESTION ANSWERING RESULTS

4.1.1 BASELINES FOR KG-QA

We compare QAFD-RAG with four recent graph-oriented RAG systems under an identical setup
(corpora, prompts, evaluation): GraphRAG (Edge et al., 2024b), which clusters retrieved documents

8

https://anonymous.4open.science/r/QAFD-E5B6/

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Comparison of QAFD-RAG and Baseline Methods on SQuALITY.

Method BLEU-1 BLEU-2 ROUGE-1 F1 ROUGE-2 F1 METEOR
GraphRAG 33.91 16.12 26.38 4.08 24.38
HippoRAG 33.22 16.74 27.29 3.92 23.41
RAPTOR 32.10 16.58 25.13 3.49 22.87
LightRAG 34.17 17.41 28.59 4.31 23.27
QAFD-RAG 35.44 18.63 28.43 4.79 25.59

via community detection and builds hierarchical contexts; LightRAG (Guo et al., 2024), which
performs dual-level retrieval in the indexing graph; HippoRAG (Jimenez Gutierrez et al., 2024),
which constructs a passage-level KG and applies Personalized PageRank for single-step multi-hop
retrieval; and RAPTOR (Sarthi et al., 2024), which forms a hierarchical retrieval tree through
recursive clustering and abstractive summarization, enabling multi-level evidence selection.

4.1.2 LLM CONFIGURATION AND HYPERPARAMETERS

All LLM calls for entity/relation extraction, hierarchical keywords, and cluster summarization use
GPT-4o-mini (OpenAI), and all embeddings use text-embedding-3-small (1536d) unless
noted otherwise. Unless otherwise noted, hyperparameters are fixed across all experiments: we
select 40 seed nodes for coverage–efficiency balance; the diffusion mass is α = 50 to encourage
propagation while preserving locality; and query-aware edge weights adopt the hybrid form (Eq. (5c))
with a=1, b= 1

4 , combining structural connectivity with query–semantic alignment. Additional
implementation notes and sensitivity analyses are deferred to Appendix A4.

4.1.3 DATASETS AND EVALUATION PROTOCOL

We evaluate QAFD-RAG across three major settings. General Question Answering uses ten UL-
TRADOMAIN subsets (Qian et al., 2024) spanning long-context reasoning and implicit inference
(Agriculture, Biology, Cooking, History, Legal, Mathematics, Mix, Music, Philosophy, Physics).
Answers are scored along five axes—Comprehensiveness, Diversity, Logicality, Relevance, Coher-
ence—using GPT-4o on a 0−100 scale, with five independent evaluations per response (Appendix A4).
For Long-Document Summarization, we use SQUALITY (Wang et al., 2022), where answers are
question-focused abstractive summaries benchmarked against multiple human-written references; we
report BLEU-1, BLEU-2, ROUGE-1-F1, ROUGE-2-F1, and METEOR (Appendix A2.1.5). Multi-
Hop Question Answering is evaluated on HOTPOTQA (Yang et al., 2018) and 2WIKIMULTIHOPQA
(Ho et al., 2020), which require combining evidence across documents and explicit chains; we report
Exact Match (EM) and F1 using official evaluation scripts (Appendix A4.1).

4.1.4 EXPECTED RESULTS AND ANALYSIS

On the ten ULTRADOMAIN subsets, QAFD-RAG achieves the strongest overall averages across five
axes, with steady gains in Comprehensiveness, Logicality, and Coherence (Tables 1, 5). Baselines
show complementary strengths—RAPTOR may excel on Relevance/Coherence when hierarchi-
cal abstraction fits the domain, HippoRAG performs well on Relevance with local evidence, and
GraphRAG/LightRAG can boost Diversity by expanding neighborhoods, often at the cost of Logi-
cality. Overall, focusing retrieval on a query-aligned subgraph improves factual alignment without
hurting fluency, whereas baselines trade off precision and recall in domain-dependent ways.

Table 3: Performance on Multi-Hop QA (F1, EM).

Method HotpotQA 2WikiMultihopQA

GraphRAG (33.4, 14.0) (15.2, 7.0)
LightRAG (8.8, 0.0) (8.2, 1.0)
RAPTOR (52.3, 25.0) (38.8, 12.0)
HippoRAG (58.5, 45.1) (62.0, 49.5)
QAFD-RAG (68.6, 53.7) (62.3, 54.1)

On the SQuALITY benchmark, QAFD-
RAG achieves the highest performance
on the majority of automated met-
rics—including BLEU-1, BLEU-2,
ROUGE-2 F1, and METEOR—indicating
more faithful and coherent long-form
summaries compared to GraphRAG,
HippoRAG, RAPTOR, and LightRAG.
While LightRAG now attains the highest
ROUGE-1 F1 score, QAFD-RAG’s

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

query-aligned retrieval yields a stronger overall metric profile, offering a more stable balance
between precision and coverage across diverse narrative questions. On HOTPOTQA and 2WIKI-
MULTIHOPQA, QAFD-RAG obtains the highest F1 and EM scores on both benchmarks (Table 3).
These improvements in F1 and EM highlight that query-aware diffusion more reliably recovers gold
evidence under strict matching. GraphRAG and LightRAG can benefit from broader neighborhood
search, but this often hurts precision and consistency. In contrast, QAFD-RAG’s query-aligned
pruning produces tighter evidence chains and a stable precision–recall balance, enabling superior
performance across multi-hop reasoning tasks.

4.2 TEXT-TO-SQL RESULTS

We compare against methods from different paradigms. CHASE-SQL (Pourreza et al., 2024) uses
multi-path LLM reasoning (divide-and-conquer, execution-plan CoT, instance-aware few-shot) with
a pairwise-selection agent for SQL generation and ranking. DIN-SQL (Pourreza & Rafiei, 2024)
adopts a decomposition framework with template matching. Spider-Agent (Lei et al., 2024) applies
ReAct-style schema exploration and iterative SQL generation. CodeS (Li et al., 2024b) emphasizes
code generation via prompt engineering. DAIL-SQL (Gao et al., 2023a) improves Text-to-SQL
accuracy by selecting and arranging few-shot code examples using masked question–query similarity.
All methods are using GPT-4o LLM calls.

Table 4: SQL execution accuracy on 135
SQLite and Snowflake test sets.

Method SQLite (%) Snowflake (%)

CHASE-SQL 11.85 5.92
DIN-SQL 2.74 0.18
DAIL-SQL 0 0
CodeS 0 0
Spider-Agent 21.5 16.3
QAFD-RAG 26.7 23.7+ SQL-Agent

We conduct our evaluation using the Spider 2.0
benchmark (Lei et al., 2024), a comprehensive
dataset that encompasses diverse schema architec-
tures representative of real-world enterprise en-
vironments. The benchmark incorporates intri-
cate SQL queries demanding complex multi-table
relationships and sophisticated analytical opera-
tions. Our analysis focuses on the Spider 2.0 Lo-
cal Test Set, comprising 135 local SQLite and
Snowflake instances that present substantial chal-
lenges through extended join sequences and elab-
orate query structures characteristic of large-scale
organizational databases. Table 4 reports execu-
tion accuracy on SQLite and Snowflake test sets. Here, SQL-Agent is a variant of the Spider-Agent
(Lei et al., 2024) SQL generator. Unlike Spider-Agent, which uses a ReAct-style agent for exploration
and reasoning, our approach converts the database into a knowledge graph and applies QAFD to
identify relevant tables and columns. SQL-Agent then leverages tailored prompts and QAFD-RAG’s
ranked subgraphs to generate SQL queries. An example prompt is shown in Prompt 6 in Appendix A5.

5 CONCLUSION, LIMITATIONS, AND FUTURE WORK

We presented QAFD-RAG, a training-free framework with query-aware edge reweighting for adaptive
graph traversal. Our contributions include: (1) the first principled flow diffusion for graph-based RAG,
(2) theoretical guarantees for subgraph recovery, and (3) consistent improvements across benchmarks
while reducing LLM calls.

QAFD-RAG relies on pre-trained embeddings, which may underperform in domain-specific settings.
Besides, the embedding-based flow diffusion may struggle with explicit logical negation because
embeddings capture semantic relatedness rather than logical operators. While QAFD-RAG partially
mitigates this through LLM-based keyword extraction (Prompt 2) and response filtering (Prompt 3),
this remains an important challenge.

QAFD-RAG’s modularity enables drop-in replacement of retrieval components in existing systems:
it can replace static Leiden clustering in GraphRAG, enhance Personalized PageRank in HippoRAG
with query-aware edge weighting, and extend LightRAG’s single-hop retrieval to multi-hop flow
diffusion—all without retraining while providing theoretical guarantees. Future work includes
learning edge weights from query–answer pairs and extending to temporal/multi-modal graphs.
Future work should also explore contrastive embeddings or hybrid symbolic–neural approaches that
encode logical distinctions during graph traversal.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

E. Abbe, J. Fan, and K. Wang. An ℓp theory of pca and spectral clustering. The Annals of Statistics,
50(4):2359–2385, 2022.

Z. Allen-Zhu, L. Silvio, and S. M. Vahab. A local algorithm for finding well-connected clusters. In
International Conference on Machine Learning (ICML), 2013.

Uri Alon, Frank Xu, Junxian He, Sudipta Sengupta, Dan Roth, and Graham Neubig. Neuro-symbolic
language modeling with automaton-augmented retrieval. In International Conference on Machine
Learning, pp. 468–485. PMLR, 2022.

R. Andersen, F. Chung, and K. Lang. Local graph partitioning using pagerank vectors. IEEE
Symposium on Foundations of Computer Science (FOCS), 2006.

R. Andersen, S. O. Gharan, Y. Peres, and L. Trevisan. Almost optimal local graph clustering using
evolving sets. Journal of the ACM, 63(2), 2016.

E. Arias-Castro, E. J. Candès, H. Helgason, and O. Zeitouni. Searching for a trail of evidence in a
maze. The Annals of Statistics, 36(4):1726–1757, 2008.

E. Arias-Castro, E. J. Candès, and A. Durand. Detection of an anomalous cluster in a network. The
Annals of Statistics, pp. 278–304, 2011.

A. Baranwal, K. Fountoulakis, and A. Jagannath. Graph convolution for semi-supervised classi-
fication: Improved linear separability and out-of-distribution generalization. In International
Conference on Machine Learning (ICML), 2021.

A. Baranwal, K. Fountoulakis, and A. Jagannath. Effects of graph convolutions in multi-layer
networks. In International Conference on Learning Representations (ICLR), 2023a.

A. Baranwal, A. Jagannath, and K. Fountoulakis. Optimality of message-passing architectures for
sparse graphs, 2023b.

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and Jason Weston. Large-scale simple question
answering with memory networks. arXiv preprint arXiv:1506.02075, 2015.

G. Braun, H. Tyagi, and C. Biernacki. An iterative clustering algorithm for the contextual stochastic
block model with optimality guarantees. In International Conference on Machine Learning (ICML),
2022.

Boyu Chen, Zirui Guo, Zidan Yang, Yuluo Chen, Junze Chen, Zhenghao Liu, Chuan Shi, and Cheng
Yang. Pathrag: Pruning graph-based retrieval augmented generation with relational paths. arXiv
preprint arXiv:2502.14902, 2025a.

Xiaohui Chen, Yinkai Wang, Jiaxing He, Yuanqi Du, Soha Hassoun, Xiaolin Xu, and Li-Ping Liu.
Graph generative pre-trained transformer. arXiv preprint arXiv:2501.01073, 2025b.

Xin Cheng, Di Luo, Xiuying Chen, Lemao Liu, Dongyan Zhao, and Rui Yan. Lift yourself up:
Retrieval-augmented text generation with self-memory. Advances in Neural Information Processing
Systems, 36, 2024.

U. Chitra, K. Ding, J. C. H. Lee, and B. J. Raphael. Quantifying and reducing bias in maximum
likelihood estimation of structured anomalies. In International Conference on Machine Learning
(ICML), 2021.

