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ABSTRACT

Branch-and-bound with preactivation splitting has been shown highly effective for
deterministic verification of neural networks. In this paper, we extend this frame-
work to the probabilistic setting. We propose BaB-prob that iteratively divides
the original problem into subproblems by splitting preactivations and leverages
linear bounds computed by linear bound propagation to bound the probability
for each subproblem. We prove soundness and completeness of BaB-prob for
feedforward-ReLU neural networks. Furthermore, we introduce the notion of un-
certainty level and design two efficient strategies for preactivation splitting, yield-
ing BaB-prob-ordered and BaB+BaBSR-prob. We evaluate BaB-prob on un-
trained networks, MNIST and CIFAR-10 models, respectively, and VNN-COMP
2025 benchmarks. Across these settings, our approach consistently outperforms
state-of-the-art approaches in medium- to high-dimensional input problems.

1 INTRODUCTION

Probabilistic verification of neural networks asks whether a given satisfies a formal specification
with high probability under a prescribed input distribution. Formally, given a neural network
f : Rn → Rm, a random input X ∈ Rn following distribution P, a specification set Y ⊂ Rm,
and a desired probability threshold η ∈ (0, 1], the goal of probabilistic verification is to determine
whether

P (f(X) ∈ Y) ≥ η (1)

holds. In this paper, we consider the problem where f = g(N) ◦σ(N−1) ◦ · · · ◦σ(1) ◦ g(1) : Rn → R
is a feedforward-ReLU neural network, g(1), . . . , g(N) are linear layers and σ(1), . . . , σ(N−1) are
ReLU layers, given as σReLU(x) = max(0, x), and Y = {y ∈ Rm : cTy + d > 0} is a half-space.
By folding the cTy+ d into the last linear layer to obtain an equivalent scalar network f : Rn → R,
we finally formulate our probabilistic verification problem as follows:

Problem 1. Determine whether the following statement is TRUE:

P (f(X) > 0) ≥ η, (2)

where f = g(N)◦σ(N−1)◦· · ·◦σ(1)◦g(1) : Rn → R is a feedforward-ReLU neural network, X ∼ P
is a random input in Rn, η ∈ (0, 1] is the desired probability threshold.

A verification approach is sound if, whenever it declares Problem 1 to be TRUE, then Problem 1 is
indeed TRUE; it is complete if it declares Problem 1 to be TRUE whenever Problem 1 is TRUE.

Existing approaches for probabilistic verification can be divided into two categories: analytical ap-
proaches and sampling-based approaches (Sivaramakrishnan et al. (2024)). Sampling-based ap-
proaches sample a number of elements from the distribution, pass them through the neural network,
then output a statistical result for the probabilistic verification problem with a specified confidence.
A major advantage of sampling-based approaches is that they can be applied to arbitrary neural net-
works. However, the required number of samples increases with a higher confidence. For further
details about sampling-based approaches, the reader is referred to Anderson & Sojoudi (2022); De-
vonport & Arcak (2020); Mangal et al. (2019); Pautov et al. (2022); Sivaramakrishnan et al. (2024).
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In this paper, we mainly focus on analytical approaches. Analytical approaches can deterministically
ascertain the correctness of Problem 1. Pilipovsky et al. (2023) compute the distribution of f(X)
using characteristic functions. However, their approach assumes independence between neurons
at each layer. Besides, their approach is computationally impractical for deep and wide neural
networks. PROVEN (Weng et al. (2019)) enjoys the best scalability among all current analytical
methods. In particular, PROVEN leverages linear bound propagation based approaches (Zhang
et al. (2018); Xu et al. (2020); Wang et al. (2018)) to get linear bounds on f(x) and bound the
probability in Equation (2) using these linear bounds. PROVEN is sound but incomplete due to
the relaxations. Fazlyab et al. (2019) relaxes the original problem to a semidefinite programming
problem by abstracting the nonlinear activation functions by affine and quadratic constraints. This
approach is also sound but incomplete and lacks scalability to medium-size or large neural networks.

Branch and bound (BaB) is a technique widely used in deterministic verification (Bunel et al. (2020);
Wang et al. (2021); Zhang et al. (2022)). BaB iteratively divides the problem into subproblems
and solves individually. The subproblems are typically solved with tighter relaxations than the
original problem under the constraints of the subproblems. After a finite number of splits, BaB-
based approaches generate sound and complete results. BaB-based approaches for deterministic
verification typically use one of two strategies: input-space splitting and preactivation splitting.
Existing works (Boetius et al.; Marzari et al. (2024)) that use BaB for probabilistic verification
focus on input-space splitting. However, as suggested in Bunel et al. (2020), preactivation splitting
is considerably more efficient than input-space splitting for large networks, especially when the
input space is high-dimensional.

In this work, we extend BaB with preactivation splitting to probabilistic verification. It should be
noted that our approach can be used for general activation functions σ(k), however, we only prove
completeness for ReLU activation function, given as σReLU(x) = max(0, x). The proof can be
extended to general piecewise-linear activation functions.

Our main contributions are as follows:

• We propose BaB-prob, the first branch-and-bound with preactivation splitting approach
for probabilistic verification of neural networks.

• We prove the soundness and the completeness of BaB-prob for feedforward-ReLU net-
works, which also adapts to general piecewise linear activation functions.

• We introduce the concept of uncertainty level and leverage it to design two splitting strate-
gies, yielding BaB-prob-ordered and BaB+BaBSR-prob.

• Experimental results show that BaB-prob-ordered and BaB+BaBSR-prob significantly
outperform state-of-the-art probabilistic verification approaches when the input is medium-
to high-dimensional.

2 PRELIMINARIES

In this section, we first introduce some notation used in the remainder of the paper. Then, we out-
line the linear bound propagation technique for deterministic verification used later in the proposed
approach.

2.1 NOTATION

We denote the number of neurons of layer g(k) and layer σ(k) as nk, k = 1, . . . , N − 1, and define
n0 := n and nN := 1. For k = 1, . . . , N − 1, we define y(k) as the preactivation of layer σ(k) and
y(k)(·) := g(k) ◦σ(k−1) ◦ · · · ◦ g(1)(·) as the preactivation function of layer σ(k). For uniformity, we
sometimes also use y(N)(·) to denote f(·). We use the shorthand notation [k1, k2], where k1 ≤ k2
to denote the sequence {k1, k1 + 1, . . . , k2}. We also use [k] as shorthand for [1, k] and a[k] for the
sequence {a(1), a(2), . . . , a(k)}. We use the bold font v to denote a vector, and the regular font with
subscript vj to denote its j-th entry. For two vectors u and v in Rℓ, we denote u ≤ v if ui ≤ vi for
all i ∈ [ℓ].
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Figure 1: An illustrative example of the key idea behind BaB-prob. Two preactivations have neg-
ative lower bounds and positive upper bounds. BaB-prob iteratively splits them into negative and
nonnegative cases to tighten the global probability bound, until the original problem is verified.

2.2 LINEAR BOUND PROPAGATION FOR DETERMINISTIC VERIFICATION

Different from verifying whether f(X) > 0 is satisfied with high probability, deterministic verifica-
tion verifies whether f(x) > 0 for all x in a given input set D. Formal verification is NP-hard due
to its nonlinearity and nonconvexity (Katz et al. (2017)). To address this, linear bound propagation
relaxes the problem by replacing the nonlinearities of f by linear functions. Specifically, let l[N−1]

and u[N−1] be precomputed lower and upper bounds for y[N−1] such that ℓ(k)j ≤ y
(k)
j (x) ≤ u

(k)
j for

all x ∈ D and k ∈ [N − 1]. The precomputed bounds can be obtained via interval arithmetic or by
applying linear bound propagation in the same way as for f(x). Using the precomputed bounds, the
ReLU functions can be relaxed by linear lower and upper functions. Relaxation is not required if
ℓ
(k)
j ≥ 0 or u(k)

j ≤ 0 for some y(k)k . With these linear relaxations, f(x) can be bounded by backward
propagating through the layers, yielding linear lower and upper bounds, f(x) and f̄(x), on f(x),
satisfying f(x) ≤ f(x) ≤ f̄(x), for all x ∈ D. It then verifies the problem using the linear bounds.

