SOUP TO GO: MITIGATING FORGETTING DURING CON TINUAL LEARNING WITH MODEL AVERAGING

Anonymous authors

Paper under double-blind review

ABSTRACT

In continual learning with pretrained large language models (LLMs), where data from instruction fine-tuning (IFT) tasks arrives in a sequence, fine-tuning on later tasks will often lead to performance degradation on earlier tasks. This is especially pronounced when the IFT tasks come from diverse domains. In this setting, how can we mitigate catastrophic forgetting of earlier tasks and retain what the LLM has learned? Inspired by a classical continual learning method—L2 penalty to previous weights—we propose Sequential Fine-tuning with Averaging (SFA), a method that merges models with earlier checkpoints trained on previous tasks during the course of training. SOTA approaches typically maintain a data buffer of past tasks or impose a penalty at each gradient step. In contrast, our method achieves comparable results *without* the need to store past data, or multiple copies of parameters for each gradient step. Furthermore, our method outperforms penalty methods like L2 and Elastic Weight Consolidation, as well as other common merging techniques such as Task Arithmetic, and TIES Merging. Finally, we show that using our method, a single model can simultaneously perform well on a range of fine-tuning tasks in diverse domains, including Math, Law and Code.

026 027 028

029

025

004

010 011

012

013

014

015

016

017

018

019

021

1 INTRODUCTION

Fine-tuning large language models (LLMs) on new tasks often leads to catastrophic forgetting: the rapid degradation of performance on previously learned tasks (Scialom et al., 2022; Lesort et al., 2019; Delange et al., 2021; Belouadah et al., 2021; Luo et al., 2023). This poses a major challenge for continual learning scenarios, where data comes in a stream of sequences of tasks that may not reappear. As such, we are in need of fine-tuning procedures that would allow LLMs to continually adapt to new knowledge without sacrificing past abilities.

Previous work has analyzed catastrophic forgetting of different types of information, as well as the 037 impact of scale. Scialom et al. (2022) explain that LLMs can perform worse on past fine-tuning 038 tasks as they learn new ones. Furthermore, Luo et al. (2023) show a model can also forget general 039 knowledge, not specific to a single past task. Finally, forgetting also grows in severity as model size increases (Luo et al., 2023). Existing state-of-the-art approaches to mitigate forgetting primarily 040 focus on modifying the training data used in fine-tuning. These methods either maintain a data 041 buffer of past tasks (Robins, 1995; Lopez-Paz & Ranzato, 2022; de Masson d'Autume et al., 042 2019), or generate approximations of past task data for joint training with current tasks (Shin et al., 043 2017; Mocanu et al., 2016). However, both strategies introduce additional costs. Data buffers 044 increase memory overhead and require careful management, while generating data approximations 045 necessitates extra training and computational resources. Likewise, more classical methods of 046 continual learning that incorporate a penalty directly into training to constrain weights ((Kirkpatrick 047 et al., 2017), L2 penalty) are memory-intensive as they require storing multiple copies of model 048 parameters to be used at each gradient step. 049

Despite ongoing research into combating forgetting, several key questions remain. What impact does the domain of the fine-tuning tasks have? Specifically, does catastrophic forgetting get even worse when there is a domain shift and if so, by how much? Finally, can we make model-based interventions that can alleviate the cost of storing past data or model parameters, generating new data or doing additional expensive training?

In this paper, we systematically investigate forgetting in pretrained LLMs as they fine-tune on tasks from distinct domains in a continual learning setting. More specifically, we focus on settings where the model sees a sequence of fine-tuning tasks from Law, Math, and Code. In this setting, we analyze the ability of a model pretrained on general language generation to fine-tune to this sequence of new tasks, and track the degradation of the models' existing knowledge on old tasks. By doing so we offer empirical evidence about the nature and rate of forgetting in LLMs during continual learning.

060 To combat forgetting, we propose Sequential Fine-tuning Averaging (SFA), a novel method that 061 merges the model being trained on a new task with a checkpoint from a previous task during 062 training. This averaged model is then further trained on the new task. By reusing previous 063 checkpoints, SFA promotes knowledge retention across tasks and domains. Our experiments focus 064 on the continual learning settings where data from a sequence of tasks stream in, and only the current task data is available. As such, our solution offers the advantage of not needing to store 065 past data, and simply relies on updating model parameters during fine-tuning with combinations 066 of past and current weights. Furthermore, our solution also does not require training an additional 067 past data generator, because it uses previous model checkpoints as proxies for such data. Our work 068 offers a way forward to obtaining a single model that can perform well on a variety of fine-tuning 069 domains, shedding light on the generalization ability of continual learning LLMs. Our work can be summarized by the following contributions:

071 072 073

075

076

077

078

079

081

082

084 085

087

- We introduce Sequential Fine-tuning Averaging (SFA), a method for mitigating forgetting by averaging model checkpoints from past tasks during fine-tuning on a new task. This enables the model to retain knowledge on past tasks/domains while learning a new task/domain.
- We show how SFA can be understood as an approximation of a classical continual learning algorithm: applying an L2 penalty between the current model and checkpoints from past tasks. This analysis bridges classical continual learning algorithms such as L2 penalty with commonly used model merging techniques, thus providing intuition for why model merging can be so effective at mitigating forgetting.
- We compare SFA to other techniques for mitigating forgetting across a range of tasks, domains, and models. We show consistent results that across models and tasks/domains, our method achieves comparable results to using a data buffer, while outperforming other model merging techniques, as well as more classical continual learning methods.

2 RELATED WORK

Forgetting and Continual Learning A large and growing body of literature investigates different aspects of catastrophic forgetting in continual and sequential learning. When the training data consists of disjoint tasks, training classifiers can cause catastrophic forgetting (Rebuffi et al., 2017). 091 Furthermore, if forgetting occurs, it can be tracked during training and is dependent on when examples are seen by the model: models are less likely to remember earlier training examples (Jagielski 092 et al., 2022; Tirumala et al., 2022). Interestingly, forgetting can also occur for general knowledge rather than for specific tasks, and is more severe for larger models (Luo et al., 2023). Lesort et al. 094 (2022) show that overlap between tasks and task repetition in continual learning settings can mitigate 095 catastrophic forgetting of such examples resulting in solutions to forgetting that involve maintain-096 ing a data buffer with past data. Such solutions can also be extrapolated to LLMs where continual learning with data repetition can prevent catastrophic forgetting (Scialom et al., 2022). Mitigating 098 forgetting in continual learning can also occur by introducing a penalty in the loss objective. L2 099 penalty in continual learning constrains the weights of a model as it is learning a new task by intro-100 ducing a penalty based on the difference between the current and initial model's weights. Similarly, 101 Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017) also introduces a penalty to constrain the weights of a model and mitigate increased loss on learned tasks while incorporating the 102 importance of specific weights on learned tasks. 103

104

Model Merging There exist many techniques and applications for merging multiple models to
 create a single model with improved generalization on a given set of tasks. Model souping (Wortsman et al., 2022a) involves averaging the parameters of existing models to create a new model. This technique can be applied after training multiple variations of a model on data during a hyperpa-

rameter sweep to combine the models and achieve higher performance than any individual model.
Task Arithmetic (Ilharco et al., 2023) involves finding and adding task vectors to create a multi-task
model. Wise-FT (Wortsman et al., 2022b) merges the weights of an initial and a fine-tuned model.
Our method builds upon these 3 works, but with key differences as described in Section 3.