Fan R. K. Chung. Spectral Graph Theory, volume 92 of CBMS Regional Conference Series in
Mathematics. American Mathematical Society, 1997.

Mohammad Dehghan, Mohammad Ali Alomrani, Sunyam Bagga, David Alfonso-Hermelo, Khalil
Bibi, Abbas Ghaddar, Yingxue Zhang, Xiaoguang Li, Jianye Hao, Qun Liu, et al. Ewek-qa:
Enhanced web and efficient knowledge graph retrieval for citation-based question answering
systems. arXiv preprint arXiv:2406.10393, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Y. Deshpande, S. Sen, A. Montanari, and E. Mossel. Contextual stochastic block models. Advances
in Neural Information Processing Systems (NeurIPS), 2018.

Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,
and Jonathan Larson. From local to global: A graph rag approach to query-focused summarization.
arXiv preprint arXiv:2404.16130, 2024a.

Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,
and Jonathan Larson. From local to global: A graph rag approach to query-focused summarization.
arXiv preprint arXiv:2404.16130, 2024b.

Wenqi Fan, Yujuan Ding, Liangbo Ning, Shijie Wang, Hengyun Li, Dawei Yin, Tat-Seng Chua, and
Qing Li. A survey on rag meeting llms: Towards retrieval-augmented large language models. In
Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp.
6491–6501, 2024.

Feiteng Fang, Yuelin Bai, Shiwen Ni, Min Yang, Xiaojun Chen, and Ruifeng Xu. Enhancing noise
robustness of retrieval-augmented language models with adaptive adversarial training. arXiv
preprint arXiv:2405.20978, 2024a.

Jinyuan Fang, Zaiqiao Meng, and Craig Macdonald. Reano: Optimising retrieval-augmented reader
models through knowledge graph generation. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 2094–2112, 2024b.

Santo Fortunato. Community detection in graphs. Physics Reports, 486(3-5):75–174, 2010. doi:
10.1016/j.physrep.2009.11.002.

K. Fountoulakis, F. Roosta-Khorasani, J. Shun, X. Cheng, and M. W. Mahoney. Variational perspective
on local graph clustering. Mathematical Programming, 174:553–573, 2017.

K. Fountoulakis, D. Wang, and S. Yang. p-norm flow diffusion for local graph clustering. International
Conference on Machine Learning (ICML), 2020a.

K. Fountoulakis, A. Levi, S. Yang, A. Baranwal, and A. Jagannath. Graph attention retrospective.
The Journal of Machine Learning Research, 24, 2023a.

Kimon Fountoulakis, Di Wang, and Shenghao Yang. P-norm flow diffusion for local graph clustering.
In International Conference on Machine Learning, pp. 3222–3232. PMLR, 2020b.

Kimon Fountoulakis, Pan Li, and Shenghao Yang. Local hyper-flow diffusion. Advances in neural
information processing systems, 34:27683–27694, 2021.

Kimon Fountoulakis, Meng Liu, David F Gleich, and Michael W Mahoney. Flow-based algorithms
for improving clusters: A unifying framework, software, and performance. SIAM Review, 65(1):
59–143, 2023b.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and Jingren Zhou.
Text-to-sql empowered by large language models: A benchmark evaluation. arXiv preprint
arXiv:2308.15363, 2023a.

Hanning Gao, Lingfei Wu, Po Hu, Zhihua Wei, Fangli Xu, and Bo Long. Graph-augmented learning
to rank for querying large-scale knowledge graph. AACL 2022, 2022.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun,
Haofen Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A
survey. arXiv preprint arXiv:2312.10997, 2(1), 2023b.

Yu Gu, Sue Kase, Michelle Vanni, Brian Sadler, Percy Liang, Xifeng Yan, and Yu Su. Beyond iid:
three levels of generalization for question answering on knowledge bases. In Proceedings of the
Web Conference 2021, pp. 3477–3488, 2021.

Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao Huang. Lightrag: Simple and fast retrieval-
augmented generation. arXiv preprint arXiv:2410.05779, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval augmented
language model pre-training. In International conference on machine learning, pp. 3929–3938.
PMLR, 2020.

W. Ha, K. Fountoulakis, and M. W. Mahoney. Statistical guarantees for local graph clustering. The
Journal of Machine Learning Research, 22(1):6538–6591, 2021.

Haoyu Han, Yu Wang, Harry Shomer, Kai Guo, Jiayuan Ding, Yongjia Lei, Mahantesh Halappanavar,
Ryan A Rossi, Subhabrata Mukherjee, Xianfeng Tang, et al. Retrieval-augmented generation with
graphs (graphrag). arXiv preprint arXiv:2501.00309, 2024.

Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh Chawla, Thomas Laurent, Yann LeCun, Xavier Bresson,
and Bryan Hooi. G-retriever: Retrieval-augmented generation for textual graph understanding and
question answering. Advances in Neural Information Processing Systems, 37:132876–132907,
2025.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
qa dataset for comprehensive evaluation of reasoning steps. COLING 2020, 2020.

Sebastian Hofstätter, Jiecao Chen, Karthik Raman, and Hamed Zamani. Fid-light: Efficient and
effective retrieval-augmented text generation. In Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 1437–1447, 2023.

Ziniu Hu, Yichong Xu, Wenhao Yu, Shuohang Wang, Ziyi Yang, Chenguang Zhu, Kai-Wei Chang,
and Yizhou Sun. Empowering language models with knowledge graph reasoning for question
answering. EMNLP, 2022.

C. Jia, Y. Li, M. B. Carson, X. Wang, and J. Yu. Node attribute-enhanced community detection in
complex networks. Scientific reports, 7(1):1–15, 2017.

Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang,
Jamie Callan, and Graham Neubig. Active retrieval augmented generation. EMNLP 2023, 2023.

Bernal Jimenez Gutierrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. Hipporag: Neurobio-
logically inspired long-term memory for large language models. Advances in Neural Information
Processing Systems, 37:59532–59569, 2024.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. arXiv preprint arXiv:1705.03551, 2017.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. arXiv
preprint arXiv:2004.04906, 2020.

Kiseung Kim and Jay-Yoon Lee. Re-rag: Improving open-domain qa performance and interpretability
with relevance estimator in retrieval-augmented generation. arXiv preprint arXiv:2406.05794,
2024.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catanzaro,
and Wei Ping. Nv-embed: Improved techniques for training llms as generalist embedding models.
arXiv preprint arXiv:2405.17428, 2024.

Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng Cao, Dongchan Shin, Hongjin Su, Zhaoqing Suo,
Hongcheng Gao, Wenjing Hu, Pengcheng Yin, et al. Spider 2.0: Evaluating language models on
real-world enterprise text-to-sql workflows. arXiv preprint arXiv:2411.07763, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng Cao, Dongchan Shin, Hongjin SU, ZHAOQING
SUO, Hongcheng Gao, Wenjing Hu, Pengcheng Yin, Victor Zhong, Caiming Xiong, Ruoxi Sun,
Qian Liu, Sida Wang, and Tao Yu. Spider 2.0: Evaluating language models on real-world enterprise
text-to-SQL workflows. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=XmProj9cPs.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

Chaofan Li, Zheng Liu, Shitao Xiao, Yingxia Shao, and Defu Lian. Llama2vec: Unsupervised
adaptation of large language models for dense retrieval. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 3490–
3500, 2024a.

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xiaokang Zhang, Jun Zhu, Renjie Wei, Hongyan
Pan, Cuiping Li, and Hong Chen. Codes: Towards building open-source language models
for text-to-sql. Proc. ACM Manag. Data, 2(3), May 2024b. doi: 10.1145/3654930. URL
https://doi.org/10.1145/3654930.

Mufei Li, Siqi Miao, and Pan Li. Simple is effective: The roles of graphs and large language models
in knowledge-graph-based retrieval-augmented generation. ICLR 2025, 2024c.

M. Liu and D. F. Gleich. Strongly local p-norm-cut algorithms for semi-supervised learning and local
graph clustering. In Advances in Neural Information Processing Systems (NeurIPS), 2020.

László Lovász. Random walks on graphs: A survey. In Combinatorics, Paul Erdős is Eighty,
volume 2, pp. 1–46. János Bolyai Mathematical Society, 1993.

LINHAO LUO, Yuan-Fang Li, Reza Haf, and Shirui Pan. Reasoning on graphs: Faithful and
interpretable large language model reasoning. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=ZGNWW7xZ6Q.

Costas Mavromatis and George Karypis. Gnn-rag: Graph neural retrieval for large language model
reasoning. arXiv preprint arXiv:2405.20139, 2024.

Niklas Muennighoff, SU Hongjin, Liang Wang, Nan Yang, Furu Wei, Tao Yu, Amanpreet Singh,
and Douwe Kiela. Generative representational instruction tuning. In The Thirteenth International
Conference on Learning Representations, 2024.

Pranoy Panda, Ankush Agarwal, Chaitanya Devaguptapu, Manohar Kaul, et al. Holmes: Hyper-
relational knowledge graphs for multi-hop question answering using llms. ACL 2024, 2024.

Mohammadreza Pourreza and Davood Rafiei. Din-sql: Decomposed in-context learning of text-to-sql
with self-correction. Advances in Neural Information Processing Systems, 36, 2024.

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun, Yeounoh Chung, Shayan Talaei, Gaurav Tarlok
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and Sercan O Arik. Chase-sql: Multi-path reasoning
and preference optimized candidate selection in text-to-sql. arXiv preprint arXiv:2410.01943,
2024.

Hongjin Qian, Peitian Zhang, Zheng Liu, Kelong Mao, and Zhicheng Dou. Memorag: Moving
towards next-gen rag via memory-inspired knowledge discovery. arXiv preprint arXiv:2409.05591,
2024.

J. Qian and V. Saligrama. Efficient minimax signal detection on graphs. In Advances in Neural
Information Processing Systems (NeurIPS), 2014.

A. Reid and P. Yuval. Finding sparse cuts locally using evolving sets. In ACM Symposium on Theory
of Computing (STOC), 2009.

14

https://openreview.net/forum?id=XmProj9cPs
https://doi.org/10.1145/3654930
https://openreview.net/forum?id=ZGNWW7xZ6Q

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Pranab Sahoo, Prabhash Meharia, Akash Ghosh, Sriparna Saha, Vinija Jain, and Aman Chadha.
A comprehensive survey of hallucination in large language, image, video and audio foundation
models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the Association
for Computational Linguistics: EMNLP 2024, pp. 11709–11724, Miami, Florida, USA, November
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.685.
URL https://aclanthology.org/2024.findings-emnlp.685/.

Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh Khanna, Anna Goldie, and Christopher D Manning.
Raptor: Recursive abstractive processing for tree-organized retrieval. In The Twelfth International
Conference on Learning Representations, 2024.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools. Advances in Neural Information Processing Systems, 36:68539–68551,
2023.

J. L. Sharpnack, A. Krishnamurthy, and A. Singh. Near-optimal anomaly detection in graphs using
lovasz extended scan statistic. In Advances in Neural Information Processing Systems (NeurIPS),
2013.

P. Shi, K. He, D. Bindel, and J. Hopcroft. Local Lanczos spectral approximation for community
detection. In European Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML-PKDD), 2017.

Yucheng Shi, Qiaoyu Tan, Xuansheng Wu, Shaochen Zhong, Kaixiong Zhou, and Ninghao Liu.
Retrieval-enhanced knowledge editing for multi-hop question answering in language models. arXiv
preprint arXiv:2403.19631, 2024.

Robik Shrestha, Yang Zou, Qiuyu Chen, Zhiheng Li, Yusheng Xie, and Siqi Deng. Fairrag: Fair
human generation via fair retrieval augmentation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 11996–12005, 2024.

D. A. Spielman and S.-H. Teng. A local clustering algorithm for massive graphs and its application
to nearly linear time graph partitioning. SIAM Journal on computing, 42(1):1–26, 2013a.