We can also leverage linear bound propagation to compute linear bounds for preactivation functions.
The linear bounds for both of f(x) and the preactivation functions will be used later in the proposed
approach. A key advantage of linear bound propagation is its high degree of parallelism, making
it well-suited for GPU acceleration. For more details about linear bound propagation, readers are
referred to Zhang et al. (2018).

3 BAB-PROB

We now present our BaB-based approach for probabilistic verification, which we call BaB-prob.
BaB-prob iteratively partitions Problem 1 into two subproblems by splitting a preactivation into
negative and nonnegative cases, thereby rendering the ReLU function linear within each subprob-
lem. It then applies linear bound propagation to compute linear bounds for f and the preactivations
y[N−1]. Using these bounds, BaB-prob computes probability bounds for each subproblem and ag-
gregates them to obtain a global probability bound for the original problem. This process continues
until Problem 1 is certified as either TRUE or FALSE. Figure 1 provides an example illustrating this
key idea.

The remainder of this section is organized as follows: Section 3.1 outlines the overall framework
of BaB-prob; Section 3.2 explains a key component—bounding the probability of a branch; Sec-
tion 3.3 proposes two strategies for selecting preactivations to split on based on the concept of un-
certainty level. The pseudocode and further implementation details of the framework are provided
in Appendix A.
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3.1 OVERALL FRAMEWORK

A set of constraints is of the form C =
{
y
(k1)
j1

≥ 0, . . . , y
(ks)
js

≥ 0, y
(ks+1)
js+1

< 0, . . . y
(kt)
jt

<

0
}

. We say that C is satisfied if all the constraints in C hold simultaneously. We can decom-
pose C layer by layer as C = C(1) ∪ · · · ∪ C(N−1), where C(k) denotes the set of constraints
on y(k) and is the empty set when there is no constraint on y(k). When C appears inside a
probability, P (·), it denotes the event that all the constraints in C are satisfied. For instance,
P (C) = P

(
y
(k1)
j1

(X) ≥ 0, . . . , y
(ks)
js

(X) ≥ 0, y
(ks+1)
js+1

(X) < 0, . . . , y
(kt)
jt

(X) < 0
)

. A branch is
defined as B := ⟨pℓ, pu, C⟩, where C is the set of constraints for B, and pℓ and pu are lower
and upper bounds on P (f(X) > 0, C), respectively. We define the probability of the branch B

as P (B) := P (f(X) > 0, C). For a preactivation y
(k)
j with precomputed lower bound ℓ

(k)
j and up-

per bound u
(k)
j , we say that the preactivation is stable in B = ⟨pℓ, pu, C⟩ if ℓ(k)j ≥ 0, or u(k)

j ≤ 0, or

C imposes a constraint on y
(k)
j ; otherwise, we say that it is unstable in B. We assume X is bounded

in D; if not, take D as a (1− δ)-confidence set for X.

During initialization, B is created to store all candidate branches. BaB-prob then performs linear
bound propagation over D under no constraint to obtain linear bounds for f and y[N−1], from
which the probability P (f(X) > 0) can be bounded between pℓ and pu. The root branch, Bo :=
⟨pℓ, pu, C = ∅⟩, is then inserted intoB. At each iteration, BaB-prob first aggregates across branches
in B to compute the global probability bounds and terminates if Problem 1 is already certified with
the current bounds. Otherwise it pops the branch B = ⟨pℓ, pu, C⟩ with largest gap (pu − pℓ). The
gap must be positive, since otherwise the global lower and upper bounds would coincide and BaB-
prob would have already terminated. It then picks an unstable preactivation y

(k)
j in B, and creates

two new sets of constraints C1 = C ∪ {y(k)j ≥ 0} and C2 = C ∪ {y(k)j < 0}. Applying linear bound
propagation over D under the constraints in Ci, BaB-prob recomputes linear bounds for f and
y[N−1], yielding f

i
(x), f̄i(x) and y[N−1]

i
(x), ȳ[N−1]

i , such that

f
i
(x) ≤ f(x) ≤ f̄i(x), ∀x ∈ D, Ci satisfied, (3a)

y(k)
i

(x) ≤ y(k)(x) ≤ ȳ(k)
i (x), ∀x ∈ D, C[k−1]

i satisfied, k ∈ [N − 1]. (3b)

With the linear bounds, it computes probability bounds pℓ and pu for P (f(X) > 0, Ci). It then
inserts Bi := ⟨pℓ,i, pu,i, Ci⟩ to B, and continues.

Corollary 1 shows that BaB-prob is both sound and complete.

3.2 PROBABILITY BOUNDS FOR BRANCHES

Let B be a given branch, and C =
{
y
(k1)
j1

≥ 0, . . . , y
(ks)
js

≥ 0, y
(ks+1)
js+1

< 0, . . . y
(kt)
jt

< 0
}

be
the set of constraints for it. Assume the linear bounds for f and y[N−1] under the constraints in C
are f(x) = aTx + b, f̄(x) = āTx + b̄, y(k)(x) = A(k)x + b(k), ȳ(k)(x) = Ā(k)x + b̄(k), for
k ∈ [N − 1]. Then, the probability bounds for B are given by

pℓ = P
(
PX+ q ≤ 0

)
, pu = P

(
P̄X+ q̄ ≤ 0

)
, (4)

where,

P =



−aT

−A(k1)
j1,:
...

−A(ks)
js,:

Ā
(ks+1)
js+1,:

...
Ā

(kt)
jt,:


, q =



−b
−b(k1)

j1
...

−b(ks)
js

b̄
(ks+1)
js+1

...
b̄
(kt)
jt


, P̄ =



−āT

−Ā(k1)
j1,:
...

−Ā(ks)
js,:

A
(ks+1)
js+1,:

...
A

(kt)
jt,:


, q̄ =



−b̄
−b̄(k1)

j1
...

−b̄(ks)
js

b
(ks+1)
js+1

...
b
(kt)
jt


.
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It is proved in Proposition 1 that pℓ and pu in Equation (4) are indeed lower and upper bounds on
P (f(X) > 0, C). Note that Equation (4) corresponds to the cumulative density functions of linear
transformations of X at the origin. If P is Gaussian, Equation (4) can be computed easily since
the linear transformation of a Gaussian random variable variable is still Gaussian. If P is a general
distribution, Equation (4) can be computed by integrating the probability density functions of X or
using Monte Carlo sampling.

3.3 SPLITTING STRATEGIES

We first derive the uncertainty levels of unstable preactivations in a branch B, which reflects the
looseness of the probability bounds of B that Equation (4) will provide after splitting on the preac-
tivations. Then, we propose two splitting strategies based on uncertainty level.

Uncertainty level. Consider a branch B = ⟨pℓ, pu, C⟩, where C = {y(k1)
j1

≥ 0, . . . , y
(ks)
js

≥
0, y

(ks+1)
js+1

< 0, . . . , y
(kt)
jt

< 0}. Let y(k)j be an unstable preactivation in B. Let B1 = ⟨pℓ,1, pu,1, C1⟩
and B2 = ⟨pℓ,2, pu,2, C2⟩ be the children branches generated if we split on y

(k)
j , where C1 = C ∪

{y(k)j ≥ 0} and C2 = C ∪ {y(k)j < 0}. Assume f
1
(x), f̄1(x), y[N−1]

1
(x), ȳ[N−1]

1 (x) and f
2
(x),

f̄2(x) y[N−1]
2

(x), ȳ[N−1]
2 (x) are the linear upper and lower bounds for f and y[N−1] obtained by

linear bound propagation under the constraints in C1 and C2, respectively.

