

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 QUERY-AWARE FLOW DIFFUSION FOR GRAPH-BASED RAG WITH RETRIEVAL GUARANTEES

Anonymous authors

Paper under double-blind review

## ABSTRACT

Graph-based Retrieval-Augmented Generation (RAG) systems leverage interconnected knowledge structures to capture complex relationships that flat retrieval struggles with, enabling multi-hop reasoning. Yet most existing graph-based methods suffer from (i) heuristic designs lacking theoretical guarantees for subgraph quality or relevance and/or (ii) the use of static exploration strategies that ignore the query’s holistic meaning, retrieving neighborhoods or communities regardless of intent. We propose *Query-Aware Flow Diffusion RAG* (QAFD-RAG), a training-free framework that dynamically adapts graph traversal to each query’s holistic semantics. The central innovation is *query-aware traversal*: during graph exploration, edges are dynamically weighted by how well their endpoints align with the query’s embedding, guiding flow along semantically relevant paths while avoiding structurally connected but irrelevant regions. These query-specific reasoning subgraphs enable the first statistical guarantees for query-aware graph retrieval, showing that QAFD-RAG recovers relevant subgraphs with high probability under mild signal-to-noise conditions. The algorithm converges exponentially fast, with complexity scaling with the retrieved subgraph size rather than the full graph. Experiments on question answering and text-to-SQL tasks demonstrate consistent improvements over state-of-the-art graph-based RAG methods.

## 1 INTRODUCTION

Retrieval-Augmented Generation (RAG) enhances language models (LMs) by integrating external knowledge during generation (Fan et al., 2024; Gao et al., 2023b). A retriever first gathers relevant information for a query, which is then combined with the input and passed to the generator (Karpukhin et al., 2020). This is especially useful for question answering (QA) (Karpukhin et al., 2020; Xiong et al., 2020; Zhu et al., 2021), where added context improves accuracy in domains like healthcare, law, finance, and education (Xu et al., 2024; Zhang et al., 2023). With recent advances in large LMs (LLMs), RAG has become central to ethical AI, helping mitigate hallucinations (Tonmoy et al., 2024), improve transparency (Kim & Lee, 2024), adaptability (Shi et al., 2024; Wang et al., 2023), privacy (Zeng et al., 2024a;b), fairness (Shrestha et al., 2024), and reliability (Fang et al., 2024a).

Although conventional RAG is effective for unstructured document retrieval, real-world knowledge often has graph-structured forms—such as database schemas, social networks, and biomedical repositories. These structures preserve relational information that similarity-based retrieval misses, including multi-hop dependencies, hierarchies, and complex interactions. Graph-oriented RAG leverages such properties through techniques such as community detection and graph neural networks (Edge et al., 2024b; Wang et al., 2024), extending beyond similarity search to capture topological and semantic relationships (Fan et al., 2024; Gao et al., 2023b). This enables advanced multi-hop reasoning crucial for tasks such as text-to-SQL generation, scientific discovery, and medical diagnosis, where understanding relationships is as important as retrieving facts (Chen et al., 2025b; Wigh et al., 2022; Zhang et al., 2024c). For an overview, see the survey by Han et al. (2024).

However, existing graph-based RAG methods (Han et al., 2024) suffer from heuristic designs lacking theoretical guarantees for subgraph quality or relevance and/or the use of static exploration strategies that ignore the query’s holistic meaning during traversal. As shown in Figure 1, GraphRAG (Edge et al., 2024b) applies uniform community detection regardless of query relevance, while LightRAG (Guo et al., 2024) extracts ego-networks around seed nodes without semantic alignment. In

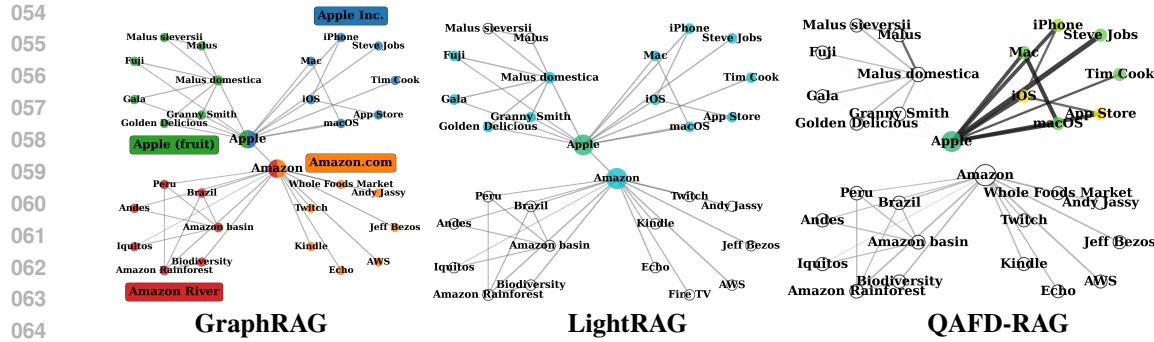


Figure 1: Comparison of graph-based RAG methods on Wikipedia pages (Apple fruit, Apple Inc., Amazon River, Amazon.com)<sup>1</sup>. Query: “Introduce Steve Jobs’s products in Apple.” **GraphRAG** (Edge et al., 2024b) retrieves entire communities, mixing relevant nodes (e.g., Mac, macOS) with irrelevant ones (e.g., Amazon River, Apple fruit). **LightRAG** (Guo et al., 2024) focuses on 1-hop neighborhoods, including both relevant nodes (e.g., Steve Jobs, iPhone) and structurally close but irrelevant ones (e.g., Fuji). **QAFD-RAG** reweights edges by the *query’s holistic meaning*, suppressing irrelevant 1-hop neighborhoods and preventing traversal into the Amazon River, Amazon.com, and Apple fruit clusters. The resulting subgraph is coherent, with edge thickness reflecting weight and node mass indicating importance (highest, lowest); see the discussion following Eqn. (8).

contrast, QAFD-RAG incorporates query semantics by reweighting edges and propagating mass along semantically aligned paths. Nodes on the reasoning chain ( $\text{Apple} \rightarrow \text{Mac} \rightarrow \text{macOS}$ ) are emphasized with stronger colors, while irrelevant ones (Amazon River, Fuji) fade due to suppressed flow. This reweighting turns diffusion into a semantic filter, producing compact, interpretable subgraphs aligned with user intent. By contrast, holistic query-agnostic methods often include irrelevant nodes, omit distant but relevant information, and return unstructured lists rather than coherent reasoning paths. Lacking theoretical foundations, these heuristics also yield unpredictable performance.

Given these limitations, we ask:

*Q: Under what conditions can we establish recovery guarantees for retrieving subgraphs that adapt to a query’s holistic meaning in graph-based RAG?*

To address this, we turn to graph diffusion theory and in particular *flow diffusion*—the process of spreading mass from seed nodes to neighbors along graph edges (Lovász, 1993; Chung, 1997; Fortunato, 2010; Spielman & Teng, 2013b; Fountoulakis et al., 2023b). Spectral diffusion methods are effective for clustering and community detection due to strong guarantees and efficiency, but have not been studied in the presence of queries. We reformulate diffusion for graph-based RAG, linking flow/traversal to a query’s holistic meaning. Specifically, we propose Query-Aware Flow Diffusion RAG (QAFD-RAG), a framework for dynamic, query-aware graph traversal via principled flow diffusion. The main contributions of this work are:

**C1: Query-Aware Flow Diffusion Framework:** We introduce the first principled flow diffusion method for graph-based RAG that incorporates query semantics via alignment-based edge weighting. QAFD-RAG adapts flow probabilities online, guiding traversal toward semantically relevant regions with complexity scaling with the retrieved subgraph size rather than the full graph (Figures 1 and 2).

**C2: Optimization and Statistical Guarantees:** We provide the first rigorous analysis of query-aware traversal with provable guarantees. Our results (Theorem 3) show exponential convergence to a unique query-dependent stationary distribution, and recovery guarantees (Theorem 7) ensuring relevant subgraphs are retrieved with high probability under mild signal-to-noise conditions.

**C3: Experimental Validation:** QAFD-RAG demonstrates superior performance across multiple benchmarks, consistently outperforming both graph-based RAG and text-to-SQL baselines. On the UltraDomain QA dataset (Tables 1 and 5), QAFD-RAG leads in 96% of topic-metric comparisons (48 out of 50 evaluated pairs). For multi-hop question answering (Table 3), QAFD-RAG achieves F1/EM scores of 68.6/53.7 on HotpotQA and 62.3/54.1 on 2WikiMultiHopQA, significantly outperforming

<sup>1</sup>Code is available at [anonymous repository](#).

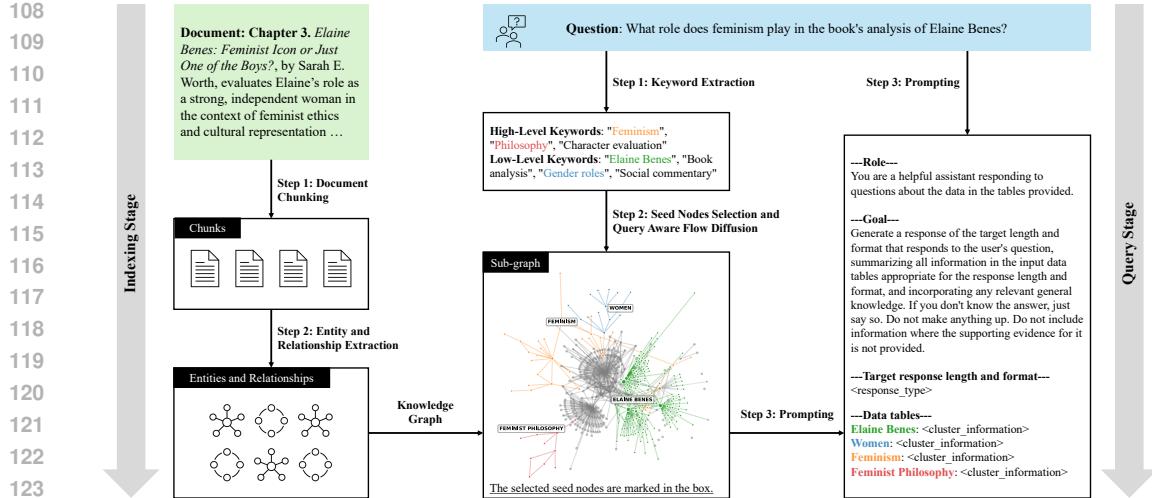


Figure 2: Two-stage QAFD-RAG framework: the indexing stage builds a KG from documents, and the query stage applies QAFD to extract and prompt subgraphs for response generation.

GraphRAG (33.4/14.0 and 15.2/7.0, respectively) and LightRAG (8.8/0.0 and 8.2/1.0, respectively). In text-to-SQL tasks (Tables 4–9), QAFD-RAG attains execution accuracies of 26.7% on SQLite and 23.7% on Snowflake databases, surpassing the Spider-Agent baseline (Lei et al., 2024) (21.5% and 16.3%, respectively) while simultaneously reducing LLM API calls by 31.9–54.5%.

**Notation.**  $\mathbb{R}^d$  is the  $d$ -dimensional real space, with  $\mathbb{R}_+^d$  and  $\mathbb{R}_{++}^d$  its positive and strictly positive orthants. Vectors and matrices are denoted by bold lowercase and uppercase letters (e.g.,  $\mathbf{a}$ ,  $\mathbf{A}$ ), with elements  $a_i$  and  $a_{ij}$ . For  $\mathbf{A}$ ,  $\mathbf{A}_{:i}$  and  $\mathbf{A}_{:j}$  denote its  $i$ th row and  $j$ th column;  $\mathbf{A} \succ 0$  ( $\succeq 0$ ) indicates positive (semi)-definiteness. Vector norms are  $\|\mathbf{a}\|_1 = \sum_i |a_i|$  and  $\|\mathbf{a}\| = (\sum_i |a_i|^2)^{1/2}$ . Matrix norms are  $\|\mathbf{A}\|_1 = \sum_{ij} |a_{ij}|$  and  $\|\mathbf{A}\|_F = (\sum_{ij} |a_{ij}|^2)^{1/2}$ . For  $n \in \mathbb{N}$ ,  $[n] := \{1, \dots, n\}$ . Standard asymptotic notations  $O$ ,  $\Omega$ ,  $\Theta$ ,  $o$ ,  $\omega$  are used with respect to  $n$ .

## 2 METHODOLOGY

### 2.1 FRAMEWORK OVERVIEW

QAFD-RAG is a training-free, graph-based reasoning framework for RAG tasks. The framework operates in two phases: an *Indexing Stage* (IS), which builds a knowledge graph (KG) from raw documents (Chen et al., 2025a; Guo et al., 2024), and a *Query Stage* (QS), which introduces our key contribution—query-aware flow diffusion. This mechanism integrates query semantics into graph traversal, enabling adaptive retrieval with statistical guarantees. Unlike SOTA RAG methods such as GraphRAG (Edge et al., 2024b), which applies static community detection, or LightRAG (Guo et al., 2024), which extracts ego-nets (Figure 1), QAFD-RAG dynamically reweights edges and diffuses flow according to query alignment, suppressing irrelevant clusters and highlighting reasoning paths.

In IS, *IS-Step 1: Document Chunking* splits documents into context-preserving chunks; *IS-Step 2: Entity and Relationship Extraction* uses LLM prompting to build a structured KG. In QS, *QS-Step 1: Keyword Extraction* pulls conceptual and surface terms (e.g., *Feminism*, *Elaine Benes*) for broad coverage (Figure 2, Step 1). Next, *QS-Step 2: Seed Node Selection and QAFD* scores nodes by similarity to query keywords as detailed in Algorithm 1. For example, in Figure 1, *Steve Jobs* (0.95), *Apple* (0.92), and *iPhone* (0.88) are selected, while irrelevant ones (e.g., *Amazon*, 0.15) are excluded. Top-scoring nodes serve as seeds where mass is injected and propagated via flow diffusion (Figure 2, Step 2). Edges are dynamically reweighted to blend structure and semantics through the query-aware edge weighting mechanism described in Section 2.2, suppressing irrelevant expansions (*Apple* → *Amazon* River/fruit) and reinforcing meaningful ones. We formulate this diffusion process as a constrained optimization problem, solved efficiently via a push–relabel algorithm (Algorithm 2). Recovery guarantees and algorithm complexity are provided in Section 3. Finally, *QS-Step 3:*

162 *Response Generation* summarizes retrieved communities (e.g., *Elaine Benes*, *Feminism*) and prompts  
 163 a downstream LLM, yielding grounded, consistent answers along reasoning paths.  
 164

## 166 2.2 QUERY-AWARE FLOW DIFFUSION

168 We cast subgraph retrieval as a QAFD problem. Given a natural language query  $q \in \mathcal{Q}$  and a  
 169 knowledge graph  $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{R})$ , with  $\mathcal{V}$  entities,  $\mathcal{E}$  edges, and  $\mathcal{R}$  relations, the task is to retrieve a  
 170 subgraph  $\mathcal{G}_q \subseteq \mathcal{G}$  capturing reasoning paths relevant for downstream language model processing. We  
 171 first recall flow diffusion from graph diffusion theory (Lovász, 1993; Chung, 1997; Spielman & Teng,  
 172 2013b; Fountoulakis et al., 2023b).

173 **Definition 1** (Flow Diffusion). *Flow diffusion spreads an initial amount of “mass” or “information”*  
 174 *from seed nodes through a graph along its edges. At each step, mass is divided among neighbors by*  
 175 *edge weights, so strongly connected nodes receive more and weakly connected ones less.*

177 Intuitively, flow diffusion resembles water or  
 178 dye moving through pipes: most flow fol-  
 179 lows stronger pipes (high-weight edges), lit-  
 180 tle through weaker ones. While well stud-  
 181 ied in clustering and community detection,  
 182 it has not been explored in the presence of  
 183 queries. We reformulate diffusion for graph-  
 184 based RAG, linking traversal to query seman-  
 185 tics. The first step is seed node selection,  
 186 as seeds are usually assumed *a priori* in dif-  
 187 fusion methods (Spielman & Teng, 2013b;  
 188 Wang et al., 2017; Yang & Fountoulakis, 2023;  
 189 Fountoulakis et al., 2023b). Seed selection  
 190 identifies query-relevant entities as starting  
 191 points for flow diffusion. We adopt a semantic  
 192 similarity-based approach, treating seed  
 193 utility as approximately additive for indepen-  
 194 dent scoring. Formally, let  $\mathcal{Q}$  be the query  
 195 space and  $\mathcal{W}$  the vocabulary space. Define  $g : \mathcal{Q} \rightarrow 2^{\mathcal{W}}$  mapping a query  $q \in \mathcal{Q}$  to keywords  
 196  $\mathcal{K}_q := \{w_1, \dots, w_{|\mathcal{K}_q|}\}$  via LLM prompting (Appendices A4, A5). Let  $\mathcal{K}_{\mathcal{V}} := \{k_v : v \in \mathcal{V}\}$  be  
 197 node identifiers. We define an embedding function  $h : \mathcal{W} \cup \mathcal{K}_{\mathcal{V}} \rightarrow \mathbb{R}^d$  mapping query keywords and  
 198 nodes to  $\mathbb{R}^d$ :

$$\mathcal{E}_q := \{h(w_i)\}_{i=1}^{|\mathcal{K}_q|} = \{\mathbf{e}_{q,i} \in \mathbb{R}^d\}_{i=1}^{|\mathcal{K}_q|}, \quad \mathcal{E}_{\mathcal{V}} := \{h(k_v)\}_{v \in \mathcal{V}} = \{\mathbf{e}_v \in \mathbb{R}^d\}_{v \in \mathcal{V}}. \quad (3)$$

200 We then define a similarity function  $H_{\text{sim}} : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}$  for semantic relatedness, with common  
 201 choices including cosine similarity  $\mathbf{e} \cdot \mathbf{e}' / \|\mathbf{e}\| \|\mathbf{e}'\|$ , dot product  $\mathbf{e} \cdot \mathbf{e}'$ , or RBF kernel  $\exp(-\gamma \|\mathbf{e} - \mathbf{e}'\|^2)$ .  
 202 The relevance score of a node  $v$  for query  $q$  is the maximum similarity across keywords via (1).  
 203 We then select the  $N$  highest-scoring entities via (2), breaking ties arbitrarily. For small graphs,  
 204 keywords and seeds can often be extracted in one LLM prompt (Appendix A5). For large graphs  
 205 (e.g., Table 11), we apply Algorithm 1, which runs in  $\mathcal{O}(|\mathcal{V}| \cdot |\mathcal{K}_q| \cdot d + |\mathcal{V}| \log N)$ .

206 **Dynamic Query-Aware Edge Weights.** Given seeds  $\mathcal{S}_{\mathcal{V}}$  and query  $q \in \mathcal{Q}$ , we perform flow diffusion  
 207 to extract reasoning subgraphs. **Traditional diffusion methods use static edge weights that ignore**  
 208 **query context, leading to uniform exploration regardless of semantic relevance. Our key insight is to**  
 209 **make edges “query-aware gates” that modulate flow strength based on both structural connectivity**  
 210 **and query alignment, enabling theoretical guarantees for subgraph recovery.** For each  $q \in \mathcal{Q}$ , edge  
 211  $(u, v) \in \mathcal{E}$ , and  $a, b \geq 0$ , the query-aware edge weights are

$$\bar{w}(q, u, v) := H_{\text{sim}}(h(u), h(v)) \circ (a + b \cdot (H_{\text{sim}}(h(u), h(q)) \circ H_{\text{sim}}(h(v), h(q)))), \quad (4)$$

212 where  $h(\cdot)$  is the embedding function,  $H_{\text{sim}}$  a similarity measure,  $\circ$  a binary operation (addition or  
 213 multiplication), and  $a, b \geq 0$  hyperparameters.

216 We explore three variants that balance structural and semantic signals differently:  
 217

$$218 \quad \bar{w}_{\text{Mean}}(q, u, v) := \frac{1}{3} (H_{\text{sim}}(h(u), h(v)) + H_{\text{sim}}(h(u), h(q)) + H_{\text{sim}}(h(v), h(q))), \quad (5a)$$

$$220 \quad \bar{w}_{\text{Product}}(q, u, v) := H_{\text{sim}}(h(u), h(v)) \cdot H_{\text{sim}}(h(u), h(q)) \cdot H_{\text{sim}}(h(v), h(q)), \quad (5b)$$

$$221 \quad \bar{w}_{\text{Hybrid}}(q, u, v) := H_{\text{sim}}(h(u), h(v)) \cdot (a + b (H_{\text{sim}}(h(u), h(q)) + H_{\text{sim}}(h(v), h(q)))). \quad (5c)$$

223 Here,  $H_{\text{sim}}(h(u), h(v))$  captures structural (node–node) similarity, while  $H_{\text{sim}}(h(u), h(q)) \circ$   
 224  $H_{\text{sim}}(h(v), h(q))$  measures query relevance to nodes  $u$  and  $v$ . The multiplicative interaction in  
 225 Product and Hybrid amplifies edges between query-relevant nodes while exponentially suppressing  
 226 edges to irrelevant regions, transforming diffusion into a semantic filter. Weights are computed  
 227 online: when a query arrives, we first compute its embedding and then update only the edge weights  
 228  $\bar{w}(q, u, v)$  encountered during traversal. In experiments,  $\bar{w}_{\text{Hybrid}}(q, u, v)$  yields slightly better results.