Daniel A. Spielman and Shang-Hua Teng. A local clustering algorithm for massive graphs and its
application to nearly linear time graph partitioning. SIAM Journal on Computing, 42(1):1–26,
2013b. doi: 10.1137/080744888.

Saba Sturua, Isabelle Mohr, Mohammad Kalim Akram, Michael Günther, Bo Wang, Markus Krimmel,
Feng Wang, Georgios Mastrapas, Andreas Koukounas, Nan Wang, et al. jina-embeddings-v3:
Multilingual embeddings with task lora. arXiv preprint arXiv:2409.10173, 2024.

Heli Sun, Fang He, Jianbin Huang, Yizhou Sun, Yang Li, Chenyu Wang, Liang He, Zhongbin Sun,
and Xiaolin Jia. Network embedding for community detection in attributed networks. ACM
Transactions on Knowledge Discovery from Data (TKDD), 14(3):1–25, 2020.

Alon Talmor and Jonathan Berant. The web as a knowledge-base for answering complex questions.
NAACL 2018, 2018.

SM Tonmoy, SM Zaman, Vinija Jain, Anku Rani, Vipula Rawte, Aman Chadha, and Amitava Das.
A comprehensive survey of hallucination mitigation techniques in large language models. arXiv
preprint arXiv:2401.01313, 2024.

R. Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

Alex Wang, Richard Yuanzhe Pang, Angelica Chen, Jason Phang, and Samuel Bowman. Squality:
Building a long-document summarization dataset the hard way. In Proceedings of the 2022
Conference on Empirical Methods in Natural Language Processing, pp. 1139–1156, 2022.

D. Wang, K. Fountoulakis, M. Henzinger, M. W. Mahoney, and S. Rao. Capacity releasing diffusion
for speed and locality. International Conference on Machine Learning (ICML), 2017.

15

https://aclanthology.org/2024.findings-emnlp.685/

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Mingyang Wang, Alisa Stoll, Lukas Lange, Heike Adel, Hinrich Schütze, and Jannik Strötgen.
Bring your own knowledge: A survey of methods for llm knowledge expansion, 2025. URL
https://arxiv.org/abs/2502.12598.

Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng, Chen Chen, et al. Knowledge editing for large
language models: A survey. arXiv preprint arXiv:2310.16218, 2023.

Yu Wang, Nedim Lipka, Ryan A Rossi, Alexa Siu, Ruiyi Zhang, and Tyler Derr. Knowledge graph
prompting for multi-document question answering. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38-17, pp. 19206–19214, 2024.

R. Wei, H. Yin, J. Jia, A. R. Benson, and P. Li. Understanding non-linearity in graph neural networks
from the perspective of bayesian inference. In Advances in Neural Information Processing Systems
(NeurIPS), 2022.

Yilin Wen, Zifeng Wang, and Jimeng Sun. Mindmap: Knowledge graph prompting sparks graph of
thoughts in large language models. arXiv preprint arXiv:2308.09729, 2023.

Daniel S Wigh, Jonathan M Goodman, and Alexei A Lapkin. A review of molecular representation in
the age of machine learning. Wiley Interdisciplinary Reviews: Computational Molecular Science,
12(5):e1603, 2022.

X. Wu, Z. Chen, W. Wang, and A. Jadbabaie. An non-asymptotic analysis of oversmoothing in graph
neural networks. In International Conference on Learning Representations (ICLR), 2023.

Wenhan Xiong, Mo Yu, Shiyu Chang, Xiaoxiao Guo, and William Yang Wang. Improving question
answering over incomplete kbs with knowledge-aware reader. arXiv preprint arXiv:1905.07098,
2019.

Wenhan Xiong, Xiang Lorraine Li, Srini Iyer, Jingfei Du, Patrick Lewis, William Yang Wang, Yashar
Mehdad, Wen-tau Yih, Sebastian Riedel, Douwe Kiela, et al. Answering complex open-domain
questions with multi-hop dense retrieval. arXiv preprint arXiv:2009.12756, 2020.

Ran Xu, Wenqi Shi, Yue Yu, Yuchen Zhuang, Bowen Jin, May D Wang, Joyce C Ho, and Carl Yang.
Ram-ehr: Retrieval augmentation meets clinical predictions on electronic health records. arXiv
preprint arXiv:2403.00815, 2024.

B. Yan and P. Sarkar. Covariate regularized community detection in sparse graphs. Journal of the
American Statistical Association, 116(534):734–745, 2021.

J. Yang, J. McAuley, and J. Leskovec. Community detection in networks with node attributes. In
IEEE International Conference on Data Mining (ICDM), 2013.

Shenghao Yang and Kimon Fountoulakis. Weighted flow diffusion for local graph clustering with
node attributes: An algorithm and statistical guarantees. In International Conference on Machine
Learning, pp. 39252–39276. PMLR, 2023.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. EMNLP 2018, 2018.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. Re-
act: synergizing reasoning and acting in language models (2022). arXiv preprint arXiv:2210.03629,
2023.

Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut, Percy Liang, and Jure Leskovec. Qa-gnn:
Reasoning with language models and knowledge graphs for question answering. NAACL 2021,
2021a.

Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut, Percy Liang, and Jure Leskovec. Qa-gnn:
Reasoning with language models and knowledge graphs for question answering. In Proceedings of
NAACL-HLT, pp. 535–546, 2021b.

16

https://arxiv.org/abs/2502.12598

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Shenglai Zeng, Jiankun Zhang, Pengfei He, Jie Ren, Tianqi Zheng, Hanqing Lu, Han Xu, Hui Liu,
Yue Xing, and Jiliang Tang. Mitigating the privacy issues in retrieval-augmented generation (rag)
via pure synthetic data. arXiv preprint arXiv:2406.14773, 2024a.

Shenglai Zeng, Jiankun Zhang, Pengfei He, Yue Xing, Yiding Liu, Han Xu, Jie Ren, Shuaiqiang Wang,
Dawei Yin, Yi Chang, et al. The good and the bad: Exploring privacy issues in retrieval-augmented
generation (rag). arXiv preprint arXiv:2402.16893, 2024b.

Boyu Zhang, Hongyang Yang, Tianyu Zhou, Muhammad Ali Babar, and Xiao-Yang Liu. Enhancing
financial sentiment analysis via retrieval augmented large language models. In Proceedings of the
fourth ACM international conference on AI in finance, pp. 349–356, 2023.

Lingxi Zhang, Yue Yu, Kuan Wang, and Chao Zhang. Arl2: Aligning retrievers for black-box large
language models via self-guided adaptive relevance labeling. ACL 2024, 2024a.

Qinggang Zhang, Junnan Dong, Hao Chen, Daochen Zha, Zailiang Yu, and Xiao Huang. Knowgpt:
Knowledge graph based prompting for large language models. NeurIPS 2024 Poster, 2024b.

Yue Zhang, Zhihao Zhang, Wenbin Lai, Chong Zhang, Tao Gui, Qi Zhang, and Xuan-Jing Huang.
to-tree: Parsing pdf text blocks into a tree. In Findings of the Association for Computational
Linguistics: EMNLP 2024, pp. 10704–10714, 2024c.

C. Zhe, A. Sun, and X. Xiao. Community detection on large complex attribute network. In ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019.

Fengbin Zhu, Wenqiang Lei, Chao Wang, Jianming Zheng, Soujanya Poria, and Tat-Seng Chua.
Retrieving and reading: A comprehensive survey on open-domain question answering. arXiv
preprint arXiv:2101.00774, 2021.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Appendix
CONTENTS

A1 Extended Related Work 19

A1.1 Retrieval-Augmented Generation. 19

A1.2 Graph Diffusion and Flow Methods . 19

A1.3 QAFD-RAG’s Positioning within Graph-Based RAG Approaches 20

A2 Extended Experiments 20

A2.1 Question Answering (QA) . 20

A2.1.1 Additional Numerical Results for General Question Answering 20

A2.1.2 Sensitivity Analysis for QAFD-RAG . 21

A2.1.3 Runtime and Efficiency of QAFD-RAG for General QA 21

A2.1.4 Embedding Model Sensitivity Analysis 22

A2.1.5 Long-Document Summarization: SQuALITY Evaluation Details 22

A2.2 Text-to-SQL . 23

A2.2.1 Hyperparameter Settings . 23

A2.2.2 Examples of Schema Identified by QAFD-RAG for Spider2’s Queries . . . 23

A2.2.3 LLM Efficiency and Schema Linking Performance 25

A2.2.4 Embedding Model Sensitivity for Text-to-SQL 25

A3 Proof of Main Results 26

A3.1 Proof of Lemma 2 . 26

A3.2 Proof of Theorem 3 . 26

A3.3 Proof of Lemma 6 . 27

A3.4 Proof of Theorem 7 . 28

A4 Overview of Datasets and Prompts Used in QAFD-RAG for Question Answering 29

A4.1 Datasets . 29

A4.2 Entity and Relationship Extraction Prompt . 29

A4.3 Keyword Extraction Prompt . 31

A4.4 Query Answering Prompt . 31

A4.5 Evaluation Prompt . 32

A5 Overview of Prompts Used in QAFD-RAG in Text-to-SQL Tasks 32

A6 Text-to-SQL Baselines 35

A7 Usage of Large Language Models (LLMs) 38

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A1 EXTENDED RELATED WORK

A1.1 RETRIEVAL-AUGMENTED GENERATION.

LLMs remain prone to hallucinations and a lack of domain knowledge (Sahoo et al., 2024; Wang et al.,
2025). Text-based RAG reduces these issues by supplementing LLMs with unstructured external
data (Lewis et al., 2020; Guu et al., 2020). These systems employ sparse or dense retrieval (Alon
et al., 2022; Schick et al., 2023; Jiang et al., 2023; Cheng et al., 2024; Hofstätter et al., 2023; Li
et al., 2024a; Zhang et al., 2024a), but most treat text as flat segments, missing critical context and
inter-document relationships (Edge et al., 2024a; Guo et al., 2024).

KG-RAG enhances interpretability and factuality by leveraging structured knowledge graphs (Ya-
sunaga et al., 2021a; Gao et al., 2022; Li et al., 2024c; He et al., 2025). These systems utilize curated
(Wen et al., 2023; Dehghan et al., 2024) or optimized (Fang et al., 2024b; Panda et al., 2024) graphs to
retrieve entity and relational context, typically extracting local subgraphs relevant to a query (Bordes
et al., 2015; Talmor & Berant, 2018; Gu et al., 2021). However, most KG-RAG methods focus on
single-hop or shallow queries (Joshi et al., 2017; Yang et al., 2018; Kwiatkowski et al., 2019; Ho
et al., 2020) and struggle with scale and multi-step reasoning.

Among training-intensive approaches, QA-GNN (Yasunaga et al., 2021b) combines pre-trained
language models and knowledge graphs by using LM-based relevance scoring to select pertinent KG
nodes, followed by joint graph neural reasoning for accurate and interpretable question answering.
Xiong et al. (2019) proposed knowledge-aware neural retrievers for incomplete KBs. Other works
such as SubgraphRAG (Li et al., 2024c) train end-to-end retrieval modules to extract relevant KG
subgraphs for downstream LLM reasoning. Several studies have also integrated knowledge graph
structure directly into transformers for enhanced QA (Hu et al., 2022), and KnowGPT (Zhang et al.,
2024b) leverages KG-based prompting for large language models. GNN-RAG (Mavromatis &
Karypis, 2024) trains GNNs to score answer candidates and retrieve shortest paths, while RoG (LUO
et al., 2024) uses LLM prompting to generate relation paths. Both methods incorporate query
semantics but require training/finetuning, lack theoretical guarantees, and operate over static graph
structures during retrieval. However, these methods require substantial supervised data and retraining,
in contrast to our training-free, query-aware flow diffusion framework with statistical guarantees.