By Proposition 2,

pu,1 − pℓ,1 ≥ P

ȳ
(k)
j,1 (X) ≥ 0, y(k)

j,1
(X) < 0, f̄1(X) > 0,

ȳ
(k1)
j1,1

(X) ≥ 0, . . . , ȳ
(ks)
js,1

(X) ≥ 0, y(ks+1)
js+1,1

(X) < 0, . . . , y(kt)
jt,1

(X) < 0


=: q(B1), (5a)

pu,2 − pℓ,2 ≥ P

ȳ
(k)
j,2 (X) ≥ 0, y(k)

j,2
(X) < 0, f̄2(X) > 0,

ȳ
(k1)
j1,2

(X) ≥ 0, . . . , ȳ
(ks)
js,2

(X) ≥ 0, y(ks+1)
js+1,2

(X) < 0, . . . , y(kt)
jt,2

(X) < 0


=: q(B2). (5b)

Equation (5) implies, in particular, that there are gaps, denoted by q(B1) and q(B2), between the
lower and upper bounds on P (B1) and P (B2). Note that these gaps arise from the relaxation
inherent in our approach. If no relaxation were used when computing P (B1) and P (B2), the gaps
would vanish. A natural idea is to split on the unstable preactivation that will result in smallest gap.
However, computing the gap exactly for every unstable neuron is computationally intractable: it
requires computing the linear bounds of f and y[N−1] under the corresponding constraints, together
with the probabilities on the right-hand side of Equation (5), for each unstable preactivation. Instead,
we use upper bounds on q(B1) and q(B2), denoted by q̄(B1) and q̄(B2), which can be computed
more easily. The upper bounds are given by

q(B1) ≤ P
(
ȳ
(k)
j,1 (X) ≥ 0, y(k)

j,1
(X) < 0

)
=: q̄(B1), (6a)

q(B2) ≤ P
(
ȳ
(k)
j,2 (X) ≥ 0, y(k)

j,2
(X) < 0

)
=: q̄(B2). (6b)

In many linear bound propagation based approaches, such as CROWN (Zhang et al. (2018)), the
computed linear lower and upper bounds for y(k)j (x) are determined by the constraints on the pre-
activations of the first k − 1 ReLU layers. Therefore, and since C1 and C2 have the same constraints
as C on y[k−1], the linear lower and upper bounds on y

(k)
j (x) for B1 and B2 are same as those for

B, that is,
y(k)
j,1

(x) = y(k)
j,2

(x) = y(k)
j

(x), ȳ
(k)
j,1 (x) = ȳ

(k)
j,2 (x) = ȳ

(k)
j (x). (7)

Therefore, q̄(B1) = q̄(B2), and we denote them by the uncertainty level of unstable preactivation
y
(k)
j in branch B, that is,

q(B; y
(k)
j ) : = P

(
ȳ
(k)
j (X) ≥ 0, y(k)

j
(X) < 0

)
= P

((
−Ā(k)

j,:

A
(k)
j,:

)
X+

(
−b̄(k)j

b
(k)
j

)
≤ 0

)
, (8)
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where y(k)
j

(x) = A
(k)
j,: (x) + b

(k)
j and ȳ

(k)
j (x) = Ā

(k)
j,: (x) + b̄

(k)
j have already been obtained when

applying linear bound propagation for B. Computing q(B; y
(k)
j ) is tractable, since it corresponds to

the cumulative density function of a linear transformation of X at the origin. It should be noted that
even if Equation (7) does not hold, one can still view the above defined q(B; ·) as an approximation
of q(B1) and q(B2) and use it as a guidance for selecting unstable preactivations to split.

Based on uncertainty level, we propose two strategies for selecting the preactivation to split for a
given branch B = ⟨pℓ, pu, C⟩.
BaB-prob-ordered. The first strategy is naı̈ve, but turns out to be useful in many cases, espe-
cially in the verification of MLP models. We call BaB-prob with this naı̈ve strategy BaB-prob-
ordered. BaB-prob-ordered starts from the first ReLU layer and checks whether there is any
unstable preactivation in this layer. If so, BaB-prob-ordered selects one such preactivation to split
on; otherwise, BaB-prob-ordered proceeds to the next ReLU layer, until an unstable preactivation
is found. B must contain an unstable preactivation; otherwise, Proposition 4 implies pℓ = pu and
B would not have been popped from B. Since BaB-prob-ordered splits on an unstable preactiva-
tion y

(k)
j only when there is no unstable preactivation in the first k − 1 ReLU layers, it follows that

y(k)
j

(x) = ȳ
(k)
j (x), since no relaxation is required to bound y

(k)
j . Therefore, q(B; y

(k)
j ) = 0. This

explains why BaB-prob-ordered works well in many cases: BaB-prob-ordered always splits on
the preactivation with uncertainty level of zero.

BaB+BaBSR-prob. Splitting on the unstable preactivation with uncertainty level of 0 does not
necessarily minimize the gaps pu,1 − pℓ,1 and pu,2 − pℓ,2 since the uncertainty level is an upper
bound on a lower bound on these gaps. Therefore, only considering uncertainty levels can some-
times be misguiding, making the algorithm inefficient, especially for CNN models. Actually, in
image-classification scenarios, an MLP may contain hundreds or thousands of neurons in one acti-
vation layer, while a CNN can contain tens of thousands of neurons due to their channel and spatial
dimensions. To resolve this issue, we propose to combine heuristics from deterministic verification
with the uncertainty levels of preactivations to design splitting strategies. Specifically, we com-
bine BaBSR (Bunel et al. (2020)), which estimates the improvement on the lower bound of f(x)
after splitting a preactivation, with the uncertainty levels of preactivations. We call this heuristic
BaBSR-prob and call BaB-prob with BaBSR-prob heuristics BaB+BaBSR-prob.

BaB+BaBSR-prob first computes BaBSR scores for all the unstable preactivations (see Bunel
et al. (2020) for details). It then enumerates the unstable preactivations in decreasing order of their
BaBSR scores and evaluates the uncertainty level of each. If the uncertainty level of the current
preactivation does not exceed a specified nonnegative threshold, BaB+BaBSR-prob splits on it;
otherwise, it proceeds to the next preactivation with a lower BaBSR score. Note that there must
exist at least one unstable preactivation in B with uncertainty level below the threshold, since the
one chosen by BaB-prob-ordered always has uncertainty level 0.

3.4 THEORETICAL RESULTS

In this section, we provide the theoretical properties of BaB-prob and defer their proofs to Ap-
pendix B.
Proposition 1. The values of pℓ and pu computed in Equation (4) are lower and upper bounds on
P (f(X) > 0, C).

Proposition 2. For a given branch B = ⟨pℓ, pu, C⟩, where C = {y(k1)
j1

≥ 0, . . . , y
(ks)
js

≥
0, y

(ks+1)
js+1

< 0, . . . , y
(kt)
jt

< 0, y
(k⋆)
j⋆ ≥ 0/y

(k⋆)
j⋆ < 0}, Assume f(x), f̄(x) and y[N ](x), ȳ[N ](x)

are the linear lower and bounds obtained by linear bound propagation for B. Then,

pu − pℓ ≥ P

f̄(X) > 0, ȳ
(k⋆)
j⋆ (X) ≥ 0, y(k

⋆)
j⋆

(X) < 0,

ȳ
(k1)
j1

(X) ≥ 0, . . . , ȳ
(ks)
js

(X) ≥ 0, y(ks+1)
js+1

(X) < 0, . . . , y(ks+1)
jt

(X) < 0

 . (9)

Proposition 3. The global lower bound and upper bounds, denoted as Pℓ and Pu, computed at the
beginning of each iteration are indeed lower and upper bounds on P (f(X) > 0).
Proposition 4. If B = ⟨pℓ, pu, C⟩ has no unstable preactivation, then P (B) = pℓ = pu.
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Proposition 5. BaB-prob terminates in finite time.