Additional influential model merging techniques include: Ramé et al. (2023) use a model souping approach to obtain a network with improved out-of-distribution performance by averaging the weights of models fine-tuned on different tasks. TIES (Yadav et al., 2023) only merges influential parameters whose signs are in the direction of greatest movement across the models. Fisher merging (Matena & Raffel, 2022; Dhawan et al., 2023; Jhunjhunwala et al., 2023) requires keeping data from all previous tasks and computing gradients.

Finally for merging different textual domains, Branch-Train-Merge (BTM) (Li et al., 2022) maintains a set of distinct domain models that can be merged and then trained to create new experts.

- 120
- 121 122

3 METHODOLOGY: SEQUENTIAL FINE-TUNING AVERAGING (SFA)

Our method, Sequential Fine-tuning Averaging (SFA), leverages existing techniques in model merging (Ilharco et al., 2023; Wortsman et al., 2022a;b) to mitigate forgetting in the continual learning setting. In this method, we consider a pretrained LLM that is trained on a sequence of instruction fine-tuning tasks from different domains. While the model is being fine-tuned on the current task, we periodically average the parameters of current model with an earlier checkpoint that resulted from fine-tuning on a previous task. We then continue fine-tuning this new averaged model on the current task.

More precisely, let θ_o denote the parameters of the network optimized for the last task. Let θ_t be the parameters of the current model at time $t \leq T$ during fine-tuning on a new task. Then, every pTiterations, we reset the parameters to be a weighted combination of θ_o and θ_t , where the weighing is determined by a hyperparameter $0 \leq \beta \leq 1$ (default: 0.5).

Input: $\theta_{\alpha}, \eta, \beta$	
Update model parameters θ_t at each time step t	
if $t \mod nT = 0$ or $t = T$ then	
$\theta_{i} = (\beta)\theta_{i} \pm (1 - \beta)\theta_{i}$	

By averaging with an optimized model of the last learned task, our method prevents the current 141 model parameters θ_t from moving significantly from the original model's and thus losing optimal 142 performance on the past task (Section 6.3). In this way, our technique combines the intuition of 143 continual learning with Rehearsal (Robins, 1995), Task Arithmetic (Ilharco et al., 2023) and Wise-144 FT (Wortsman et al., 2022b). However, unlike Rehearsal-based methods that store data in a buffer, 145 we use a model fine-tuned on a past task/domain. Furthermore, unlike Task Arithmetic, our method 146 merges a past checkpoint of a given model with the current model, rather than the task vectors from 147 individual models. Finally, while our method focuses on merging during actual fine-tuning and 148 across tasks/domains, Wise-FT merges a pretrained and a fine-tuned model. In this way, our work 149 generalizes Wise-FT throughout continual learning. As the number of tasks increases, we continue 150 to average the most recent θ_o , which has high performance on all previous tasks, with the current model parameters θ_t . For example, we merge a model already trained on 2 tasks with the current 151 model training on a third task. We then update θ_o to be the merged model of all 3 tasks. We find that 152 we are able to preserve performance on all past tasks through continuous averaging. 153

154 155

4 CONNECTING CONTINUAL LEARNING METHODS WITH MODEL MERGING

156 157 158

4.1 GRADIENT UPDATE COMPARISON

There exist many methods of continual learning that aim to mitigate forgetting of past tasks by constraining training weights using a penalty. This penalty is often used to prevent weights from straying from model weights that perform well on past tasks. Some methods include L1 and L2 penalty, as well as EWC (Kirkpatrick et al., 2017). Typically, these methods add a penalty to an

Figure 1: SFA compared against other continual learning methods, where the two tasks (Task A and B) were created by splitting MNIST by label. The accuracy after single-task training, sequential training, and multitask training is also shown. The lines for EWC and L2 are created by varying the coefficient corresponding to each method (and are the same for the left and right plots). (Left) visualizes SFA performance under varying β coefficient, which determines how much weight is being placed on the initial model. (**Right**) visualizes SFA with varying averaging frequency

192

193 194

196 197

198 199 200

202

203

204

205

207 208

existing loss objective for every gradient step. This becomes computationally expensive as models scale for modern day applications, because for each gradient step, multiple copies of model weights have to be loaded in memory to calculate the penalty (e.g. the initial and currently training model), in addition to potential gradients. As such, our work aims to approximate existing continual learning methods with model merging, in order to make them feasible to implement. Specifically, we focus on simplifying and approximating L2 penalty. Consider, starting with θ_o , the model trained on the previous task and θ_t , the model currently being trained on the new task. Calculating the loss with an L2 penalty takes the following form

$$L(\theta) = L_{\text{task}}(\theta_t) + \frac{\lambda}{2} ||\theta_t - \theta_o||^2$$
(1)

¹⁹⁵ Updating the model once using the gradient of this loss results in the following:

$$\theta_{t+1} = \theta_t - \eta (\nabla_{\theta_t} L_{\text{task}} + \lambda (\theta_t - \theta_o))$$
(2)

This can be rewritten as:

$$\theta_{t+1} = (1 - \eta\lambda)\theta_t + (\eta\lambda)\theta_o - \eta\nabla_{\theta_t} L_{\text{task}}$$
(3)

Now we can compare this to SFA with averaging occurring after each gradient step where the first step updates parameters using only task loss, while the second step updates parameters by averaging the current and initial model:

$$\theta_{t+1}^* = \theta_t - \alpha \nabla_{\theta_t} L_{\text{task}} \tag{4}$$

$$\theta_{t+1} = (1-\beta)\theta_{t+1}^* + \beta(\theta_o) \tag{5}$$

206 We can combine these 2 steps to get the following form:

$$\theta_{t+1} = (1 - \beta)(\theta_t - \alpha \nabla_{\theta_t} L_{\text{task}}) + \beta(\theta_o)$$
(6)

This is equivalent to:

209 210 211

$$\theta_{t+1} = (1-\beta)\theta_t + (\beta)\theta_o - \alpha \nabla_{\theta_t} L_{\text{task}}(1-\beta)$$
(7)

As such, Equations 3 and 7 can even be equivalent if $\beta = \eta \lambda$ and $\alpha = \frac{\eta}{(1-\eta\lambda)}$. While in practice, SFA is averaged infrequently, rather than after every gradient step to offer a computational advantage, this implies that it typically is not equivalent to L2-regression. However, the resemblance between Equations 3 and 7, allows SFA to be understood as approximating L2-regression. Similarly, the EWC penalty can also be approximated as a model merging technique (Appendix A.2). We also show that SFA may have Bayesian motivation because of its similarity to L2-regression (Appendix A.1) We emphasize these connections to bridge commonly used model merging algorithms with classical continual learning ones.