Recent work has explored training-free KG-RAG methods, building text-associated graphs to support
more complex and multi-hop queries (Edge et al., 2024a; Guo et al., 2024). For instance, GraphRAG
(Edge et al., 2024a) applies community detection to cluster entities, while LightRAG (Guo et al.,
2024) uses multi-stage retrieval and ego-network aggregation. PathRAG (Chen et al., 2025a) further
improves graph-based RAG by retrieving key relational paths rather than redundant neighborhood
information, using flow-based pruning to identify reliable paths and strategic prompt organization
to enhance LLM responses. However, all aforementioned methods still struggle to precisely align
query intent with relevant regions of the graph, making it difficult to identify semantically coherent
reasoning subgraphs. Furthermore, existing RAG approaches generally lack statistical or optimization
guarantees, as well as complexity analysis, for their retrieval mechanisms.

A1.2 GRAPH DIFFUSION AND FLOW METHODS

Graph diffusion describes the process of spreading mass from one or more seed nodes to neighboring
nodes along graph edges. The empirical and theoretical performance of local diffusion methods is
typically evaluated in the context of local graph clustering. Local graph clustering was introduced
by Spielman & Teng (2013a) using a random-walk algorithm, with Andersen et al. (2006) later
employing personalized PageRank. Most works analyze these methods via output conductance
(Andersen et al., 2006; Reid & Yuval, 2009; Spielman & Teng, 2013a; Allen-Zhu et al., 2013;
Andersen et al., 2016; Shi et al., 2017; Wang et al., 2017; Fountoulakis et al., 2020a; Liu & Gleich,
2020). Statistical analysis appeared in Ha et al. (2021) for ℓ1-regularized PageRank (Fountoulakis
et al., 2017), though attributed graphs remain unaddressed.

Community/cluster detection methods that combine structure and node or edge attributes (Yang et al.,
2013; Jia et al., 2017; Zhe et al., 2019; Sun et al., 2020) benefit from this integration but require
global processing, making them unsuitable for local clustering. Contextual random graph models
have been employed for attributed community detection (Deshpande et al., 2018; Yan & Sarkar, 2021;
Braun et al., 2022; Abbe et al., 2022), node separability (Baranwal et al., 2021; Fountoulakis et al.,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

2023a; Baranwal et al., 2023a), and analysis of graph convolutions and optimal classifiers (Wu et al.,
2023; Wei et al., 2022; Baranwal et al., 2023b). Related anomaly detection (Arias-Castro et al., 2008;
2011; Sharpnack et al., 2013; Qian & Saligrama, 2014) and estimation (Chitra et al., 2021) methods
focus on scalar data and global processing, contrasting with our local, attribute-aware approach.

A1.3 QAFD-RAG’S POSITIONING WITHIN GRAPH-BASED RAG APPROACHES

To our knowledge, none of these works connect the graph structure to the query. Our work is the
first to provide a principled framework that links a given query to the corresponding subgraph in
a knowledge graph, and the first to develop and statistically analyze query-aware flow diffusion in
general contextual random graph models with formal recovery guarantees.

Beyond these theoretical contributions, QAFD-RAG’s modular design positions it as a complementary
retrieval component for existing graph-based RAG systems, requiring no retraining while providing
formal guarantees. Specifically:

GraphRAG. GraphRAG (Edge et al., 2024a) relies on static community detection (Leiden algorithm)
to precompute hierarchical clusters and generate community summaries for retrieval. QAFD-RAG
offers an alternative through dynamic, query-time subgraph discovery tailored to each query’s
semantics, eliminating the computational overhead of community summary generation while adapting
retrieval to query-specific needs.

HippoRAG. HippoRAG (Jimenez Gutierrez et al., 2024) uses Personalized PageRank (PPR) for
graph traversal from seed nodes. QAFD-RAG provides a principled alternative through query-aware
edge reweighting (Equations (4)-(5)). While PPR provides graph-based signals, it lacks query-aware
edge modulation—our method’s key innovation that suppresses irrelevant paths while amplifying
semantically aligned connections, backed by formal recovery guarantees (Theorem 7).

LightRAG. LightRAG (Guo et al., 2024) employs dual-level keyword extraction with single-hop
neighborhood aggregation. QAFD-RAG extends this paradigm by enabling multi-hop flow dif-
fusion from extracted keywords as seed nodes, discovering reasoning paths that span multiple
hops—precisely the capability that LightRAG’s current single-hop approach lacks—while preserving
its efficient indexing structure.

This positioning demonstrates QAFD-RAG’s role as a foundational component that addresses key
limitations in existing graph-based RAG approaches through principled, theoretically-grounded
retrieval.

A2 EXTENDED EXPERIMENTS

A2.1 QUESTION ANSWERING (QA)

A2.1.1 ADDITIONAL NUMERICAL RESULTS FOR GENERAL QUESTION ANSWERING

Table 5 presents comprehensive results across five additional UltraDomain datasets—Mathematics,
Mix, Music, Philosophy, and Physics—evaluating QAFD-RAG against GraphRAG, LightRAG,
RAPTOR, and HippoRAG across all five GPT-4o-scored dimensions (Comprehensiveness, Diversity,
Logicality, Relevance, and Coherence).

QAFD-RAG achieves the best performance across all dimensions in four out of five datasets (Mathe-
matics, Mix, Philosophy, and Physics), demonstrating consistent superiority with scores typically
3–7 points higher than the strongest baseline. For example, on Physics, QAFD-RAG achieves 89.51
Comprehensiveness compared to GraphRAG’s 86.33, and 95.61 Relevance compared to RAPTOR’s
94.46. On Music, QAFD-RAG leads in four dimensions (Comprehensiveness: 87.95, Diversity:
83.40, Logicality: 90.56, Coherence: 90.94), with GraphRAG marginally ahead only on Relevance
(94.14 vs. 94.08). These results validate QAFD-RAG’s robustness across diverse domains spanning
technical (Mathematics, Physics), creative (Music), conceptual (Philosophy), and mixed content,
consistently outperforming state-of-the-art graph-based RAG methods through query-aware flow
diffusion and dynamic edge reweighting.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 5: Comparison of QAFD-RAG and baselines across five GPT-4o–scored dimensions (0–100).
Rows are grouped by dataset; columns are metrics. Each cell shows mean (± std) over 5 independent
evaluations. Best scores per dataset/metric are bolded. (continued).

Dataset Method Comprehensive. Diversity Logicality Relevance Coherence
Mathematics GraphRAG 84.30 (±9.52) 77.46 (±10.68) 88.91 (±8.29) 92.65 (±10.34) 89.04 (±7.52)

LightRAG 80.93 (±8.44) 74.07 (±10.40) 86.30 (±6.20) 90.77 (±8.26) 86.29 (±4.56)
RAPTOR 81.18 (±9.75) 73.73 (±12.34) 87.30 (±6.46) 91.88 (±8.73) 87.70 (±4.57)
HippoRAG 80.77 (±5.31) 73.05 (±9.06) 87.05 (±4.66) 92.34 (±5.53) 87.23 (±3.68)
QAFD-RAG 87.30 (±4.94) 82.56 (±6.09) 90.04 (±5.15) 93.36 (±7.24) 90.37 (±3.16)

Mix GraphRAG 82.76 (±11.41) 74.94 (±11.68) 88.45 (±6.95) 92.81 (±8.65) 88.90 (±3.34)
LightRAG 78.72 (±13.12) 70.97 (±13.39) 85.72 (±7.00) 90.37 (±9.36) 86.26 (±4.68)
RAPTOR 81.97 (±5.50) 73.09 (±7.75) 87.90 (±3.71) 93.16 (±3.47) 87.81 (±3.28)
HippoRAG 80.15 (±5.20) 71.71 (±6.12) 86.55 (±3.97) 92.11 (±3.56) 86.83 (±3.35)
QAFD-RAG 87.15 (±3.46) 81.15 (±4.86) 90.70 (±2.93) 94.36 (±4.50) 90.36 (±2.07)

Music GraphRAG 85.32 (±6.46) 79.37 (±7.92) 90.02 (±4.63) 94.14 (±7.01) 89.80 (±3.25)
LightRAG 81.14 (±8.54) 75.08 (±10.13) 86.64 (±6.29) 91.29 (±8.41) 87.34 (±4.36)
RAPTOR 81.44 (±8.20) 74.55 (±11.26) 87.81 (±4.36) 93.24 (±3.91) 88.14 (±3.54)
HippoRAG 80.95 (±6.00) 74.46 (±8.33) 87.22 (±3.98) 92.47 (±4.76) 87.53 (±3.67)
QAFD-RAG 87.95 (±3.99) 83.40 (±4.47) 90.56 (±3.77) 94.08 (±5.46) 90.94 (±2.39)

Philosophy GraphRAG 84.61 (±8.41) 78.36 (±8.90) 88.67 (±6.90) 93.53 (±8.05) 88.83 (±6.59)
LightRAG 80.92 (±8.88) 74.36 (±9.63) 85.74 (±6.57) 90.85 (±7.32) 86.44 (±4.61)
RAPTOR 82.30 (±5.97) 75.54 (±7.46) 87.30 (±4.60) 92.83 (±4.65) 87.83 (±3.45)
HippoRAG 80.93 (±5.46) 74.12 (±6.75) 86.66 (±4.52) 92.03 (±4.69) 87.42 (±3.38)
QAFD-RAG 86.78 (±4.11) 81.91 (±4.69) 89.35 (±4.25) 93.63 (±5.91) 89.91 (±2.70)

Physics GraphRAG 86.33 (±7.32) 79.10 (±7.84) 90.29 (±7.68) 94.73 (±7.71) 89.99 (±7.37)
LightRAG 84.45 (±4.39) 76.38 (±6.19) 89.13 (±4.37) 93.67 (±5.39) 88.65 (±2.76)
RAPTOR 84.18 (±3.98) 75.31 (±6.27) 89.32 (±3.52) 94.46 (±2.81) 89.22 (±2.92)
HippoRAG 82.81 (±3.63) 73.66 (±5.81) 88.66 (±3.07) 94.09 (±2.43) 88.69 (±2.54)
QAFD-RAG 89.51 (±3.14) 84.21 (±3.89) 91.77 (±3.26) 95.61 (±2.74) 91.67 (±2.14)

A2.1.2 SENSITIVITY ANALYSIS FOR QAFD-RAG

To assess the robustness of QAFD-RAG under different configurations, we conduct a sensitivity
analysis on three key hyperparameters on the Mix dataset in our framework: the number of seed
nodes used for QAFD, the initial mass parameter α in the QAFD process, and the choice of edge
weight formulation that governs propagation dynamics. We define the tuning ranges as follows:

- Number of seed nodes: {20, 30, 40, 50, 60}
- α (mass initialization): {5, 10, 20, 50, 100}
- Query-aware edge weight: three distinct formulations reflecting different query-to-node

affinity strategies (as presented in Eqn (5a), (5b), and (5c)).

When analyzing a single hyperparameter, the others are held constant at their default values: α = 50,
the number of seed nodes is 20, and the default query-aware edge weight function is the hybrid
formulation.

Figure 3 shows that overall performance is stable across the tested ranges, confirming the robustness
of QAFD-RAG. Among all metrics, only relevance exhibits a noticeable dependency on the number
of seed nodes, slightly improving as fewer seed nodes are introduced, suggesting that 20 seed nodes
are already sufficient for most evaluation dimensions. In contrast, α = 50 yields the best overall
balance across metrics; both very small and very large values tend to slightly degrade performance,
likely due to insufficient or overly diffused mass concentration during propagation. Surprisingly, the
choice of edge weight function has a relatively minor effect—all three variants yield comparable
results across metrics, with only slight differences in relevance and logicality.

These findings indicate that QAFD-RAG is not overly sensitive to hyperparameter settings and
performs robustly across a wide range of configurations, requiring minimal tuning in practice.