Corollary 1. BaB-prob is both sound and complete.

4 EXPERIMENTS

This section evaluates BaB-prob as well as other state-of-the-art probabilistic verifiers for local
probabilistic robustness: for a correctly classified input x0, we add zero-mean Gaussian noise of
small covariance and ask whether the network preserves the desired margin with probability at least
η. We compare the two versions of BaB-prob—BaB-prob-ordered and BaB+BaBSR-prob—
against PROVEN (Weng et al. (2019)), PV (Boetius et al.), and an SDP-based verifier (Fazlyab
et al. (2019)), denoted as SDP. Because PROVEN’s code is not public, we re-implemented it for
consistency across baselines. We first check the soundness and completeness of the algorithms by
conducting experiments on a toy MLP and a toy CNN. Results show that the verification results of
both versions of BaB-prob and PV match the “ground truth,” indicating that they are both sound and
complete. PROVEN and SDP are shown incomplete, which is as expected. Details are provided
in Appendix C.1. We then report results on (i) untrained MLP and CNN models across widths and
depths, (ii) MNIST (LeCun (1998)) and CIFAR-10 (Krizhevsky et al. (2009)) models, respectively,
and (iii) VNN-COMP 2025 benchmarks1. Unless stated otherwise, the desired probability threshold
η = 0.95, the nonnegative threshold for BaBSR-prob is 0.01, and the per-instance time limit is 120
seconds. Computation is parallelized on GPU. Experiments were run on Ubuntu 22.04 with an Intel
i9-14900K CPU, 64 GB RAM, and an RTX 4090 GPU, using a single CPU thread.

Probability estimation and confidence. In practive, analytically computing the probabilities in
Equation (4) can be time-consuming when the underlying Gaussian distribution is high-dimensional.
While dimensionality-reduction techniques could accelerate this computation, we approximate the
probabilities using Monte Carlo sampling and certify the final decision with a statistical confidence
guarantee. Across nearly all problems, our certificates achieve confidence exceeding 1− 10−4. For
completeness, Appendix C.4 details our confidence calculation and empirical confidence results for
our approach.

Success-rate definition. For sound-and-complete methods, PV, BaB-prob-ordered and BaB+
BaBSR-prob, “success rate” is the fraction of instances declared within the time limit. For
PROVEN and SDP, we count a verification as successful only if it matches the declaration of any
of PV or our two versions; in our runs there was no case where all three (PV and our two versions
of BaB-prob) failed to declare while PROVEN or SDP succeeded.

In our experiments, SDP either exhausted memory or failed to solve the problems within the time
limit. Therefore, we omit its results from the main text and report them in the appendix. Additional
details about the experiments are provided in Appendix C. Our code is available at https://
anonymous.4open.science/r/BaB-prob-59D3/.

4.1 UNTRAINED MLP AND CNN MODELS

We evaluate the scalability of different approaches with respect to network size on untrained MLPs
and CNNs. For MLPs, we vary the input dimension Di, hidden dimension Dh, and the number
of hidden layers Nh. For CNNs, we vary the input shape (1,Wi, Hi) with Wi = Hi, the number
of hidden channels Ch, and the number of hidden layers Nh. Figure 2 shows the success rate
results for the various approaches. The results show a clear advantage for both versions of BaB-
prob, which consistently achieved higher success rates than PROVEN and PV. On MLP models,
BaB-prob-ordered shows better scalability than BaB+BaBSR-prob, whereas on CNN models,
BaB+BaBSR-prob scales better than BaB-prob-ordered.

4.2 MNIST AND CIFAR-10 MODELS

Success rate and average time. Table 1 shows the success rate and avergae time results for MNIST
and CIFAR-10 models. On MLPs, both versions of BaB-prob strictly dominate PROVEN and PV.
Besides, BaB-prob-ordered shows higher success rates than BaB+BaBSR-prob. On CNNs, both

1https://github.com/VNN-COMP/vnncomp2025_benchmarks.git
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(b) (MLP) Di = 256, Nh = 4.
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(c) (MLP) Di = 256, Dh = 256.
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(f) (CNN) Wi = Hi = 32, Ch = 32.

Figure 2: Success rate results for untrained models.

MNIST models

PROVEN PV BaB-prob-ordered (ours) BaB+BaBSR-prob (ours)

MLP-256-21 70.00% (0.02s) 33.33% (80.02s) 100% (0.25s) 100% (0.25s)
MLP-256-6 23.33% (0.02s) 23.33% (92.01s) 100% (6.19s) 86.67% (34.14s)
MLP-256-10 16.67% (0.04s) 16.67% (100.01s) 96.67% (11.61s) 63.33% (51.80s)
MLP-1024-2 66.67% (0.01s) 40.00% (72.02s) 100% (2.74s) 100% (1.21s)
MLP-1024-6 20.00% (0.03s) 10.00% (108.01s) 93.33% (26.52s) 56.67% (63.03s)
MLP-1024-10 6.67% (0.05s) 6.67% (112.01s) 56.67% (65.01s) 20.00% (102.73s)
Conv-8-22 96.67% (0.03s) 20.00% (96.01s) 100% (0.03s) 100% (0.03s)
Conv-16-2 73.33% (0.02s) 13.33% (104.01s) 96.67% (13.33s) 100% (4.33s)
Conv-32-2 23.33% (0.02s) 0% (120.03s) 53.33% (65.61s) 83.33% (27.71s)
Conv-64-2 36.67% (0.02s) 0% (120.04s) 46.67% (69.87s) 56.67% (61.85s)

CIFAR-10 models

MLP-256-2 96.67% (0.03s) 76.67% (28.02s) 100% (0.01s) 100% (0.02s)
MLP-256-6 60.00% (0.03s) 53.33% (56.02s) 100% (0.32s) 100% (0.56s)
MLP-256-10 50.00% (0.04s) 36.67% (76.02s) 100% (6.12s) 86.67% (27.31s)
MLP-1024-2 93.33% (0.02s) 90.00% (12.02s) 100% (0.02s) 100% (0.01s)
MLP-1024-6 66.67% (0.03s) 60.00% (48.02s) 100% (3.02s) 96.67% (8.77s)
MLP-1024-10 50.00% (0.05s) 43.33% (68.02s) 100% (7.19s) 83.33% (23.30s)
Conv-16-2 86.67% (0.03s) 26.67% (88.02s) 96.67% (4.50s) 100% (0.51s)
Conv-16-3 33.33% (0.03s) 3.33% (116.02s) 60.00% (56.02s) 90.00% (28.40s)
Conv-16-4 16.67% (0.04s) 0% (120.02s) 36.67% (81.57s) 70.00% (57.67s)
Conv-32-2 86.67% (0.03s) 20.00% (96.03s) 93.33% (8.95s) 96.67% (5.57s)
Conv-32-3 33.33% (0.04s) 10.00% (108.03s) 50.00% (69.85s) 63.33% (46.99s)
Conv-32-4 3.33% (0.05s) 0.00% (120.04s) 13.33% (107.64s) 33.33% (84.54s)
1 MLP-256-2 refers to the MLP model with Dh = 256 and Nh = 2.
2 Conv-8-2 refers to the CNN model with Ch = 8 and Nh = 2.

Table 1: Success rate and average time results for MNIST and CIFAR-10 models.

versions of BaB-prob consistently outperform PROVEN and PV, and BaB+BaBSR-prob shows
better performance than BaB-prob-ordered.