229 **QAFD’s Primal–Dual Formulation.** Given approaches for seed nodes and dynamic weight computations  
 230  $\bar{w}(q, u, v)$ , we formulate flow diffusion (Definition 1) as a constrained optimization problem  
 231 that minimizes total flow cost while enforcing mass conservation at each node. Let  $\mathbf{f} \in \mathbb{R}^{|\mathcal{E}|}$  denote  
 232 edge flows,  $\bar{\mathbf{W}}(q) \in \mathbb{R}^{|\mathcal{E}| \times |\mathcal{E}|}$  the diagonal matrix of query-aware edge weights, and  $\mathbf{B} \in \mathbb{R}^{|\mathcal{V}| \times |\mathcal{E}|}$   
 233 the incidence matrix of  $\mathcal{G}$ . The optimization is

$$234 \quad \min_{\mathbf{f} \in \mathbb{R}^{|\mathcal{E}|}} \frac{1}{2} \mathbf{f}^\top \bar{\mathbf{W}}(q) \mathbf{f} \quad \text{subj. to} \quad \Delta + \mathbf{B} \bar{\mathbf{W}}(q) \mathbf{f} \leq \mathbf{T}, \quad \forall q \in \mathcal{Q}. \quad (6)$$

237 Here,  $\Delta \in \mathbb{R}^{|\mathcal{V}|}$  encodes source mass injection and  $\mathbf{T} \in \mathbb{R}^{|\mathcal{V}|}$  represents sink capacities. We note  
 238 that in previous formulations (Wang et al., 2017; Fountoulakis et al., 2020b; 2023b),  $\bar{\mathbf{W}}(q)$  is query-  
 239 independent and, in most cases, is restricted to be the identity matrix. Following Definition 1, the  
 240 sink capacity vector  $\mathbf{T}$  determines how much mass each node can hold before diffusing to neighbors.  
 241 A common choice is degree-based capacity where  $T_v = \text{degree}(v)$ , which allows high-degree nodes  
 242 to accumulate more mass proportional to their connectivity, though uniform capacity  $T_v = \beta$  for  
 243 some constant  $\beta > 0$  provides an alternative that treats all nodes equally regardless of their structural  
 244 prominence. The source vector  $\Delta$  controls the initial mass distribution across nodes, with a common  
 245 choice  $\Delta_v = \alpha \sum_{u \in \mathcal{V}} T_u$  for source nodes  $v \in \mathcal{S}_V$  and  $\Delta_v = 0$  otherwise, where  $\alpha > 0$  controls  
 246 source strength.

247 The corresponding Lagrangian of (6) with multiplier vector  $\mathbf{x} \in \mathbb{R}_+^{|\mathcal{V}|}$  is

$$248 \quad \mathcal{L}(\mathbf{f}, \mathbf{x}; q) = \frac{1}{2} \mathbf{f}^\top \bar{\mathbf{W}}(q) \mathbf{f} + \mathbf{x}^\top (\Delta + \mathbf{B} \bar{\mathbf{W}}(q) \mathbf{f} - \mathbf{T}), \quad \forall q \in \mathcal{Q}. \quad (7)$$

250 Taking  $\partial \mathcal{L} / \partial \mathbf{f} = 0$  gives the primal-dual relation  $\mathbf{f} = -\mathbf{B} \mathbf{x}$ . Substituting this into (7) and setting  
 251  $\mathbf{L}(q) = \mathbf{B} \bar{\mathbf{W}}(q) \mathbf{B}^\top$  yields the dual problem

$$253 \quad \min_{\mathbf{x} \in \mathbb{R}_+^{|\mathcal{V}|}} F(\mathbf{x}; q) := \frac{1}{2} \mathbf{x}^\top \mathbf{L}(q) \mathbf{x} + \mathbf{x}^\top (\mathbf{T} - \Delta), \quad \forall q \in \mathcal{Q}. \quad (8)$$

255 It is often more convenient to use (8), which incorporates the  $\mathbf{T}$  and  $\Delta$  constraints into the objective.  
 256 The solution provides node importance scores  $\mathbf{x} \in \mathbb{R}_+^{|\mathcal{V}|}$ , indicating each entity’s query relevance.  
 257 Intuitively,  $\mathbf{f}$  represents edge flow strength—thicker edges in Figure 1(right)—while  $\mathbf{x}$  denotes node  
 258 mass or importance, shown by color in Figure 1(right): greener nodes are most relevant, yellow least,  
 259 with intermediate shades indicating moderate importance.

261 Algorithm 2 performs coordinate-wise optimization updates on the dual objective (8) for a query  
 262 and seed node. We set  $\Delta_v = \alpha \sum_{u \in \mathcal{V}} T_u$  for  $v \in \mathcal{S}_V$  and  $\Delta_v = 0$  otherwise. At each step, a node  
 263  $v$  with excess mass ( $m_v > T_v$ ) is chosen uniformly at random and  $x_v$  is increased to reduce the  
 264 objective. The mass vector  $\mathbf{m}$  tracks the gradient of  $F(\mathbf{x})$ , initialized as  $\mathbf{m} = \Delta$  at  $\mathbf{x} = \mathbf{0}$  with  
 265  $\nabla F(\mathbf{0}) = \mathbf{T} - \Delta$ . More generally,  $\mathbf{m} = \Delta - \mathbf{L}(q) \mathbf{x}$ , linking to  $\nabla F(\mathbf{x}, q) = \mathbf{T} - \mathbf{m}$ . The condition  
 266  $m_v > T_v$  is equivalent to  $\partial F / \partial x_v < 0$ , ensuring updates decrease the objective. Push operations  
 267 enforce complementary slackness: active  $x_v > 0$  correspond to nodes at capacity ( $m_v = T_v$ ),  
 268 satisfying dual optimality.

269 **Locality Preservation and On-Demand Computation.** After selecting seedsource nodes  $\mathcal{S}_V$ , Algo-  
 270 rithm 2 preserves the locality of flow diffusion while enabling online graph traversal. This property is

270 crucial for large-scale KGs with millions of nodes. Unlike SOTA RAGs (Edge et al., 2024a), which  
 271 requires full preprocessing, QAFD-RAG dynamically discovers relevant entities and relationships  
 272 during traversal. When mass flows from node  $v$  to its neighbors, the algorithm: (i) computes query-  
 273 aware edge weights  $\bar{w}(q, v, u)$  on-demand via (4); (ii) retrieves embeddings  $e_u$  and properties only  
 274 when mass reaches  $u$ ; and (iii) determines sink capacities  $T_u$  dynamically. This lazy evaluation  
 275 makes complexity scale with the explored subgraph rather than the full graph.

### 276 Extension to Multi-Subquery Formulation.

277 For complex queries requiring multi-hop reasoning, a single embedding via (4) may be insuf-  
 278 ficient. We address this by decomposing such  
 279 queries into multiple subqueries, as they often  
 280 involve distinct reasoning aspects solvable in-  
 281 dependently and then combined. For example,  
 282 the Spider 2.0 (Lei et al., 2024) query *"Please*  
 283 *help me find the film category with the highest*  
 284 *total rental hours in cities whose names either*  
 285 *start with 'A' or contain a hyphen."* decomposes  
 286 into filtering cities, linking to addresses and cus-  
 287 tomers, finding rentals, mapping rentals to films,  
 288 and identifying film categories with the highest  
 289 totals. This decomposition enables more effec-  
 290 tive embeddings during traversal by handling  
 291 reasoning aspects independently before aggrega-  
 292 tion. Given a complex query  $q$ , we decompose it  
 293 into  $K$  subqueries  $\mathcal{Q}_K = \{q_1, q_2, \dots, q_K\}$  us-  
 294 ing LLM-based decomposition (see Prompt 5),  
 295 where each  $q_i$  captures a specific reasoning as-  
 296 pect. We then apply flow diffusion to each sub-  
 297 query independently: for each  $q_k$ , we compute

$$298 \bar{w}(q_k, u, v) = H_{\text{sim}}(h(u), h(v)) \circ [a + b \cdot (H_{\text{sim}}(h(u), h(q_k)) \circ H_{\text{sim}}(h(v), h(q_k)))] . \quad (9)$$

299 We then solve the flow optimization problem for each subquery. From (8), we obtain

$$301 \min_{\mathbf{x}^{(k)} \in \mathbb{R}_+^{|\mathcal{V}|}} F(\mathbf{x}^{(k)}; q_k) := \frac{1}{2} (\mathbf{x}^{(k)})^\top \mathbf{L}^{(k)}(q_k) \mathbf{x}^{(k)} + (\mathbf{x}^{(k)})^\top (\mathbf{T}^{(k)} - \Delta^{(k)}), \quad \forall q_k \in \mathcal{Q}_K. \quad (10)$$

303 Here,  $\mathbf{L}^{(k)}(q_k) = \mathbf{B} \bar{\mathbf{W}}^{(k)}(q_k) \mathbf{B}^\top$  is the weighted Laplacian for  $q_k$ , with  $\bar{\mathbf{W}}^{(k)}(q_k)$  denoting the  
 304 diagonal matrix of edge weights  $\bar{w}(q_k, u, v)$ . The solution yields subquery-specific importance scores  
 305  $\mathbf{x}^{(k)}$ , with support  $\mathcal{V}_{\text{support}}^{(k)} = \{v \in \mathcal{V} : x_v^{(k)} > \underline{\epsilon}\}$ , where  $\underline{\epsilon} > 0$  filters out negligible values. The final  
 306 retrieved subgraph combines all subqueries,  $\mathcal{G}_q = \bigcup_{k=1}^K \mathcal{G}_{q_k}$ , where each  $\mathcal{G}_{q_k}$  is built from  $\mathcal{V}_{\text{support}}^{(k)}$   
 307 and its edges. See Figure 5 for an illustrative example.

## 310 3 OPTIMIZATION AND STATISTICAL GUARANTEES

311 We now provide theoretical guarantees for Algorithm 2, focusing on convergence and locality.

312 **Lemma 2.** *Let  $\mathbf{x}^{(k)*}$  be the optimal solution of (10). The support of each iterate generated by*  
 313 *Algorithm 2 is contained within  $\text{supp}(\mathbf{x}^{(k)*})$ . Moreover,  $|\text{supp}(\mathbf{x}^{(k)*})| \leq \|\Delta^{(k)}\|_1$ .*

314 Let  $\bar{d}$  be the maximum degree of a node in  $\text{supp}(\mathbf{x}^*)$ . Since each iteration only touches a node  
 315  $u \in \text{supp}(\mathbf{x}^*)$  and its neighbors, Lemma 2 implies that the number of nodes ever explored is at most  
 316  $\|\Delta\|_1$ . Thus, if  $\|\Delta\|_1$  is small and  $\bar{d}$  does not scale linearly with  $n$ , Algorithm 2 remains local, with  
 317 subgraph size controlled by  $\|\Delta\|_1$ .

318 **Theorem 3.** *For subquery  $q_k$ , assume  $|\text{supp}(\mathbf{x}^{(k)*})| < |\mathcal{V}|$ , where  $\mathbf{x}^{(k)*}$  solves (10). After*  
 319  *$\tau^{(k)} = O\left(\|\Delta^{(k)}\|_1 \frac{\gamma^{(k)}}{\eta^{(k)}} \log \frac{1}{\xi}\right)$ , where  $\gamma^{(k)} = \max_{u \in \text{supp}(\mathbf{x}^{(k)*})} \sum_{v \sim u} \bar{w}(q_k, u, v)$  and  $\eta^{(k)} \geq$*   
 320  *$\min_{(u,v) \in \text{supp}(\mathbf{B} \mathbf{x}^{(k)*})} \bar{w}(q_k, u, v)$ , we obtain  $\mathbb{E}\left[F\left(\mathbf{x}^{(k), \tau^{(k)}}; q_k\right)\right] - F\left(\mathbf{x}^{(k)*}; q_k\right) \leq \xi$ .*

324 **Corollary 4.** Algorithm 2 converges to  $\mathbf{x}^{(k)*}$  in  $O(\bar{d} \cdot \|\Delta\|_1 \cdot \log(1/\epsilon))$  iterations, where  $\bar{d}$  is the  
 325 maximum degree in the KG,  $\|\Delta\|_1$  is the total injected mass, and  $\epsilon$  is the desired accuracy.  
 326

327 Theorem 3 shows that convergence depends on  $\gamma^{(k)}/\eta^{(k)}$ , where  $\gamma^{(k)}$  is the maximum query-aware  
 328 weighted degree and  $\eta^{(k)}$  the minimum edge weight in the optimal support. Since  $\bar{w}(q_k, u, v)$  is  
 329 query-dependent, convergence adapts to each subquery’s semantics—unlike traditional diffusion with  
 330 static weights. The runtime to reach an  $\epsilon$ -accurate solution is  $O(\bar{d}\|\Delta\|_1 \frac{\alpha}{\beta} \log \frac{1}{\epsilon})$ . If  $\bar{d}$ ,  $\|\Delta\|_1$ , and  
 331  $\alpha/\beta$  are sublinear in  $n$ , Algorithm 2 achieves sublinear time, scaling to large KGs. This improves over  
 332 exhaustive subgraph and graph-based RAG methods with  $O(|\mathcal{V}|^2)$  complexity, showing QAFD-RAG  
 333 combines efficiency with semantic adaptability.

334 **Statistical Guarantees under a Random Graph Model.** Under appropriate signal-to-noise conditions,  
 335 we can provide guarantees about the quality of recovered reasoning paths.  
 336

337 Our analysis relies on a probabilistic framework where the embeddings  $\mathbf{e}_u$ ,  $\mathbf{e}_v$ , and  $\mathbf{e}_{q_k}$  for relevant  
 338 nodes and queries follow a structured random model. While this assumption may seem restrictive,  
 339 these embeddings can capture diverse node and query characteristics beyond simple text. The  
 340 mathematical foundations for analyzing node-attributed graphs have been extensively developed in  
 341 prior work on graph clustering (Reid & Yuval, 2009; Allen-Zhu et al., 2013; Andersen et al., 2016; Shi  
 342 et al., 2017; Wang et al., 2017; Fountoulakis et al., 2020a; Liu & Gleich, 2020) and diffusion processes  
 343 (Fountoulakis et al., 2020b; Yang & Fountoulakis, 2023; Fountoulakis et al., 2021). Our novelty lies  
 344 in incorporating query semantics into this framework, allowing us to analyze how query-dependent  
 345 edge weights shape traversal dynamics and to provide the subgraph recovery guarantees.

346 **Definition 5.** Given a schema graph with node set  $\mathcal{V}$ , for each query  $q_k$ , define  $\mathcal{R}_k \subseteq \mathcal{V}$  as the  
 347 set of relevant nodes (tables/columns required by the query) with  $r_k = |\mathcal{R}_k|$ . The random graph  
 348 generation is governed by the following edge probabilities: for each pair of nodes  $(u, v)$ , edges are  
 349 independently drawn with probability  $\rho_1$  if  $u, v \in \mathcal{R}_k$ , with probability  $\rho_2$  if exactly one node is in  $\mathcal{R}_k$ ,  
 350 and otherwise follow the original schema structure. For each node  $u \in \mathcal{V}$ , we have  $\mathbf{e}_u = \boldsymbol{\mu}_u + \mathbf{z}_u$ ,  
 351 where  $\boldsymbol{\mu}_u \in \mathbb{R}^d$  is a deterministic vector, and  $\mathbf{z}_u \in \mathbb{R}^d$  is random noise with independent mean-zero  
 352 sub-Gaussian coordinates  $z_{u\ell}$ , each having variance proxy  $\sigma_\ell$ :

$$\text{Prob}(|z_{u\ell}| \geq t) \leq 2 \exp\left(-\frac{t^2}{2\sigma_\ell^2}\right) \quad \forall t \geq 0.$$

353 For each  $q_k$ , let  $\mathbf{e}_{q_k} = \boldsymbol{\mu}_{q_k} + \mathbf{z}_{q_k}$ , using the same noise model. For nodes in the relevant set  $\mathcal{R}_k$ , we set  
 354  $\boldsymbol{\mu}_u = \boldsymbol{\mu}_v = \boldsymbol{\mu}_{q_k}$  for all  $u, v \in \mathcal{R}_k$ . Finally, for query  $q_k$ , we define  $\bar{w}(q_k, u, v) = \bar{w}_{\text{Product}}(q_k, u, v)$ ,  
 355 where  $H_{\text{sim}}(\mathbf{a}, \mathbf{b}) = \exp(-\gamma \|\mathbf{a} - \mathbf{b}\|^2)$  is an RBF-kernel similarity function. We also allow distinct  
 356 bandwidths  $\gamma_i$  for each factor in  $\bar{w}_{\text{Product}}$ .  
 357

358 Note that this formulation is chosen for simplicity of analysis. In practice, other measures—such as  
 359 cosine similarity—can be used depending on the application. Throughout, we define  
 360

$$\hat{\sigma} := \max_{1 \leq \ell \leq d} \sigma_\ell \quad \text{and} \quad \hat{\mu} := \min_{u \in \mathcal{R}_k, v \notin \mathcal{R}_k} \|\boldsymbol{\mu}_u - \boldsymbol{\mu}_v\|. \quad (11)$$

361 **Assumption A** (Knowledge Graph Structure and Signal-to-Noise). The knowledge graph satisfies  
 362 the following: (1) Entities relevant to a query  $q_i$  form a connected subgraph  $\mathcal{R}_i$ ; (2) The embedding  
 363 space preserves semantic similarity with signal-to-noise ratio  $\hat{\mu}/\hat{\sigma} = \omega(\sqrt{d \log |\mathcal{V}|})$ ; (3) Variance  
 364 concentrates as  $\sum_{\ell=1}^d \sigma_\ell^2 / \hat{\sigma}^2 = O(\log |\mathcal{V}|)$ ; and (4) Irrelevant entities have embeddings well-  
 365 separated from query embeddings.

366 **Lemma 6** (Query-Aware Edge Weight Separation). Under Assumption A, if the similarity function  
 367 parameters satisfy  $\gamma_i \hat{\sigma}^2 = o(\log^{-1} |\mathcal{V}|)$  for  $i \in \{1, 2, 3\}$ , then with probability at least  $1 - O(|\mathcal{V}|^{-2})$ :  
 368 (i) For all  $u, v \in \mathcal{R}_k$ ,  $\bar{w}(q_k, u, v) \geq (1 - o(1))$ ; (ii) For all  $u \in \mathcal{R}_k, v \in \mathcal{V} \setminus \mathcal{R}_k$ ,  $\bar{w}(q_k, u, v) \leq$   
 369  $\exp(-\omega(\log |\mathcal{V}|))$ .

370 Lemma 6 shows that under the signal-to-noise conditions in Assumption A, query-aware edge weights  
 371  $\bar{w}(q_k, u, v)$  separate relevant nodes  $\mathcal{R}_k$  from irrelevant ones  $\mathcal{V} \setminus \mathcal{R}_k$ . With similarity parameters  $\gamma_i$   
 372 scaled inversely with  $\log |\mathcal{V}|$ , the lemma guarantees with high probability that (i) edges within  $\mathcal{R}_k$   
 373 remain essentially unchanged, preserving reasoning paths, while (ii) edges between relevant and  
 374 irrelevant nodes become exponentially small, blocking diffusion into contextually irrelevant regions.