A2.1.3 RUNTIME AND EFFICIENCY OF QAFD-RAG FOR GENERAL QA

Table 6 shows that QAFD-RAG matches or outperforms LightRAG in wall-clock time and is
substantially faster than GraphRAG. The efficiency gains primarily come from indexing: instead of

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

20 30 40 50 60
Number of Seed Nodes

70

75

80

85

90

95
Sc

or
e

5 10 20 50 100
70

75

80

85

90

95

Sc
or

e

Mean Product Hybrid
Weight Choice

70

75

80

85

90

95

Sc
or

e

Comprehensiveness Diversity Logicality Relevance Coherence

Figure 3: Sensitivity of QAFD-RAG to the number of seed nodes (left), initial mass α (middle), and
edge weight choice (right), evaluated across five dimensions on the Mix dataset.

Table 6: Total runtime (in seconds) for graph-based RAG on the full Mix dataset.

Method QAFD-RAG LightRAG GraphRAG
Total Time (s) 8948.81 9236.38 50968.59

performing global or hierarchical summarization, QAFD-RAG processes only the subgraph retrieved
at query time. The diffusion step adds negligible overhead because edge weights are computed
on demand and traversal is nearly linear. Overall, these properties provide a favorable balance of
accuracy and efficiency.

A2.1.4 EMBEDDING MODEL SENSITIVITY ANALYSIS

To assess QAFD-RAG’s robustness to embedding quality, we evaluate the framework across five
diverse embedding models on the Mix dataset from UltraDomain. We compare: (i) OpenAI’s
text-embedding-3-small (1536-dim) and text-embedding-3-large (3072-dim), rep-
resenting cloud-based proprietary embeddings; (ii) Jina AI’s jina-embeddings-v3 (Sturua
et al., 2024) (1024-dim), an open-source local model; (iii) NVIDIA’s nv-embed-v2 (Lee et al.,
2024) (4096-dim), optimized for retrieval tasks; and (iv) GritLM-7B (Muennighoff et al., 2024)
(4096-dim), a unified generative-embedding model. All other hyperparameters remain fixed across
experiments.

Table 7 presents results across five evaluation dimensions. QAFD-RAG demonstrates consistent
performance across all embedding models, with Comprehensiveness scores ranging from 85.82 to
88.12 and Relevance scores from 91.98 to 95.12. Notably, text-embedding-3-large achieves
the best performance on Comprehensiveness, Diversity, and Relevance, while nv-embed-v2 excels
on Logicality and Coherence. However, the overlapping standard deviations across models indicate
that differences are modest.

Importantly, jina-v3, despite being the lowest-dimensional model (1024-dim) and fully local,
achieves competitive results—only 2-3 points below the best performing models on most metrics.
This demonstrates that QAFD-RAG’s query-aware flow diffusion mechanism is robust to embed-
ding variations and can operate effectively with resource-constrained or privacy-preserving local
embeddings. The consistent performance across diverse architectures (cloud vs. local, 1024-dim
to 4096-dim) validates that our theoretical framework successfully leverages semantic similarity
regardless of the specific embedding space.

A2.1.5 LONG-DOCUMENT SUMMARIZATION: SQUALITY EVALUATION DETAILS

We evaluate on all 250 questions from the SQUALITY training dataset (Wang et al., 2022), which
contains narrative passages paired with comprehension questions and multiple human-written refer-
ence answers per question. We compute BLEU-1 and BLEU-2 using unigram and bigram modified

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 7: Embedding sensitivity analysis: QAFD-RAG performance across five embedding models on
the Mix dataset. All numbers are mean (± stdev) over 5 runs.

Embedding Model Comprehensive. Diversity Logicality Relevance Coherence
text-embedding-3-small (1536d) 87.15 (±3.46) 81.15 (±4.86) 90.70 (±2.93) 94.36 (±4.50) 90.36 (±2.07)
text-embedding-3-large (3072d) 88.12 (±3.32) 83.08 (±4.71) 91.28 (±2.85) 95.12 (±4.35) 90.85 (±2.01)
jina-v3 (1024d) 85.82 (±3.58) 80.18 (±5.02) 89.18 (±3.05) 91.98 (±4.68) 87.94 (±2.15)
NVIDIA-nv-embed-v2 (4096d) 87.85 (±3.41) 82.45 (±4.78) 91.58 (±2.81) 94.78 (±4.42) 91.45 (±1.98)
GritLM-7B (4096d) 87.32 (±3.51) 81.64 (±4.91) 89.82 (±2.97) 93.52 (±4.55) 90.28 (±2.10)

precisions with geometric averaging. BLEU-n is defined as

BLEU-n := exp

(
n∑

i=1

wi log pi

)
,

where pi is the i-gram precision and (w1, . . . , wn) are the weights. For BLEU-1 we use (1, 0, 0, 0);
for BLEU-2 we use (0.5, 0.5, 0, 0). ROUGE-1 F1 and ROUGE-2 F1 report F1 overlap of unigrams
and bigrams using Porter stemming.

METEOR combines unigram precision (P) and recall (R) with a fragmentation penalty:

METEOR := Fmean ·

(
1− γ ·

(
chunks
matches

)β
)
,

where harmonic mean Fmean := P · R/(αP + (1 − α)R), chunks denotes contiguous matched
segments and matches denotes total matched unigrams. We use Natural Language Toolkit (NLTK)
defaults: α = 0.9, β = 3.0, and γ = 0.5. All metrics use lowercased, word-tokenized text with
BLEU/METEOR computed against all references.

A knowledge graph is constructed once from all narrative documents and reused across queries. All
experiments use hybrid retrieval mode with diffusion parameter α = 10, a 40-node source budget,
and minimum flow threshold 0.01. Answers are produced with GPT-4o-mini using greedy decoding
and full caching.

A2.2 TEXT-TO-SQL

A2.2.1 HYPERPARAMETER SETTINGS

We report the full set of QAFD-RAG hyperparameters used in our implementation. The most critical
parameters are the source mass and the target capacity. The source mass is adaptively set based on
the degree of the source node, following local clustering strategies in Fountoulakis et al. (2020b).
Specifically, we define ms = α

∑
j∈P Tj , where P is the set of nodes on the shortest path from

source to target. The multiplier α = 10 controls the initial injected mass; larger values ensure
sufficient propagation across the graph. If no path exists between source and target, we apply a
fallback rule: ms =

∑
i∈V Ti. Each node, including the target, is assigned a uniform sink capacity

Ti = 1 and initialized with zero mass. During diffusion, nodes absorb incoming flow up to their
capacity, with excess redistributed until convergence.

Other hyperparameters regulate the iterative behavior of the algorithm, to which it is generally robust.
The convergence threshold in Algorithm 2 is set to ϵ = 0.05, terminating when total excess mass falls
below this threshold. To safeguard against non-convergence, we cap iterations at Nmax = 106 and
check convergence every 100 steps. For stability during edge reweighting, a constant 10−10 is added
to all computations.

A2.2.2 EXAMPLES OF SCHEMA IDENTIFIED BY QAFD-RAG FOR SPIDER2’S QUERIES

The core efficiency of QAFD-RAG stems from its ability to globally reason over the schema graph
through flow diffusion, directly identifying the most relevant multi-hop paths between schema
elements implicated by the query. As illustrated in Figure 4, QAFD-RAG, unlike Spider-Agent and
other ReAct-style methods—which must sequentially probe the schema, issuing a separate LLM call

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 4: Left: Schema path identified by QAFD-RAG for SQL generation on query local039 (Lei
et al., 2025). Right: Stepwise schema exploration for the same query using Spider-Agent (ReAct) (Lei
et al., 2025). QAFD-RAG discovers the full reasoning path in one pass, sharply reducing LLM calls.
In contrast, Spider-Agent incrementally explores the schema, requiring 14 calls and higher latency.
This comparison highlights QAFD-RAG’s efficiency and accuracy on complex multi-hop queries.

Figure 5: QAFD-RAG retrieved schema for Query-Local141 in the AdventureWorks database KG
(Lei et al., 2025).

for each reasoning step, table, or join—performs a single, structured optimization to simultaneously
discover all semantically relevant paths. This eliminates redundant exploration and dramatically
reduces both the number of LLM calls and overall inference time, especially for queries requiring long
or complex join paths. Consequently, QAFD-RAG delivers scalable inference for large enterprise
databases while maintaining or even improving accuracy.

We provide an additional example to illustrate the advantages of our framework in uncovering
meaningful schema paths, using Query-Local141 from the AdventureWorks database (Lei et al.,
2025).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 8: LLM call efficiency across SQLite and Snowflake. Lower is better.

Method SQLite LLM Calls Snowflake LLM Calls
Spider-Agent 724 1482
QAFD-RAG + SQL-Agent 493 674

Table 9: Schema linking performance (precision, recall, F1). Higher is better.

Method SQLite Snowflake
Prec Rec F1 Prec Rec F1

Spider-Agent 0.81 0.75 0.78 0.35 0.35 0.35
QAFD-RAG 0.82 0.76 0.79 0.60 0.59 0.60

Example 1 (Query-Local141). How did each salesperson’s annual total sales compare to their
annual sales quota? Provide the difference between their total sales and the quota for each year,
organized by salesperson and year

Figure 5 visualizes the relevant portion of the complex database schema as a graph, highlighting
two distinct schema path decompositions: one corresponding to the sales quota (green path) and
the other to the total sales (orange path). These paths not only capture the necessary schema
linking but also reveal the underlying reasoning required to answer the query, as seen from the
traversal across key nodes such as SalesQuota, totaldue, orderdate, and identifiers such
as BusinessEntityID and salespersonid.

While Spider-Agent fails on this complex multi-hop reasoning query, QAFD-RAG effectively lever-
ages the discovered paths to solve the problem, demonstrating the power of path-based schema
linking and reasoning for compositional SQL logic.

A2.2.3 LLM EFFICIENCY AND SCHEMA LINKING PERFORMANCE

Table 8 demonstrates that QAFD-RAG + SQL-Agent significantly reduces LLM call overhead, using
31.9% fewer LLM calls on SQLite and 54.5% fewer calls on Snowflake compared to the standard
Spider-Agent approach. Overall, QAFD-RAG + SQL-Agent consistently outperforms baselines
across both environments.

Finally, Table 9 presents detailed schema linking performance measured by precision, recall, and
F1-score. It demonstrates the core advantage of QAFD-RAG in identifying relevant schema elements
(tables and columns) for the given queries, explaining both its accuracy improvements and efficiency
gains over Spider-Agent.

A2.2.4 EMBEDDING MODEL SENSITIVITY FOR TEXT-TO-SQL

To evaluate QAFD-RAG’s robustness to embedding quality in the Text-to-SQL domain, we as-
sess schema linking performance across five diverse embedding models on the Local category
(SQLite databases). We compare: (i) OpenAI’s text-embedding-3-small (1536-dim) and
text-embedding-3-large (3072-dim), representing cloud-based proprietary embeddings; (ii)
Jina AI’s jina-embeddings-v3 (Sturua et al., 2024) (1024-dim), an open-source local model;
(iii) NVIDIA’s nv-embed-v2 (Lee et al., 2024) (4096-dim), optimized for retrieval tasks; and (iv)
GritLM-7B (Muennighoff et al., 2024) (4096-dim), a unified generative-embedding model. All
other hyperparameters remain fixed across experiments.

Table 10 presents schema linking results. QAFD-RAG demonstrates consistent performance across
all embedding models, with precision scores ranging from 0.80 to 0.83, recall from 0.76 to 0.81,
and F1 scores from 0.78 to 0.82. Notably, nv-embed-v2 achieves the best performance across
all metrics (0.83/0.81/0.82), which is specifically optimized for retrieval tasks, followed closely by
text-embedding-3-large (0.82/0.77/0.79) and GritLM (0.82/0.78/0.80).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 10: Embedding sensitivity analysis for Text-to-SQL (Local category): QAFD-RAG perfor-
mance across five embedding models.