219 In order to show how our method, SFA, compares with existing continual learning methods, includ-220 ing the one it's approximating, L2 penalty, and EWC, we provide an empirical analysis. In Fig. 1, 221 we train a small, custom neural network on 2 sequential MNIST tasks (Task A and Task B) separated 222 by label introduced in Moriarity (2020). Task A involves labelling the first 5 even numbers, whereas 223 Task B labels the first 5 odd numbers. The blue dot refers to the model after training on Task A, 224 whereas the red dot is additionally trained on Task B without intervention. As such, performance 225 rapidly drops on Task A as the model optimizes for Task B. The solid orange curve refers to SFA 226 where, in Fig. 1 (left) we vary the averaging weight β from Algorithm 1 and in Fig. 1 (right) we vary the frequency of averaging in number of batches. As such, placing a higher β or lower number 227 of batches before averaging results in a model that performs better on Task A, and vice versa. The 228 green dotted line shows L2 penalty where λ (weight on L2 penalty) varies, with a higher λ perform-229 ing better on Task A (and vice versa). Finally, an orange dotted line shows EWC with varying λ 230 (weight on EWC penalty) with a higher weight performing better on Task A (and vice versa). L2 231 penalty outperforms EWC with a better trade off between performance on Task A and B. Interest-232 ingly, SFA outperforms both L2 penalty and EWC when hyperparameters are optimized. As such, 233 not only is SFA computationally much cheaper due to infrequent averaging steps, but it is also able 234 to outperform imposing a penalty at every step. Given these optimistic results, we next scale our 235 models and datasets to more realistic fine-tuning scenarios, and apply SFA to directly compare with 236 using a data buffer in continual learning, as well as other model merging methods.

237 238

239

240

256 257

258 259

260

261

5 DATA: CROSS-DOMAIN TASKS

241 In order to measure and mitigate forgetting, we fine-tune our models on tasks in 3 distinct domains: 242 Law, Math and Code. For each domain, we fine-tune our model on a dataset featuring domain-243 specific knowledge, as well as unique instruction tasks. For Law, we combine CaseHOLD (Zheng et al., 2021), Terms of Service (ToS) (Lippi et al., 2019; tos, 2023), and Overruling (Zheng et al., 244 2021) to create a more general Law dataset. For Math, we use MetaMathQA (Yu et al., 2023), and 245 for Code we use MagiCoder110k (Wei et al., 2023). We believe that required task knowledge across 246 these 3 domains is distinct with minimal overlap. As such, we purposefully aim to test our models' 247 ability to generalize across a wide range of knowledge to measure the validity of our method under 248 maximal domain shifts. 249

Evaluation Metrics for Data: In our work, we reference the *forgetting* of various tasks. We define
forgetting specific knowledge as a decrease in performance on a given task during evaluation for a
model already fine-tuned on the task. For example, if evaluation performance on Task A drops when
a model fine-tunes on Task B, given that the model has already fine-tuned on task A, we consider
the model to forget Task A. To evaluate performance on our fine-tuning data, we use the metrics and
holdout sets described in Table 7.

6 RESULTS

6.1 MITIGATING FORGETTING FROM CROSS DOMAIN SEQUENTIAL FINE-TUNING USING DATA REHEARSAL

262 We first confirm that catastrophic forgetting occurs in the scenarios we apply SFA and other base-263 lines to: successive fine-tuning of a pretrained model on instruction tasks (Appendix A.3). In the 264 following sections we focus our analysis of forgetting and its mitigation on pairs of successive in-265 struction fine-tuning tasks with large domain shifts, such as from Math to Code or Math to Law, 266 using datasets outlined in Section 5. This choice of tasks allows us to measure performance with 267 accuracy on downstream tasks instead of with validation loss. By restricting ourselves to pairs of successive tasks, we can clearly quantify the trade off between learning the second task and forget-268 ting the first one by visualizing the results on a plane that measures the accuracy of the first task on 269 the y-axis and the accuracy of the second task on the x-axis. We present our results for sequentially

learning Math and Law with Llama-2 (7B) in Fig. 2 and Math and Law, as well as Math and Code with Pythia (2.8B) in Fig. 3 (see Appendix A.4 for model descriptions).

We first fine-tune our model (Llama 2 (7B) in Fig. 2 and Pythia (2.8B) in Fig. 3) on MetaMathQA 273 to obtain the initial model (dark blue circle). Note the base model performance on the first (second) 274 task is represented by dark green horizontal for Llama 2 (7B), and blue for Pythia (2.8B) (vertical) 275 dashed lines. This initial model improves upon the base model on our Math benchmark and is thus 276 higher on the y-axis (performance on first task) while not being significantly different or being worse 277 on the x-axis (performance on the second task which it has not been trained on yet). We then fine-278 tune the initial model on the second task to obtain the sequential fine-tuning model (red circle). In 279 Fig. 2 the second task is Law while in Fig. 3 the second task is either Law or Code. The sequential 280 fine-tuning model performs really well on the second task (higher on the x-axis) while forgetting almost everything it has learned about the first task (base model level on the y-axis). This movement 281 down and to the right of the initial model (dark blue circle) to the sequential fine-tuning model (red 282 circle) on the task 1 - task 2 performance plane in both Figs. 2 and 3 is emblematic of catastrophic 283 forgetting of an earlier task as the model learns a new task. For reference, the performance of just 284 fine-tuning the base model on the second task is represented by the vertical purple for Law, or green 285 for Code dashed line. 286

For our upper baseline, we show the results of simultaneously fine-tuning the base model on a mixture of both tasks to obtain the multitask fine-tuning model (black star). This model sits at the upper right of the plane as it does not exhibit forgetting and performs well on both tasks. However, in our continual learning setting where data streams in as a sequence of tasks, this is infeasible.

291 Rehearsal is a common technique for mitigating forgetting in continual learning. It involves main-292 taining a buffer of past task data and interleaving it with new task data during fine-tuning (Robins, 293 1995). We demonstrate the effectiveness of rehearsal in our continual learning setting by further training our initial model (dark blue circle, fine-tuned on Math) on a mixture of 90% task 2 data 294 and 10% of Math data sampled randomly from the full Math dataset. The resulting continual learn-295 ing (CL) with data buffer model (pink diamond in Figs. 2 and 3) effectively improves on the initial 296 model on task 2 (higher Law performance, i.e. x-axis) while mitigating forgetting (maintains high 297 Math performance i.e. y-axis). Note, this does not work as well for Pythia (2.8B) on Math to Code 298 (Fig. 3, right), we hypothesize that this is because of suboptimal hyperparameters. 299

A data buffer however, has significant drawbacks: it requires storing data from all previous tasks, leading to rapidly increasing storage costs as the number of tasks grows. It also adds to the training cost, because we must continue to train on tokens from past tasks. Furthermore, maintaining a subset of past data can also threaten data privacy and security (Li et al., 2024). This makes model based mitigations of forgetting appealing.