378 Table 1: Comparison of QAFD-RAG and baselines across five GPT-4o-scored dimensions (0–100).  
379 Rows are grouped by dataset; columns are metrics. Each cell shows mean ( $\pm$  std) over 5 independent  
380 evaluations. Best scores per dataset/metric are bolded. *To be continued in Appendix A2.1.1.*

| Dataset     | Method   | Comprehensive.                       | Diversity                             | Logicality                           | Relevance                            | Coherence                            |
|-------------|----------|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Agriculture | GraphRAG | 87.30 ( $\pm 4.46$ )                 | 82.85 ( $\pm 4.73$ )                  | 90.80 ( $\pm 5.84$ )                 | 94.01 ( $\pm 6.62$ )                 | 90.08 ( $\pm 3.23$ )                 |
|             | LightRAG | 83.65 ( $\pm 5.97$ )                 | 77.71 ( $\pm 7.34$ )                  | 88.85 ( $\pm 3.76$ )                 | 93.55 ( $\pm 4.16$ )                 | 88.67 ( $\pm 2.57$ )                 |
|             | RAPTOR   | 83.32 ( $\pm 8.67$ )                 | 76.65 ( $\pm 12.08$ )                 | 89.54 ( $\pm 3.63$ )                 | 94.56 ( $\pm 3.41$ )                 | 89.47 ( $\pm 3.01$ )                 |
|             | HippoRAG | 82.51 ( $\pm 5.14$ )                 | 76.26 ( $\pm 9.23$ )                  | 88.84 ( $\pm 3.26$ )                 | 94.09 ( $\pm 2.48$ )                 | 88.79 ( $\pm 2.73$ )                 |
|             | QAFD-RAG | <b>89.93 (<math>\pm 3.36</math>)</b> | <b>84.95 (<math>\pm 4.26</math>)</b>  | <b>92.10 (<math>\pm 2.53</math>)</b> | <b>95.67 (<math>\pm 3.28</math>)</b> | <b>92.00 (<math>\pm 1.62</math>)</b> |
| Biology     | GraphRAG | 85.76 ( $\pm 10.80$ )                | 81.05 ( $\pm 10.39$ )                 | 88.94 ( $\pm 11.70$ )                | 93.00 ( $\pm 12.50$ )                | 88.57 ( $\pm 11.10$ )                |
|             | LightRAG | 83.92 ( $\pm 4.13$ )                 | 78.28 ( $\pm 6.46$ )                  | 88.40 ( $\pm 4.24$ )                 | 93.31 ( $\pm 5.42$ )                 | 88.09 ( $\pm 2.86$ )                 |
|             | RAPTOR   | 83.57 ( $\pm 6.20$ )                 | 77.10 ( $\pm 9.41$ )                  | 88.33 ( $\pm 5.62$ )                 | 93.62 ( $\pm 6.42$ )                 | 88.67 ( $\pm 4.21$ )                 |
|             | HippoRAG | 83.07 ( $\pm 4.15$ )                 | 76.91 ( $\pm 7.25$ )                  | 88.07 ( $\pm 3.69$ )                 | 93.62 ( $\pm 3.53$ )                 | 88.52 ( $\pm 2.90$ )                 |
|             | QAFD-RAG | <b>89.44 (<math>\pm 3.92</math>)</b> | <b>85.13 (<math>\pm 4.11</math>)</b>  | <b>91.19 (<math>\pm 4.20</math>)</b> | <b>95.05 (<math>\pm 4.71</math>)</b> | <b>91.33 (<math>\pm 2.59</math>)</b> |
| Cooking     | GraphRAG | 86.23 ( $\pm 7.00$ )                 | 79.10 ( $\pm 8.72$ )                  | 90.79 ( $\pm 2.68$ )                 | 95.14 ( $\pm 2.91$ )                 | 90.63 ( $\pm 1.75$ )                 |
|             | LightRAG | 82.11 ( $\pm 7.56$ )                 | 74.97 ( $\pm 9.46$ )                  | 87.49 ( $\pm 5.82$ )                 | 92.27 ( $\pm 5.88$ )                 | 87.98 ( $\pm 4.09$ )                 |
|             | RAPTOR   | 83.15 ( $\pm 6.99$ )                 | 75.30 ( $\pm 9.79$ )                  | 88.52 ( $\pm 5.12$ )                 | 93.59 ( $\pm 5.48$ )                 | 88.83 ( $\pm 3.87$ )                 |
|             | HippoRAG | 82.52 ( $\pm 4.55$ )                 | 74.13 ( $\pm 7.25$ )                  | 88.40 ( $\pm 3.20$ )                 | 93.71 ( $\pm 2.66$ )                 | 88.57 ( $\pm 2.61$ )                 |
|             | QAFD-RAG | <b>89.25 (<math>\pm 3.82</math>)</b> | <b>83.42 (<math>\pm 5.25</math>)</b>  | <b>91.35 (<math>\pm 2.73</math>)</b> | <b>95.45 (<math>\pm 2.83</math>)</b> | <b>91.58 (<math>\pm 2.04</math>)</b> |
| History     | GraphRAG | 84.18 ( $\pm 10.30$ )                | 78.88 ( $\pm 9.97$ )                  | 88.18 ( $\pm 11.63$ )                | 92.35 ( $\pm 13.51$ )                | 88.40 ( $\pm 10.71$ )                |
|             | LightRAG | 82.24 ( $\pm 6.04$ )                 | 76.42 ( $\pm 7.51$ )                  | 86.98 ( $\pm 5.75$ )                 | 92.18 ( $\pm 6.17$ )                 | 87.18 ( $\pm 4.24$ )                 |
|             | RAPTOR   | 82.08 ( $\pm 7.43$ )                 | 75.59 ( $\pm 9.75$ )                  | 87.67 ( $\pm 4.63$ )                 | 92.94 ( $\pm 4.93$ )                 | 88.13 ( $\pm 3.58$ )                 |
|             | HippoRAG | 80.45 ( $\pm 6.95$ )                 | 74.61 ( $\pm 8.22$ )                  | 86.37 ( $\pm 6.36$ )                 | 91.54 ( $\pm 8.22$ )                 | 86.97 ( $\pm 4.77$ )                 |
|             | QAFD-RAG | <b>87.75 (<math>\pm 3.96</math>)</b> | <b>83.14 (<math>\pm 4.40</math>)</b>  | <b>90.04 (<math>\pm 3.93</math>)</b> | <b>93.77 (<math>\pm 6.25</math>)</b> | <b>90.55 (<math>\pm 2.37</math>)</b> |
| Legal       | GraphRAG | 84.96 ( $\pm 9.72$ )                 | <b>78.74 (<math>\pm 10.28</math>)</b> | 88.67 ( $\pm 8.58$ )                 | 91.01 ( $\pm 10.90$ )                | 88.44 ( $\pm 5.77$ )                 |
|             | LightRAG | 79.63 ( $\pm 11.25$ )                | 67.63 ( $\pm 11.86$ )                 | 86.06 ( $\pm 7.47$ )                 | 90.77 ( $\pm 10.17$ )                | 86.12 ( $\pm 6.10$ )                 |
|             | RAPTOR   | 81.43 ( $\pm 9.67$ )                 | 64.97 ( $\pm 13.91$ )                 | 88.34 ( $\pm 6.54$ )                 | 93.29 ( $\pm 9.18$ )                 | 87.70 ( $\pm 6.16$ )                 |
|             | HippoRAG | 82.23 ( $\pm 8.85$ )                 | 64.28 ( $\pm 11.31$ )                 | 88.56 ( $\pm 7.64$ )                 | <b>93.60 (<math>\pm 9.45</math>)</b> | 87.95 ( $\pm 6.39$ )                 |
|             | QAFD-RAG | <b>86.19 (<math>\pm 5.86</math>)</b> | 77.14 ( $\pm 7.42$ )                  | <b>90.06 (<math>\pm 5.06</math>)</b> | 93.30 ( $\pm 9.66$ )                 | <b>89.99 (<math>\pm 3.35</math>)</b> |

**Theorem 7** (Query-Aware Subgraph Recovery). *Under the conditions of Lemma 6, assume that either (i) the induced subgraph on  $\mathcal{R}_k$  is connected, or (ii)  $\rho_1 \geq \frac{(4+\epsilon)\log r_k}{\delta^2(r_k-1)}$  for some  $\delta \in (0, 1)$  and  $\epsilon > 0$ . If the source mass is set as  $\Delta_s^{(k)} = (1 + \beta) \sum_{u \in \mathcal{R}_k} T_u$  for any  $\beta > 0$ , then with high probability we have*

$$\mathcal{R}_k \subseteq \text{supp}(\mathbf{x}^{(k)}), \quad \text{and} \quad \sum_{u \in \text{supp}(\mathbf{x}^{(k)}) \setminus \mathcal{R}_k} T_u \leq \beta \sum_{u \in \mathcal{R}_k} T_u. \quad (12)$$

Theorem 7 shows that query-aware flow diffusion reliably recovers the query-relevant subgraph  $\mathcal{R}_k$  with controlled precision. It provides two guarantees: **Complete recovery** ( $\mathcal{R}_k \subseteq \text{supp}(\mathbf{x}^{(k)})$ ) ensures all semantically relevant nodes to query  $q_k$  receive positive flow and are included, so no essential information is lost. **Limited leakage** ( $\sum_{u \in \text{supp}(\mathbf{x}^{(k)}) \setminus \mathcal{R}_k} T_u \leq \beta \sum_{u \in \mathcal{R}_k} T_u$ ) bounds flow escaping into irrelevant regions. The trade-off parameter  $\beta$  controls this balance: smaller  $\beta$  enforces tighter focus, while larger  $\beta$  allows peripheral context at some cost to precision. Together, these results show that QAFD-RAG’s query-aware edge weighting acts as a semantic filter, concentrating flow on relevant reasoning paths while minimizing diffusion to unrelated regions.

## 4 EXPERIMENTAL EVALUATION

We evaluate QAFD-RAG against strong baselines on knowledge graph question-answering and text-to-SQL benchmarks, with a particular emphasis on query-aware retrieval performance and schema linking capabilities. Code is available at [anonymous repository](#).

### 4.1 KNOWLEDGE GRAPH QUESTION ANSWERING RESULTS

#### 4.1.1 BASELINES FOR KG-QA

We compare **QAFD-RAG** with four recent graph-oriented RAG systems under an identical setup (corpora, prompts, evaluation): **GraphRAG** (Edge et al., 2024b), which clusters retrieved documents

432 Table 2: Comparison of QAFD-RAG and Baseline Methods on SQuALITY.  
433

| 434 <b>Method</b>   | 435 <b>BLEU-1</b> | 436 <b>BLEU-2</b> | 437 <b>ROUGE-1 F1</b> | 438 <b>ROUGE-2 F1</b> | 439 <b>METEOR</b> |
|---------------------|-------------------|-------------------|-----------------------|-----------------------|-------------------|
| 440 <b>GraphRAG</b> | 441 <b>33.91</b>  | 442 <b>16.12</b>  | 443 <b>26.38</b>      | 444 <b>4.08</b>       | 445 <b>24.38</b>  |
| 446 <b>HippoRAG</b> | 447 <b>33.22</b>  | 448 <b>16.74</b>  | 449 <b>27.29</b>      | 450 <b>3.92</b>       | 451 <b>23.41</b>  |
| 452 <b>RAPTOR</b>   | 453 <b>32.10</b>  | 454 <b>16.58</b>  | 455 <b>25.13</b>      | 456 <b>3.49</b>       | 457 <b>22.87</b>  |
| 458 <b>LightRAG</b> | 459 <b>34.17</b>  | 460 <b>17.41</b>  | 461 <b>28.59</b>      | 462 <b>4.31</b>       | 463 <b>23.27</b>  |
| 464 <b>QAFD-RAG</b> | 465 <b>35.44</b>  | 466 <b>18.63</b>  | 467 <b>28.43</b>      | 468 <b>4.79</b>       | 469 <b>25.59</b>  |

440 via community detection and builds hierarchical contexts; **LightRAG** (Guo et al., 2024), which  
441 performs dual-level retrieval in the indexing graph; **HippoRAG** (Jimenez Gutierrez et al., 2024),  
442 which constructs a passage-level KG and applies Personalized PageRank for single-step multi-hop  
443 retrieval; and **RAPTOR** (Sarthi et al., 2024), which forms a hierarchical retrieval tree through  
444 recursive clustering and abstractive summarization, enabling multi-level evidence selection.  
445

#### 446 4.1.2 LLM CONFIGURATION AND HYPERPARAMETERS

447 All LLM calls for entity/relation extraction, hierarchical keywords, and cluster summarization use  
448 GPT-4o-mini (OpenAI), and all embeddings use `text-embedding-3-small` (1536d) unless  
449 noted otherwise. Unless otherwise noted, hyperparameters are fixed across all experiments: we  
450 select 40 seed nodes for coverage-efficiency balance; the diffusion mass is  $\alpha = 50$  to encourage  
451 propagation while preserving locality; and query-aware edge weights adopt the *hybrid* form (Eq. (5c))  
452 with  $a=1$ ,  $b=\frac{1}{4}$ , combining structural connectivity with query-semantic alignment. Additional  
453 implementation notes and sensitivity analyses are deferred to Appendix A4.  
454

#### 455 4.1.3 DATASETS AND EVALUATION PROTOCOL

456 We evaluate QAFD-RAG across three major settings. **General Question Answering** uses ten UL-  
457 TRADOMAIN subsets (Qian et al., 2024) spanning long-context reasoning and implicit inference  
458 (Agriculture, Biology, Cooking, History, Legal, Mathematics, Mix, Music, Philosophy, Physics).  
459 Answers are scored along five axes—*Comprehensiveness*, *Diversity*, *Logicality*, *Relevance*, *Coher-  
460 ence*—using GPT-4o on a 0–100 scale, with five independent evaluations per response (Appendix A4).  
461 **For Long-Document Summarization**, we use SQuALITY (Wang et al., 2022), where answers are  
462 question-focused abstractive summaries benchmarked against multiple human-written references; we  
463 report *BLEU-1*, *BLEU-2*, *ROUGE-1-F1*, *ROUGE-2-F1*, and *METEOR* (Appendix A2.1.5). **Multi-  
464 Hop Question Answering** is evaluated on HOTPOTQA (Yang et al., 2018) and 2WIKIMULTIOPQA  
465 (Ho et al., 2020), which require combining evidence across documents and explicit chains; we report  
466 *Exact Match* (*EM*) and *F1* using official evaluation scripts (Appendix A4.1).  
467

#### 468 4.1.4 EXPECTED RESULTS AND ANALYSIS

469 On the ten ULTRADOMAIN subsets, QAFD-RAG achieves the strongest overall averages across five  
470 axes, with steady gains in *Comprehensiveness*, *Logicality*, and *Coherence* (Tables 1, 5). Baselines  
471 show complementary strengths—RAPTOR may excel on *Relevance/Coherence* when hierarchical  
472 abstraction fits the domain, HippoRAG performs well on *Relevance* with local evidence, and  
473 GraphRAG/LightRAG can boost *Diversity* by expanding neighborhoods, often at the cost of *Logi-  
474 cality*. Overall, focusing retrieval on a query-aligned subgraph improves factual alignment without  
475 hurting fluency, whereas baselines trade off precision and recall in domain-dependent ways.  
476

477 **On the SQuALITY benchmark, QAFD-  
478 RAG achieves the highest performance  
479 on the majority of automated met-  
480 riques—including BLEU-1, BLEU-2,  
481 ROUGE-2 F1, and METEOR—indicating  
482 more faithful and coherent long-form  
483 summaries compared to GraphRAG,  
484 HippoRAG, RAPTOR, and LightRAG.  
485 While LightRAG now attains the highest  
486 ROUGE-1 F1 score, QAFD-RAG’s**

487 Table 3: Performance on Multi-Hop QA (F1, EM).

| 488 <b>Method</b>   | 489 <b>HotpotQA</b>     | 490 <b>2WikiMultihopQA</b> |
|---------------------|-------------------------|----------------------------|
| 491 <b>GraphRAG</b> | 492 <b>(33.4, 14.0)</b> | 493 <b>(15.2, 7.0)</b>     |
| 494 <b>LightRAG</b> | 495 <b>(8.8, 0.0)</b>   | 496 <b>(8.2, 1.0)</b>      |
| 497 <b>RAPTOR</b>   | 498 <b>(52.3, 25.0)</b> | 499 <b>(38.8, 12.0)</b>    |
| 500 <b>HippoRAG</b> | 501 <b>(58.5, 45.1)</b> | 502 <b>(62.0, 49.5)</b>    |
| 503 <b>QAFD-RAG</b> | 504 <b>(68.6, 53.7)</b> | 505 <b>(62.3, 54.1)</b>    |

486 query-aligned retrieval yields a stronger overall metric profile, offering a more stable balance  
 487 between precision and coverage across diverse narrative questions. On HOTPOTQA and 2WIKI-  
 488 MULTIHOPQA, QAFD-RAG obtains the highest *F1* and *EM* scores on both benchmarks (Table 3).  
 489 These improvements in *F1* and *EM* highlight that query-aware diffusion more reliably recovers gold  
 490 evidence under strict matching. GraphRAG and LightRAG can benefit from broader neighborhood  
 491 search, but this often hurts precision and consistency. In contrast, QAFD-RAG’s query-aligned  
 492 pruning produces tighter evidence chains and a stable precision–recall balance, enabling superior  
 493 performance across multi-hop reasoning tasks.

## 495 4.2 TEXT-TO-SQL RESULTS

496 We compare against methods from different paradigms. **CHASE-SQL** (Pourreza et al., 2024) uses  
 497 multi-path LLM reasoning (divide-and-conquer, execution-plan CoT, instance-aware few-shot) with  
 498 a pairwise-selection agent for SQL generation and ranking. **DIN-SQL** (Pourreza & Rafiei, 2024)  
 499 adopts a decomposition framework with template matching. **Spider-Agent** (Lei et al., 2024) applies  
 500 ReAct-style schema exploration and iterative SQL generation. **Codes** (Li et al., 2024b) emphasizes  
 501 code generation via prompt engineering. **DAIL-SQL** (Gao et al., 2023a) improves Text-to-SQL  
 502 accuracy by selecting and arranging few-shot code examples using masked question–query similarity.  
 503 All methods are using GPT-4o LLM calls.

504 We conduct our evaluation using the Spider 2.0  
 505 benchmark (Lei et al., 2024), a comprehensive  
 506 dataset that encompasses diverse schema architec-  
 507 tures representative of real-world enterprise en-  
 508 vironments. The benchmark incorporates intri-  
 509 cate SQL queries demanding complex multi-table  
 510 relationships and sophisticated analytical oper-  
 511 ations. Our analysis focuses on the *Spider 2.0 Local*  
 512 *Test Set*, comprising 135 local SQLite and  
 513 Snowflake instances that present substantial chal-  
 514 lenges through extended join sequences and elab-  
 515 orate query structures characteristic of large-scale  
 516 organizational databases. Table 4 reports execu-  
 517 tion accuracy on SQLite and Snowflake test sets. Here, SQL-Agent is a variant of the Spider-Agent  
 518 (Lei et al., 2024) SQL generator. Unlike Spider-Agent, which uses a ReAct-style agent for exploration  
 519 and reasoning, our approach converts the database into a knowledge graph and applies QAFD to  
 520 identify relevant tables and columns. SQL-Agent then leverages tailored prompts and QAFD-RAG’s  
 521 ranked subgraphs to generate SQL queries. An example prompt is shown in Prompt 6 in Appendix A5.

522 Table 4: SQL execution accuracy on 135  
 523 SQLite and Snowflake test sets.

| Method                         | SQLite (%)  | Snowflake (%) |
|--------------------------------|-------------|---------------|
| CHASE-SQL                      | 11.85       | 5.92          |
| DIN-SQL                        | 2.74        | 0.18          |
| DAIL-SQL                       | 0           | 0             |
| Codes                          | 0           | 0             |
| Spider-Agent                   | 21.5        | 16.3          |
| <b>QAFD-RAG</b><br>+ SQL-Agent | <b>26.7</b> | <b>23.7</b>   |

## 524 5 CONCLUSION, LIMITATIONS, AND FUTURE WORK

525 We presented QAFD-RAG, a training-free framework with query-aware edge reweighting for adaptive  
 526 graph traversal. Our contributions include: (1) the first principled flow diffusion for graph-based RAG,  
 527 (2) theoretical guarantees for subgraph recovery, and (3) consistent improvements across benchmarks  
 528 while reducing LLM calls.

529 QAFD-RAG relies on pre-trained embeddings, which may underperform in domain-specific settings.  
 530 Besides, the embedding-based flow diffusion may struggle with explicit logical negation because  
 531 embeddings capture semantic relatedness rather than logical operators. While QAFD-RAG partially  
 532 mitigates this through LLM-based keyword extraction (Prompt 2) and response filtering (Prompt 3),  
 533 this remains an important challenge.

534 QAFD-RAG’s modularity enables drop-in replacement of retrieval components in existing systems:  
 535 it can replace static Leiden clustering in GraphRAG, enhance Personalized PageRank in HippoRAG  
 536 with query-aware edge weighting, and extend LightRAG’s single-hop retrieval to multi-hop flow  
 537 diffusion—all without retraining while providing theoretical guarantees. Future work includes  
 538 learning edge weights from query–answer pairs and extending to temporal/multi-modal graphs.  
 539 Future work should also explore contrastive embeddings or hybrid symbolic–neural approaches that  
 encode logical distinctions during graph traversal.

540 REFERENCES  
541

542 E. Abbe, J. Fan, and K. Wang. An  $\ell_p$  theory of pca and spectral clustering. *The Annals of Statistics*,  
543 50(4):2359–2385, 2022.

544 Z. Allen-Zhu, L. Silvio, and S. M. Vahab. A local algorithm for finding well-connected clusters. In  
545 *International Conference on Machine Learning (ICML)*, 2013.

546 Uri Alon, Frank Xu, Junxian He, Sudipta Sengupta, Dan Roth, and Graham Neubig. Neuro-symbolic  
547 language modeling with automaton-augmented retrieval. In *International Conference on Machine  
548 Learning*, pp. 468–485. PMLR, 2022.

549 R. Andersen, F. Chung, and K. Lang. Local graph partitioning using pagerank vectors. *IEEE  
550 Symposium on Foundations of Computer Science (FOCS)*, 2006.

551 R. Andersen, S. O. Gharan, Y. Peres, and L. Trevisan. Almost optimal local graph clustering using  
552 evolving sets. *Journal of the ACM*, 63(2), 2016.

553 E. Arias-Castro, E. J. Candès, H. Helgason, and O. Zeitouni. Searching for a trail of evidence in a  
554 maze. *The Annals of Statistics*, 36(4):1726–1757, 2008.

555 E. Arias-Castro, E. J. Candès, and A. Durand. Detection of an anomalous cluster in a network. *The  
556 Annals of Statistics*, pp. 278–304, 2011.

557 A. Baranwal, K. Fountoulakis, and A. Jagannath. Graph convolution for semi-supervised classi-  
558 fication: Improved linear separability and out-of-distribution generalization. In *International  
559 Conference on Machine Learning (ICML)*, 2021.

560 A. Baranwal, K. Fountoulakis, and A. Jagannath. Effects of graph convolutions in multi-layer  
561 networks. In *International Conference on Learning Representations (ICLR)*, 2023a.

562 A. Baranwal, A. Jagannath, and K. Fountoulakis. Optimality of message-passing architectures for  
563 sparse graphs, 2023b.

564 Antoine Bordes, Nicolas Usunier, Sumit Chopra, and Jason Weston. Large-scale simple question  
565 answering with memory networks. *arXiv preprint arXiv:1506.02075*, 2015.

566 G. Braun, H. Tyagi, and C. Biernacki. An iterative clustering algorithm for the contextual stochastic  
567 block model with optimality guarantees. In *International Conference on Machine Learning (ICML)*,  
568 2022.

569 Boyu Chen, Zirui Guo, Zidan Yang, Yuluo Chen, Junze Chen, Zhenghao Liu, Chuan Shi, and Cheng  
570 Yang. Pathrag: Pruning graph-based retrieval augmented generation with relational paths. *arXiv  
571 preprint arXiv:2502.14902*, 2025a.

572 Xiaohui Chen, Yinkai Wang, Jiaxing He, Yuanqi Du, Soha Hassoun, Xiaolin Xu, and Li-Ping Liu.  
573 Graph generative pre-trained transformer. *arXiv preprint arXiv:2501.01073*, 2025b.

574 Xin Cheng, Di Luo, Xiuying Chen, Lemao Liu, Dongyan Zhao, and Rui Yan. Lift yourself up:  
575 Retrieval-augmented text generation with self-memory. *Advances in Neural Information Processing  
576 Systems*, 36, 2024.

577 U. Chitra, K. Ding, J. C. H. Lee, and B. J. Raphael. Quantifying and reducing bias in maximum  
578 likelihood estimation of structured anomalies. In *International Conference on Machine Learning  
579 (ICML)*, 2021.

580 Fan R. K. Chung. *Spectral Graph Theory*, volume 92 of *CBMS Regional Conference Series in  
581 Mathematics*. American Mathematical Society, 1997.