Embedding Model Precision Recall F1-Score
text-embedding-3-small (1536d) 0.82 0.76 0.79
text-embedding-3-large (3072d) 0.82 0.77 0.79
jina-v3 (1024d) 0.80 0.76 0.78
NVIDIA-nv-embed-v2 (4096d) 0.83 0.81 0.82
GritLM-7B (4096d) 0.82 0.78 0.80

Importantly, jina-v3, despite being the lowest-dimensional model (1024-dim) and fully local,
achieves competitive results—only 0.04 points below the best model in F1 score. This demonstrates
that QAFD-RAG’s query-aware flow diffusion mechanism is robust to embedding variations and can
operate effectively with resource-constrained or privacy-preserving local embeddings. The consistent
performance across diverse architectures (cloud vs. local, 1024-dim to 4096-dim, ranging from
0.78 to 0.82 F1) validates that our framework successfully leverages semantic similarity for schema
linking regardless of the specific embedding space, making it practical for deployment in varied
infrastructure environments.

A3 PROOF OF MAIN RESULTS

A3.1 PROOF OF LEMMA 2

Proof. The proof follows from the structure of the push-relabel algorithm and properties of the dual
formulation.

Algorithm 2 only increases xu when node u has excess mass mu > Tu. By the complementary
slackness conditions of the dual problem (10), if x(k)∗

u = 0 at the optimum, then the corresponding
constraint is inactive, meaning mu ≤ Tu at optimality. Since the algorithm maintains the invariant
that mass can only flow from nodes with excess to their neighbors, and the algorithm starts with
x0 = 0, any node u with x

(k)∗
u = 0 will never have excess mass during the algorithm’s execution.

Therefore, xt
u = 0 for all iterations t, proving supp(xt) ⊆ supp(x(k)∗).

The source mass ∆(k) determines the total amount of "flow" injected into the system. Each unit of
flow that reaches a node u contributes at least a minimum amount to xu (bounded by the algorithm’s
push operations). Since mass is conserved and each node in the support must receive some positive
flow to have xu > 0, the number of nodes that can be in the support is upper bounded by the total
mass ∥∆(k)∥1. Formally, if | supp(x(k)∗)| > ∥∆(k)∥1, then the average flow per supported node
would be less than 1, but the discrete nature of the push operations and capacity constraints ensure
each supported node receives at least a minimum quantum of flow, leading to a contradiction.

A3.2 PROOF OF THEOREM 3

Proof. The proof follows the framework of coordinate descent analysis for flow diffusion problems
(Fountoulakis et al., 2020b), adapted to handle query-aware edge weights. We analyze the expected
decrease in the objective function at each iteration.

For simplicity, let F (x) = 1
2x

TL(qk)x + xT (T −∆(k)) be the dual objective from (10), where
L(qk) = BTW̄(qk)B is the query-aware weighted Laplacian. At iteration t, Algorithm 2 selects
a node u with excess mass mu > Tu uniformly at random and performs a push operation. The
mass vector maintains the relationship m = ∆(k) − L(qk)x, so the gradient is∇F (x) = L(qk)x+
(T −∆(k)) = T −m. When node u is selected, the excess mass is excess = mu − Tu > 0,
which corresponds to ∂F

∂xu
= Tu − mu < 0. The algorithm increases xu by excess

wu
where wu =∑

v∼u w̄(qk, u, v), and redistributes the excess to neighbors.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

The key insight is that this corresponds to a coordinate descent step. The expected decrease in the
objective function is

E[F (xt+1)− F (xt)] = −E
[
(excess)2

2wu

]
· P(node u is selected) (13)

Since nodes are selected uniformly from the excess set, and by Lemma 2, all iterates have support
contained in supp(x(k)∗), we have

E[F (xt+1)− F (xt)] ≤ − 1

| supp(x(k)∗)|
· η(k)

2γ(k)
· ∥T−mt∥21 (14)

where we use η(k) ≤ w̄(qk, u, v) for edges in the optimal support (minimum weight);∑
v∼u w̄(qk, u, v) ≤ γ(k) for nodes in the optimal support (maximum weighted degree); and The

excess mass at each node is bounded by the gradient components.

The total excess mass is ∥T−mt∥1, and by the optimality conditions, this relates to the suboptimality
as

F (xt)− F (x(k)∗) ≤ C · ∥T−mt∥1 (15)

for some constant C depending on the problem parameters. Combining these bounds and using the
fact that | supp(x(k)∗)| ≤ ∥∆(k)∥1 from Lemma 2, we get

E[F (xt+1)− F (x(k)∗)] ≤
(
1− η(k)

C · ∥∆(k)∥1 · γ(k)

)
E[F (xt)− F (x(k)∗)] (16)

This gives exponential convergence with rate η(k)

∥∆(k)∥1·γ(k) . To achieve E[F (xτ(k)

)]− F (x(k)∗) ≤ ξ,
we need

τ (k) = O

(
∥∆(k)∥1

γ(k)

η(k)
log

1

ξ

)
. (17)

The query-aware nature enters through the weights w̄(qk, u, v) in the definitions of γ(k) and η(k),
meaning the convergence rate adapts to the semantic structure induced by the query, while maintaining
the same algorithmic guarantees as classical flow diffusion.

A3.3 PROOF OF LEMMA 6

Proof. Note that for any nodes u, v ∈ V and k ∈ [K], we have

∥eu − eqk∥2 = ∥µu − µqk∥2 + ∥zu − zqk∥2 + 2⟨µu − µqk , zu − zqk⟩, (18a)

∥eu − ev∥2 = ∥µu − µv∥2 + ∥zu − zv∥2 + 2⟨µu − µv, zu − zv⟩. (18b)

To analyze the concentration of ∥eu−eqk∥2, note that ∥zu−zqk∥2 =
∑d

ℓ=1(zuℓ−zqkℓ)
2. Each term

(zuℓ − zqkℓ)
2 − E[(zuℓ − zqkℓ)

2] is sub-exponential with parameter at most Cσ2
ℓ for some absolute

constant C (see, e.g., (Vershynin, 2018, Theorem 2.7.7)). Applying Bernstein’s inequality for sums
of independent sub-exponential random variables and setting t = C1σ̂

2 log |V|, we obtain

∥zu − zqk∥2 ≤ 2

d∑
ℓ=1

σ2
ℓ + C1σ̂

2 log |V| (19a)

with probability at least 1− 2|V|−c′ , where σ̂ = max1≤ℓ≤d σℓ and c′ > 0 is a constant.

For the cross term, observe that

⟨µu − µqk , zu − zqk⟩ =
d∑

ℓ=1

(µuℓ − µqkℓ)(zuℓ − zqkℓ)

is a sum of independent, mean-zero sub-Gaussian random variables. By standard sub-Gaussian tail
bounds (e.g., Hoeffding’s inequality), for any C2 > 0,

P
(
|⟨µu − µqk , zu − zqk⟩| > C2σ̂

√
log |V|∥µu − µqk∥

)
≤ 2|V|−c′′

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

for some constant c′′ > 0. Hence,

|⟨µu − µqk , zu − zqk⟩| ≤ C2σ̂
√

log |V|∥µu − µqk∥ (19b)

with probability at least 1− 2|V|−c′′ .

Therefore, with high probability,

∥eu − eqk∥2 ≤ ∥µu − µqk∥2 + 2

d∑
ℓ=1

σ2
ℓ + C1σ̂

2 log |V|

+ 2C2σ̂
√
log |V|∥µu − µqk∥.

Following a similar argument, we derive bounds for ∥zu − zv∥2 and ⟨µu − µv, zu − zv⟩. Thus,
for u, v ∈ Rk, since µu = µv = µqk , the decomposition in (18) simplifies, and we obtain, with
probability at least 1−O(|V|−2)

w̄(qk, u, v) ≥ w(u, v) exp
(
−(γ1 + γ2 + γ3) ·O(σ̂2d)

)
= w(u, v) exp(−o(1)) = w(u, v)(1− o(1)).

This proves Item (i) in the lemma.

On the other hand, if u ∈ Rk and v ∈ V \Rk, we have min(∥µu−µv∥, ∥µv −µqk∥) ≥ µ̂ for some
µ̂. Thus, with high probability

∥ev − eqk∥2 ≥ µ̂2 − 2C2σ̂
√
log |V|µ̂−O(σ̂2d)

≥ µ̂2(1− o(1)).

From Assumption A, we get

w̄(qk, u, v) ≤ w(u, v) exp(−γ2µ̂2(1− o(1))) = w(u, v) exp(−ω(log |V|)).
Since the results hold uniformly over all pairs of nodes (u, v), applying a union bound over all
O(|V|2) edges completes the proof.

A3.4 PROOF OF THEOREM 7

Proof. Consider Problem (8). Under Assumption A, the induced subgraph on Rk is connected.
(Otherwise, the alternative probabilistic condition on ρ1 guarantees expansion—and thus connec-
tivity—with high probability by Chernoff bound arguments; see, e.g., (Yang & Fountoulakis, 2023,
Lemma C.1).)

Order the nodes in Rk as v1, v2, . . . , vrk such that x(k)
v1 ≥ x

(k)
v2 ≥ · · · ≥ x

(k)
vrk

, and let x(k)
vrk

= 0 be
the minimum. As the subgraph on Rk is connected, there is a subgraph (v1 = u0, . . . , um = vrk)
with m ≤ rk − 1, where each (uℓ, uℓ+1) is an edge within Rk. By the KKT conditions, for every
edge (u, v) with x

(k)
u > x

(k)
v , the optimal solution must satisfy

w̄(qk, u, v)(x
(k)
u − x(k)

v) ≤ (1 + β)
∑
u∈Rk

Tu.

Therefore, along each edge of the subgraph

x(k)
uℓ
− x(k)

uℓ+1
≤ (1 + β)

w̄(qk, uℓ, uℓ+1)

∑
u∈Rk

Tu

for 0 ≤ ℓ ≤ m− 1.

By the edge separation property in Lemma 6, w̄(qk, uℓ, uℓ+1) ≥ w(uℓ, uℓ+1)(1− o(1)) for intra-Rk

edge. Summing the above along the path, we have

x(k)
v1 =

m−1∑
ℓ=0

(x(k)
uℓ
− x(k)

uℓ+1
) + x(k)

vrk
≤

m−1∑
ℓ=0

(1 + β)
∑

u∈Rk
Tu

1− o(1)

≤
rk(1 + β)

∑
u∈Rk

Tu

1− o(1)
. (20)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

The total mass injected at sources in Rk is (1 + β)
∑

u∈Rk
Tu. Nodes in Rk can absorb at most∑

u∈Rk
Tu mass. Therefore, at least β

∑
u∈Rk

Tu mass must flow out ofRk.

Next, we provide upper bound on the outflow. The total flow leavingRk is

Outflow :=
∑
u∈Rk

∑
v/∈Rk

(u,v)∈E

w̄(qk, u, v)(x
(k)
u − x(k)

v)+ ≤
∑
u∈Rk

x(k)
u

∑
v/∈Rk

(u,v)∈E

w̄(qk, u, v)

≤ x(k)
v1

∑
u∈Rk

∑
v/∈Rk

(u,v)∈E

w̄(qk, u, v). (21)

By Lemma 6, w̄(qk, u, v) ≤ exp(−ω(log |V|)) for u ∈ Rk, v /∈ Rk. Let Nout be the number of
edges fromRk to V \ Rk. By Chernoff bounds, we have

Prob(Nout > 2ρ2rk(|V| − rk)) ≤ exp(−Ω(ρ2rk(|V| − rk))). (22)

Therefore, with high probability

Outflow ≤
rk(1 + β)

∑
u∈Rk

Tu

1− o(1)
· 2ρ2rk(|V| − rk) · exp(−ω(log |V|))

= (1 + β)
∑
u∈Rk

Tu · poly(|V|) · exp(−ω(log |V|))

= o

(
β
∑
u∈Rk

Tu

)
.