305

6.2 SFA ON CROSS DOMAIN DATA

306 307

Recall that in SFA, we take a model that has already been fine-tuned on Task A, and while fine-308 tuning on Task B, every pT steps we average the weights with the final model after fine-tuning on 309 Task A and continue fine-tuning on Task B. We evaluate SFA with varying averaging frequency p310 during cross-domain sequential fine-tuning. Figs. 2 and 3 show that as p decreases, signifying more 311 frequent averaging with the initial model, we observe stronger retention of past domain knowledge 312 (orange curve). By adjusting the averaging frequency (p), we control the balance between past and 313 new knowledge retention. This is evident, because as p decreases, the performance on Math (y-axis) 314 increases, indicating stronger retention of task 1. Furthermore, there is minimal loss to the potential 315 learning of task 2 (Law or Code on the x-axis). Notably, when fine-tuning on Math followed by Law, a p of 0.25 yields results comparable to rehearsal (pink diamond), demonstrating that SFA can 316 mitigate forgetting without the need for data buffers. Crucially, our method is able achieve such 317 performance without requiring a data buffer, but just two model checkpoints: the initial one and the 318 current checkpoint throughout fine-tuning. 319

Additionally, in this sequential fine-tuning scenario, our method also outperforms other model merging methods. We implement Task Arithmetic (Ilharco et al., 2023) (blue square) and TIES (Yadav et al., 2023) (green triangle), and show that our method achieves superior performance to both of these. In the Math-then-Law fine-tuning setting, we find that both of these methods, Task Arithmetic and TIES, fail to retain Math performance completely, whereas SFA with a low enough *p* is able to achieve performance on par with rehearsal. Our figure values for Pythia (2.8B) can be found in Table 1 (Math and Law), and Table 4 (Math and Code). Results for Llama 2 (7B) can be found in Table 3 (Math and Law), and Table 5 (Math and Code).

Finally, to see how our method scales as the number of domains increases, we also continue fine-tuning and applying SFA on our model for 3 domains (Fig. 4). In these graphs, we take a high performing SFA model (p of 0.25) on Math and Law, and Math and Code from Fig. 3, and continue fine-tuning the model with SFA on the final domain (Code and Law respectively). We find that by using SFA (specifically adjusting p), we are able to maintain high performance on the previous 2 domains while also learning an additional domain. As such, SFA is a useful forgetting mitigation technique for continual learning given a sequence of domains. In both scenarios, Math-Code to Law, and Math-Law to Code, SFA (orange curve) outperforms Task Arithmetic, and sequential finetuning. In the case of Math-Code to Law, SFA with p of 0.25 yields performance comparable to rehearsal (pink diamond). The figure results of Pythia (2.8B) fine-tuning on Math-Code to Law, and Math-Law to Code can be found in Table 6.

Figure 2: A comparison of Llama 2 (7B)'s performance on Math (y-axis) and Law (x-axis) using various fine-tuning and model merging techniques. The results are contained by dashed boundary boxes: the left and bottom lines represent the performance of a pretrained Llama 2 (7B) on Math and Law, whereas the right and top lines represent the performance of Llama 2 (7B) after fine-tuning on Law and Math respectively. A curve shows the performance of SFA with varying p, next to comparisons of continual learning with a data buffer, Task Arithmetic, and TIES. Finally, we also show an initial model (fine-tuned on math) and performance after sequentially fine-tuning it on Law.

6.3 L2-DISTANCE AND ACCURACY

We previously show how SFA approximates applying an L2 penalty. In order to further explore this intuition of SFA and its relation to constraining parameter weights, we also show how accuracy and L2 distance are correlated. We use the setup described in Fig. 3 where our model first fine-tunes on Math, then Law. As Fig. 5 shows, when proportion of fine-tuning before averaging p decreases on SFA (purple curve), the L2 distance to the initial Math model decreases, while the accuracy on Math increases. This is in direct contrast to sequential fine-tuning without intervention (black pentagon), because of its much higher L2 distance to the initial model. As such, p directly relates to L2 distance, as well as performance on previous tasks, because averaging frequency constrains how much model parameters can change from their initial positions. The values for this figure can be found in Table 2.

6.4 AVERAGING WEIGHTS

To further understand the advantages of SFA, we investigate alternative strategies of manipulating model parameter weights. Unlike the continuous averaging throughout fine-tuning employed by SFA, we explore the impact of modifying weights solely at the final stage. Our results underscore the importance of SFA's *continual* averaging approach for achieving optimal performance across multiple domains.

Figure 3: A comparison of Pythia (2.8B)'s performance on multiple domains (Math, Law and Math, Code) using various fine-tuning and model merging techniques similar to Fig. 2. On Math to Law, SFA p = 0.25 can be seen as having comparable performance to using a data buffer, while outperforming Task Arithmetic. Likewise, in Math to Code, SFA with varying p outperform using a data buffer and Task Arithmetic.

Figure 4: A comparison of Pythia (2.8B)'s performance when training on more than 2 domains (e.g. Math-Law and Code, Math-Code and Law) using various fine-tuning and model merging techniques similar to Fig. 3. On Math-Code to Law, SFA p = 0.25 can be seen as having comparable performance to using a data buffer, while outperforming Task Arithmetic. While, SFA with varying p on Math-Law to Code outperforms Task Arithmetic, but performs worse than using a data buffer.

397

398

399

400

401

427

428 Recall that SFA combines parameters from the initial and current model during fine-tuning. We posit 429 that the initial model represents expertise in past tasks/domains, while the current model embodies 430 new task/domain knowledge. Our default parameter weighting (0.50 for each) provides a balance. 431 We explore if, instead of varying p, the frequency of averaging in SFA, we can get similar flexibility 431 by first fine-tuning the model on a new task (p = 1) and then averaging the final model with the

Figure 5: An analysis of the negative correlation between accuracy on Math and the L2 distance of the final model (fine-tuned on Math, then Law) from the original model (fine-tuned on Math only). The fine-tuning on Law is done using SFA with varying values of p that determine the merging frequency. For reference we also mark sequential fine-tuning which leads to much higher L2 distance due to no merging, and accuracy just above that achieved with SFA merging once at the end of fine-tuning on law (p = 1).

Figure 6: A comparison of varying the Task Arithmetic model weights, and β on SFA (p=1), with SFA (varying $p, \beta = 0.5$) for Pythia (2.8B). We reproduce the results varying p in SFA (orange curve) from Fig. 3 and add 2 sweeps showing change in performance on Pythia (2.8B) when the weights for the current and past checkpoints are varied for SFA (p = 1) (dashed blue) and the domain-specific models are merged in Task Arithmetic (dashed red). Generally, SFA with p < 1achieves highest performance, followed by SFA (p = 1) with varying weights, and lastly is Task Arithmetic with varying weights.