582 Mohammad Dehghan, Mohammad Ali Alomrani, Sunyam Bagga, David Alfonso-Hermelo, Khalil  
583 Bibi, Abbas Ghaddar, Yingxue Zhang, Xiaoguang Li, Jianye Hao, Qun Liu, et al. Ewek-qa:  
584 Enhanced web and efficient knowledge graph retrieval for citation-based question answering  
585 systems. *arXiv preprint arXiv:2406.10393*, 2024.

594 Y. Deshpande, S. Sen, A. Montanari, and E. Mossel. Contextual stochastic block models. *Advances*  
 595 *in Neural Information Processing Systems (NeurIPS)*, 2018.  
 596

597 Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,  
 598 and Jonathan Larson. From local to global: A graph rag approach to query-focused summarization.  
 599 *arXiv preprint arXiv:2404.16130*, 2024a.

600 Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,  
 601 and Jonathan Larson. From local to global: A graph rag approach to query-focused summarization.  
 602 *arXiv preprint arXiv:2404.16130*, 2024b.

603

604 Wenqi Fan, Yujuan Ding, Liangbo Ning, Shijie Wang, Hengyun Li, Dawei Yin, Tat-Seng Chua, and  
 605 Qing Li. A survey on rag meeting llms: Towards retrieval-augmented large language models. In  
 606 *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp.  
 607 6491–6501, 2024.

608 Feiteng Fang, Yuelin Bai, Shiwen Ni, Min Yang, Xiaojun Chen, and Ruifeng Xu. Enhancing noise  
 609 robustness of retrieval-augmented language models with adaptive adversarial training. *arXiv*  
 610 *preprint arXiv:2405.20978*, 2024a.

611

612 Jinyuan Fang, Zaiqiao Meng, and Craig Macdonald. Reano: Optimising retrieval-augmented reader  
 613 models through knowledge graph generation. In *Proceedings of the 62nd Annual Meeting of the*  
 614 *Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 2094–2112, 2024b.

615 Santo Fortunato. Community detection in graphs. *Physics Reports*, 486(3-5):75–174, 2010. doi:  
 616 10.1016/j.physrep.2009.11.002.

617

618 K. Fountoulakis, F. Roosta-Khorasani, J. Shun, X. Cheng, and M. W. Mahoney. Variational perspective  
 619 on local graph clustering. *Mathematical Programming*, 174:553–573, 2017.

620 K. Fountoulakis, D. Wang, and S. Yang. p-norm flow diffusion for local graph clustering. *International*  
 621 *Conference on Machine Learning (ICML)*, 2020a.

622

623 K. Fountoulakis, A. Levi, S. Yang, A. Baranwal, and A. Jagannath. Graph attention retrospective.  
 624 *The Journal of Machine Learning Research*, 24, 2023a.

625 Kimon Fountoulakis, Di Wang, and Shenghao Yang. P-norm flow diffusion for local graph clustering.  
 626 In *International Conference on Machine Learning*, pp. 3222–3232. PMLR, 2020b.

627

628 Kimon Fountoulakis, Pan Li, and Shenghao Yang. Local hyper-flow diffusion. *Advances in neural*  
 629 *information processing systems*, 34:27683–27694, 2021.

630 Kimon Fountoulakis, Meng Liu, David F Gleich, and Michael W Mahoney. Flow-based algorithms  
 631 for improving clusters: A unifying framework, software, and performance. *SIAM Review*, 65(1):  
 632 59–143, 2023b.

633

634 Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and Jingren Zhou.  
 635 Text-to-sql empowered by large language models: A benchmark evaluation. *arXiv preprint*  
 636 *arXiv:2308.15363*, 2023a.

637 Hanning Gao, Lingfei Wu, Po Hu, Zhihua Wei, Fangli Xu, and Bo Long. Graph-augmented learning  
 638 to rank for querying large-scale knowledge graph. *AACL 2022*, 2022.

639

640 Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun,  
 641 Haofen Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A  
 642 survey. *arXiv preprint arXiv:2312.10997*, 2(1), 2023b.

643

644 Yu Gu, Sue Kase, Michelle Vanni, Brian Sadler, Percy Liang, Xifeng Yan, and Yu Su. Beyond iid:  
 645 three levels of generalization for question answering on knowledge bases. In *Proceedings of the*  
 646 *Web Conference 2021*, pp. 3477–3488, 2021.

647 Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao Huang. Lightrag: Simple and fast retrieval-  
 648 augmented generation. *arXiv preprint arXiv:2410.05779*, 2024.

648 Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval augmented  
 649 language model pre-training. In *International conference on machine learning*, pp. 3929–3938.  
 650 PMLR, 2020.

651

652 W. Ha, K. Fountoulakis, and M. W. Mahoney. Statistical guarantees for local graph clustering. *The  
 653 Journal of Machine Learning Research*, 22(1):6538–6591, 2021.

654

655 Haoyu Han, Yu Wang, Harry Shomer, Kai Guo, Jiayuan Ding, Yongjia Lei, Mahantesh Halappanavar,  
 656 Ryan A Rossi, Subhabrata Mukherjee, Xianfeng Tang, et al. Retrieval-augmented generation with  
 657 graphs (graphrag). *arXiv preprint arXiv:2501.00309*, 2024.

658

659 Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh Chawla, Thomas Laurent, Yann LeCun, Xavier Bresson,  
 660 and Bryan Hooi. G-retriever: Retrieval-augmented generation for textual graph understanding and  
 661 question answering. *Advances in Neural Information Processing Systems*, 37:132876–132907,  
 662 2025.

663

664 Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop  
 qa dataset for comprehensive evaluation of reasoning steps. *COLING 2020*, 2020.

665

666 Sebastian Hofstätter, Jiecao Chen, Karthik Raman, and Hamed Zamani. Fid-light: Efficient and  
 667 effective retrieval-augmented text generation. In *Proceedings of the 46th International ACM SIGIR  
 Conference on Research and Development in Information Retrieval*, pp. 1437–1447, 2023.

668

669 Ziniu Hu, Yichong Xu, Wenhao Yu, Shuohang Wang, Ziyi Yang, Chenguang Zhu, Kai-Wei Chang,  
 670 and Yizhou Sun. Empowering language models with knowledge graph reasoning for question  
 671 answering. *EMNLP*, 2022.

672

673 C. Jia, Y. Li, M. B. Carson, X. Wang, and J. Yu. Node attribute-enhanced community detection in  
 674 complex networks. *Scientific reports*, 7(1):1–15, 2017.

675

676 Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang,  
 677 Jamie Callan, and Graham Neubig. Active retrieval augmented generation. *EMNLP 2023*, 2023.

678

679 Bernal Jimenez Gutierrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. Hipporag: Neurobio-  
 680 logically inspired long-term memory for large language models. *Advances in Neural Information  
 Processing Systems*, 37:59532–59569, 2024.

681

682 Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly  
 683 supervised challenge dataset for reading comprehension. *arXiv preprint arXiv:1705.03551*, 2017.

684

685 Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi  
 686 Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. *arXiv  
 687 preprint arXiv:2004.04906*, 2020.

688

689 Kiseung Kim and Jay-Yoon Lee. Re-rag: Improving open-domain qa performance and interpretability  
 690 with relevance estimator in retrieval-augmented generation. *arXiv preprint arXiv:2406.05794*,  
 691 2024.

692

693 Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris  
 694 Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a  
 695 benchmark for question answering research. *Transactions of the Association for Computational  
 Linguistics*, 7:453–466, 2019.

696

697 Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catanzaro,  
 698 and Wei Ping. Nv-embed: Improved techniques for training llms as generalist embedding models.  
 699 *arXiv preprint arXiv:2405.17428*, 2024.

700

701 Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng Cao, Dongchan Shin, Hongjin Su, Zhaoqing Suo,  
 702 Hongcheng Gao, Wenjing Hu, Pengcheng Yin, et al. Spider 2.0: Evaluating language models on  
 703 real-world enterprise text-to-sql workflows. *arXiv preprint arXiv:2411.07763*, 2024.

702 Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng Cao, Dongchan Shin, Hongjin SU, ZHAOQING  
 703 SUO, Hongcheng Gao, Wenjing Hu, Pengcheng Yin, Victor Zhong, Caiming Xiong, Ruoxi Sun,  
 704 Qian Liu, Sida Wang, and Tao Yu. Spider 2.0: Evaluating language models on real-world enterprise  
 705 text-to-SQL workflows. In *The Thirteenth International Conference on Learning Representations*,  
 706 2025. URL <https://openreview.net/forum?id=XmProj9cPs>.

707 708 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,  
 709 Heinrich Kütller, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-  
 710 tion for knowledge-intensive nlp tasks. *Advances in Neural Information Processing Systems*, 33:  
 711 9459–9474, 2020.

712 713 Chaofan Li, Zheng Liu, Shitao Xiao, Yingxia Shao, and Defu Lian. Llama2vec: Unsupervised  
 714 adaptation of large language models for dense retrieval. In *Proceedings of the 62nd Annual*  
 715 *Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 3490–  
 716 3500, 2024a.

717 718 Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xiaokang Zhang, Jun Zhu, Renjie Wei, Hongyan  
 719 Pan, Cuiping Li, and Hong Chen. Codes: Towards building open-source language models  
 720 for text-to-sql. *Proc. ACM Manag. Data*, 2(3), May 2024b. doi: 10.1145/3654930. URL  
<https://doi.org/10.1145/3654930>.

721 722 Mufei Li, Siqi Miao, and Pan Li. Simple is effective: The roles of graphs and large language models  
 723 in knowledge-graph-based retrieval-augmented generation. *ICLR 2025*, 2024c.

724 725 M. Liu and D. F. Gleich. Strongly local p-norm-cut algorithms for semi-supervised learning and local  
 726 graph clustering. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2020.

727 728 László Lovász. Random walks on graphs: A survey. In *Combinatorics, Paul Erdős is Eighty*,  
 729 volume 2, pp. 1–46. János Bolyai Mathematical Society, 1993.

730 731 LINHAO LUO, Yuan-Fang Li, Reza Haf, and Shirui Pan. Reasoning on graphs: Faithful and  
 732 interpretable large language model reasoning. In *The Twelfth International Conference on Learning*  
 733 *Representations*, 2024. URL <https://openreview.net/forum?id=ZGNWW7xZ6Q>.

734 735 Costas Mavromatis and George Karypis. Gnn-rag: Graph neural retrieval for large language model  
 736 reasoning. *arXiv preprint arXiv:2405.20139*, 2024.

737 738 Niklas Muennighoff, SU Hongjin, Liang Wang, Nan Yang, Furu Wei, Tao Yu, Amanpreet Singh,  
 739 and Douwe Kiela. Generative representational instruction tuning. In *The Thirteenth International*  
 740 *Conference on Learning Representations*, 2024.

741 742 Pranoy Panda, Ankush Agarwal, Chaitanya Devaguptapu, Manohar Kaul, et al. Holmes: Hyper-  
 743 relational knowledge graphs for multi-hop question answering using llms. *ACL 2024*, 2024.

744 745 Mohammadreza Pourreza and Davood Rafiei. Din-sql: Decomposed in-context learning of text-to-sql  
 746 with self-correction. *Advances in Neural Information Processing Systems*, 36, 2024.

747 748 Mohammadreza Pourreza, Hailong Li, Ruoxi Sun, Yeounoh Chung, Shayan Talaei, Gaurav Tarlok  
 749 Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and Sercan O Arik. Chase-sql: Multi-path reasoning  
 750 and preference optimized candidate selection in text-to-sql. *arXiv preprint arXiv:2410.01943*,  
 751 2024.

752 753 Hongjin Qian, Peitian Zhang, Zheng Liu, Kelong Mao, and Zhicheng Dou. Memorag: Moving  
 754 towards next-gen rag via memory-inspired knowledge discovery. *arXiv preprint arXiv:2409.05591*,  
 755 2024.

756 757 J. Qian and V. Saligrama. Efficient minimax signal detection on graphs. In *Advances in Neural*  
 758 *Information Processing Systems (NeurIPS)*, 2014.

759 760 A. Reid and P. Yuval. Finding sparse cuts locally using evolving sets. In *ACM Symposium on Theory*  
 761 *of Computing (STOC)*, 2009.

756 Pranab Sahoo, Prabhash Meharia, Akash Ghosh, Sriparna Saha, Vinija Jain, and Aman Chadha.  
 757 A comprehensive survey of hallucination in large language, image, video and audio foundation  
 758 models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association*  
 759 *for Computational Linguistics: EMNLP 2024*, pp. 11709–11724, Miami, Florida, USA, November  
 760 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.685.  
 761 URL <https://aclanthology.org/2024.findings-emnlp.685/>.

762 Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh Khanna, Anna Goldie, and Christopher D Manning.  
 763 Raptor: Recursive abstractive processing for tree-organized retrieval. In *The Twelfth International*  
 764 *Conference on Learning Representations*, 2024.

765

766 Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke  
 767 Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach  
 768 themselves to use tools. *Advances in Neural Information Processing Systems*, 36:68539–68551,  
 769 2023.

770 J. L. Sharpnack, A. Krishnamurthy, and A. Singh. Near-optimal anomaly detection in graphs using  
 771 lovasz extended scan statistic. In *Advances in Neural Information Processing Systems (NeurIPS)*,  
 772 2013.

773

774 P. Shi, K. He, D. Bindel, and J. Hopcroft. Local Lanczos spectral approximation for community  
 775 detection. In *European Conference on Machine Learning and Principles and Practice of Knowledge*  
 776 *Discovery in Databases (ECML-PKDD)*, 2017.

777 Yucheng Shi, Qiaoyu Tan, Xuansheng Wu, Shaochen Zhong, Kaixiong Zhou, and Ninghao Liu.  
 778 Retrieval-enhanced knowledge editing for multi-hop question answering in language models. *arXiv*  
 779 *preprint arXiv:2403.19631*, 2024.

780

781 Robik Shrestha, Yang Zou, Qiuyu Chen, Zhiheng Li, Yusheng Xie, and Siqi Deng. Fairrag: Fair  
 782 human generation via fair retrieval augmentation. In *Proceedings of the IEEE/CVF Conference on*  
 783 *Computer Vision and Pattern Recognition*, pp. 11996–12005, 2024.

784

785 D. A. Spielman and S.-H. Teng. A local clustering algorithm for massive graphs and its application  
 786 to nearly linear time graph partitioning. *SIAM Journal on computing*, 42(1):1–26, 2013a.

787

788 Daniel A. Spielman and Shang-Hua Teng. A local clustering algorithm for massive graphs and its  
 789 application to nearly linear time graph partitioning. *SIAM Journal on Computing*, 42(1):1–26,  
 790 2013b. doi: 10.1137/080744888.

791

792 Saba Sturua, Isabelle Mohr, Mohammad Kalim Akram, Michael Günther, Bo Wang, Markus Krimmel,  
 793 Feng Wang, Georgios Mastrapas, Andreas Koukounas, Nan Wang, et al. jina-embeddings-v3:  
 794 Multilingual embeddings with task lora. *arXiv preprint arXiv:2409.10173*, 2024.

795

796 Heli Sun, Fang He, Jianbin Huang, Yizhou Sun, Yang Li, Chenyu Wang, Liang He, Zhongbin Sun,  
 797 and Xiaolin Jia. Network embedding for community detection in attributed networks. *ACM*  
 798 *Transactions on Knowledge Discovery from Data (TKDD)*, 14(3):1–25, 2020.

799

800 Alon Talmor and Jonathan Berant. The web as a knowledge-base for answering complex questions.  
 801 *NAACL 2018*, 2018.

802

803 SM Tonmoy, SM Zaman, Vinija Jain, Anku Rani, Vipula Rawte, Aman Chadha, and Amitava Das.  
 804 A comprehensive survey of hallucination mitigation techniques in large language models. *arXiv*  
 805 *preprint arXiv:2401.01313*, 2024.

806

807 R. Vershynin. *High-dimensional probability: An introduction with applications in data science*,  
 808 volume 47. Cambridge university press, 2018.

809

810 Alex Wang, Richard Yuanzhe Pang, Angelica Chen, Jason Phang, and Samuel Bowman. Squality:  
 811 Building a long-document summarization dataset the hard way. In *Proceedings of the 2022*  
 812 *Conference on Empirical Methods in Natural Language Processing*, pp. 1139–1156, 2022.

813

814 D. Wang, K. Fountoulakis, M. Henzinger, M. W. Mahoney, and S. Rao. Capacity releasing diffusion  
 815 for speed and locality. *International Conference on Machine Learning (ICML)*, 2017.

810 Mingyang Wang, Alisa Stoll, Lukas Lange, Heike Adel, Hinrich Schütze, and Jannik Strötgen.  
 811 Bring your own knowledge: A survey of methods for llm knowledge expansion, 2025. URL  
 812 <https://arxiv.org/abs/2502.12598>.

813

814 Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng, Chen Chen, et al. Knowledge editing for large  
 815 language models: A survey. *arXiv preprint arXiv:2310.16218*, 2023.

816 Yu Wang, Nedim Lipka, Ryan A Rossi, Alexa Siu, Ruiyi Zhang, and Tyler Derr. Knowledge graph  
 817 prompting for multi-document question answering. In *Proceedings of the AAAI Conference on*  
 818 *Artificial Intelligence*, volume 38-17, pp. 19206–19214, 2024.

819

820 R. Wei, H. Yin, J. Jia, A. R. Benson, and P. Li. Understanding non-linearity in graph neural networks  
 821 from the perspective of bayesian inference. In *Advances in Neural Information Processing Systems*  
 822 (*NeurIPS*), 2022.

823

824 Yilin Wen, Zifeng Wang, and Jimeng Sun. Mindmap: Knowledge graph prompting sparks graph of  
 825 thoughts in large language models. *arXiv preprint arXiv:2308.09729*, 2023.

826

827 Daniel S Wigh, Jonathan M Goodman, and Alexei A Lapkin. A review of molecular representation in  
 828 the age of machine learning. *Wiley Interdisciplinary Reviews: Computational Molecular Science*,  
 12(5):e1603, 2022.

829

830 X. Wu, Z. Chen, W. Wang, and A. Jadbabaie. An non-asymptotic analysis of oversmoothing in graph  
 831 neural networks. In *International Conference on Learning Representations (ICLR)*, 2023.

832

833 Wenzhong Xiong, Mo Yu, Shiyu Chang, Xiaoxiao Guo, and William Yang Wang. Improving question  
 834 answering over incomplete kbs with knowledge-aware reader. *arXiv preprint arXiv:1905.07098*,  
 2019.

835

836 Wenzhong Xiong, Xiang Lorraine Li, Srini Iyer, Jingfei Du, Patrick Lewis, William Yang Wang, Yashar  
 837 Mehdad, Wen-tau Yih, Sebastian Riedel, Douwe Kiela, et al. Answering complex open-domain  
 838 questions with multi-hop dense retrieval. *arXiv preprint arXiv:2009.12756*, 2020.

839

840 Ran Xu, Wenqi Shi, Yue Yu, Yuchen Zhuang, Bowen Jin, May D Wang, Joyce C Ho, and Carl Yang.  
 841 Ram-ehr: Retrieval augmentation meets clinical predictions on electronic health records. *arXiv*  
 842 *preprint arXiv:2403.00815*, 2024.

843

844 B. Yan and P. Sarkar. Covariate regularized community detection in sparse graphs. *Journal of the*  
 845 *American Statistical Association*, 116(534):734–745, 2021.

846

847 J. Yang, J. McAuley, and J. Leskovec. Community detection in networks with node attributes. In  
 848 *IEEE International Conference on Data Mining (ICDM)*, 2013.

849

850 Shenghao Yang and Kimon Fountoulakis. Weighted flow diffusion for local graph clustering with  
 851 node attributes: An algorithm and statistical guarantees. In *International Conference on Machine*  
 852 *Learning*, pp. 39252–39276. PMLR, 2023.

853

854 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,  
 855 and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question  
 856 answering. *EMNLP 2018*, 2018.

857

858 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. Re-  
 859 act: synergizing reasoning and acting in language models (2022). *arXiv preprint arXiv:2210.03629*,  
 860 2023.

861

862 Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut, Percy Liang, and Jure Leskovec. Qa-gnn:  
 863 Reasoning with language models and knowledge graphs for question answering. *NAACL 2021*,  
 2021a.

864

865 Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut, Percy Liang, and Jure Leskovec. Qa-gnn:  
 866 Reasoning with language models and knowledge graphs for question answering. In *Proceedings of*  
 867 *NAACL-HLT*, pp. 535–546, 2021b.

864 Shenglai Zeng, Jiankun Zhang, Pengfei He, Jie Ren, Tianqi Zheng, Hanqing Lu, Han Xu, Hui Liu,  
 865 Yue Xing, and Jiliang Tang. Mitigating the privacy issues in retrieval-augmented generation (rag)  
 866 via pure synthetic data. *arXiv preprint arXiv:2406.14773*, 2024a.

867 Shenglai Zeng, Jiankun Zhang, Pengfei He, Yue Xing, Yiding Liu, Han Xu, Jie Ren, Shuaiqiang Wang,  
 868 Dawei Yin, Yi Chang, et al. The good and the bad: Exploring privacy issues in retrieval-augmented  
 869 generation (rag). *arXiv preprint arXiv:2402.16893*, 2024b.

870 Boyu Zhang, Hongyang Yang, Tianyu Zhou, Muhammad Ali Babar, and Xiao-Yang Liu. Enhancing  
 871 financial sentiment analysis via retrieval augmented large language models. In *Proceedings of the*  
 872 *fourth ACM international conference on AI in finance*, pp. 349–356, 2023.

873 Lingxi Zhang, Yue Yu, Kuan Wang, and Chao Zhang. Arl2: Aligning retrievers for black-box large  
 874 language models via self-guided adaptive relevance labeling. *ACL 2024*, 2024a.

875 Qinggang Zhang, Junnan Dong, Hao Chen, Daochen Zha, Zailiang Yu, and Xiao Huang. Knowgpt:  
 876 Knowledge graph based prompting for large language models. *NeurIPS 2024 Poster*, 2024b.