Split efficiency. Figure 3 compares the number of splits required by BaB-prob-ordered and
BaB+BaBSR-prob. On MLPs, BaB-prob-ordered generally splits fewer preactivations than
BaB+BaBSR-prob, particularly on the more challenging instances. For CNNs, BaB+BaBSR-
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Figure 3: Comparison of number of splits between BaB-prob-ordered and BaB+BaBSR-prob.

Dataset Network Type Input Dim PROVEN PV BaB-prob-ordered (ours) BaB+BaBSR-prob (ours)

acasxu 2023 FC + ReLU 5 10.22% (0.03s) 92.47% (15.09s) 48.39% (63.83s) 47.85% (65.59s)
cersyve FC + ReLU (Control Tasks) 2-5 0% (0.05s) 91.67% (19.64s) 100% (8.88s) 100% (13.24s)

cifar100 2024 FC, Conv, Residual + ReLU, BatchNorm 3072 49.00% (0.17s) 7.00% (111.69s) 52.00% (59.78s) 57.00% (57.35%)
collins rul cnn 2022 Conv + ReLU, Dropout 400-800 91.94% (0.03s) 93.55% (9.38s) 95.16% (7.09s) 96.77% (5.07s)

cora 2024 FC + ReLU 784-3072 19.44% (0.04s) 17.22% (99.34s) 58.89% (60.99s) 34.44% (88.01s)
linearizenn 2024 FC, Residual + ReLU 4 20.00% (0.03s) 100% (0.08s) 95.00% (21.46s) 81.67% (42.37s)

relusplitter (MNIST) FC+ReLU 784 18.75% (0.02s) 18.75% (97.51s) 100% (1.80s) 96.25% (21.27s)
relusplitter (CIFAR-10) Conv, Skip + ReLU, AvgPool 3072 76.67% (0.04s) 46.67% (64.02s) 80.00% (24.71s) 93.33% (11.90s)

safenlp 2024 FC + ReLU 30 35.32% (0.01s) 41.50% (73.82s) 99.07% (3.18s) 99.79% (0.98s)

Table 2: Results for VNN-COMP 2025 benchmarks.

prob consistently requires fewer preactivation splits than BaB-prob-ordered by up to two orders
of magnitude.

4.3 RESULTS FOR VNN-COMP 2025 MODELS

Table 2 reports the results for the VNN-COMP 2025 benchmarks. Both versions of BaB-prob
achieve higher success rates than PROVEN. Moreover, they consistently outperform PV, except
on the low-dimensional datasets—acasxu 2023 (5 dimensions) and linearizenn 2024 (4
dimensions).

5 CONCLUSIONS

In this work, we have introduced BaB-prob, the first BaB framework with preactivation splitting
for probabilistic verification of neural networks. BaB-prob iteratively divides the original problems
into subproblems by splitting preactivations and leverages LiRPA to bound the probability for each
subproblem. We prove soundness and completeness of our approach for ReLU networks, which
can be extended to piecewise-linear activation functions. Furthermore, we introduce the notion
of uncertainty level and propose two versions of BaB-prob with different strategies developed by
uncertainty level. Extensive experiments show that our approach significantly outperforms state-of-
the-art approaches in medium- to high-dimensional input problems.
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Algorithm 1 BaB-prob

Input: f(x), P, D, η
1: B ← [ ]

2: f(x), f̄(x), y[N−1]
o

(x), ȳ[N−1]
o (x)← ComputeLinearBounds(f,D,∅)

3: pℓ,o, pu,o ← BoundBranchProbability(P, f(x), f̄(x), y[N−1]
o

(x), ȳ[N−1]
o (x),∅)

4: Bo ← ⟨pℓ,o, pu,o,∅⟩
5: if pℓ,o < pu,o then
6: MarkPreactivationToSplitOn(Bo)

7: B.insert(Bo)
8: while True do
9: Pℓ, Pu ← BoundGlobalProbability(B)

10: if Pℓ ≥ η then return TRUE
11: if Pu < η then return FALSE
12: B = ⟨pℓ, pu, C⟩ ← B.pop()
13:

{
y
(k)
j ≥ 0, y

(k)
j < 0

}
← GenerateNewConstraints(B)

14: for ci ∈
{
y
(k)
j ≥ 0, y

(k)
j < 0

}
do

15: Ci ← C ∪ {ci}
16: f

i
(x), f̄i(x), y[N−1]

i
(x), ȳ[N−1]

i (x)← ComputeLinearBounds(f,D, Ci)
17: pℓ,i, pu,i ← BoundBranchProbability(P, f

i
(x), f̄i(x), y[N−1]

i
(x), ȳ[N−1]

i (x), Ci)
18: Bi ← ⟨pl,i, pu,i, Ci⟩
19: if pl,i < pu,i then
20: MarkPreactivationToSplitOn(Bi)

21: B.insert(Bi)

A DETAILED FRAMEWORK OF BAB-PROB

The pseudocode of BaB-prob is shown in Algorithm 1. During initialization, B is created to main-
tain all candidate branches (Line 1). BaB-prob applies linear bound propagation over D under
no constraint to compute linear bounds for f and y[N−1], yielding f

o
(x), f̄o(x) and y[N−1]

o
(x),

ȳ[N−1]
o (x), such that

f
o
(x) ≤ f(x) ≤ f̄o(x), ∀x ∈ D, (10a)

y(k)
i

(x) ≤ y(k)(x) ≤ ȳ(k)
o (x), ∀x ∈ D, k ∈ [N − 1], (10b)

(Line 2). BaB-prob then applies Equation (4) to compute the probability bounds for P (f(X) > 0),
obtaining the lower bound pℓ,o and the upper bound pu,o, and creates the root branch Bo =
⟨pℓ,o, pu,o,∅⟩ (Line 3-4). Before inserting Bo into B, the preactivation in Bo to be split on is
first identified (though not split immediately) (Line 5-6). This strategy reduces memory usage for
BaB+BaBSR-prob, since the method relies on the linear bounds to choose the preactivation to split
on. By marking the preactivation at this stage, we can discard the linear bound information before
inserting Bo into B. Besides, BaB-prob only performs the identification if (pu − pℓ) is positive. At
the end of initialization, Bo is inserted into B (Line 7).

At each iteration, BaB-prob first computes the global probability bounds for P (f(X) > 0):

Pℓ =
∑

⟨pℓ,pu,C⟩∈B

pℓ, Pu =
∑

⟨pℓ,pu,C⟩∈B

pu, (11)

(Line 9). If the current global probability bounds are already enough to make a certification, BaB-
prob terminates and make the corresponding certification (Line 10-11). Otherwise, BaB-prob pops
the branch B = ⟨pℓ, pu, C⟩ with the largest (pu − pℓ) from B (Line 12) and generates the two
new constraints on the identified preactivation (Line 13). For each new constraint ci, BaB-prob
generates a new set of constraints Ci = C ∪{ci} (Line 14-15). BaB-prob then applies linear bounds
propagation overD under the constraints in Ci to compute linear bounds for f and y[N−1], yielding

12
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f
i
(x), f̄i(x) and y[N−1]

i
(x), ȳ[N−1]

i , such that

f
i
(x) ≤ f(x) ≤ f̄i(x), ∀x ∈ D, Ci satisfied, (12a)

y(k)
i

(x) ≤ y(k)(x) ≤ ȳ(k)
i (x), ∀x ∈ D, C[k−1]

i satisfied, k ∈ [N − 1], (12b)

(Line 16). Then, it uses Equation (4) to compute the probability bounds for P (f(X) > 0, Ci),
obtaining pℓ,i and pu,i. Same as the initialization, BaB-prob identifies the preactivation to split on
for Bi = ⟨pℓ,i, pu,i, Ci⟩ in advance (Line 19-20) and then inserts Bi into B.