432

433

434

435 436

437

438

439

440 441

442

443

444

445 446

447

448

449

450

481 previous task model using different relative weights (vary β). In Figs. 6 and 7, we show that SFA 482 with p < 1 and $\beta = 0.5$ (orange curve) performs the same if not better than a sweep of weighting 483 parameter β for SFA (p = 1) (blue curve). Furthermore, for SFA (p = 1) with $\beta \ge 0.50$, the trade 484 off between Math and Law for both Pythia (2.8B) and Llama 2 (7B) is especially large, resulting in 485 the complete failure to retain math. This suggests that SFA's continual averaging during fine-tuning 486 is key to its success in preserving cross-domain competence.

Figure 7: A comparison of varying the Task Arithmetic model weights, and β on SFA (p=1), with SFA (varying $p, \beta = 0.5$) for Llama 2 (7B). We reproduce the results varying p in SFA (orange curve) from Fig. 2 and add 2 sweeps for the weights on the checkpoints and domain models of SFA (p = 1) and Task Arithmetic, similarly to Fig. 6, to compare SFA with merging at different proportions. We see a similar outcome, where SFA with p < 1 generally achieves a better trade off in performance between Math and Law.

We extend this analysis to Task Arithmetic, another model merging technique. In Figs. 6 and 7 we report the results sweeping over the weight values for averaging (red curve), and observe that Task Arithmetic, like SFA (p = 1) with varying β , fails to achieve the cross-domain performance improvements that SFA demonstrates. Specifically, it also shows even worse combined performance on task 1 (Math, y-axis) and task 2 (Law, or Code, x-axis). Furthermore, in the Math-Law setting, for weights on Law > 0.50, it also fails to retain Math. As such, SFA p < 1 with $\beta = 0.50$ offers superior performance for cross domain fine-tuning on both tasks even when accounting for proportion sweeps.

7 CONCLUSION

In this paper, we provide a comprehensive evaluation of domain forgetting in a continual learning setting, and offer solutions to allow models to retain knowledge from all domains they fine-tune on. After showing how quickly a given model can forget learned tasks as it sequentially fine-tunes on new ones, we evaluate methods that aim to mitigate this forgetting. We introduce SFA and show how, by treating a past model as representative of past data, we can use parameter averaging to retain knowledge as the model fine-tunes on new tasks/domains. We likewise compare SFA to L2 penalty, and show how model merging methods can approximate imposing a penalty in continual learning. The final performance of SFA is comparable to continual learning with rehearsal, but has the advantage of not maintaining a data buffer. Furthermore, our solution surpasses other commonly used model merging and penalty techniques by incorporating infrequent model merging into the fine-tuning of a model.

8 ETHICS

This paper presents work whose goal is to advance the field of Machine Learning. There are many potential societal consequences of our work, none which we feel must be specifically highlighted here.

9 Reproducibility

The tools we use in this project are all open-source. A description of our models and how we finetune/evaluate can be found in Appendix A.4. Descriptions of the tasks we fine-tune models on are in Appendix A.5 and Section 5. Finally, our evaluation metrics are in Table 7. We are working on releasing a repository with our specific configurations and SFA code.

594	REFERENCES

of Bayesian interpretation ridge regression. 2018. URL 596 https: //statisticaloddsandends.wordpress.com/2018/12/29/ 597 bayesian-interpretation-of-ridge-regression/. 598 Lawinformedai/claudette_tos, 2023. URL https://huggingface.co/datasets/ 600 LawInformedAI/claudette_tos. 601 Eden Belouadah, Adrian Popescu, and Ioannis Kanellos. A comprehensive study of class incremen-602 tal learning algorithms for visual tasks. Neural Networks, 135:38–54, 2021. ISSN 0893-6080. 603 doi: https://doi.org/10.1016/j.neunet.2020.12.003. URL https://www.sciencedirect. 604 com/science/article/pii/S0893608020304202. 605 606 Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O'Brien, Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, Aviya 607 Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large language 608 models across training and scaling, 2023. 609 610 Raad Bin Tareaf. Tweets Dataset - Top 20 most followed users in Twitter social platform, 2017. 611 URL https://doi.org/10.7910/DVN/JBXKFD. 612 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared 613 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, 614 Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, 615 Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, 616 Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-617 tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex 618 Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, 619 Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec 620 Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large 621 language models trained on code, 2021. 622 623 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, 624 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John 625 Schulman. Training verifiers to solve math word problems, 2021. 626 Cyprien de Masson d'Autume, Sebastian Ruder, Lingpeng Kong, and Dani Yogatama. Episodic 627 memory in lifelong language learning, 2019. 628 629 Matthias Delange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales Leonardis, Greg 630 Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification 631 tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1-1, 2021. ISSN 632 1939-3539. doi: 10.1109/tpami.2021.3057446. URL http://dx.doi.org/10.1109/ TPAMI.2021.3057446. 633 634 Nikita Dhawan, Nicole Mitchell, Zachary Charles, Zachary Garrett, and Gintare Karolina Dziu-635 gaite. Leveraging function space aggregation for federated learning at scale. arXiv preprint 636 arXiv:2311.10291, 2023. 637 Angela Fan, Yacine Jernite, Ethan Perez, David Grangier, Jason Weston, and Michael Auli. ELI5: 638 Long form question answering. In Anna Korhonen, David Traum, and Lluís Màrquez (eds.), 639 Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 640 3558–3567, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/ 641 v1/P19-1346. URL https://aclanthology.org/P19-1346. 642 643 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-

Leo Gao, Johannan Tow, Baber Abbasi, Steha Biderman, Sid Black, Anthony Diroh, Charles Poster, Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language model evaluation, 12 2023. URL https://zenodo.org/records/10256836.