This contradicts the requirement that at least β
∑

u∈Rk
Tu mass must leaveRk. Thus, our assumption

that x(k)
vrk

= 0 is false, so x
(k)
v > 0 for all v ∈ Rk, i.e.,Rk ⊆ supp(x(k)).

Finally, the mass that does leaveRk must be absorbed at nodes outsideRk. Since each x
(k)
u ≤ Tu

(by the constraints), the sum of Tu over nodes in supp(x(k)) \ Rk cannot exceed the total outflow,
i.e., ∑

u∈supp(x(k))\Rk

Tu ≤ β
∑
u∈Rk

Tu.

This establishes the second part of the theorem. The desired high-probability result then follows by a
union bound.

A4 OVERVIEW OF DATASETS AND PROMPTS USED IN QAFD-RAG FOR
QUESTION ANSWERING

This section provides the details of datasets and key prompts used throughout our framework. To
ensure fair comparison and eliminate confounding effects due to prompt engineering, we directly
adopt the prompt templates introduced in Chen et al. (2025a) and Guo et al. (2024) for multiple
stages of our pipeline. Specifically, the prompts for knowledge graph indexing, keyword extraction,
and RAG-based query answering are reused without modification. For the performance evaluation
stage, we also follow Chen et al. (2025a) and Guo et al. (2024)’s evaluation setup by prompting the
model to rate responses along five predefined dimensions: Comprehensiveness, Diversity, Logicality,
Relevance, and Coherence. These standardized definitions and formulations are explicitly included in
our evaluation prompts. Using a consistent prompt set across all models ensures the reliability and
reproducibility of our experimental results.

A4.1 DATASETS

A4.2 ENTITY AND RELATIONSHIP EXTRACTION PROMPT

This prompt is used to extract structured entity and relation information from individual document
chunks, forming the nodes and edges of the knowledge graph. The prompt format is directly adopted
from Chen et al. (2025a).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 11: Dataset statistics for the UltraDomain subsets used in our evaluation.

Dataset # of documents # of tokens # of nodes in the indexing graph # of questions
Agriculture 12 1,949,526 23,180 100
Biology 27 3,275,990 42,520 220
Cooking 14 2,232,441 18,985 120
History 26 5,159,599 63,840 180
Legal 94 4,773,793 20,838 438
Mathematics 20 3,640,908 32,319 160
Mix 61 611,161 11,371 130
Music 29 5,038,910 58,245 200
Philosophy 26 3,561,642 33,241 200
Physics 19 2,116,825 19,745 160

Prompt 1: Entity and Relationship Extraction

—Goal—
Given a text document that is potentially relevant to this activity and a list of entity types, identify
all entities of those types from the text and all relationships among the identified entities. Use
{language} as output language.

—Steps—
1. Identify all entities. For each identified entity, extract the following information:

- entity_name: Name of the entity, use the same language as input text. If English,
capitalize the name.

- entity_type: One of the following types: [{entity_types}]
- entity_description: Comprehensive description of the entity’s attributes and activi-

ties
Format each entity as
(“entity”{tuple_delimiter}<entity_name>{tuple_delimiter}
<entity_type>{tuple_delimiter}<entity_description>)

2. From the entities identified in step 1, identify all pairs of (source_entity, target_entity)
that are clearly related to each other. For each pair of related entities, extract the
following information:

- source_entity: name of the source entity, as identified in step 1
- target_entity: name of the target entity, as identified in step 1
- relationship_description: explanation as to why you think the source entity and the

target entity are related to each other
- relationship_strength: a numeric score indicating the strength of the relationship

between the source entity and target entity
- relationship_keywords: one or more high-level key words that summarize the

overarching nature of the relationship, focusing on concepts or themes rather than
specific details

Format each relationship as
(“relationship”{tuple_delimiter}<source_entity>{tuple_delimiter}<target_entity>
{tuple_delimiter}<relationship_description>{tuple_delimiter}
<relationship_keywords>{tuple_delimiter}<relationship_strength>)

3. Identify high-level keywords that summarize the main concepts, themes, or topics of the
entire text. These should capture the overarching ideas present in the document. Format
the content-level keywords as
(“content_keywords”{tuple_delimiter}<high_level_keywords>)

4. Return output in {language} as a single list of all the entities and relationships identified
in steps 1 and 2. Use **{record_delimiter}** as the list delimiter.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

5. When finished, output {completion_delimiter}

A4.3 KEYWORD EXTRACTION PROMPT

This prompt identifies salient concepts and entities from a given query for the purpose of initializing
seed nodes during query-aware diffusion. It follows Chen et al. (2025a)’s design without any
modification.

Prompt 2: Keyword-Extraction in Knowledge Graph Question Answering

—Role—
You are a helpful assistant tasked with identifying both high-level and low-level keywords in the
user’s query.

—Goal—
Given the query, list both high-level and low-level keywords. High-level keywords focus on
overarching concepts or themes, while low-level keywords focus on specific entities, details, or
concrete terms.

—Instructions—
- Output the keywords in JSON format.
- The JSON should have two keys:

- “high_level_keywords” for overarching concepts or themes.
- “low_level_keywords” for specific entities or details.

A4.4 QUERY ANSWERING PROMPT

This prompt is used to generate the final response from the LLM based on retrieved evidence. We
adopt Chen et al. (2025a)’s instruction format for fairness in model comparison.

Prompt 3: RAG-based query answering

—Role—
You are a helpful assistant responding to questions about the data in the tables provided.

—Goal—
Generate a response of the target length and format that responds to the user’s question,
summarizing all information in the input data tables appropriate for the response length and
format, and incorporating any relevant general knowledge. If you don’t know the answer, just say
so. Do not make anything up. Do not include information where the supporting evidence for it is
not provided.

—Target response length and format—
{response_type}

—Data tables—
{context_data}

Add sections and commentary to the response as appropriate for the length and format. Style the
response in markdown.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

A4.5 EVALUATION PROMPT

This prompt is used to obtain ratings from the LLM across five dimensions: Comprehensiveness,
Diversity, Logicality, Relevance, and Coherence. The full dimension definitions are embedded in the
prompt and align with those defined in Chen et al. (2025a).

Prompt 4: Performance Evaluation

—Role—
You are an expert tasked with evaluating question answering based on five criteria: Comprehen-
siveness, Diversity, Logicality, Relevance, and Coherence.

—Goal—
Evaluate the following response to a question based on five criteria. Rate each criterion from 0 to
100.

Question: {query}
Response: {response}

Please evaluate based on these criteria:
- Comprehensiveness: How much detail does the answer provide to cover all aspects and

details of the question?
- Diversity: How varied and rich is the answer in providing different perspectives and

insights on the question?
- Logicality: How logically does the answer respond to all parts of the question?
- Relevance: How relevant is the answer to the question, staying focused and addressing

the intended topic or issue?
- Coherence: How well does the answer maintain internal logical connections between its

parts, ensuring a smooth and consistent structure?
Provide scores in JSON format:

{{
"comprehensiveness": [score],
"diversity": [score],
"logicality": [score],
"relevance": [score],
"coherence": [score]

}}

A5 OVERVIEW OF PROMPTS USED IN QAFD-RAG IN TEXT-TO-SQL TASKS

In the following, we provide a Text-to-SQL planning agent prompt to systematically analyze database
graph nodes (tables and columns) in relation to user queries in order to identify graph seed nodes. The
agent must decompose each query into subqueries, examine all schema nodes for semantic, structural,
and temporal connections, and output a JSON object listing source-target (seed node candidate) pairs
for each subquery. A similar prompt can be used for Snowflake graphs with minor modifications.

Prompt 5: Seed Node Selection for SQLite Graph

TASK DEFINITION

You are a Text-to-SQL planner agent.
Given:

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

• A user query: {QUERY}
• A database schema summary (graph) in text format: {SCHEMA_SUMMARY}

Your job is to:
1. Review this schema summary and user query thoroughly.

2. Break the user query into logical user subqueries.

3. For each subquery, systematically examine EVERY single node (table.column) in
the database schema graph one by one:

• Go through each table in the schema summary sequentially
• For each table, examine every column within that table
• For each table.column node, evaluate its relationship strength with the current

subquery
• Document your analysis for each node, determining if it has any of these RELA-

TIONSHIP TYPES with the subquery:
– SEMANTIC: Direct or indirect relevance to query concepts
– STRUCTURAL: Representing organizational structures in the query
– TEMPORAL: Time-based connections to query elements
– CAUSAL: Cause-effect relationships described in the query
– LOGICAL: Supporting logical conditions in the query
– STATISTICAL: Statistical correlations to query concepts
– DOMAIN-SPECIFIC: Domain relevancy with query

• Source nodes: ALL STARTING COLUMNS (with table prefixes) having strong
relationships of ANY TYPE ABOVE with the subquery.

• Target nodes: ALL DESTINATION COLUMNS (with table prefixes) having
strong relationships of ANY TYPE ABOVE with the subquery.

• MANDATORY: You must examine and consider every single table.column com-
bination in the schema before proceeding to the next step.

4. When domain-specific concepts appear in the query, properly map these concepts to the
appropriate schema column elements

5. Identify the most confident path of schema graph: For each subquery, determine and
explicitly state the most confident path that the LLM should follow through the schema
graph, using right arrow format (→) with ONLY schema nodes.

6. Provide reasoning confidence candidates: For each subquery, provide EXACTLY 2-3
DIVERSE candidates in format [source, target, confidence] where source is a starting
node, target is an ending node, and confidence is a float between 0.0-1.0. Each candidate
should explore different interpretations, relationship types, or alternative paths.

Important:
• Schema nodes MUST be specified as “table.column” EXACTLY the same as they

appear in the schema summary. EVEN DO NOT change upper or lower letters.
• The most confident path should use the right arrow format (→) and contain ONLY

schema nodes (table.column format)
• Reasoning confidence candidates should be in format: [source, target, confidence] with

EXACTLY 2-3 DIVERSE candidates per subquery
• Each candidate should represent different semantic interpretations, alternative join paths,

or different relationship types
• CRITICAL: You MUST systematically go through every single table and every single

column in the schema graph during step 3 analysis
• Only output a JSON without explanation

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

In the following, we provide an example of a Snowflake system prompt for SQL-Agent. A similar
prompt was used for SQLite with minor modifications. The agent is required to systematically
analyze database schemas and execute SQL queries by following a workflow that prioritizes the
identification of the highest-reward subgraphs from the schema.json files, which were built using
QAFD-RAG.

Prompt 6: Snowflake Data Scientist Agent

TASK DEFINITION

You are a data scientist proficient in database, SQL and DBT Project. You are starting in the
{work_dir} directory, which contains all the data needed for your tasks. You can only use the
actions provided in the ACTION SPACE to solve the task. For each step, you must output an
Action; it cannot be empty. The maximum number of steps you can take is {max_steps}. Do not
output an empty string!

ACTION SPACE
{action_space}

SNOWFLAKE-QUERY PROTOCOL

1. BEFORE following any other rules, you MUST follow these steps:
• Read the schema.json in the /workspace directory. The schema.json contains

valuable information about the graph structure and path rewards.
• Identify the highest-reward subquery paths for EACH division in the provided

schema.json
• Write your VERY FIRST SQL query by combining ONLY these highest-reward

paths to address the main query
• DO NOT perform ANY database inspection before executing this first query
• You MUST run this query as your FIRST SQL execution
• You MUST terminate execution immediately after this first query if it works

For your FIRST SQL attempt, follow ONLY these steps:
• Review the schema.json structure containing all subqueries and their reward values
• For each division (subquery), identify the path with the highest reward
• Combine these highest-reward paths into a SINGLE comprehensive SQL query
• Execute this SQL query immediately with no other database commands before it

Do NOT run any exploratory queries like:
• DO NOT run “SELECT * FROM table LIMIT 5”
• DO NOT run “PRAGMA table_info(table_name)”
• DO NOT run “SELECT name FROM sqlite_master WHERE type=’table”’
• DO NOT check data types
• DO NOT check for NULL values
• DO NOT try to understand the schema first
• DO NOT check DDL.csv files before attempting the first query

Your first query must be the direct SQL translation of combining all highest-reward
paths to address the main query objective.