877 Yue Zhang, Zhihao Zhang, Wenbin Lai, Chong Zhang, Tao Gui, Qi Zhang, and Xuan-Jing Huang.  
 878 to-tree: Parsing pdf text blocks into a tree. In *Findings of the Association for Computational*  
 879 *Linguistics: EMNLP 2024*, pp. 10704–10714, 2024c.

880 C. Zhe, A. Sun, and X. Xiao. Community detection on large complex attribute network. In *ACM*  
 881 *SIGKDD International Conference on Knowledge Discovery & Data Mining*, 2019.

882 Fengbin Zhu, Wenqiang Lei, Chao Wang, Jianming Zheng, Soujanya Poria, and Tat-Seng Chua.  
 883 Retrieving and reading: A comprehensive survey on open-domain question answering. *arXiv*  
 884 *preprint arXiv:2101.00774*, 2021.

885  
 886  
 887  
 888  
 889  
 890  
 891  
 892  
 893  
 894  
 895  
 896  
 897  
 898  
 899  
 900  
 901  
 902  
 903  
 904  
 905  
 906  
 907  
 908  
 909  
 910  
 911  
 912  
 913  
 914  
 915  
 916  
 917

# 918 919 920 921 922 Appendix

## 923 924 925 926 927 928 929 CONTENTS

|     |                                                                                    |           |
|-----|------------------------------------------------------------------------------------|-----------|
| 930 | <b>A1 Extended Related Work</b>                                                    | <b>19</b> |
| 931 | A1.1 Retrieval-Augmented Generation. . . . .                                       | 19        |
| 932 | A1.2 Graph Diffusion and Flow Methods . . . . .                                    | 19        |
| 933 | A1.3 QAFD-RAG’s Positioning within Graph-Based RAG Approaches . . . . .            | 20        |
| 934 | <b>A2 Extended Experiments</b>                                                     | <b>20</b> |
| 935 | A2.1 Question Answering (QA) . . . . .                                             | 20        |
| 936 | A2.1.1 Additional Numerical Results for General Question Answering . . . . .       | 20        |
| 937 | A2.1.2 Sensitivity Analysis for QAFD-RAG . . . . .                                 | 21        |
| 938 | A2.1.3 Runtime and Efficiency of QAFD-RAG for General QA . . . . .                 | 21        |
| 939 | A2.1.4 Embedding Model Sensitivity Analysis . . . . .                              | 22        |
| 940 | A2.1.5 Long-Document Summarization: SQuALITY Evaluation Details . . . . .          | 22        |
| 941 | A2.2 Text-to-SQL . . . . .                                                         | 23        |
| 942 | A2.2.1 Hyperparameter Settings . . . . .                                           | 23        |
| 943 | A2.2.2 Examples of Schema Identified by QAFD-RAG for Spider2’s Queries . . . . .   | 23        |
| 944 | A2.2.3 LLM Efficiency and Schema Linking Performance . . . . .                     | 25        |
| 945 | A2.2.4 Embedding Model Sensitivity for Text-to-SQL . . . . .                       | 25        |
| 946 | <b>A3 Proof of Main Results</b>                                                    | <b>26</b> |
| 947 | A3.1 Proof of Lemma 2 . . . . .                                                    | 26        |
| 948 | A3.2 Proof of Theorem 3 . . . . .                                                  | 26        |
| 949 | A3.3 Proof of Lemma 6 . . . . .                                                    | 27        |
| 950 | A3.4 Proof of Theorem 7 . . . . .                                                  | 28        |
| 951 | <b>A4 Overview of Datasets and Prompts Used in QAFD-RAG for Question Answering</b> | <b>29</b> |
| 952 | A4.1 Datasets . . . . .                                                            | 29        |
| 953 | A4.2 Entity and Relationship Extraction Prompt . . . . .                           | 29        |
| 954 | A4.3 Keyword Extraction Prompt . . . . .                                           | 31        |
| 955 | A4.4 Query Answering Prompt . . . . .                                              | 31        |
| 956 | A4.5 Evaluation Prompt . . . . .                                                   | 32        |
| 957 | <b>A5 Overview of Prompts Used in QAFD-RAG in Text-to-SQL Tasks</b>                | <b>32</b> |
| 958 | <b>A6 Text-to-SQL Baselines</b>                                                    | <b>35</b> |
| 959 | <b>A7 Usage of Large Language Models (LLMs)</b>                                    | <b>38</b> |

971

972 A1 EXTENDED RELATED WORK  
973974 A1.1 RETRIEVAL-AUGMENTED GENERATION.  
975

976 LLMs remain prone to hallucinations and a lack of domain knowledge (Sahoo et al., 2024; Wang et al.,  
977 2025). Text-based RAG reduces these issues by supplementing LLMs with unstructured external  
978 data (Lewis et al., 2020; Guu et al., 2020). These systems employ sparse or dense retrieval (Alon  
979 et al., 2022; Schick et al., 2023; Jiang et al., 2023; Cheng et al., 2024; Hofstätter et al., 2023; Li  
980 et al., 2024a; Zhang et al., 2024a), but most treat text as flat segments, missing critical context and  
981 inter-document relationships (Edge et al., 2024a; Guo et al., 2024).

982 KG-RAG enhances interpretability and factuality by leveraging structured knowledge graphs (Yasunaga et al., 2021a; Gao et al., 2022; Li et al., 2024c; He et al., 2025). These systems utilize curated  
983 (Wen et al., 2023; Dehghan et al., 2024) or optimized (Fang et al., 2024b; Panda et al., 2024) graphs to  
984 retrieve entity and relational context, typically extracting local subgraphs relevant to a query (Bordes  
985 et al., 2015; Talmor & Berant, 2018; Gu et al., 2021). However, most KG-RAG methods focus on  
986 single-hop or shallow queries (Joshi et al., 2017; Yang et al., 2018; Kwiatkowski et al., 2019; Ho  
987 et al., 2020) and struggle with scale and multi-step reasoning.  
988

989 Among training-intensive approaches, QA-GNN (Yasunaga et al., 2021b) combines pre-trained  
990 language models and knowledge graphs by using LM-based relevance scoring to select pertinent KG  
991 nodes, followed by joint graph neural reasoning for accurate and interpretable question answering.  
992 Xiong et al. (2019) proposed knowledge-aware neural retrievers for incomplete KBs. Other works  
993 such as SubgraphRAG (Li et al., 2024c) train end-to-end retrieval modules to extract relevant KG  
994 subgraphs for downstream LLM reasoning. Several studies have also integrated knowledge graph  
995 structure directly into transformers for enhanced QA (Hu et al., 2022), and KnowGPT (Zhang et al.,  
996 2024b) leverages KG-based prompting for large language models. GNN-RAG (Mavromatis &  
997 Karypis, 2024) trains GNNs to score answer candidates and retrieve shortest paths, while RoG (LUO  
998 et al., 2024) uses LLM prompting to generate relation paths. Both methods incorporate query  
999 semantics but require training/finetuning, lack theoretical guarantees, and operate over static graph  
1000 structures during retrieval. However, these methods require substantial supervised data and retraining,  
1001 in contrast to our training-free, query-aware flow diffusion framework with statistical guarantees.

1001 Recent work has explored training-free KG-RAG methods, building text-associated graphs to support  
1002 more complex and multi-hop queries (Edge et al., 2024a; Guo et al., 2024). For instance, GraphRAG  
1003 (Edge et al., 2024a) applies community detection to cluster entities, while LightRAG (Guo et al.,  
1004 2024) uses multi-stage retrieval and ego-network aggregation. PathRAG (Chen et al., 2025a) further  
1005 improves graph-based RAG by retrieving key relational paths rather than redundant neighborhood  
1006 information, using flow-based pruning to identify reliable paths and strategic prompt organization  
1007 to enhance LLM responses. However, all aforementioned methods still struggle to precisely align  
1008 query intent with relevant regions of the graph, making it difficult to identify semantically coherent  
1009 reasoning subgraphs. Furthermore, existing RAG approaches generally lack statistical or optimization  
1010 guarantees, as well as complexity analysis, for their retrieval mechanisms.

1011 A1.2 GRAPH DIFFUSION AND FLOW METHODS  
1012

1013 Graph diffusion describes the process of spreading mass from one or more seed nodes to neighboring  
1014 nodes along graph edges. The empirical and theoretical performance of local diffusion methods is  
1015 typically evaluated in the context of local graph clustering. Local graph clustering was introduced  
1016 by Spielman & Teng (2013a) using a random-walk algorithm, with Andersen et al. (2006) later  
1017 employing personalized PageRank. Most works analyze these methods via output conductance  
1018 (Andersen et al., 2006; Reid & Yuval, 2009; Spielman & Teng, 2013a; Allen-Zhu et al., 2013;  
1019 Andersen et al., 2016; Shi et al., 2017; Wang et al., 2017; Fountoulakis et al., 2020a; Liu & Gleich,  
1020 2020). Statistical analysis appeared in Ha et al. (2021) for  $\ell_1$ -regularized PageRank (Fountoulakis  
1021 et al., 2017), though attributed graphs remain unaddressed.

1022 Community/cluster detection methods that combine structure and node or edge attributes (Yang et al.,  
1023 2013; Jia et al., 2017; Zhe et al., 2019; Sun et al., 2020) benefit from this integration but require  
1024 global processing, making them unsuitable for local clustering. Contextual random graph models  
1025 have been employed for attributed community detection (Deshpande et al., 2018; Yan & Sarkar, 2021;  
Braun et al., 2022; Abbe et al., 2022), node separability (Baranwal et al., 2021; Fountoulakis et al.,

1026 2023a; Baranwal et al., 2023a), and analysis of graph convolutions and optimal classifiers (Wu et al.,  
 1027 2023; Wei et al., 2022; Baranwal et al., 2023b). Related anomaly detection (Arias-Castro et al., 2008;  
 1028 2011; Sharpnack et al., 2013; Qian & Saligrama, 2014) and estimation (Chitra et al., 2021) methods  
 1029 focus on scalar data and global processing, contrasting with our local, attribute-aware approach.  
 1030

### 1031 A1.3 QAFD-RAG’s POSITIONING WITHIN GRAPH-BASED RAG APPROACHES

1032 To our knowledge, none of these works connect the graph structure to the query. Our work is the  
 1033 first to provide a principled framework that links a given query to the corresponding subgraph in  
 1034 a knowledge graph, and the first to develop and statistically analyze query-aware flow diffusion in  
 1035 general contextual random graph models with formal recovery guarantees.  
 1036

1037 Beyond these theoretical contributions, QAFD-RAG’s modular design positions it as a complementary  
 1038 retrieval component for existing graph-based RAG systems, requiring no retraining while providing  
 1039 formal guarantees. Specifically:

1040 **GraphRAG.** GraphRAG (Edge et al., 2024a) relies on static community detection (Leiden algorithm)  
 1041 to precompute hierarchical clusters and generate community summaries for retrieval. QAFD-RAG  
 1042 offers an alternative through dynamic, query-time subgraph discovery tailored to each query’s  
 1043 semantics, eliminating the computational overhead of community summary generation while adapting  
 1044 retrieval to query-specific needs.

1045 **HippoRAG.** HippoRAG (Jimenez Gutierrez et al., 2024) uses Personalized PageRank (PPR) for  
 1046 graph traversal from seed nodes. QAFD-RAG provides a principled alternative through query-aware  
 1047 edge reweighting (Equations (4)-(5)). While PPR provides graph-based signals, it lacks query-aware  
 1048 edge modulation—our method’s key innovation that suppresses irrelevant paths while amplifying  
 1049 semantically aligned connections, backed by formal recovery guarantees (Theorem 7).

1050 **LightRAG.** LightRAG (Guo et al., 2024) employs dual-level keyword extraction with single-hop  
 1051 neighborhood aggregation. QAFD-RAG extends this paradigm by enabling multi-hop flow dif-  
 1052 fusion from extracted keywords as seed nodes, discovering reasoning paths that span multiple  
 1053 hops—precisely the capability that LightRAG’s current single-hop approach lacks—while preserving  
 1054 its efficient indexing structure.

1055 This positioning demonstrates QAFD-RAG’s role as a foundational component that addresses key  
 1056 limitations in existing graph-based RAG approaches through principled, theoretically-grounded  
 1057 retrieval.

## 1060 A2 EXTENDED EXPERIMENTS

### 1061 A2.1 QUESTION ANSWERING (QA)

#### 1062 A2.1.1 ADDITIONAL NUMERICAL RESULTS FOR GENERAL QUESTION ANSWERING

1063 Table 5 presents comprehensive results across five additional UltraDomain datasets—Mathematics,  
 1064 Mix, Music, Philosophy, and Physics—evaluating QAFD-RAG against GraphRAG, LightRAG,  
 1065 RAPTOR, and HippoRAG across all five GPT-4o-scored dimensions (Comprehensiveness, Diversity,  
 1066 Logicality, Relevance, and Coherence).

1067 QAFD-RAG achieves the best performance across all dimensions in four out of five datasets (Mathe-  
 1068 matics, Mix, Philosophy, and Physics), demonstrating consistent superiority with scores typically  
 1069 3–7 points higher than the strongest baseline. For example, on Physics, QAFD-RAG achieves 89.51  
 1070 Comprehensiveness compared to GraphRAG’s 86.33, and 95.61 Relevance compared to RAPTOR’s  
 1071 94.46. On Music, QAFD-RAG leads in four dimensions (Comprehensiveness: 87.95, Diversity:  
 1072 83.40, Logicality: 90.56, Coherence: 90.94), with GraphRAG marginally ahead only on Relevance  
 1073 (94.14 vs. 94.08). These results validate QAFD-RAG’s robustness across diverse domains spanning  
 1074 technical (Mathematics, Physics), creative (Music), conceptual (Philosophy), and mixed content,  
 1075 consistently outperforming state-of-the-art graph-based RAG methods through query-aware flow  
 1076 diffusion and dynamic edge reweighting.

1080 Table 5: Comparison of QAFD-RAG and baselines across five GPT-4o-scored dimensions (0–100).  
1081 Rows are grouped by dataset; columns are metrics. Each cell shows mean ( $\pm$  std) over 5 independent  
1082 evaluations. Best scores per dataset/metric are bolded. (*continued*).

| Dataset     | Method   | Comprehensive.              | Diversity                   | Locality                    | Relevance                   | Coherence                   |
|-------------|----------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| Mathematics | GraphRAG | 84.30 ( $\pm 9.52$ )        | 77.46 ( $\pm 10.68$ )       | 88.91 ( $\pm 8.29$ )        | 92.65 ( $\pm 10.34$ )       | 89.04 ( $\pm 7.52$ )        |
|             | LightRAG | 80.93 ( $\pm 8.44$ )        | 74.07 ( $\pm 10.40$ )       | 86.30 ( $\pm 6.20$ )        | 90.77 ( $\pm 8.26$ )        | 86.29 ( $\pm 4.56$ )        |
|             | RAPTOR   | 81.18 ( $\pm 9.75$ )        | 73.73 ( $\pm 12.34$ )       | 87.30 ( $\pm 6.46$ )        | 91.88 ( $\pm 8.73$ )        | 87.70 ( $\pm 4.57$ )        |
|             | HippoRAG | 80.77 ( $\pm 5.31$ )        | 73.05 ( $\pm 9.06$ )        | 87.05 ( $\pm 4.66$ )        | 92.34 ( $\pm 5.53$ )        | 87.23 ( $\pm 3.68$ )        |
|             | QAFD-RAG | <b>87.30</b> ( $\pm 4.94$ ) | <b>82.56</b> ( $\pm 6.09$ ) | <b>90.04</b> ( $\pm 5.15$ ) | <b>93.36</b> ( $\pm 7.24$ ) | <b>90.37</b> ( $\pm 3.16$ ) |
| Mix         | GraphRAG | 82.76 ( $\pm 11.41$ )       | 74.94 ( $\pm 11.68$ )       | 88.45 ( $\pm 6.95$ )        | 92.81 ( $\pm 8.65$ )        | 88.90 ( $\pm 3.34$ )        |
|             | LightRAG | 78.72 ( $\pm 13.12$ )       | 70.97 ( $\pm 13.39$ )       | 85.72 ( $\pm 7.00$ )        | 90.37 ( $\pm 9.36$ )        | 86.26 ( $\pm 4.68$ )        |
|             | RAPTOR   | 81.97 ( $\pm 5.50$ )        | 73.09 ( $\pm 7.75$ )        | 87.90 ( $\pm 3.71$ )        | 93.16 ( $\pm 3.47$ )        | 87.81 ( $\pm 3.28$ )        |
|             | HippoRAG | 80.15 ( $\pm 5.20$ )        | 71.71 ( $\pm 6.12$ )        | 86.55 ( $\pm 3.97$ )        | 92.11 ( $\pm 3.56$ )        | 86.83 ( $\pm 3.35$ )        |
|             | QAFD-RAG | <b>87.15</b> ( $\pm 3.46$ ) | <b>81.15</b> ( $\pm 4.86$ ) | <b>90.70</b> ( $\pm 2.93$ ) | <b>94.36</b> ( $\pm 4.50$ ) | <b>90.36</b> ( $\pm 2.07$ ) |
| Music       | GraphRAG | 85.32 ( $\pm 6.46$ )        | 79.37 ( $\pm 7.92$ )        | 90.02 ( $\pm 4.63$ )        | <b>94.14</b> ( $\pm 7.01$ ) | 89.80 ( $\pm 3.25$ )        |
|             | LightRAG | 81.14 ( $\pm 8.54$ )        | 75.08 ( $\pm 10.13$ )       | 86.64 ( $\pm 6.29$ )        | 91.29 ( $\pm 8.41$ )        | 87.34 ( $\pm 4.36$ )        |
|             | RAPTOR   | 81.44 ( $\pm 8.20$ )        | 74.55 ( $\pm 11.26$ )       | 87.81 ( $\pm 4.36$ )        | 93.24 ( $\pm 3.91$ )        | 88.14 ( $\pm 3.54$ )        |
|             | HippoRAG | 80.95 ( $\pm 6.00$ )        | 74.46 ( $\pm 8.33$ )        | 87.22 ( $\pm 3.98$ )        | 92.47 ( $\pm 4.76$ )        | 87.53 ( $\pm 3.67$ )        |
|             | QAFD-RAG | <b>87.95</b> ( $\pm 3.99$ ) | <b>83.40</b> ( $\pm 4.47$ ) | <b>90.56</b> ( $\pm 3.77$ ) | 94.08 ( $\pm 5.46$ )        | <b>90.94</b> ( $\pm 2.39$ ) |
| Philosophy  | GraphRAG | 84.61 ( $\pm 8.41$ )        | 78.36 ( $\pm 8.90$ )        | 88.67 ( $\pm 6.90$ )        | 93.53 ( $\pm 8.05$ )        | 88.83 ( $\pm 6.59$ )        |
|             | LightRAG | 80.92 ( $\pm 8.88$ )        | 74.36 ( $\pm 9.63$ )        | 85.74 ( $\pm 6.57$ )        | 90.85 ( $\pm 7.32$ )        | 86.44 ( $\pm 4.61$ )        |
|             | RAPTOR   | 82.30 ( $\pm 5.97$ )        | 75.54 ( $\pm 7.46$ )        | 87.30 ( $\pm 4.60$ )        | 92.83 ( $\pm 4.65$ )        | 87.83 ( $\pm 3.45$ )        |
|             | HippoRAG | 80.93 ( $\pm 5.46$ )        | 74.12 ( $\pm 6.75$ )        | 86.66 ( $\pm 4.52$ )        | 92.03 ( $\pm 4.69$ )        | 87.42 ( $\pm 3.38$ )        |
|             | QAFD-RAG | <b>86.78</b> ( $\pm 4.11$ ) | <b>81.91</b> ( $\pm 4.69$ ) | <b>89.35</b> ( $\pm 4.25$ ) | <b>93.63</b> ( $\pm 5.91$ ) | <b>89.91</b> ( $\pm 2.70$ ) |
| Physics     | GraphRAG | 86.33 ( $\pm 7.32$ )        | 79.10 ( $\pm 7.84$ )        | 90.29 ( $\pm 7.68$ )        | 94.73 ( $\pm 7.71$ )        | 89.99 ( $\pm 7.37$ )        |
|             | LightRAG | 84.45 ( $\pm 4.39$ )        | 76.38 ( $\pm 6.19$ )        | 89.13 ( $\pm 4.37$ )        | 93.67 ( $\pm 5.39$ )        | 88.65 ( $\pm 2.76$ )        |
|             | RAPTOR   | 84.18 ( $\pm 3.98$ )        | 75.31 ( $\pm 6.27$ )        | 89.32 ( $\pm 3.52$ )        | 94.46 ( $\pm 2.81$ )        | 89.22 ( $\pm 2.92$ )        |
|             | HippoRAG | 82.81 ( $\pm 3.63$ )        | 73.66 ( $\pm 5.81$ )        | 88.66 ( $\pm 3.07$ )        | 94.09 ( $\pm 2.43$ )        | 88.69 ( $\pm 2.54$ )        |
|             | QAFD-RAG | <b>89.51</b> ( $\pm 3.14$ ) | <b>84.21</b> ( $\pm 3.89$ ) | <b>91.77</b> ( $\pm 3.26$ ) | <b>95.61</b> ( $\pm 2.74$ ) | <b>91.67</b> ( $\pm 2.14$ ) |

### A2.1.2 SENSITIVITY ANALYSIS FOR QAFD-RAG

To assess the robustness of QAFD-RAG under different configurations, we conduct a sensitivity analysis on three key hyperparameters on the Mix dataset in our framework: the number of seed nodes used for QAFD, the initial mass parameter  $\alpha$  in the QAFD process, and the choice of edge weight formulation that governs propagation dynamics. We define the tuning ranges as follows:

- Number of seed nodes: {20, 30, 40, 50, 60}
- $\alpha$  (mass initialization): {5, 10, 20, 50, 100}
- Query-aware edge weight: three distinct formulations reflecting different query-to-node affinity strategies (as presented in Eqn (5a), (5b), and (5c)).