648 Charles Goddard, Shamane Siriwardhana, Malikeh Ehghaghi, Luke Meyers, Vlad Karpukhin, Brian 649 Benedict, Mark McQuade, and Jacob Solawetz. Arcee's mergekit: A toolkit for merging large 650 language models. arXiv preprint arXiv:2403.13257, 2024. 651 David Graff, Junbo Kong, Ke Chen, and Kazuaki Maeda. English gigaword. Linguistic Data Con-652 sortium, Philadelphia, 4(1):34, 2003. 653 654 Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt, 655 Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic, 2023. 656 Matthew Jagielski, Om Thakkar, Florian Tramer, Daphne Ippolito, Katherine Lee, Nicholas Carlini, 657 Eric Wallace, Shuang Song, Abhradeep Thakurta, Nicolas Papernot, et al. Measuring forgetting 658 of memorized training examples. arXiv preprint arXiv:2207.00099, 2022. 659 Divyansh Jhunjhunwala, Shiqiang Wang, and Gauri Joshi. Towards a theoretical and practical un-660 derstanding of one-shot federated learning with fisher information. In Federated Learning and 661 Analytics in Practice: Algorithms, Systems, Applications, and Opportunities, 2023. 662 663 Chao Jiang, Mounica Maddela, Wuwei Lan, Yang Zhong, and Wei Xu. Neural CRF model for 664 sentence alignment in text simplification. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and 665 Joel Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association for Computa-666 tional Linguistics, pp. 7943–7960, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.709. URL https://aclanthology.org/2020. 667 acl-main.709. 668 669 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, An-670 drei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis 671 Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic 672 forgetting in neural networks. Proceedings of the National Academy of Sciences, 114(13): 3521-3526, March 2017. ISSN 1091-6490. doi: 10.1073/pnas.1611835114. URL http: 673 //dx.doi.org/10.1073/pnas.1611835114. 674 675 Timothee Lesort, Oleksiy Ostapenko, Pau Rodriguez, Md Rifat Arefin, Diganta Misra, Laurent 676 Charlin, and Irina Rish. Challenging common assumptions about catastrophic forgetting. 2022. 677 Timothée Lesort, Vincenzo Lomonaco, Andrei Stoian, Davide Maltoni, David Filliat, and Natalia 678 Díaz-Rodríguez. Continual learning for robotics: Definition, framework, learning strategies, op-679 portunities and challenges, 2019. 680 681 Depeng Li, Tianqi Wang, Junwei Chen, Qining Ren, Kenji Kawaguchi, and Zhigang Zeng. Towards 682 continual learning desiderata via hsic-bottleneck orthogonalization and equiangular embedding, 683 2024. 684 Margaret Li, Suchin Gururangan, Tim Dettmers, Mike Lewis, Tim Althoff, Noah A Smith, and Luke 685 Zettlemoyer. Branch-train-merge: Embarrassingly parallel training of expert language models. 686 arXiv preprint arXiv:2208.03306, 2022. 687 Marco Lippi, Przemysław Pałka, Giuseppe Contissa, Francesca Lagioia, Hans-Wolfgang Micklitz, 688 Giovanni Sartor, and Paolo Torroni. Claudette: an automated detector of potentially unfair clauses 689 in online terms of service. Artificial Intelligence and Law, 27(2):117-139, February 2019. ISSN 690 1572-8382. doi: 10.1007/s10506-019-09243-2. URL http://dx.doi.org/10.1007/ 691 s10506-019-09243-2. 692 693 David Lopez-Paz and Marc'Aurelio Ranzato. Gradient episodic memory for continual learning, 694 2022. Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study 696 of catastrophic forgetting in large language models during continual fine-tuning. arXiv preprint 697 arXiv:2308.08747, 2023. 698 Michael S Matena and Colin Raffel. Merging models with fisher-weighted averaging. In Alice H. 699 Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Infor-700 mation Processing Systems, 2022. URL https://openreview.net/forum?id=LSKlp_ 701

aceOC.

702 Decebal Constantin Mocanu, Maria Torres Vega, Eric Eaton, Peter Stone, and Antonio Liotta. On-703 line contrastive divergence with generative replay: Experience replay without storing data, 2016. 704 Timo Möller, Anthony Reina, Raghavan Jayakumar, and Malte Pietsch. COVID-QA: A question an-705 swering dataset for COVID-19. In Karin Verspoor, Kevin Bretonnel Cohen, Mark Dredze, Emilio 706 Ferrara, Jonathan May, Robert Munro, Cecile Paris, and Byron Wallace (eds.), Proceedings of the 707 1st Workshop on NLP for COVID-19 at ACL 2020, Online, July 2020. Association for Computa-708 tional Linguistics. URL https://aclanthology.org/2020.nlpcovid19-acl.18. 709 710 Sean Moriarity. Continual learning with elastic weight consolidation in tensorflow 2. 2020. 711 712 Alexandre Ramé, Kartik Ahuja, Jianyu Zhang, Matthieu Cord, Léon Bottou, and David Lopez-Paz. Model ratatouille: Recycling diverse models for out-of-distribution generalization. In Interna-713 tional Conference on Machine Learning, pp. 28656–28679. PMLR, 2023. 714 715 Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H. Lampert. icarl: 716 Incremental classifier and representation learning, 2017. 717 718 Anthony Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science, 7(2): 719 123-146, 1995. doi: 10.1080/09540099550039318. URL https://doi.org/10.1080/ 720 09540099550039318. 721 Alexander M. Rush, Sumit Chopra, and Jason Weston. A neural attention model for abstractive 722 sentence summarization. Proceedings of the 2015 Conference on Empirical Methods in Natural 723 Language Processing, 2015. doi: 10.18653/v1/d15-1044. URL http://dx.doi.org/10. 724 18653/v1/D15-1044. 725 726 Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid Alyafeai, 727 Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, 728 Nihal Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica, 729 Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj, 730 Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Fevry, Jason Alan Fries, Ryan Teehan, 731 Stella Biderman, Leo Gao, Tali Bers, Thomas Wolf, and Alexander M. Rush. Multitask prompted 732 training enables zero-shot task generalization, 2021. 733 734 Thomas Scialom, Tuhin Chakrabarty, and Smaranda Muresan. Fine-tuned language models are 735 continual learners. In Proceedings of the 2022 Conference on Empirical Methods in Natural 736 Language Processing, pp. 6107–6122, 2022. 737 Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative 738 replay, 2017. 739 740 The Mosaic ML Team. composer. https://github.com/mosaicml/composer/, 2021. 741 742 Kushal Tirumala, Aram H. Markosyan, Luke Zettlemoyer, and Armen Aghajanyan. Memorization without overfitting: Analyzing the training dynamics of large language models, 2022. 743 744 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-745 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, 746 Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy 747 Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, 748 Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel 749 Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, 750 Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, 751 Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,

Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023.

756	Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Source code
757	is all you need. arXiv preprint arXiv:2312.02120, 2023.
758	

759	Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
760	Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
761	soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
760	inference time. In International Conference on Machine Learning, pp. 23965-23998. PMLR,
702	2022a.
763	

- Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
 Raphael Gontijo-Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, and Ludwig
 Schmidt. Robust fine-tuning of zero-shot models, 2022b.
- Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. Ties-merging: Resolving interference when merging models, 2023.
- Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for large language models. *arXiv preprint arXiv:2309.12284*, 2023.
- Lucia Zheng, Neel Guha, Brandon R. Anderson, Peter Henderson, and Daniel E. Ho. When does
 pretraining help? assessing self-supervised learning for law and the casehold dataset, 2021.