B PROOF FOR THEORETICAL RESULTS

Lemma 1. Let C =
{
ykℓ
jℓ
≥ 0, ℓ ∈ [s], ykℓ

jℓ
, ℓ ∈ [s+ 1, t]

}
. Assume C can be decomposed by

C(k) =
{
y
(k)
jk,ℓ
≥ 0, ℓ ∈ [sk], y

(k)
jk,ℓ

< 0, ℓ ∈ [sk + 1, tk]
}
, k ∈ [N − 1]. (13)

Let and f(x), f̄(x), y[N−1](x), ȳ[N−1](x) be the linear bounds for f and y[N−1] obtained by linear
bound propagation under the constraints of C. For k ∈ [N − 1], let

C(k)x =
{
x ∈ D : y

(k)
jk,ℓ

(x) ≥ 0, ℓ ∈ [sk], y
(k)
jk,ℓ

(x) < 0, ℓ ∈ [sk + 1, tk]
}
,

C(k)x =
{
x ∈ D : y(k)

jk,ℓ
(x) ≥ 0, ℓ ∈ [sk], ȳ

(k)
jk,ℓ

(x) < 0, ℓ ∈ [sk + 1, tk]
}
,

C̄(k)x =
{
x ∈ D : ȳ

(k)
jk,ℓ

(x) ≥ 0, ℓ ∈ [sk], y
(k)
jk,ℓ

(x) < 0, ℓ ∈ [sk + 1, tk]
}
.

(14)

Then, for all k ∈ [N − 1]
k⋂

r=1

C(r)x ⊆
k⋂

r=1

C(r)x ⊆
k⋂

r=1

C̄(r)x , (15)

and, (N−1⋂
r=1

C(r)x

)
∩ {x ∈ D : f(x) > 0}

⊆
(N−1⋂

r=1

C(r)x

)
∩ {x ∈ D : f(x) > 0}

⊆
(N−1⋂

r=1

C̄(r)x

)
∩ {x ∈ D : f̄(x) > 0}. (16)

Proof. We first prove Equation (15) by induction.

By Equation (3b),
y(1)(x) ≤ y(1)(x) ≤ ȳ(1)(x), ∀x ∈ D. (17)

Therefore, C(1)x ⊆ C(1)x ⊆ C̄(1)x , implying that Equation (15) holds for k = 1.

Assume Equation (15) holds for k − 1, we will prove Equation (15) for k.

∀x ∈
⋂k

r=1 C
(r)
x ⊆

⋂k−1
r=1 C

(r)
x , Equation (15) holding for k − 1 implies that x ∈

⋂k−1
r=1 C

(r)
x , i.e.,

C[k−1] are satisfied. By Equation (3b),

y(k)(x) ≤ y(k)(x) ≤ ȳ(k)(x). (18)

By Equation (18), and since x ∈ C(k)x , it holds that x ∈ C(k)x . So we have x ∈
⋂k

r=1 C
(r)
x , imply-

ing that
⋂k

r=1 C
(r)
x ⊆

⋂k
r=1 C

(r)
x . For the second inequality, ∀x ∈

⋂k
r=1 C

(r)
x , Equation (18) also

holds. Then, also, x ∈ C̄(k)x . So x ∈
⋂k

r=1 C̄
(r)
x , implying that

⋂k
r=1 C

(r)
x ⊆

⋂k
r=1 C̄

(r)
x . Thus,

Equation (15) holds for k. Therefore, Equation (15) holds for all k ∈ [N − 1].

Using Equation (15) for k = N − 1, we can prove Equation (16) similar to how we prove Equa-
tion (15) from k − 1 to k.

13
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Proof of Proposition 1. By Lemma 1 (Equation (16)),

P (f(X) > 0, C) ≥ P
(
f(X) > 0, ykℓ

jℓ
(X) ≥ 0, ℓ ∈ [s], ȳkℓ

jℓ
(X) < 0, ℓ ∈ [s+ 1, t]

)
= P

(
PX+ q

)
. (19)

Similarly, P (f(X) > 0, C) ≤ P
(
P̄X+ q̄

)
.

Proof of Proposition 2. We assume the constraint on y
(k⋆)
j⋆ in C is y(k

⋆)
j⋆ ≥ 0, the other case can be

proved similarly. Assume that for k ∈ [N − 1], k ̸= k⋆,

C(k) =
{
y
(k)
jk,ℓ
≥ 0, ℓ ∈ [sk], y

(k)
jk,ℓ

< 0, ℓ ∈ [sk + 1, tk]
}
, (20)

and
C(k

⋆) =
{
y
(k⋆)
jk⋆,ℓ

≥ 0, ℓ ∈ [sk⋆ ], y
(k⋆)
jk⋆,ℓ

< 0, ℓ ∈ [sk′ + 1, tk⋆ ], y
(k⋆)
j⋆ ≥ 0

}
. (21)

By Proposition 1,

pℓ = P


f(X) > 0,

y(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [N − 1],

ȳ
(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [N − 1]

 . (22)

Applying Lemma 1 (Equation (15)) with k = N − 1,

N−1⋂
r=1

C(r)x ⊆
N−1⋂
r=1

C(r)x , (23)

therefore,

P


f(X) > 0,

y(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [N − 1],

ȳ
(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [N − 1]



=P


f(X) > 0,

y(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [N − 1],

ȳ
(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [N − 1],

C[N−1]



=P
(
C[N−1]

)
P


f(X) > 0,

y(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [N − 1],

ȳ
(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [N − 1]

∣∣∣∣∣∣∣∣ C
[N−1]

 . (24)

By Equation (3a), we have

P


f(X) > 0,

y(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [N − 1],

ȳ
(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [N − 1]

∣∣∣∣∣∣∣∣ C
[N−1]



≤P


f̄(X) > 0,

y(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [N − 1],

ȳ
(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [N − 1]

∣∣∣∣∣∣∣∣ C
[N−1]

 . (25)

14
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From Equation (22) (24) (25),

pℓ ≤ P
(
C[N−1]

)
P


f̄(X) > 0,

y(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [N − 1],

ȳ
(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [N − 1]

∣∣∣∣∣∣∣∣ C
[N−1]



= P


f̄(X) > 0,

y(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [N − 1],

ȳ
(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [N − 1],

C[N−1]



≤ P


f̄(X) > 0,

y(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [N − 1],

ȳ
(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [N − 1],

C[N−2]

 . (26)

Applying the argument of Equation (24)-(26), except that we apply Equation (3b) instead of Equa-
tion (3a) within Equation (25), iteratively to the constrained preactivations in layers N−1, . . . , k∗+
1, we obtain

pℓ ≤ P



f̄(X) > 0,

ȳ
(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [k⋆ + 1, N − 1]

y(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [k⋆ + 1, N − 1]

y(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [k⋆]

ȳ
(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [k⋆]

y(k
⋆)

j⋆
(X) ≥ 0,

C[k
⋆−1]



= P
(
C[k

⋆−1]
)
P



f̄(X) > 0,

ȳ
(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [k⋆ + 1, N − 1]

y(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [k⋆ + 1, N − 1]

y(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [k⋆]

ȳ
(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [k⋆]

y(k
⋆)

j⋆
(X) ≥ 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
C[k

⋆−1]


. (27)

Applying Equation (3b) with k = k∗,

y(k
⋆)

jk⋆,ℓ
(x) ≤ y

(k⋆)
jk⋆,ℓ

(x) ≤ ȳ
(k⋆)
jk⋆,ℓ

(x), ∀x ∈ D, C[k
⋆−1] satisfied, ℓ ∈ [tk⋆ ], (28a)

y(k
⋆)

j⋆
(x) ≤ y

(k⋆)
j⋆ (x) ≤ ȳ

(k⋆)
j⋆ (x), ∀x ∈ D, C[k

⋆−1] satisfied. (28b)

15
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Thus,

P



f̄(X) > 0,

ȳ
(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [k⋆ + 1, N − 1]

y(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [k⋆ + 1, N − 1]

y(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [k⋆]