When analyzing a single hyperparameter, the others are held constant at their default values:  $\alpha = 50$ , the number of seed nodes is 20, and the default query-aware edge weight function is the hybrid formulation.

Figure 3 shows that overall performance is stable across the tested ranges, confirming the robustness of QAFD-RAG. Among all metrics, only relevance exhibits a noticeable dependency on the number of seed nodes, slightly improving as fewer seed nodes are introduced, suggesting that 20 seed nodes are already sufficient for most evaluation dimensions. In contrast,  $\alpha = 50$  yields the best overall balance across metrics; both very small and very large values tend to slightly degrade performance, likely due to insufficient or overly diffused mass concentration during propagation. Surprisingly, the choice of edge weight function has a relatively minor effect—all three variants yield comparable results across metrics, with only slight differences in relevance and locality.

These findings indicate that QAFD-RAG is not overly sensitive to hyperparameter settings and performs robustly across a wide range of configurations, requiring minimal tuning in practice.

### A2.1.3 RUNTIME AND EFFICIENCY OF QAFD-RAG FOR GENERAL QA

Table 6 shows that QAFD-RAG matches or outperforms LightRAG in wall-clock time and is substantially faster than GraphRAG. The efficiency gains primarily come from indexing: instead of

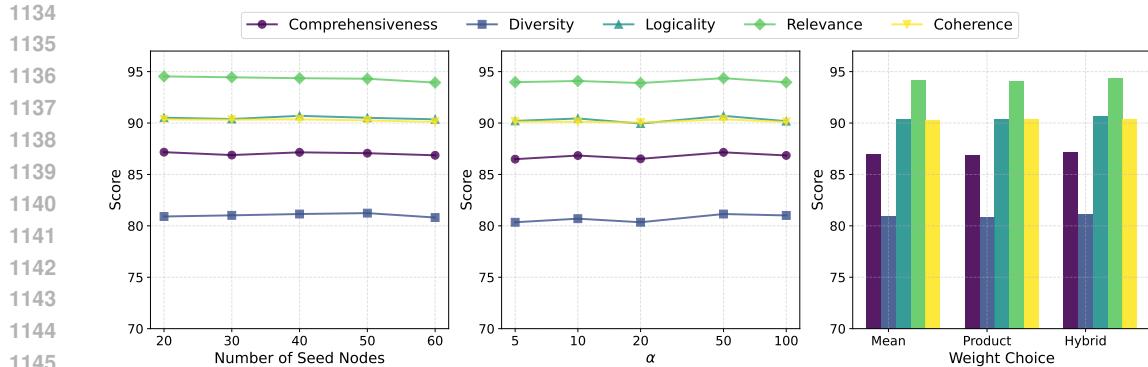


Figure 3: Sensitivity of QAFD-RAG to the number of seed nodes (left), initial mass  $\alpha$  (middle), and edge weight choice (right), evaluated across five dimensions on the Mix dataset.

Table 6: Total runtime (in seconds) for graph-based RAG on the full Mix dataset.

| Method                | QAFD-RAG | LightRAG | GraphRAG |
|-----------------------|----------|----------|----------|
| <b>Total Time (s)</b> | 8948.81  | 9236.38  | 50968.59 |

performing global or hierarchical summarization, QAFD-RAG processes only the subgraph retrieved at query time. The diffusion step adds negligible overhead because edge weights are computed on demand and traversal is nearly linear. Overall, these properties provide a favorable balance of accuracy and efficiency.

#### A2.1.4 EMBEDDING MODEL SENSITIVITY ANALYSIS

To assess QAFD-RAG’s robustness to embedding quality, we evaluate the framework across five diverse embedding models on the Mix dataset from UltraDomain. We compare: (i) OpenAI’s `text-embedding-3-small` (1536-dim) and `text-embedding-3-large` (3072-dim), representing cloud-based proprietary embeddings; (ii) Jina AI’s `jina-embeddings-v3` (Sturua et al., 2024) (1024-dim), an open-source local model; (iii) NVIDIA’s `nv-embed-v2` (Lee et al., 2024) (4096-dim), optimized for retrieval tasks; and (iv) GritLM-7B (Muennighoff et al., 2024) (4096-dim), a unified generative-embedding model. All other hyperparameters remain fixed across experiments.

Table 7 presents results across five evaluation dimensions. QAFD-RAG demonstrates consistent performance across all embedding models, with Comprehensiveness scores ranging from 85.82 to 88.12 and Relevance scores from 91.98 to 95.12. Notably, `text-embedding-3-large` achieves the best performance on Comprehensiveness, Diversity, and Relevance, while `nv-embed-v2` excels on Logicity and Coherence. However, the overlapping standard deviations across models indicate that differences are modest.

Importantly, `jina-v3`, despite being the lowest-dimensional model (1024-dim) and fully local, achieves competitive results—only 2-3 points below the best performing models on most metrics. This demonstrates that QAFD-RAG’s query-aware flow diffusion mechanism is robust to embedding variations and can operate effectively with resource-constrained or privacy-preserving local embeddings. The consistent performance across diverse architectures (cloud vs. local, 1024-dim to 4096-dim) validates that our theoretical framework successfully leverages semantic similarity regardless of the specific embedding space.

#### A2.1.5 LONG-DOCUMENT SUMMARIZATION: SQUALITY EVALUATION DETAILS

We evaluate on all 250 questions from the SQUALITY training dataset (Wang et al., 2022), which contains narrative passages paired with comprehension questions and multiple human-written reference answers per question. We compute BLEU-1 and BLEU-2 using unigram and bigram modified

1188  
 1189 Table 7: Embedding sensitivity analysis: QAFD-RAG performance across five embedding models on  
 1190 the Mix dataset. All numbers are mean ( $\pm$  stdev) over 5 runs.

| 1191<br>Embedding Model                | 1192<br>Comprehensive.             | 1193<br>Diversity                  | 1194<br>Locality                   | 1195<br>Relevance                  | 1196<br>Coherence                  |
|----------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| 1197<br>text-embedding-3-small (1536d) | 1198<br>87.15 ( $\pm$ 3.46)        | 1199<br>81.15 ( $\pm$ 4.86)        | 1200<br>90.70 ( $\pm$ 2.93)        | 1201<br>94.36 ( $\pm$ 4.50)        | 1202<br>90.36 ( $\pm$ 2.07)        |
| 1203<br>text-embedding-3-large (3072d) | 1204<br><b>88.12</b> ( $\pm$ 3.32) | 1205<br><b>83.08</b> ( $\pm$ 4.71) | 1206<br>91.28 ( $\pm$ 2.85)        | 1207<br><b>95.12</b> ( $\pm$ 4.35) | 1208<br>90.85 ( $\pm$ 2.01)        |
| 1209<br>jina-v3 (1024d)                | 1210<br>85.82 ( $\pm$ 3.58)        | 1211<br>80.18 ( $\pm$ 5.02)        | 1212<br>89.18 ( $\pm$ 3.05)        | 1213<br>91.98 ( $\pm$ 4.68)        | 1214<br>87.94 ( $\pm$ 2.15)        |
| 1215<br>NVIDIA-nv-embed-v2 (4096d)     | 1216<br>87.85 ( $\pm$ 3.41)        | 1217<br>82.45 ( $\pm$ 4.78)        | 1218<br><b>91.58</b> ( $\pm$ 2.81) | 1219<br>94.78 ( $\pm$ 4.42)        | 1220<br><b>91.45</b> ( $\pm$ 1.98) |
| 1221<br>GritLM-7B (4096d)              | 1222<br>87.32 ( $\pm$ 3.51)        | 1223<br>81.64 ( $\pm$ 4.91)        | 1224<br>89.82 ( $\pm$ 2.97)        | 1225<br>93.52 ( $\pm$ 4.55)        | 1226<br>90.28 ( $\pm$ 2.10)        |

1197 precisions with geometric averaging. BLEU- $n$  is defined as

$$1199 \quad \text{BLEU-}n := \exp \left( \sum_{i=1}^n w_i \log p_i \right),$$

1200 where  $p_i$  is the  $i$ -gram precision and  $(w_1, \dots, w_n)$  are the weights. For BLEU-1 we use  $(1, 0, 0, 0)$ ;  
 1201 for BLEU-2 we use  $(0.5, 0.5, 0, 0)$ . ROUGE-1 F1 and ROUGE-2 F1 report F1 overlap of unigrams  
 1202 and bigrams using Porter stemming.

1203 METEOR combines unigram precision (P) and recall (R) with a fragmentation penalty:

$$1204 \quad \text{METEOR} := F_{\text{mean}} \cdot \left( 1 - \gamma \cdot \left( \frac{\text{chunks}}{\text{matches}} \right)^{\beta} \right),$$

1205 where harmonic mean  $F_{\text{mean}} := P \cdot R / (\alpha P + (1 - \alpha)R)$ , chunks denotes contiguous matched  
 1206 segments and matches denotes total matched unigrams. We use Natural Language Toolkit (NLTK)  
 1207 defaults:  $\alpha = 0.9$ ,  $\beta = 3.0$ , and  $\gamma = 0.5$ . All metrics use lowercased, word-tokenized text with  
 1208 BLEU/METEOR computed against all references.

1209 A knowledge graph is constructed once from all narrative documents and reused across queries. All  
 1210 experiments use hybrid retrieval mode with diffusion parameter  $\alpha = 10$ , a 40-node source budget,  
 1211 and minimum flow threshold 0.01. Answers are produced with GPT-4o-mini using greedy decoding  
 1212 and full caching.

## 1213 A2.2 TEXT-TO-SQL

### 1214 A2.2.1 HYPERPARAMETER SETTINGS

1215 We report the full set of QAFD-RAG hyperparameters used in our implementation. The most critical  
 1216 parameters are the *source mass* and the *target capacity*. The source mass is adaptively set based on  
 1217 the degree of the source node, following local clustering strategies in Fountoulakis et al. (2020b).  
 1218 Specifically, we define  $m_s = \alpha \sum_{j \in P} T_j$ , where  $P$  is the set of nodes on the shortest path from  
 1219 source to target. The multiplier  $\alpha = 10$  controls the initial injected mass; larger values ensure  
 1220 sufficient propagation across the graph. If no path exists between source and target, we apply a  
 1221 fallback rule:  $m_s = \sum_{i \in \mathcal{V}} T_i$ . Each node, including the target, is assigned a uniform sink capacity  
 1222  $T_i = 1$  and initialized with zero mass. During diffusion, nodes absorb incoming flow up to their  
 1223 capacity, with excess redistributed until convergence.

1224 Other hyperparameters regulate the iterative behavior of the algorithm, to which it is generally robust.  
 1225 The convergence threshold in Algorithm 2 is set to  $\epsilon = 0.05$ , terminating when total excess mass falls  
 1226 below this threshold. To safeguard against non-convergence, we cap iterations at  $N_{\text{max}} = 10^6$  and  
 1227 check convergence every 100 steps. For stability during edge reweighting, a constant  $10^{-10}$  is added  
 1228 to all computations.

### 1229 A2.2.2 EXAMPLES OF SCHEMA IDENTIFIED BY QAFD-RAG FOR SPIDER2’S QUERIES

1230 The core efficiency of QAFD-RAG stems from its ability to globally reason over the schema graph  
 1231 through flow diffusion, directly identifying the most relevant multi-hop paths between schema  
 1232 elements implicated by the query. As illustrated in Figure 4, QAFD-RAG, unlike Spider-Agent and  
 1233 other ReAct-style methods—which must sequentially probe the schema, issuing a separate LLM call

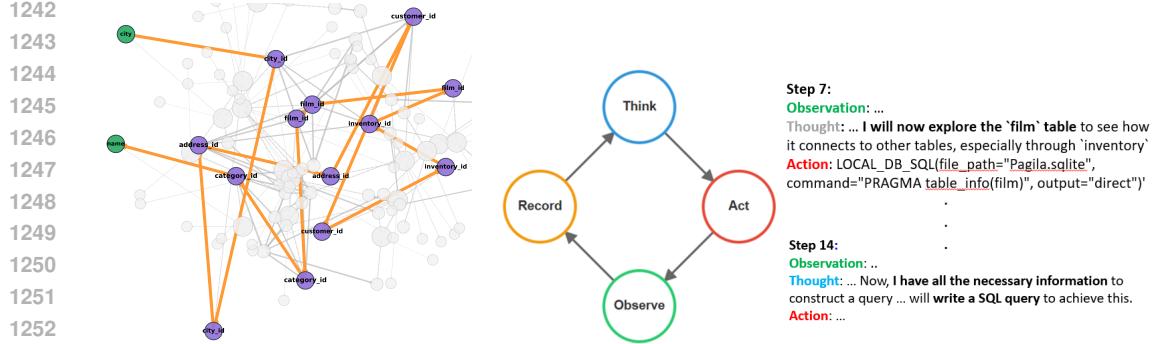


Figure 4: **Left:** Schema path identified by QAFD-RAG for SQL generation on query `local1039` (Lei et al., 2025). **Right:** Stepwise schema exploration for the same query using Spider-Agent (ReAct) (Lei et al., 2025). QAFD-RAG discovers the full reasoning path in one pass, sharply reducing LLM calls. In contrast, Spider-Agent incrementally explores the schema, requiring 14 calls and higher latency. This comparison highlights QAFD-RAG’s efficiency and accuracy on complex multi-hop queries.

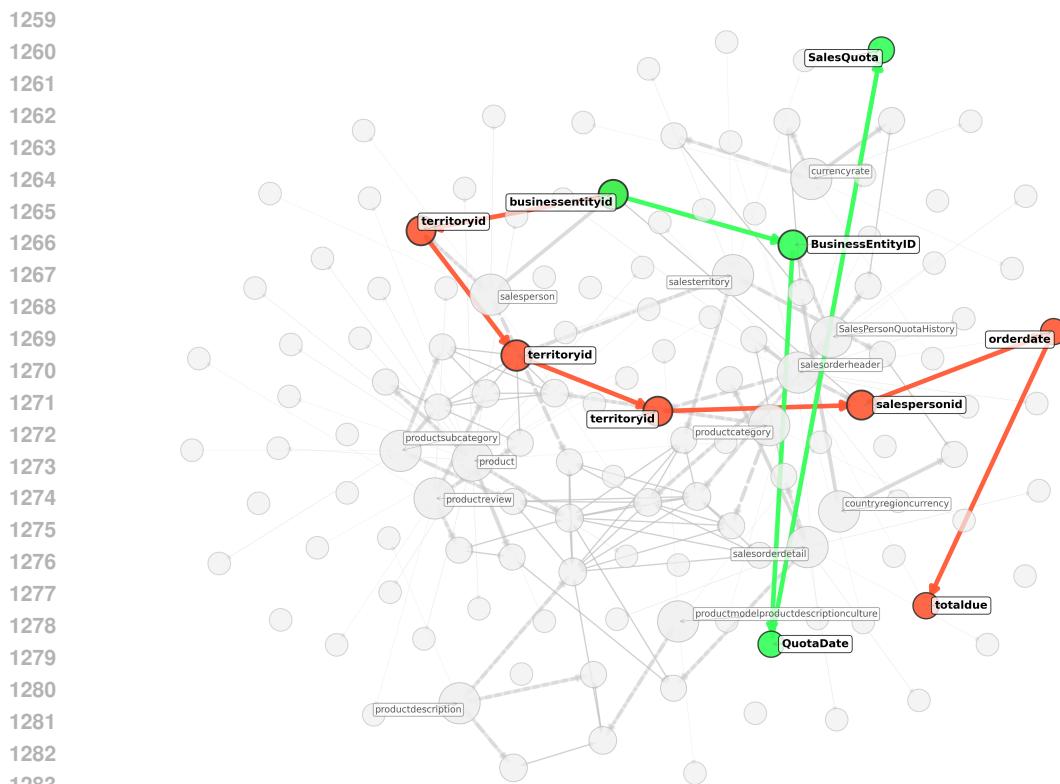


Figure 5: QAFD-RAG retrieved schema for Query-Local141 in the AdventureWorks database KG (Lei et al., 2025).

for each reasoning step, table, or join—performs a single, structured optimization to simultaneously discover all semantically relevant paths. This eliminates redundant exploration and dramatically reduces both the number of LLM calls and overall inference time, especially for queries requiring long or complex join paths. Consequently, QAFD-RAG delivers scalable inference for large enterprise databases while maintaining or even improving accuracy.

We provide an additional example to illustrate the advantages of our framework in uncovering meaningful schema paths, using Query-Local141 from the AdventureWorks database (Lei et al., 2025).

1296

Table 8: LLM call efficiency across SQLite and Snowflake. Lower is better.

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

**Example 1 (Query-Local141).** *How did each salesperson’s annual total sales compare to their annual sales quota? Provide the difference between their total sales and the quota for each year, organized by salesperson and year*

Figure 5 visualizes the relevant portion of the complex database schema as a graph, highlighting two distinct schema path decompositions: one corresponding to the sales quota (green path) and the other to the total sales (orange path). These paths not only capture the necessary schema linking but also reveal the underlying reasoning required to answer the query, as seen from the traversal across key nodes such as `SalesQuota`, `totaldue`, `orderdate`, and identifiers such as `BusinessEntityID` and `salespersonid`.

While Spider-Agent fails on this complex multi-hop reasoning query, QAFD-RAG effectively leverages the discovered paths to solve the problem, demonstrating the power of path-based schema linking and reasoning for compositional SQL logic.

#### A2.2.3 LLM EFFICIENCY AND SCHEMA LINKING PERFORMANCE

Table 8 demonstrates that QAFD-RAG + SQL-Agent significantly reduces LLM call overhead, using 31.9% fewer LLM calls on SQLite and 54.5% fewer calls on Snowflake compared to the standard Spider-Agent approach. Overall, QAFD-RAG + SQL-Agent consistently outperforms baselines across both environments.

Finally, Table 9 presents detailed schema linking performance measured by precision, recall, and F1-score. It demonstrates the core advantage of QAFD-RAG in identifying relevant schema elements (tables and columns) for the given queries, explaining both its accuracy improvements and efficiency gains over Spider-Agent.

#### A2.2.4 EMBEDDING MODEL SENSITIVITY FOR TEXT-TO-SQL

To evaluate QAFD-RAG’s robustness to embedding quality in the Text-to-SQL domain, we assess schema linking performance across five diverse embedding models on the Local category (SQLite databases). We compare: (i) OpenAI’s `text-embedding-3-small` (1536-dim) and `text-embedding-3-large` (3072-dim), representing cloud-based proprietary embeddings; (ii) Jina AI’s `jina-embeddings-v3` (Sturua et al., 2024) (1024-dim), an open-source local model; (iii) NVIDIA’s `nv-embed-v2` (Lee et al., 2024) (4096-dim), optimized for retrieval tasks; and (iv) `GritLM-7B` (Muennighoff et al., 2024) (4096-dim), a unified generative-embedding model. All other hyperparameters remain fixed across experiments.

Table 10 presents schema linking results. QAFD-RAG demonstrates consistent performance across all embedding models, with precision scores ranging from 0.80 to 0.83, recall from 0.76 to 0.81, and F1 scores from 0.78 to 0.82. Notably, `nv-embed-v2` achieves the best performance across all metrics (0.83/0.81/0.82), which is specifically optimized for retrieval tasks, followed closely by `text-embedding-3-large` (0.82/0.77/0.79) and `GritLM` (0.82/0.78/0.80).

Table 8: LLM call efficiency across SQLite and Snowflake. Lower is better.

| Method                      | SQLite LLM Calls | Snowflake LLM Calls |
|-----------------------------|------------------|---------------------|
| Spider-Agent                | 724              | 1482                |
| <b>QAFD-RAG + SQL-Agent</b> | <b>493</b>       | <b>674</b>          |

Table 9: Schema linking performance (precision, recall, F1). Higher is better.

| Method          | SQLite      |             |             | Snowflake   |             |             |
|-----------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                 | Prec        | Rec         | F1          | Prec        | Rec         | F1          |
| Spider-Agent    | 0.81        | 0.75        | 0.78        | 0.35        | 0.35        | 0.35        |
| <b>QAFD-RAG</b> | <b>0.82</b> | <b>0.76</b> | <b>0.79</b> | <b>0.60</b> | <b>0.59</b> | <b>0.60</b> |

1350 Table 10: Embedding sensitivity analysis for Text-to-SQL (Local category): QAFD-RAG performance across five embedding models.  
 1351

| 1353 <b>Embedding Model</b>         | 1354 <b>Precision</b> | 1355 <b>Recall</b> | 1356 <b>F1-Score</b> |
|-------------------------------------|-----------------------|--------------------|----------------------|
| 1355 text-embedding-3-small (1536d) | 0.82                  | 0.76               | 0.79                 |
| 1356 text-embedding-3-large (3072d) | 0.82                  | 0.77               | 0.79                 |
| 1357 jina-v3 (1024d)                | 0.80                  | 0.76               | 0.78                 |
| 1358 NVIDIA-nv-embed-v2 (4096d)     | <b>0.83</b>           | <b>0.81</b>        | <b>0.82</b>          |
| 1359 GritLM-7B (4096d)              | 0.82                  | 0.78               | 0.80                 |

1360  
 1361 Importantly, `jina-v3`, despite being the lowest-dimensional model (1024-dim) and fully local,  
 1362 achieves competitive results—only 0.04 points below the best model in F1 score. This demonstrates  
 1363 that QAFD-RAG’s query-aware flow diffusion mechanism is robust to embedding variations and can  
 1364 operate effectively with resource-constrained or privacy-preserving local embeddings. The consistent  
 1365 performance across diverse architectures (cloud vs. local, 1024-dim to 4096-dim, ranging from  
 1366 0.78 to 0.82 F1) validates that our framework successfully leverages semantic similarity for schema  
 1367 linking regardless of the specific embedding space, making it practical for deployment in varied  
 1368 infrastructure environments.  
 1369

### 1370 A3 PROOF OF MAIN RESULTS

#### 1372 A3.1 PROOF OF LEMMA 2

1374 *Proof.* The proof follows from the structure of the push-relabel algorithm and properties of the dual  
 1375 formulation.