2. If your first query fails, then you should explore the database structure further using
the methods below. You can check DDL.csv file with the database’s DDL, along with
JSON files that contain the column names, column types, column descriptions, and
sample rows for individual tables. You can review the DDL.csv file in each directory,
then selectively examine the JSON files as needed. Read them carefully.

3. You can use SNOWFLAKE_EXEC_SQL to run your SQL queries and interact with the
database. Do not use this action to query INFORMATION_SCHEMA or SHOW
DATABASES/TABLES; the schema information is all stored in the /workspace/-
database_name folder. Refer to this folder whenever you have doubts about the schema.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

4. Be prepared to write multiple SQL queries to find the correct answer. Once it makes
sense, consider it resolved.

5. Focus on SQL queries rather than frequently using Bash commands like grep and cat,
though they can be used when necessary.

6. If you encounter an SQL error, reconsider the database information and your previous
queries, then adjust your SQL accordingly. Do not output the same SQL queries
repeatedly.

7. Ensure you get valid results, not an empty file. Once the results are stored in result.csv,
make sure the file contains data. If it is empty or just contains the table header, it means
your SQL query is incorrect.

8. The final result MUST be a CSV file, not an .sql file, a calculation, an idea, a sentence
or merely an intermediate step. Save the answer as a CSV and provide the file name, it
is usually from the SQL execution result.

TIPS

1. When referencing table names in Snowflake SQL, you must include both the
database_name and schema_name. For example, for
/workspace/DEPS_DEV_V1/DEPS_DEV_V1/ADVISORIES.json,
if you want to use it in SQL, you should write
DEPS_DEV_V1.DEPS_DEV_V1.ADVISORIES.

2. Do not write SQL queries to retrieve the schema; use the existing schema documents in
the folders.

3. When encountering bugs, carefully analyze and think them through; avoid writing
repetitive code.

4. Column names must be enclosed in quotes. But don’t use \”, just use “.

RESPONSE FORMAT
For each task input, your response should contain:

1. One analysis of the task and the current environment, reasoning to determine the next
action (prefix “Thought: ”).

2. One action string in the ACTION SPACE (prefix “Action: ”).

EXAMPLE INTERACTION
Observation: ...(the output of last actions, as provided by the environment and the code output,
you don’t need to generate it) Thought: ... Action: ...

TASK
Please solve this task: {task}

A6 TEXT-TO-SQL BASELINES

CHASE-SQL for SQLite We made several key modifications to adapt CHASE-SQL for the Spider
2.0 SQLite benchmark. Enhanced data preprocessing expanded the data types used for extracting
unique values from TEXT-only to include all "CHAR"-containing types (CHAR, VARCHAR, NVAR-
CHAR) present in Spider 2.0. We disabled schema selection comparison features to prevent failures
when no golden SQL query is available, and updated candidate generation prompts to encourage SQL
generation even in low-confidence scenarios, addressing the complexity-induced abstention issues in
Spider 2.0.

Additional improvements included increased execution timeout thresholds to accommodate more
complex SQL queries and enforcing a fixed agentic pipeline order: keyword extraction→ entity

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

retrieval→ context retrieval→ column filtering→ table selection→ column selection→ candidate
generation→ revision. This fixed order was necessary after observing that dynamic tool selection
often led to suboptimal sequences.

CHASE-SQL for Snowflake All SQLite modifications were retained, but we disabled the Information
Retrieval module, skipping entity and context retrieval phases. Transitioning to Snowflake required
addressing three main challenges: syntax differences, database schema representation, and connection
protocols.

While Snowflake SQL is largely compatible with SQLite, key differences include date format handling
and using double quotes instead of backticks for quoted identifiers. The original CHESS schema
representation using simple table-name dictionaries proved insufficient for Snowflake’s hierarchical
structure, where tables are organized into schemas within databases. We introduced schema-table
mapping to handle this abstraction, though this assumes no duplicate table names across schemas.

Database connection also differs significantly. SQLite uses direct file paths, while Snowflake
requires cloud account credentials with full namespace specification (database.schema.table) or
reduced namespace (schema.table) when connected to a specific database. Golden SQL examples
use full namespace format. Source code modifications addressed these data access differences.
For prompt adaptation, we used the o3 model with instructions shown in Prompt 7 to modify
generate_candidate_one and revise_one templates. Initial experiments revealed that full namespace
format contradicted GPT-4o’s internal knowledge, which prefers simplified schema.table format. We
therefore modified prompts to use schema.table format while passing database names directly to the
connector.

Prompt 7: System prompt for o3 to adapt generate_candidate_one
and revise_one prompts for snowflake dialect

Help me modify this template to switch from SQLite dialect to snowflake dialect.
1. Make sure to change the syntax and functions specifically for snowflake, but do not change the
prompt structure and do not omit any examples.
2. All examples must be executable in snowflake.
3. Make sure to change all ticks <‘> with double quotes <">
4. All DDL statements specifying the database structure must include statements for creating a
database and schema. You can infer the best names for the database and schema if they are not
immediately available. Use the same name for the database and the schema. When referencing
tables, use the full namespace including the database and schema, like so: database.schema.table

Here is an example:

CREATE DATABASE restaurants;
CREATE SCHEMA restaurants;
CREATE TABLE generalinfo
(

id_restaurant INTEGER not null primary key,
food_type TEXT null, – examples: ‘thai‘| ‘food type‘ description: the food type
city TEXT null, – description: the city where the restaurant is located in

);

CREATE TABLE location
(

id_restaurant INTEGER not null primary key,
street_name TEXT null, – examples: ‘ave‘, ‘san pablo ave‘, ‘pablo ave‘| ‘street name‘

description: the street name of the restaurant
city TEXT null, – description: the city where the restaurant is located in
foreign key (id_restaurant) references generalinfo (id_restaurant) on update cascade on

delete cascade,
);

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Use table location like so:
restaurants.restaurants.location

Final prompt modifications included converting few-shot examples from SQLite to Snowflake syntax,
adding Snowflake-specific instructions, implementing schema.table namespace usage, incorporating
schema generation statements in DDL commands, and updating date processing instructions with
Snowflake-specific functions and examples.

To establish strong baselines, we compared our approach against three additional methods from
the Spider 2 repository: DIN-SQL (Pourreza & Rafiei, 2024), DAIL-SQL (Gao et al., 2023a), and
CodeS (Li et al., 2024b). These methods represent different paradigmatic approaches to text-to-SQL
generation.

DIN-SQL: Decomposed In-Context Learning of Text-to-SQL with Self-Correction DIN-
SQL (Pourreza & Rafiei, 2024) structures text-to-SQL generation through a four-stage decomposition
approach. The method begins with schema linking to parse questions and identify references to
database elements, followed by classification and decomposition that categorizes queries into easy
(single-table), non-nested complex (joins without sub-queries), and nested complex (joins with
sub-queries and set operations) classes. The SQL generation stage adapts its strategy to each class:
simple few-shot prompting for easy queries, intermediate representations for non-nested complex
queries, and sub-query decomposition with intermediate representations for nested complex cases.
Finally, self-correction uses an LLM to identify and fix bugs in the generated SQL.

DAIL-SQL: Dual-Similarity Adaptive In-Context Learning DAIL-SQL (Gao et al., 2023a)
employs a five-stage pipeline centered on dual-similarity matching. The method starts with masking
database-related tokens in both target and candidate questions, then uses a preliminary predictor
for initial SQL prediction. Skeleton extraction identifies structural patterns in both predicted and
candidate queries. The core innovation lies in sorting and reordering, where candidates are first
sorted by masked question similarity and then reordered by prioritizing high query similarity matches.
Finally, generation produces the final SQL using the optimally ordered examples.

CodeS: Domain-Adaptive SQL-Centric Model CodeS (Li et al., 2024b) takes a pretraining-based
approach with three main components. Incremental pre-training builds upon StarCoder using a
specially curated SQL dataset. Database prompt construction creates context by selecting top-k
relevant tables and columns using BM25 and LCS matching, incorporating representative values
and metadata. Bi-directional augmentation expands few-shot examples through SQL-to-NL and
NL-to-SQL data augmentation before supervised fine-tuning. The model can operate through either
supervised fine-tuning or direct few-shot in-context learning.

Spider-Agent: ReAct-style (Yao et al., 2023) Agentic Framework We evaluate the Spider-Agent
baseline (Lei et al., 2024), which implements a ReAct-style (Yao et al., 2023) multi-step reasoning
framework for Text-to-SQL, strictly following the original settings and publicly released code2

without any modifications to model parameters, prompt structure, or evaluation scripts. Specifically,
all hyperparameters were kept at their default values as provided by the authors: the LLM model is
set to GPT-4o, the decoding temperature is set to 0.5, the nucleus sampling parameter (top_p) is
0.9, the maximum generation length (max_tokens) is 2500, the agent’s step limit is 20, and the
agent memory length is 25.

All pipelines were executed using Spider 2 benchmark scripts (Lei et al., 2024) that convert data to
each method’s preferred format. To maintain baseline authenticity while ensuring runnable outputs,
we applied only minimal fixes necessary for execution, deliberately avoiding substantive tuning.
Testing covered both Snowflake and Lite subsets of Spider 2.

The enterprise-scale schemas in Spider 2 presented significant challenges across all baseline methods.
Context-length overflow occurred frequently as schemas exceeded token limits when serialized
verbatim. Zero error-remediation was observed, where logical or syntactic failures (e.g., missing
GROUP BY columns) were accepted without iterative correction or external validation. Additionally,

2https://github.com/xlang-ai/Spider2

37

https://github.com/xlang-ai/Spider2

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

malformatted data issues arose when benchmarks expected different data formats than those available
in Spider 2, contributing to overall poor performance across methods.

A7 USAGE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models as a general-purpose writing assistant. Its role was limited to
grammar checking, minor stylistic polishing, and improving the clarity of phrasing in some parts of
the manuscript. The authors made all substantive contributions to the research and writing.

38

	Introduction
	Methodology
	Framework Overview
	Query-Aware Flow Diffusion

	Optimization and Statistical Guarantees
	Experimental Evaluation
	Knowledge Graph Question Answering Results
	Baselines for KG-QA
	LLM Configuration and Hyperparameters
	Datasets and Evaluation Protocol
	Expected Results and Analysis

	Text-to-SQL Results

	Conclusion, Limitations, and Future Work
	Appendix
	Extended Related Work
	Retrieval-Augmented Generation.
	Graph Diffusion and Flow Methods
	QAFD-RAG's Positioning within Graph-Based RAG Approaches

	Extended Experiments
	Question Answering (QA)
	Additional Numerical Results for General Question Answering
	Sensitivity Analysis for QAFD-RAG
	cyanRuntime and Efficiency of QAFD-RAG for General QA
	cyanEmbedding Model Sensitivity Analysis
	cyanLong-Document Summarization: SQuALITY Evaluation Details

	Text-to-SQL
	Hyperparameter Settings
	Examples of Schema Identified by QAFD-RAG for Spider2's Queries
	cyanLLM Efficiency and Schema Linking Performance
	cyanEmbedding Model Sensitivity for Text-to-SQL

	Proof of Main Results
	Proof of Lemma 2
	Proof of Theorem 3
	Proof of Lemma 6
	Proof of Theorem 7

	Overview of Datasets and Prompts Used in QAFD-RAG for Question Answering
	Datasets
	Entity and Relationship Extraction Prompt
	Keyword Extraction Prompt
	Query Answering Prompt
	Evaluation Prompt

	Overview of Prompts Used in QAFD-RAG in Text-to-SQL Tasks
	Text-to-SQL Baselines
	Usage of Large Language Models (LLMs)