ȳ
(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [k⋆]

y(k
⋆)

j⋆
(X) ≥ 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
C[k

⋆−1]



≤P



f̄(X) > 0,

ȳ
(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [k⋆, N − 1]

y(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [k⋆, N − 1]

y(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [k⋆ − 1]

ȳ
(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [k⋆ − 1]

y(k
⋆)

j⋆
(X) ≥ 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
C[k

⋆−1]



=P



f̄(X) > 0,

ȳ
(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [k⋆, N − 1]

y(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [k⋆, N − 1]

y(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [k⋆ − 1]

ȳ
(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [k⋆ − 1]

y(k
⋆)

j⋆
(X) ≥ 0, ȳ

(k⋆)
j⋆ (X) ≥ 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
C[k

⋆−1]


. (29)

From Equation (27) (29),

pℓ ≤ P
(
C[k

⋆−1]
)
P



f̄(X) > 0,

ȳ
(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [k⋆, N − 1]

y(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [k⋆, N − 1]

y(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [k⋆ − 1]

ȳ
(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [k⋆ − 1]

y(k
⋆)

j⋆
(X) ≥ 0, ȳ

(k⋆)
j⋆ (X) ≥ 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
C[k

⋆−1]



= P



f̄(X) > 0,

ȳ
(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [k⋆, N − 1]

y(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [k⋆, N − 1]

y(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [k⋆ − 1]

ȳ
(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [k⋆ − 1]

y(k
⋆)

j⋆
(X) ≥ 0, ȳ

(k⋆)
j⋆ (X) ≥ 0,

C[k
⋆−1]


. (30)

Then, again applying the argument of Equation (24)-(26), except that Equation (3b) is used instead
of Equation (3a) within Equation (25), iteratively to the constrained preactivations in layers k⋆ −
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1, . . . , 1, we obtain

pℓ ≤ P


f̄(X) > 0,

ȳ
(k)
jk,ℓ

(X) ≥ 0, ℓ ∈ [sk], k ∈ [N − 1]

y(k)
jk,ℓ

(X) < 0, ℓ ∈ [sk + 1, tk], k ∈ [N − 1]

y(k
⋆)

j⋆
(X) ≥ 0, ȳ

(k⋆)
j⋆ (X) ≥ 0


= P

f̄(X) > 0, y(k
⋆)

j⋆
(X) ≥ 0, ȳ

(k⋆)
j⋆ (X) ≥ 0,

ȳ
(kℓ)
jℓ

(X) ≥ 0, ℓ ∈ [s], y(kℓ)
jℓ

(X) < 0, ℓ ∈ [s+ 1, t]

 . (31)

On the other hand, from Proposition 1,

pu = P

f̄(X) > 0, ȳ
(k⋆)
j⋆ (X) ≥ 0,

ȳ
(kℓ)
jℓ

(X) ≥ 0, ℓ ∈ [s], y(kℓ)
jℓ

(X) < 0, ℓ ∈ [s+ 1, t]

 . (32)

Then, from Equation (31) (32),

pu − pℓ ≥ P

f̄(X) > 0, ȳ
(k⋆)
j⋆ (X) ≥ 0, y(k

⋆)
j⋆

(X) < 0,

ȳ
(kℓ)
jℓ

(X) ≥ 0, ℓ ∈ [s], y(kℓ)
jℓ

(X) < 0, ℓ ∈ [s+ 1, t]

 (33)

Proof of Proposition 3. Notice that after BaB-prob splits on a preactivation in B and generates B1

and B2, it holds that
P (B) = P (B1) + P (B2) . (34)

Thus, at the beginning each iteration,

P (f(X) > 0) =
∑
B∈B

P (B) . (35)

By Proposition 1, for all B = ⟨pℓ, pu, C⟩ ∈ B, pℓ and pu are lower bounds on P (B). Therefore,
from Equation (35), Pℓ and Pu are lower and upper bounds on P (f(X) > 0).

Proof of Proposition 4. Let f(x), f̄(x) and y[N−1](x), ȳ[N−1](x) be the linear lower and upper
bounds for f and y[N−1] computed by linear bound propagation under the constraints in C. Since
there is no unstable preactivation in B, ino relaxation is performed during the linear bound propa-
gation, the inequalities in Equation (3) become equalities. Thus, all the inclusions ‘⊆’ in the proof
of Lemma 1 become equalities ‘=’, and subsequently, the inequality in the proof of Proposition 1
becomes equality. Therefore, P (B) = pℓ = pu.

Proof of Proposition 5. We prove Proposition 5 by contradiction. Suppose that BaB-prob does not
terminate in finite time. Since there are only finitely many preactivations, there must exist a point
at which every branch in B contains no unstable preactivation. At that point, by Proposition 4,
all branches have exactly tight probability bounds. Consequently, Pℓ = Pu, which implies that
BaB-prob has already terminated — a contradiction.

Proof of Corollary 1. It follows directly from Proposition 3 and Proposition 5.

C EXPERIMENTS DETAILS

C.1 TOY MODELS (SOUNDNESS AND COMPLETENESS CHECK)

Setup. The MLP model has input dimension 5, two hidden FC layers (10 units each), ReLU af-
ter every hidden layer, and a scalar output. The CNN model takes a 1 × 4 × 4 input, has two
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MLP model CNN model

T/T F/T N/F T/F F/F N/F T/T F/T N/F T/F F/F N/F

PROVEN 4/24 0/24 20/24 0/6 0/6 6/6 5/25 0/25 20/25 0/5 0/5 5/5
PV 24/24 0/24 0/24 0/6 6/6 0/6 25/25 0/25 0/25 0/5 5/5 0/5
SDP 0/24 24/24 0/24 0/6 6/6 0/6 0/25 25/25 0/25 0/5 5/5 0/5
BaB-prob-ordered 24/24 0/24 0/24 0/6 6/6 0/6 25/25 0/25 0/25 0/5 5/5 0/5
BaB+BaBSR-prob 24/24 0/24 0/24 0/6 6/6 0/6 25/25 0/25 0/25 0/5 5/5 0/5

Table 3: Results for toy models. Each cell indicates the number of instances where the algorithm’s
declaration (“T” for True, “F” for False, “N” for no declaration) aligns with the ground truth (“T”
or “F”). For example, “T/T” means the ground truth is True and the algorithm declares it as True;
“F/T” means the ground truth is True but the algorithm declares it as False; “N/T” means the ground
truth is True but the algorithm fails to provide a declaration. Similar interpretations apply to the
other entries.

Conv2d layers (3 channels, kernel 3, stride 2), ReLU after convolutions, then flatten + scalar FC. All
weights/biases are i.i.d. N (0, 0.25). For each architecture we generate 30 instances, i.e., 30 differ-
ent networks, such that x0 = 0 and f(x0) > 0. Noise is N (0, 0.1I). Because PROVEN, PV and
BaB-prob assume bounded inputs, we truncate the Gaussian to its 99.7 %-confidence ball. We use
batch size of 16384 for both versions of BaB-prob and PV, and split depth (maybe splitting multiple
preactivations at one time) of 1 for this experiment. To verify the soundness and completeness, we
do not set a time limit in this experiment. We use a toy MLP model and a toy CNN model to test the
soundness and completeness of different solvers. We use SaVer-Toolbox2 (Sivaramakrishnan
et al. (2024)) to obtain an empirical reference P̂ for P (f(X) > 0) such that the deviation is < 0.1%
with confidence > 1− 10−4. We treat the declaration of SaVer-Toolbox as the ground truth.

Results. Table 3 reports the counts of (declared TRUE/FALSE/No-declaration) vs. ground truth.
Both BaB-prob versions and PV match ground truth on all toy problems; PROVEN returns only a
subset (sound but incomplete), and SDP is mixed. It should be noted that this does not indicate that
SDP is unsound, because it does not declare a TRUE problem as FALSE.