1376 Algorithm 2 only increases  $x_u$  when node  $u$  has excess mass  $m_u > T_u$ . By the complementary  
 1377 slackness conditions of the dual problem (10), if  $x_u^{(k)*} = 0$  at the optimum, then the corresponding  
 1378 constraint is inactive, meaning  $m_u \leq T_u$  at optimality. Since the algorithm maintains the invariant  
 1379 that mass can only flow from nodes with excess to their neighbors, and the algorithm starts with  
 1380  $\mathbf{x}^0 = \mathbf{0}$ , any node  $u$  with  $x_u^{(k)*} = 0$  will never have excess mass during the algorithm’s execution.  
 1381 Therefore,  $x_u^t = 0$  for all iterations  $t$ , proving  $\text{supp}(\mathbf{x}^t) \subseteq \text{supp}(\mathbf{x}^{(k)*})$ .  
 1382

1383 The source mass  $\Delta^{(k)}$  determines the total amount of "flow" injected into the system. Each unit of  
 1384 flow that reaches a node  $u$  contributes at least a minimum amount to  $x_u$  (bounded by the algorithm’s  
 1385 push operations). Since mass is conserved and each node in the support must receive some positive  
 1386 flow to have  $x_u > 0$ , the number of nodes that can be in the support is upper bounded by the total  
 1387 mass  $\|\Delta^{(k)}\|_1$ . Formally, if  $|\text{supp}(\mathbf{x}^{(k)*})| > \|\Delta^{(k)}\|_1$ , then the average flow per supported node  
 1388 would be less than 1, but the discrete nature of the push operations and capacity constraints ensure  
 1389 each supported node receives at least a minimum quantum of flow, leading to a contradiction.  
 1390  $\square$   
 1391

#### 1392 A3.2 PROOF OF THEOREM 3

1394 *Proof.* The proof follows the framework of coordinate descent analysis for flow diffusion problems  
 1395 (Fountoulakis et al., 2020b), adapted to handle query-aware edge weights. We analyze the expected  
 1396 decrease in the objective function at each iteration.

1397 For simplicity, let  $F(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{L}(q_k) \mathbf{x} + \mathbf{x}^T (\mathbf{T} - \Delta^{(k)})$  be the dual objective from (10), where  
 1398  $\mathbf{L}(q_k) = \mathbf{B}^T \bar{\mathbf{W}}(q_k) \mathbf{B}$  is the query-aware weighted Laplacian. At iteration  $t$ , Algorithm 2 selects  
 1399 a node  $u$  with excess mass  $m_u > T_u$  uniformly at random and performs a push operation. The  
 1400 mass vector maintains the relationship  $\mathbf{m} = \Delta^{(k)} - \mathbf{L}(q_k) \mathbf{x}$ , so the gradient is  $\nabla F(\mathbf{x}) = \mathbf{L}(q_k) \mathbf{x} +$   
 1401  $(\mathbf{T} - \Delta^{(k)}) = \mathbf{T} - \mathbf{m}$ . When node  $u$  is selected, the excess mass is  $\text{excess} = m_u - T_u > 0$ ,  
 1402 which corresponds to  $\frac{\partial F}{\partial x_u} = T_u - m_u < 0$ . The algorithm increases  $x_u$  by  $\frac{\text{excess}}{w_u}$  where  $w_u =$   
 1403  $\sum_{v \sim u} \bar{w}(q_k, u, v)$ , and redistributes the excess to neighbors.

The key insight is that this corresponds to a coordinate descent step. The expected decrease in the objective function is

$$\mathbb{E}[F(\mathbf{x}^{t+1}) - F(\mathbf{x}^t)] = -\mathbb{E}\left[\frac{(\text{excess})^2}{2w_u}\right] \cdot \mathbb{P}(\text{node } u \text{ is selected}) \quad (13)$$

Since nodes are selected uniformly from the excess set, and by Lemma 2, all iterates have support contained in  $\text{supp}(\mathbf{x}^{(k)*})$ , we have

$$\mathbb{E}[F(\mathbf{x}^{t+1}) - F(\mathbf{x}^t)] \leq -\frac{1}{|\text{supp}(\mathbf{x}^{(k)*})|} \cdot \frac{\eta^{(k)}}{2\gamma^{(k)}} \cdot \|\mathbf{T} - \mathbf{m}^t\|_1^2 \quad (14)$$

where we use  $\eta^{(k)} \leq \bar{w}(q_k, u, v)$  for edges in the optimal support (minimum weight);  $\sum_{v \sim u} \bar{w}(q_k, u, v) \leq \gamma^{(k)}$  for nodes in the optimal support (maximum weighted degree); and The excess mass at each node is bounded by the gradient components.

The total excess mass is  $\|\mathbf{T} - \mathbf{m}^t\|_1$ , and by the optimality conditions, this relates to the suboptimality as

$$F(\mathbf{x}^t) - F(\mathbf{x}^{(k)*}) \leq C \cdot \|\mathbf{T} - \mathbf{m}^t\|_1 \quad (15)$$

for some constant  $C$  depending on the problem parameters. Combining these bounds and using the fact that  $|\text{supp}(\mathbf{x}^{(k)*})| \leq \|\Delta^{(k)}\|_1$  from Lemma 2, we get

$$\mathbb{E}[F(\mathbf{x}^{t+1}) - F(\mathbf{x}^{(k)*})] \leq \left(1 - \frac{\eta^{(k)}}{C \cdot \|\Delta^{(k)}\|_1 \cdot \gamma^{(k)}}\right) \mathbb{E}[F(\mathbf{x}^t) - F(\mathbf{x}^{(k)*})] \quad (16)$$

This gives exponential convergence with rate  $\frac{\eta^{(k)}}{\|\Delta^{(k)}\|_1 \cdot \gamma^{(k)}}$ . To achieve  $\mathbb{E}[F(\mathbf{x}^{\tau^{(k)}})] - F(\mathbf{x}^{(k)*}) \leq \xi$ , we need

$$\tau^{(k)} = O\left(\|\Delta^{(k)}\|_1 \frac{\gamma^{(k)}}{\eta^{(k)}} \log \frac{1}{\xi}\right). \quad (17)$$

The query-aware nature enters through the weights  $\bar{w}(q_k, u, v)$  in the definitions of  $\gamma^{(k)}$  and  $\eta^{(k)}$ , meaning the convergence rate adapts to the semantic structure induced by the query, while maintaining the same algorithmic guarantees as classical flow diffusion.  $\square$

### A3.3 PROOF OF LEMMA 6

*Proof.* Note that for any nodes  $u, v \in \mathcal{V}$  and  $k \in [K]$ , we have

$$\|\mathbf{e}_u - \mathbf{e}_{q_k}\|^2 = \|\boldsymbol{\mu}_u - \boldsymbol{\mu}_{q_k}\|^2 + \|\mathbf{z}_u - \mathbf{z}_{q_k}\|^2 + 2\langle \boldsymbol{\mu}_u - \boldsymbol{\mu}_{q_k}, \mathbf{z}_u - \mathbf{z}_{q_k} \rangle, \quad (18a)$$

$$\|\mathbf{e}_u - \mathbf{e}_v\|^2 = \|\boldsymbol{\mu}_u - \boldsymbol{\mu}_v\|^2 + \|\mathbf{z}_u - \mathbf{z}_v\|^2 + 2\langle \boldsymbol{\mu}_u - \boldsymbol{\mu}_v, \mathbf{z}_u - \mathbf{z}_v \rangle. \quad (18b)$$

To analyze the concentration of  $\|\mathbf{e}_u - \mathbf{e}_{q_k}\|^2$ , note that  $\|\mathbf{z}_u - \mathbf{z}_{q_k}\|^2 = \sum_{\ell=1}^d (z_{u\ell} - z_{q_k\ell})^2$ . Each term  $(z_{u\ell} - z_{q_k\ell})^2 - \mathbb{E}[(z_{u\ell} - z_{q_k\ell})^2]$  is sub-exponential with parameter at most  $C\sigma_\ell^2$  for some absolute constant  $C$  (see, e.g., (Vershynin, 2018, Theorem 2.7.7)). Applying Bernstein's inequality for sums of independent sub-exponential random variables and setting  $t = C_1\hat{\sigma}^2 \log |\mathcal{V}|$ , we obtain

$$\|\mathbf{z}_u - \mathbf{z}_{q_k}\|^2 \leq 2 \sum_{\ell=1}^d \sigma_\ell^2 + C_1\hat{\sigma}^2 \log |\mathcal{V}| \quad (19a)$$

with probability at least  $1 - 2|\mathcal{V}|^{-c'}$ , where  $\hat{\sigma} = \max_{1 \leq \ell \leq d} \sigma_\ell$  and  $c' > 0$  is a constant.

For the cross term, observe that

$$\langle \boldsymbol{\mu}_u - \boldsymbol{\mu}_{q_k}, \mathbf{z}_u - \mathbf{z}_{q_k} \rangle = \sum_{\ell=1}^d (\mu_{u\ell} - \mu_{q_k\ell})(z_{u\ell} - z_{q_k\ell})$$

is a sum of independent, mean-zero sub-Gaussian random variables. By standard sub-Gaussian tail bounds (e.g., Hoeffding's inequality), for any  $C_2 > 0$ ,

$$\mathbb{P}\left(|\langle \boldsymbol{\mu}_u - \boldsymbol{\mu}_{q_k}, \mathbf{z}_u - \mathbf{z}_{q_k} \rangle| > C_2\hat{\sigma}\sqrt{\log |\mathcal{V}|} \|\boldsymbol{\mu}_u - \boldsymbol{\mu}_{q_k}\|\right) \leq 2|\mathcal{V}|^{-c''}$$

1458 for some constant  $c'' > 0$ . Hence,

$$1460 \quad |\langle \boldsymbol{\mu}_u - \boldsymbol{\mu}_{q_k}, \mathbf{z}_u - \mathbf{z}_{q_k} \rangle| \leq C_2 \hat{\sigma} \sqrt{\log |\mathcal{V}|} \|\boldsymbol{\mu}_u - \boldsymbol{\mu}_{q_k}\| \quad (19b)$$

1461 with probability at least  $1 - 2|\mathcal{V}|^{-c''}$ .

1462 Therefore, with high probability,

$$1464 \quad \|\mathbf{e}_u - \mathbf{e}_{q_k}\|^2 \leq \|\boldsymbol{\mu}_u - \boldsymbol{\mu}_{q_k}\|^2 + 2 \sum_{\ell=1}^d \sigma_{\ell}^2 + C_1 \hat{\sigma}^2 \log |\mathcal{V}| \\ 1465 \quad + 2C_2 \hat{\sigma} \sqrt{\log |\mathcal{V}|} \|\boldsymbol{\mu}_u - \boldsymbol{\mu}_{q_k}\|.$$

1469 Following a similar argument, we derive bounds for  $\|\mathbf{z}_u - \mathbf{z}_v\|^2$  and  $\langle \boldsymbol{\mu}_u - \boldsymbol{\mu}_v, \mathbf{z}_u - \mathbf{z}_v \rangle$ . Thus,  
1470 for  $u, v \in \mathcal{R}_k$ , since  $\boldsymbol{\mu}_u = \boldsymbol{\mu}_v = \boldsymbol{\mu}_{q_k}$ , the decomposition in (18) simplifies, and we obtain, with  
1471 probability at least  $1 - O(|\mathcal{V}|^{-2})$

$$1472 \quad \bar{w}(q_k, u, v) \geq w(u, v) \exp(-( \gamma_1 + \gamma_2 + \gamma_3) \cdot O(\hat{\sigma}^2 d)) \\ 1473 \quad = w(u, v) \exp(-o(1)) = w(u, v)(1 - o(1)).$$

1474 This proves Item (i) in the lemma.

1475 On the other hand, if  $u \in \mathcal{R}_k$  and  $v \in \mathcal{V} \setminus \mathcal{R}_k$ , we have  $\min(\|\boldsymbol{\mu}_u - \boldsymbol{\mu}_v\|, \|\boldsymbol{\mu}_v - \boldsymbol{\mu}_{q_k}\|) \geq \hat{\mu}$  for some  
1476  $\hat{\mu}$ . Thus, with high probability

$$1477 \quad \|\mathbf{e}_v - \mathbf{e}_{q_k}\|^2 \geq \hat{\mu}^2 - 2C_2 \hat{\sigma} \sqrt{\log |\mathcal{V}|} \hat{\mu} - O(\hat{\sigma}^2 d) \\ 1478 \quad \geq \hat{\mu}^2(1 - o(1)).$$

1479 From Assumption A, we get

$$1480 \quad \bar{w}(q_k, u, v) \leq w(u, v) \exp(-\gamma_2 \hat{\mu}^2(1 - o(1))) = w(u, v) \exp(-\omega(\log |\mathcal{V}|)).$$

1481 Since the results hold uniformly over all pairs of nodes  $(u, v)$ , applying a union bound over all  
1482  $O(|\mathcal{V}|^2)$  edges completes the proof.  $\square$

### 1483 A3.4 PROOF OF THEOREM 7

1484 *Proof.* Consider Problem (8). Under Assumption A, the induced subgraph on  $\mathcal{R}_k$  is connected.  
1485 (Otherwise, the alternative probabilistic condition on  $\rho_1$  guarantees expansion—and thus connec-  
1486 tivity—with high probability by Chernoff bound arguments; see, e.g., (Yang & Fountoulakis, 2023,  
1487 Lemma C.1).)

1488 Order the nodes in  $\mathcal{R}_k$  as  $v_1, v_2, \dots, v_{r_k}$  such that  $x_{v_1}^{(k)} \geq x_{v_2}^{(k)} \geq \dots \geq x_{v_{r_k}}^{(k)}$ , and let  $x_{v_{r_k}}^{(k)} = 0$  be  
1489 the minimum. As the subgraph on  $\mathcal{R}_k$  is connected, there is a subgraph  $(v_1 = u_0, \dots, u_m = v_{r_k})$   
1490 with  $m \leq r_k - 1$ , where each  $(u_{\ell}, u_{\ell+1})$  is an edge within  $\mathcal{R}_k$ . By the KKT conditions, for every  
1491 edge  $(u, v)$  with  $x_u^{(k)} > x_v^{(k)}$ , the optimal solution must satisfy

$$1492 \quad \bar{w}(q_k, u, v)(x_u^{(k)} - x_v^{(k)}) \leq (1 + \beta) \sum_{u \in \mathcal{R}_k} T_u.$$

1493 Therefore, along each edge of the subgraph

$$1494 \quad x_{u_{\ell}}^{(k)} - x_{u_{\ell+1}}^{(k)} \leq \frac{(1 + \beta)}{\bar{w}(q_k, u_{\ell}, u_{\ell+1})} \sum_{u \in \mathcal{R}_k} T_u$$

1495 for  $0 \leq \ell \leq m - 1$ .

1496 By the edge separation property in Lemma 6,  $\bar{w}(q_k, u_{\ell}, u_{\ell+1}) \geq w(u_{\ell}, u_{\ell+1})(1 - o(1))$  for intra- $\mathcal{R}_k$   
1497 edge. Summing the above along the path, we have

$$1498 \quad x_{v_1}^{(k)} = \sum_{\ell=0}^{m-1} (x_{u_{\ell}}^{(k)} - x_{u_{\ell+1}}^{(k)}) + x_{v_{r_k}}^{(k)} \leq \sum_{\ell=0}^{m-1} \frac{(1 + \beta) \sum_{u \in \mathcal{R}_k} T_u}{1 - o(1)} \\ 1499 \quad \leq \frac{r_k(1 + \beta) \sum_{u \in \mathcal{R}_k} T_u}{1 - o(1)}. \quad (20)$$

1512 The total mass injected at sources in  $\mathcal{R}_k$  is  $(1 + \beta) \sum_{u \in \mathcal{R}_k} T_u$ . Nodes in  $\mathcal{R}_k$  can absorb at most  
 1513  $\sum_{u \in \mathcal{R}_k} T_u$  mass. Therefore, at least  $\beta \sum_{u \in \mathcal{R}_k} T_u$  mass must flow out of  $\mathcal{R}_k$ .  
 1514

1515 Next, we provide upper bound on the outflow. The total flow leaving  $\mathcal{R}_k$  is

$$\begin{aligned} \text{Outflow} &:= \sum_{u \in \mathcal{R}_k} \sum_{\substack{v \notin \mathcal{R}_k \\ (u, v) \in \mathcal{E}}} \bar{w}(q_k, u, v) (x_u^{(k)} - x_v^{(k)})^+ \leq \sum_{u \in \mathcal{R}_k} x_u^{(k)} \sum_{\substack{v \notin \mathcal{R}_k \\ (u, v) \in \mathcal{E}}} \bar{w}(q_k, u, v) \\ &\leq x_{v_1}^{(k)} \sum_{u \in \mathcal{R}_k} \sum_{\substack{v \notin \mathcal{R}_k \\ (u, v) \in \mathcal{E}}} \bar{w}(q_k, u, v). \end{aligned} \quad (21)$$

1519 By Lemma 6,  $\bar{w}(q_k, u, v) \leq \exp(-\omega(\log |\mathcal{V}|))$  for  $u \in \mathcal{R}_k, v \notin \mathcal{R}_k$ . Let  $N_{out}$  be the number of  
 1520 edges from  $\mathcal{R}_k$  to  $\mathcal{V} \setminus \mathcal{R}_k$ . By Chernoff bounds, we have  
 1521

$$\text{Prob}(N_{out} > 2\rho_2 r_k (|\mathcal{V}| - r_k)) \leq \exp(-\Omega(\rho_2 r_k (|\mathcal{V}| - r_k))). \quad (22)$$

1522 Therefore, with high probability  
 1523

$$\begin{aligned} \text{Outflow} &\leq \frac{r_k (1 + \beta) \sum_{u \in \mathcal{R}_k} T_u}{1 - o(1)} \cdot 2\rho_2 r_k (|\mathcal{V}| - r_k) \cdot \exp(-\omega(\log |\mathcal{V}|)) \\ &= (1 + \beta) \sum_{u \in \mathcal{R}_k} T_u \cdot \text{poly}(|\mathcal{V}|) \cdot \exp(-\omega(\log |\mathcal{V}|)) \\ &= o\left(\beta \sum_{u \in \mathcal{R}_k} T_u\right). \end{aligned}$$

1524 This contradicts the requirement that at least  $\beta \sum_{u \in \mathcal{R}_k} T_u$  mass must leave  $\mathcal{R}_k$ . Thus, our assumption  
 1525 that  $x_{v_{r_k}}^{(k)} = 0$  is false, so  $x_v^{(k)} > 0$  for all  $v \in \mathcal{R}_k$ , i.e.,  $\mathcal{R}_k \subseteq \text{supp}(\mathbf{x}^{(k)})$ .  
 1526

1527 Finally, the mass that does leave  $\mathcal{R}_k$  must be absorbed at nodes outside  $\mathcal{R}_k$ . Since each  $x_u^{(k)} \leq T_u$   
 1528 (by the constraints), the sum of  $T_u$  over nodes in  $\text{supp}(\mathbf{x}^{(k)}) \setminus \mathcal{R}_k$  cannot exceed the total outflow,  
 1529 i.e.,  
 1530

$$\sum_{u \in \text{supp}(\mathbf{x}^{(k)}) \setminus \mathcal{R}_k} T_u \leq \beta \sum_{u \in \mathcal{R}_k} T_u.$$

1531 This establishes the second part of the theorem. The desired high-probability result then follows by a  
 1532 union bound.  $\square$   
 1533

## 1534 A4 OVERVIEW OF DATASETS AND PROMPTS USED IN QAFD-RAG FOR 1535 QUESTION ANSWERING

1536 This section provides the details of datasets and key prompts used throughout our framework. To  
 1537 ensure fair comparison and eliminate confounding effects due to prompt engineering, we directly  
 1538 adopt the prompt templates introduced in Chen et al. (2025a) and Guo et al. (2024) for multiple  
 1539 stages of our pipeline. Specifically, the prompts for knowledge graph indexing, keyword extraction,  
 1540 and RAG-based query answering are reused without modification. For the performance evaluation  
 1541 stage, we also follow Chen et al. (2025a) and Guo et al. (2024)'s evaluation setup by prompting the  
 1542 model to rate responses along five predefined dimensions: Comprehensiveness, Diversity, Logicality,  
 1543 Relevance, and Coherence. These standardized definitions and formulations are explicitly included in  
 1544 our evaluation prompts. Using a consistent prompt set across all models ensures the reliability and  
 1545 reproducibility of our experimental results.  
 1546

### 1547 A4.1 DATASETS

### 1548 A4.2 ENTITY AND RELATIONSHIP EXTRACTION PROMPT

1549 This prompt is used to extract structured entity and relation information from individual document  
 1550 chunks, forming the nodes and edges of the knowledge graph. The prompt format is directly adopted  
 1551 from Chen et al. (2025a).  
 1552

1566  
1567

Table 11: Dataset statistics for the UltraDomain subsets used in our evaluation.