810 A APPENDIX

812 A.1 BAYESIAN INTERPRETATION

We have shown that our method approximates, and sometimes is equivalent to minimizing an L2-regression loss during training. Next we use the well known point that L2-regression has a Bayesian
Interpretation (bay, 2018) to motivate our method:

Assume that the prior distribution of the ideal model θ_t^* for a past and current task is Gaussian with mean the initial model, $\theta_t^* \sim N(\theta_o, \tau^2 I)$ for some τ . Furthermore, assume that the distribution ygiven input X, model weights θ_t^* , and a function f is Gaussian with mean the output of the function given $X, \theta_t : y \sim N(f(X, \theta_t^*), \sigma^2 I)$ As such, the posterior of θ_t^* is:

$$p(\theta_t^*|y, X, f) \propto exp[\frac{-1}{2\sigma^2}(y - f(X, \theta_t^*))^T(y - f(X, \theta_t^*)) - \frac{-1}{2\tau^2}(\theta_t^* - \theta_o)^T(\theta_t^* - \theta_o)]$$
(8)

We can compute the Maximum a Posteriori (MAP) for θ_t^* :

$$\hat{\theta}_t^* = argmax_{\theta_t^*} exp[\frac{-1}{2\sigma^2} (y - f(X, \theta_t^*))^T (y - f(X, \theta_t^*)) - \frac{-1}{2\tau^2} (\theta_t^* - \theta_o)^T (\theta_t^* - \theta_o)]$$
(9)

$$\hat{\theta}_{t}^{*} = argmin_{\theta_{t}^{*}}(y - f(X, \theta_{t}^{*}))^{T}(y - f(X, \theta_{t}^{*})) + \frac{\sigma^{2}}{\tau^{2}}(\theta_{t}^{*} - \theta_{o})^{T}(\theta_{t}^{*} - \theta_{o})$$
(10)

Set $\frac{\sigma^2}{\tau^2} = \lambda$

821 822 823

824 825

827 828 829

834

835 836 837

838

841

842 843

848

849 850

851

852

853

854 855 856

858

859

861 862

$$\hat{\theta}_t^* = argmin_{\theta_t^*} (y - f(X, \theta_t^*))^T (y - f(X, \theta_t^*)) + \lambda (\theta_t^* - \theta_o)^T (\theta_t^* - \theta_o)$$
(11)

As such, L2-regression tries to solve this Bayesian interpretation (Equation 11). As shown previously, SFA approximates L2-regression. This suggests that SFA may have a Bayesian motivation.

A.2 EWC APPROXIMATED BY MODEL MERGING

Consider fine-tuning a model with an EWC penalty (Kirkpatrick et al., 2017) where $\lambda = 1, j = 1, ..., |\theta|$

$$L(\theta_t) = L_{\text{task}}(\theta_t) + \sum_j \frac{1}{2} F_o^{(j)} (\theta_t^{(j)} - \theta_o^{(j)})^2$$
(12)

where θ_o and θ_t are the weights of the initial and fine-tuning model respectively. η is a hyperparameter, and F_o is a diagonal matrix with the initial model's Fisher information. Assume that this loss update is split into 2 model updates. First, update model parameters using task loss on current weights:

$$\theta_{t+1}^* = \theta_t - \eta \Delta_{\theta_t} L_{\text{task}} \tag{13}$$

Then, update model parameters using EWC penalty:

e

$$\theta_{t+1} = (I - \eta F_o)\theta_{t+1}^* + \eta F_o\theta_o \tag{14}$$

Thus, applying the EWC penalty can be understood as model merging weighted by the Fisher information of the initial model. This is reminiscent of Fisher model merging from Matena & Raffel (2022) where merging an initial and fine-tuning model has the form:

$$\theta^{*(j)} = \frac{\lambda_o F_o^{(j)} \theta_o^{(j)} + \lambda_t F_t^{(j)} \theta_t^{(j)}}{\lambda_o F_o^{(j)} + \lambda_t F_t^{(j)}}$$
(15)

which can be rewritten as

$$\theta^{*(j)} = \left(1 - \frac{\lambda_o F_o^{(j)}}{\lambda_o F_o^{(j)} + \lambda_t F_t^{(j)}}\right) \theta_t^{(j)} + \left(\frac{\lambda_o F_o^{(j)}}{\lambda_o F_o^{(j)} + \lambda_t F_t^{(j)}}\right) \theta_o^{(j)}.$$
 (16)

⁸⁶³ Unlike the EWC approximation, this uses the Fisher information of both the initial and current model for merging.

A.3 FORGETTING UNDER SEQUENTIAL FINE-TUNING

866 We start by confirming that fine-tuning on a sequence of different tasks leads to performance degra-867 dation on previously learned tasks. This forgetting phenomenon occurs across different task domains 868 and for different model sizes. In this work, we focus on catastrophic forgetting of capabilities acquired during instruction fine-tuning instead of base pretrained model capabilities. This is because, as we will show, forgetting of skills learned during instruction finetuning can be quite severe and 870 experiments at this scale are more feasible. We fine-tune our models on a sequence of instruction, 871 language generation datasets that test general knowledge to measure forgetting. Specifically, we 872 use Scialom et al. (2022)'s: Text Simplification (Simpl), Inquisitive Question Generation (InqQG), 873 Headline Generation with Constraint (HGen), COVID-fact, Covid QA (CQA), and Twitter Stylom-874 etry (TwSt). Many of these tasks incorporate existing datasets which we describe in Appendix A.5. 875 In our first experiments, we fine-tune the T0_3B (3B) and T0pp (11B) models (see Appendix A.4 876 for model descriptions) on the sequence of tasks described in Section 5 while measuring forgetting 877 on the first task. The results are shown in Fig. 8. The model is first trained on Simpl which leads to a 878 decrease in validation loss shown in blue. Subsequently, the model is trained on a sequence of other tasks; the decrease in validation loss on these tasks is shown in different colors. During this process, 879 we continue to monitor the validation loss on Simpl, displayed in pink. As models fine-tune on new 880 tasks, their performance on Simpl consistently declines as loss increases. This is true at both the 881 3B and 11B (Fig. 8) model scales, indicating that merely scaling up parameter size does not help 882 mitigate forgetting despite the increased capacity. 883

But how severe is this forgetting? We quantify this by comparing a model that was trained on and has then forgotten Simpl to a model that has never seen Simpl. In Fig. 9, the pink line shows validation loss on Simpl for a model trained on a sequence of fine-tuning tasks starting with Simpl. As the model learns new tasks, its performance deteriorates. After 2000 steps, the sequentially fine-tuned model's loss on Simpl is the same order of magnitude as that of the multitask model trained on all tasks except Simpl. Thus if a model that has learned Simpl is finetuned on other tasks for as little as 2000 steps, its performance degrades to that of a model that has never seen Simpl. This indicates significant forgetting, as the model loses the ability to respond to tasks it previously was able to.

Figure 8: The fine-tuning of T0_3B (3B) and T0pp (11B) on a stream of language generation tasks. Training loss on each subsequent task decreases as the model learns it, while evaluation loss on Simpl continues to increase, indicating that forgetting is present.

913 914

911

912

To summarize, we see a consistent trend of forgetting knowledge: as models are sequentially finetuned on new tasks, performance on past tasks drops resulting in lower evaluation metrics. This gets worse as more tasks are added and is not mitigated by model scale. We will show that forgetting is even stronger when there is a domain shift between consecutive tasks (e.g. Math to Law or Code).