C.2 OTHER EXPERIMENT SETUPS

Untrained models. The architecture for the untrained MLP models are same as that for the toy MLP
model with the difference that the number of input features Di, the number of hidden features Dh,
and the number of hidden layers Nh are not fixed. The architecture for the untrained CNN models
are same as that for the toy CNN model with the difference that the input shape (1,Wi, Hi) with
Wi = Hi, the number of hidden channels Ch, and the number of hidden layers Nh are not fixed. The
weights and biases of all layers in the MLP and CNN models are also randomized with Gaussian
distribution N (0, 0.25). We test on different combination of (Di, Dh, Nh) for MLP models and
(Wi/Hi, Ch, Nh) for CNN models. For each combination, we generated 30 different problems,
each consists of a sample x0 = 0 and a randomly generated network f such that f(x0) > 0. The
noise is zero-mean with diagonal covariance, chosen so that its 99.7%-confidence ball has radius
0.002 for MLP models and 0.01 for CNN models. We use batch size of 4 for BaB-prob and PV,
and split depth of 1 for this experiment.

MNIST and CIFAR-10 models. The MNIST and CIFAR-10 models have similar architecture as
untrained models with the difference that the number of input features (or input shape) is fixed,
the number of output features is 10, and the trained CNN models have a BatchNorm2d layer before
each ReLU layer. We trained MLP models with different combination of (Dh, Nh) and CNN models
with different combination of (Ch, Nh). The models are trained with cross-entropy loss and Adam
optimizer. The batch size for training is 64. The learning rate is 0.001. We train each model for
20 iterations and use the checkpoint with the lowest loss on validation dataset for verification. For
each model, we randomly selected 30 correctly classified samples from the training set. The noise
is zero-mean with diagonal covariance, chosen so that its 99.7%-confidence ball has radius 0.02
for MNIST models and 0.01 for CIFAR-10 models. The output specification for each sample is
Y = {y ∈ R10 : (et − ea)

Ty > 0}, where et and ea are the standard basis vectors, t is the index

2https://github.com/vigsiv/SaVer-Toolbox
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(a) BaB-prob-ordered
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(b) BaB+BaBSR-prob

Figure 4: ECDF of confidence for BaB-prob-ordered and BaB+BaBSR-prob.

of the ground-truth label and a ̸= t is a randomly selected attacking label. f(x) ∈ Y indicates that
x is not misclassified by index a. We use batch size of 4 for BaB-prob and PV, and split depth of 1
for this experiment.

VNN-COMP 2025 benchmarks. We conducted evaluations on the following benchmark
suites: acasxu 2023, cersyve, cifar100 2024, collins rul cnn 2022, cora 2024,
linearizenn 2024, relusplitter, and safenlp 2024. Due to GPU memory limitations,
for cifar100 2024 we evaluated only the medium models. For relusplitter, we tested all
MNIST models but only the oval21 models among the CIFAR-10 models. Models from other bench-
mark datasets were excluded either because they contained layer types not supported by our method
or were too large to fit within GPU memory. For simplicity, we randomly selected one input region
and one output specification from each original problem. The noise distribution is zero-mean with
diagonal covariance, scaled such that its 99.7%-confidence ellipsoid matches the axis-aligned radii
given in the original problem. In terms of solver configuration, we used a batch size of 8 for both
BaB-prob and PV, with a split depth of 2. For the cifar100 2024 benchmark, the batch size
and split depth were set to 1 for BaB-prob, and the batch size was set to 4 for PV. Furthermore,
since the original radii in cifar100 2024 were too small to present a meaningful verification
challenge, we doubled their values.

C.3 SDP EXPERIMENTAL RESULTS

Untrained models. SDP failed to solve any MLP problem within the time limit and ran out of
RAM on the CNN problems.

MNIST and CIFAR-10 models. SDP failed to solve any MLP problem within the time limit and
ran out of RAM on the CNN problems.

VNN-COMP 2025 benchmarks. The SDP solver does not directly support cersyve,
cifar100 2024, linearizenn 2024, relusplitter (CIFAR-10). Besides, it ran out
of RAM on cora 2024, collins rul cnn 2022 and relusplitter (MNIST). On
acasxu 2023 and safenlp 2024, it hit the time limit on all the problems.

C.4 CONFIDENCE OF BAB-PROB

Derivation of confidence

In our experiments, BaB-prob evaluates the per-branch probability in Equation 4 by Monte Carlo
sampling, using N = 105 i.i.d. samples for each probability it needs to compute. Let Pℓ and Pu

be the true global lower and upper probability bounds, and let P̂ℓ and P̂u be their empirical values.
When BaB-prob terminates, either P̂ℓ ≥ η or P̂u < η. Then, the following proposition gives the
confidence for the certification.
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Proposition 6.

P (Pℓ ≥ η) ≥ 1− exp

(
− N(P̂ℓ − η)2

2V1 +
2
3 (P̂ℓ − η)

)
, if P̂ℓ ≥ η; (36a)

P (Pu < η) ≥ 1− exp

(
− N(η − P̂u)

2

2V2 +
2
3 (η − P̂u)

)
, if P̂u < η. (36b)

where

V1 =
∑

⟨pℓ,pu,C⟩∈B

pℓ(1− pℓ), (37a)

V2 =
∑

⟨pℓ,pu,C⟩∈B

pu(1− pu). (37b)

Proof. We prove the case of P̂ℓ ≥ η, and P̂u < η can be proved similarly.

Denote pB := pℓ for B = ⟨pℓ, pu, C⟩ ∈ B. Let p̂B be the empirical estimation for pB by Monte
Carlo Sampling. Then,

p̂B =
1

N

N∑
i=1

ZB,i, ZB,i ∼ Bernoulli(pB), (38)

and
Pℓ =

∑
B∈B

pB , P̂ℓ =
∑
B∈B

p̂B . (39)

Consider the estimation error

P̂ℓ − Pℓ =
∑
B∈B

N∑
i=1

1

N
(ZB,i − pB). (40)

The summands are independent, mean-zero, and bounded in [− 1
N , 1

N ]; their total variance is

Var
( ∑
B∈B

N∑
i=1

1

N
(ZB,i − pB)

)
=

1

N2

∑
B∈B

N∑
i=1

pB(1− pB) =
1

N
V1. (41)

Applying Bernstein’s inequality with ε = P̂ℓ − η (Boucheron et al. (2013)),

P
(
P̂ℓ − Pℓ ≥ ε

)
≤ exp

(
−

1
2ε

2

1
N V1 +

1
3N ε

)
= exp

(
− Nε2

2V1 +
2
3ε

)
. (42)

Therefore,

P (Pℓ ≥ η) ≥ 1− exp

(
− Nε2

2V1 +
2
3ε

)
(43)

The true values of pℓ and pu in Equation 37 are not directly accessible, so we use their empirical
results as replacement. In our experiments, if BaB-prob-ordered or BaB+BaBSR-prob produces
a declaration, that is, P̂l ≥ η or P̂u < η, but with confidence below 1 − 10−4, the algorithm
continues running until the confidence reaches 1−10−4 or the time limit is hit. If when the algorithm
terminates with a declaration but with confidence remaining below 1 − 10−4, we still count it a
successful verification. The following results provide a statistical characterization of the achieved
confidence levels.

Confidence results

Figure 4 presents the Empirical Cumulative Distribution Function (ECDF) of confidence values
for BaB-prob-ordered and BaB+BaBSR-prob across all successfully verified problems. Both
methods achieve confidence greater than 1 − 10−4 in over 99.5% of cases. This demonstrates that,
in practice, the vast majority of problems are certified with very high confidence by both BaB-prob-
ordered and BaB+BaBSR-prob.
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