1568  
1569  
1570  
1571  
1572  
1573  
1574  
1575  
1576  
1577  
1578  
1579  
1580  
1581  
1582  
1583  
1584  
1585  
1586  
1587  
1588  
1589  
1590  
1591  
1592  
1593  
1594  
1595  
1596  
1597  
1598  
1599  
1600  
1601  
1602  
1603  
1604  
1605  
1606  
1607  
1608  
1609  
1610  
1611  
1612  
1613  
1614  
1615  
1616  
1617  
1618  
1619

| Dataset     | # of documents | # of tokens | # of nodes in the indexing graph | # of questions |
|-------------|----------------|-------------|----------------------------------|----------------|
| Agriculture | 12             | 1,949,526   | 23,180                           | 100            |
| Biology     | 27             | 3,275,990   | 42,520                           | 220            |
| Cooking     | 14             | 2,232,441   | 18,985                           | 120            |
| History     | 26             | 5,159,599   | 63,840                           | 180            |
| Legal       | 94             | 4,773,793   | 20,838                           | 438            |
| Mathematics | 20             | 3,640,908   | 32,319                           | 160            |
| Mix         | 61             | 611,161     | 11,371                           | 130            |
| Music       | 29             | 5,038,910   | 58,245                           | 200            |
| Philosophy  | 26             | 3,561,642   | 33,241                           | 200            |
| Physics     | 19             | 2,116,825   | 19,745                           | 160            |

**Prompt 1: Entity and Relationship Extraction****—Goal—**

Given a text document that is potentially relevant to this activity and a list of entity types, identify all entities of those types from the text and all relationships among the identified entities. Use `{language}` as output language.

**—Steps—**

1. Identify all entities. For each identified entity, extract the following information:
  - `entity_name`: Name of the entity, use the same language as input text. If English, capitalize the name.
  - `entity_type`: One of the following types: `[{entity_types}]`
  - `entity_description`: Comprehensive description of the entity's attributes and activities

Format each entity as

`(“entity”{tuple_delimiter}<entity_name>{tuple_delimiter}<entity_type>{tuple_delimiter}<entity_description>)`

2. From the entities identified in step 1, identify all pairs of `(source_entity, target_entity)` that are clearly related to each other. For each pair of related entities, extract the following information:

- `source_entity`: name of the source entity, as identified in step 1
- `target_entity`: name of the target entity, as identified in step 1
- `relationship_description`: explanation as to why you think the source entity and the target entity are related to each other
- `relationship_strength`: a numeric score indicating the strength of the relationship between the source entity and target entity
- `relationship_keywords`: one or more high-level key words that summarize the overarching nature of the relationship, focusing on concepts or themes rather than specific details

Format each relationship as

`(“relationship”{tuple_delimiter}<source_entity>{tuple_delimiter}<target_entity>{tuple_delimiter}<relationship_description>{tuple_delimiter}<relationship_keywords>{tuple_delimiter}<relationship_strength>)`

3. Identify high-level keywords that summarize the main concepts, themes, or topics of the entire text. These should capture the overarching ideas present in the document. Format the content-level keywords as

`(“content_keywords”{tuple_delimiter}<high_level_keywords>)`

4. Return output in `{language}` as a single list of all the entities and relationships identified in steps 1 and 2. Use `**{record_delimiter}**` as the list delimiter.

1620  
1621       5. When finished, output {completion\_delimiter}

1622  
1623  
1624     A4.3 KEYWORD EXTRACTION PROMPT

1625  
1626     This prompt identifies salient concepts and entities from a given query for the purpose of initializing  
1627     seed nodes during query-aware diffusion. It follows [Chen et al. \(2025a\)](#)'s design without any  
1628     modification.

1629  
1630       **Prompt 2: Keyword-Extraction in Knowledge Graph Question Answering**

1631       —Role—

1632       You are a helpful assistant tasked with identifying both high-level and low-level keywords in the  
1633       user's query.

1634       —Goal—

1635       Given the query, list both high-level and low-level keywords. High-level keywords focus on  
1636       overarching concepts or themes, while low-level keywords focus on specific entities, details, or  
1637       concrete terms.

1638       —Instructions—

- 1639       - Output the keywords in JSON format.
- 1640       - The JSON should have two keys:
- 1641           - “high\_level\_keywords” for overarching concepts or themes.
- 1642           - “low\_level\_keywords” for specific entities or details.

1643  
1644     A4.4 QUERY ANSWERING PROMPT

1645  
1646     This prompt is used to generate the final response from the LLM based on retrieved evidence. We  
1647     adopt [Chen et al. \(2025a\)](#)'s instruction format for fairness in model comparison.

1648       **Prompt 3: RAG-based query answering**

1649       —Role—

1650       You are a helpful assistant responding to questions about the data in the tables provided.

1651       —Goal—

1652       Generate a response of the target length and format that responds to the user's question,  
1653       summarizing all information in the input data tables appropriate for the response length and  
1654       format, and incorporating any relevant general knowledge. If you don't know the answer, just say  
1655       so. Do not make anything up. Do not include information where the supporting evidence for it is  
1656       not provided.

1657       —Target response length and format—

1658       {response\_type}

1659       —Data tables—

1660       {context\_data}

1661       Add sections and commentary to the response as appropriate for the length and format. Style the  
1662       response in markdown.

1674 A4.5 EVALUATION PROMPT

1675

1676 This prompt is used to obtain ratings from the LLM across five dimensions: Comprehensiveness,  
1677 Diversity, Logicality, Relevance, and Coherence. The full dimension definitions are embedded in the  
1678 prompt and align with those defined in [Chen et al. \(2025a\)](#).

1679

1680

**Prompt 4: Performance Evaluation**

1681

**—Role—**

1682

1683

You are an expert tasked with evaluating question answering based on five criteria: Comprehensiveness, Diversity, Logicality, Relevance, and Coherence.

1684

1685

**—Goal—**

1686

1687

Evaluate the following response to a question based on five criteria. Rate each criterion from 0 to 100.

1688

1689

Question: {query}

1690

Response: {response}

1691

Please evaluate based on these criteria:

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

Provide scores in JSON format:

```
{
    "comprehensiveness": [score],
    "diversity": [score],
    "logicality": [score],
    "relevance": [score],
    "coherence": [score]
}
```

**A5 OVERVIEW OF PROMPTS USED IN QAFD-RAG IN TEXT-TO-SQL TASKS**

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

**Prompt 5: Seed Node Selection for SQLite Graph****TASK DEFINITION**

You are a Text-to-SQL planner agent.

Given:

1728

- A user query: {QUERY}
- A database schema summary (graph) in text format: {SCHEMA\_SUMMARY}

1729

1730

1731

1732 Your job is to:

1733 1. Review this schema summary and user query thoroughly.

1734 2. Break the user query into logical user subqueries.

1735

1736 3. **For each subquery, systematically examine EVERY single node (table.column) in the database schema graph one by one:**

1737

- Go through each table in the schema summary sequentially
- For each table, examine every column within that table
- For each table.column node, evaluate its relationship strength with the current subquery
- Document your analysis for each node, determining if it has any of these RELATIONSHIP TYPES with the subquery:
  - SEMANTIC: Direct or indirect relevance to query concepts
  - STRUCTURAL: Representing organizational structures in the query
  - TEMPORAL: Time-based connections to query elements
  - CAUSAL: Cause-effect relationships described in the query
  - LOGICAL: Supporting logical conditions in the query
  - STATISTICAL: Statistical correlations to query concepts
  - DOMAIN-SPECIFIC: Domain relevancy with query
- **Source nodes:** ALL STARTING COLUMNS (with table prefixes) having strong relationships of ANY TYPE ABOVE with the subquery.
- **Target nodes:** ALL DESTINATION COLUMNS (with table prefixes) having strong relationships of ANY TYPE ABOVE with the subquery.
- **MANDATORY:** You must examine and consider every single table.column combination in the schema before proceeding to the next step.

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

4. When domain-specific concepts appear in the query, properly map these concepts to the appropriate schema column elements

5. **Identify the most confident path of schema graph:** For each subquery, determine and explicitly state the most confident path that the LLM should follow through the schema graph, using right arrow format ( $\rightarrow$ ) with ONLY schema nodes.

6. **Provide reasoning confidence candidates:** For each subquery, provide EXACTLY 2-3 DIVERSE candidates in format [source, target, confidence] where source is a starting node, target is an ending node, and confidence is a float between 0.0-1.0. Each candidate should explore different interpretations, relationship types, or alternative paths.

Important:

- Schema nodes MUST be specified as “table.column” EXACTLY the same as they appear in the schema summary. EVEN DO NOT change upper or lower letters.
- The most confident path should use the right arrow format ( $\rightarrow$ ) and contain ONLY schema nodes (table.column format)
- Reasoning confidence candidates should be in format: [source, target, confidence] with EXACTLY 2-3 DIVERSE candidates per subquery
- Each candidate should represent different semantic interpretations, alternative join paths, or different relationship types
- **CRITICAL:** You MUST systematically go through every single table and every single column in the schema graph during step 3 analysis
- Only output a JSON without explanation

1782 In the following, we provide an example of a Snowflake system prompt for SQL-Agent. A similar  
 1783 prompt was used for SQLite with minor modifications. The agent is required to systematically  
 1784 analyze database schemas and execute SQL queries by following a workflow that prioritizes the  
 1785 identification of the highest-reward subgraphs from the schema.json files, which were built using  
 1786 QAFD-RAG.

1787 **Prompt 6: Snowflake Data Scientist Agent**

1788 **TASK DEFINITION**

1791 You are a data scientist proficient in database, SQL and DBT Project. You are starting in the  
 1792 {work\_dir} directory, which contains all the data needed for your tasks. You can only use the  
 1793 actions provided in the ACTION SPACE to solve the task. For each step, you must output an  
 1794 Action; it cannot be empty. The maximum number of steps you can take is {max\_steps}. Do not  
 1795 output an empty string!

1796 **ACTION SPACE**

1797 {action\_space}

1799 **SNOWFLAKE-QUERY PROTOCOL**

1800 **1. BEFORE following any other rules, you MUST follow these steps:**

- 1801 • Read the schema.json in the /workspace directory. The schema.json contains  
 1802 valuable information about the graph structure and path rewards.
- 1803 • Identify the highest-reward subquery paths for EACH division in the provided  
 1804 schema.json
- 1805 • Write your VERY FIRST SQL query by combining ONLY these highest-reward  
 1806 paths to address the main query
- 1807 • DO NOT perform ANY database inspection before executing this first query
- 1808 • You MUST run this query as your FIRST SQL execution
- 1809 • You MUST terminate execution immediately after this first query if it works

1810 For your FIRST SQL attempt, follow ONLY these steps:

- 1811 • Review the schema.json structure containing all subqueries and their reward values
- 1812 • For each division (subquery), identify the path with the highest reward
- 1813 • Combine these highest-reward paths into a SINGLE comprehensive SQL query
- 1814 • Execute this SQL query immediately with no other database commands before it

1816 Do NOT run any exploratory queries like:

- 1817 • DO NOT run “SELECT \* FROM table LIMIT 5”
- 1818 • DO NOT run “PRAGMA table\_info(table\_name)”
- 1819 • DO NOT run “SELECT name FROM sqlite\_master WHERE type=’table’”
- 1820 • DO NOT check data types
- 1821 • DO NOT check for NULL values
- 1822 • DO NOT try to understand the schema first
- 1823 • DO NOT check DDL.csv files before attempting the first query

1825 Your first query must be the direct SQL translation of combining all highest-reward  
 1826 paths to address the main query objective.

1827 **2. If your first query fails, then you should explore the database structure further using  
 1828 the methods below. You can check DDL.csv file with the database’s DDL, along with  
 1829 JSON files that contain the column names, column types, column descriptions, and  
 1830 sample rows for individual tables. You can review the DDL.csv file in each directory,  
 1831 then selectively examine the JSON files as needed. Read them carefully.**

1832 **3. You can use SNOWFLAKE\_EXEC\_SQL to run your SQL queries and interact with the  
 1833 database. Do not use this action to query INFORMATION\_SCHEMA or SHOW  
 1834 DATABASES/TABLES; the schema information is all stored in the /workspace/  
 1835 database\_name folder. Refer to this folder whenever you have doubts about the schema.**

1836

1837 4. Be prepared to write multiple SQL queries to find the correct answer. Once it makes

1838 sense, consider it resolved.

1839

1840 5. Focus on SQL queries rather than frequently using Bash commands like grep and cat,

1841 though they can be used when necessary.

1842

1843 6. If you encounter an SQL error, reconsider the database information and your previous

1844 queries, then adjust your SQL accordingly. Do not output the same SQL queries

1845 repeatedly.

1846

1847 7. Ensure you get valid results, not an empty file. Once the results are stored in result.csv,

1848 make sure the file contains data. If it is empty or just contains the table header, it means

1849 your SQL query is incorrect.

1850

1851 8. The final result MUST be a CSV file, not an .sql file, a calculation, an idea, a sentence

1852 or merely an intermediate step. Save the answer as a CSV and provide the file name, it

1853 is usually from the SQL execution result.

1854 **TIPS**

1855 1. When referencing table names in Snowflake SQL, you must include both the

1856 database\_name and schema\_name. For example, for

1857 /workspace/DEPS\_DEV\_V1/DEPS\_DEV\_V1/ADVISORIES.json,

1858 if you want to use it in SQL, you should write

1859 DEPS\_DEV\_V1.DEPS\_DEV\_V1.ADVISORIES.

1860

1861 2. Do not write SQL queries to retrieve the schema; use the existing schema documents in

1862 the folders.

1863

1864 3. When encountering bugs, carefully analyze and think them through; avoid writing

1865 repetitive code.

1866

1867 4. Column names must be enclosed in quotes. But don't use \", just use \".

1868 **RESPONSE FORMAT**

1869 For each task input, your response should contain:

1870 1. One analysis of the task and the current environment, reasoning to determine the next

1871 action (prefix "Thought: ").

1872

1873 2. One action string in the ACTION SPACE (prefix "Action: ").

1874 **EXAMPLE INTERACTION**

1875 Observation: ... (the output of last actions, as provided by the environment and the code output,

1876 you don't need to generate it) Thought: ... Action: ...

1877 **TASK**

1878 Please solve this task: {task}

1879 **A6 TEXT-TO-SQL BASELINES**

1880 **CHASE-SQL for SQLite** We made several key modifications to adapt CHASE-SQL for the Spider

1881 2.0 SQLite benchmark. Enhanced data preprocessing expanded the data types used for extracting

1882 unique values from TEXT-only to include all "CHAR"-containing types (CHAR, VARCHAR, NVAR-

1883 CHAR) present in Spider 2.0. We disabled schema selection comparison features to prevent failures

1884 when no golden SQL query is available, and updated candidate generation prompts to encourage SQL

1885 generation even in low-confidence scenarios, addressing the complexity-induced abstention issues in

1886 Spider 2.0.

1887 Additional improvements included increased execution timeout thresholds to accommodate more

1888 complex SQL queries and enforcing a fixed agentic pipeline order: keyword extraction → entity

1890 retrieval → context retrieval → column filtering → table selection → column selection → candidate  
 1891 generation → revision. This fixed order was necessary after observing that dynamic tool selection  
 1892 often led to suboptimal sequences.

1893 **CHASE-SQL for Snowflake** All SQLite modifications were retained, but we disabled the Information  
 1894 Retrieval module, skipping entity and context retrieval phases. Transitioning to Snowflake required  
 1895 addressing three main challenges: syntax differences, database schema representation, and connection  
 1896 protocols.

1897 While Snowflake SQL is largely compatible with SQLite, key differences include date format handling  
 1898 and using double quotes instead of backticks for quoted identifiers. The original CHESS schema  
 1899 representation using simple table-name dictionaries proved insufficient for Snowflake’s hierarchical  
 1900 structure, where tables are organized into schemas within databases. We introduced schema-table  
 1901 mapping to handle this abstraction, though this assumes no duplicate table names across schemas.  
 1902

1903 Database connection also differs significantly. SQLite uses direct file paths, while Snowflake  
 1904 requires cloud account credentials with full namespace specification (database.schema.table) or  
 1905 reduced namespace (schema.table) when connected to a specific database. Golden SQL examples  
 1906 use full namespace format. Source code modifications addressed these data access differences.  
 1907 For prompt adaptation, we used the o3 model with instructions shown in Prompt 7 to modify  
 1908 generate\_candidate\_one and revise\_one templates. Initial experiments revealed that full namespace  
 1909 format contradicted GPT-4o’s internal knowledge, which prefers simplified schema.table format. We  
 1910 therefore modified prompts to use schema.table format while passing database names directly to the  
 1911 connector.

1912  
 1913 **Prompt 7: System prompt for o3 to adapt generate\_candidate\_one**  
 1914 **and revise\_one prompts for snowflake dialect**

1915 Help me modify this template to switch from SQLite dialect to snowflake dialect.

1916 1. Make sure to change the syntax and functions specifically for snowflake, but do not change the  
 1917 prompt structure and do not omit any examples.

1918 2. All examples must be executable in snowflake.

1919 3. Make sure to change all ticks <‘> with double quotes <">

1920 4. All DDL statements specifying the database structure must include statements for creating a  
 1921 database and schema. You can infer the best names for the database and schema if they are not  
 1922 immediately available. Use the same name for the database and the schema. When referencing  
 1923 tables, use the full namespace including the database and schema, like so: database.schema.table

1924 Here is an example:

1926 CREATE DATABASE restaurants;  
 1927 CREATE SCHEMA restaurants;  
 1928 CREATE TABLE generalinfo  
 1929 (  
 1930 id\_restaurant INTEGER not null primary key,  
 1931 food\_type TEXT null, – examples: ‘thai’l ‘food type’ description: the food type  
 1932 city TEXT null, – description: the city where the restaurant is located in  
 1933 );

1935 CREATE TABLE location  
 1936 (  
 1937 id\_restaurant INTEGER not null primary key,  
 1938 street\_name TEXT null, – examples: ‘ave’, ‘san pablo ave’, ‘pablo ave’l ‘street name’  
 1939 description: the street name of the restaurant  
 1940 city TEXT null, – description: the city where the restaurant is located in  
 1941 foreign key (id\_restaurant) references generalinfo (id\_restaurant) on update cascade on  
 1942 delete cascade,  
 1943 );

1944

1945

1946

1947

Use table location like so:  
 restaurants.restaurants.location

1948

1949

1950

1951

Final prompt modifications included converting few-shot examples from SQLite to Snowflake syntax, adding Snowflake-specific instructions, implementing schema.table namespace usage, incorporating schema generation statements in DDL commands, and updating date processing instructions with Snowflake-specific functions and examples.

1952

1953

1954

1955

To establish strong baselines, we compared our approach against three additional methods from the Spider 2 repository: DIN-SQL (Pourreza & Rafiei, 2024), DAIL-SQL (Gao et al., 2023a), and CodeS (Li et al., 2024b). These methods represent different paradigmatic approaches to text-to-SQL generation.

1956

**DIN-SQL: Decomposed In-Context Learning of Text-to-SQL with Self-Correction** DIN-SQL (Pourreza & Rafiei, 2024) structures text-to-SQL generation through a four-stage decomposition approach. The method begins with schema linking to parse questions and identify references to database elements, followed by classification and decomposition that categorizes queries into easy (single-table), non-nested complex (joins without sub-queries), and nested complex (joins with sub-queries and set operations) classes. The SQL generation stage adapts its strategy to each class: simple few-shot prompting for easy queries, intermediate representations for non-nested complex queries, and sub-query decomposition with intermediate representations for nested complex cases. Finally, self-correction uses an LLM to identify and fix bugs in the generated SQL.

1957

**DAIL-SQL: Dual-Similarity Adaptive In-Context Learning** DAIL-SQL (Gao et al., 2023a) employs a five-stage pipeline centered on dual-similarity matching. The method starts with masking database-related tokens in both target and candidate questions, then uses a preliminary predictor for initial SQL prediction. Skeleton extraction identifies structural patterns in both predicted and candidate queries. The core innovation lies in sorting and reordering, where candidates are first sorted by masked question similarity and then reordered by prioritizing high query similarity matches. Finally, generation produces the final SQL using the optimally ordered examples.

1958

**CodeS: Domain-Adaptive SQL-Centric Model** CodeS (Li et al., 2024b) takes a pretraining-based approach with three main components. Incremental pre-training builds upon StarCoder using a specially curated SQL dataset. Database prompt construction creates context by selecting top-k relevant tables and columns using BM25 and LCS matching, incorporating representative values and metadata. Bi-directional augmentation expands few-shot examples through SQL-to-NL and NL-to-SQL data augmentation before supervised fine-tuning. The model can operate through either supervised fine-tuning or direct few-shot in-context learning.

1959

**Spider-Agent: ReAct-style (Yao et al., 2023) Agentic Framework** We evaluate the Spider-Agent baseline (Lei et al., 2024), which implements a ReAct-style (Yao et al., 2023) multi-step reasoning framework for Text-to-SQL, strictly following the original settings and publicly released code<sup>2</sup> without any modifications to model parameters, prompt structure, or evaluation scripts. Specifically, all hyperparameters were kept at their default values as provided by the authors: the LLM model is set to GPT-4o, the decoding temperature is set to 0.5, the nucleus sampling parameter (`top_p`) is 0.9, the maximum generation length (`max_tokens`) is 2500, the agent's step limit is 20, and the agent memory length is 25.

1960

1961

1962

1963

1964

1965

All pipelines were executed using Spider 2 benchmark scripts (Lei et al., 2024) that convert data to each method's preferred format. To maintain baseline authenticity while ensuring runnable outputs, we applied only minimal fixes necessary for execution, deliberately avoiding substantive tuning. Testing covered both Snowflake and Lite subsets of Spider 2.

1966

1967

1968

1969

1970

1971

1972

The enterprise-scale schemas in Spider 2 presented significant challenges across all baseline methods. Context-length overflow occurred frequently as schemas exceeded token limits when serialized verbatim. Zero error-remediation was observed, where logical or syntactic failures (e.g., missing GROUP BY columns) were accepted without iterative correction or external validation. Additionally,

<sup>2</sup><https://github.com/xlang-ai/Spider2>

1998 malformatted data issues arose when benchmarks expected different data formats than those available  
1999 in Spider 2, contributing to overall poor performance across methods.  
2000

2001 **A7 USAGE OF LARGE LANGUAGE MODELS (LLMs)**

2002 We used large language models as a general-purpose writing assistant. Its role was limited to  
2003 grammar checking, minor stylistic polishing, and improving the clarity of phrasing in some parts of  
2004 the manuscript. The authors made all substantive contributions to the research and writing.  
2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051