918							
919	Table 1: Results of Pythia (2.8F	3) models fi	ne-tun	ing on Math	and Law		
920	Tuble 1. Results of Fyunu (2.01) models n	ne tun	ing on much			
921	Pythia (2.8B)	CASE_HOLD	TOS	OVERRULING	GSM8K (0-shot)		
922	Pythia (2.8B) Original	0.25	0.85	0.45	0		
023	METAMATHQA LAW	0.19	0.87	0.48	0.38		
02/	METAMATHQA, LAW	0.76	0.95	0.59	0		
924	METAMATHQA, LAW (P=1) METAMATHQA LAW (P=1, 0,75 LAW, 0,25 MATH)	0.74	0.88	0.49	0.048		
920	METAMATHQA, LAW (P=1, 0.25 LAW, 0.25 MATH)	0.42	0.87	0.49	0.27		
926	METAMATHQA, LAW (P=0.5)	0.69	0.89	0.52	0.13		
927	METAMATHQA, LAW $(P=0.23)$ METAMATHQA, LAW $(P=0.10)$	0.59	0.87	0.49	0.31		
928	TASK ARITHMETIC (0.5 LAW, 0.5 MATH)	0.68	0.87	0.55	0		
929	TASK ARITHMETIC (0.75 LAW, 0.25 MATH) TASK ARITHMETIC (0.25 LAW, 0.75 MATH)	0.73	0.88	0.95	0 24		
930	MULTITASK	0.76	0.87	0.58	0.40		
931	CONTINUAL LEARNING (DATA BUFFER 10%)	0.72	0.93	0.54	0.33		
932							
933	Table 2: The I 2 distance of Pythia (2.8B) mo	dels from n	reviou	s checknoint	s of models fine-tuning		
934	on Math and law	dels nom p	leviou	s encekpoint.	s of models fille tuning		
935	on which and haw						
936	Pythia (2.8B)			L2-DISTAN	ICE		
937	METAMATHQA, LAW - METAMATHQ METAMATHQA, LAW (P-1) - META	QA Mathoa		90.99 45.50			
938	METAMATHQA, LAW (P=0.5) - META	TAMATHQA		35.38			
020	METAMATHQA, LAW (P=0.25) - MI	ETAMATHQA		24.16			
040	TASK ARITHMETIC (0.5 LAW, 0.5 M	стаматноа латн)- метамл	ATHQA	10.94			
940	MULTITASK - METAMATHQA	, 		178.96			
941	CONTINUAL LEARNING (DATA BUF	FER 10%) - MET	ΓΑΜΑΤΗς	QA 82.21			
942							
943	Table 3. Results of L lama 2 (7)	B) models fi	ine-tun	ing on Math	and law		
944		b) models n	ine tun	ing on mun			
0/5					COMON (O		
545	Llama 7B	CASE_HOLD	TOS	OVERRULING	GSM8K (0-SHOT)		
946	LLAMA 7B LLAMA 2 (7B) ORIGINAL	CASE_HOLD 0.32 0.21	TOS 0.13 0.38	OVERRULING 0.49	GSM8K (0-SHOT) 0 0.42		
946 947	LLAMA 7B Llama 2 (7B) Original metamathqa law	CASE_HOLD 0.32 0.21 0.81	TOS 0.13 0.38 0.51	OVERRULING 0.49 0.49 0.94	GSM8K (0-SHOT) 0 0.42 0		
946 947 948	LLAMA 7B LLAMA 2 (7B) ORIGINAL METAMATHQA LAW METAMATHQA, LAW	CASE_HOLD 0.32 0.21 0.81 0.64,	TOS 0.13 0.38 0.51 0.86	OVERRULING 0.49 0.94 0.94 0.93	GSM8K (0-SHOT) 0 0.42 0 0 0 0		
946 947 948 949	LLAMA 7B LLAMA 2 (7B) ORIGINAL METAMATHQA LAW METAMATHQA, LAW METAMATHQA, LAW (P=1) METAMATHQA, LAW (P=1, 0.75 LAW, 0.25 MATH)	CASE_HOLD 0.32 0.21 0.81 0.64, 0.61 0.64	TOS 0.13 0.38 0.51 0.86 0.59 0.83	OVERRULING 0.49 0.49 0.94 0.93 0.90 0.94	GSM8K (0-SHOT) 0 0.42 0 0 0.0015 0		
946 947 948 949 950	LLAMA 7B Llama 2 (7B) Original Metamathqa Law Metamathqa, Law Metamathqa, Law (p=1) Metamathqa, Law (p=1, 0.75 law, 0.25 math) Metamathqa, Law (p=1, 0.25 law, 0.75 math)	CASE_HOLD 0.32 0.21 0.81 0.64, 0.61 0.64 0.55	TOS 0.13 0.38 0.51 0.86 0.59 0.83 0.16	OVERRULING 0.49 0.94 0.93 0.90 0.94 0.79	GSM8K (0-SHOT) 0 0.42 0 0.0015 0 0.096		
946 947 948 949 950 951	LLAMA 7B LLAMA 2 (7B) ORIGINAL METAMATHQA LAW METAMATHQA, LAW METAMATHQA, LAW (P=1) METAMATHQA, LAW (P=1, 0.75 LAW, 0.25 MATH) METAMATHQA, LAW (P=1, 0.25 LAW, 0.75 MATH) METAMATHQA, LAW (P=0.75) METAMATHQA LAW (P=0.5)	CASE.HOLD 0.32 0.21 0.81 0.64, 0.61 0.64 0.55 0.53 0.50	TOS 0.13 0.38 0.51 0.86 0.59 0.83 0.16 0.13 0.13	OVERRULING 0.49 0.94 0.93 0.90 0.94 0.79 0.97 0.97	GSM8K (0-SHOT) 0 0.42 0 0 0.0015 0 0.096 0 0.12		
946 947 948 949 950 951 952	LLAMA 7B LLAMA 2 (7B) ORIGINAL METAMATHQA LAW METAMATHQA, LAW METAMATHQA, LAW (P=1) METAMATHQA, LAW (P=1, 0.75 LAW, 0.25 MATH) METAMATHQA, LAW (P=1, 0.25 LAW, 0.75 MATH) METAMATHQA, LAW (P=0.75) METAMATHQA, LAW (P=0.25)	CASE_HOLD 0.32 0.21 0.64, 0.64, 0.64 0.55 0.53 0.50 0.53	TOS 0.13 0.38 0.51 0.86 0.59 0.83 0.16 0.13 0.13 0.13	0.49 0.49 0.94 0.93 0.90 0.94 0.79 0.97 0.97 0.90 0.95	GSM8K (0-SHOT) 0 0.42 0 0.0015 0 0.096 0 0.12 0.46		
946 947 948 949 950 951 952 953	LLAMA 7B LLAMA 2 (7B) ORIGINAL METAMATHQA LAW METAMATHQA, LAW METAMATHQA, LAW (P=1) METAMATHQA, LAW (P=1, 0.75 LAW, 0.25 MATH) METAMATHQA, LAW (P=0, 0.25 LAW, 0.75 MATH) METAMATHQA, LAW (P=0.75) METAMATHQA, LAW (P=0.25) METAMATHQA, LAW (P=0.17) THE ADMINISTRY (0.5 LAW, 0.5 MATH)	CASE_HOLD 0.32 0.21 0.64, 0.64, 0.64 0.55 0.53 0.50 0.53 0.50 0.53 0.48	TOS 0.13 0.38 0.51 0.86 0.59 0.83 0.16 0.13 0.13 0.13 0.13	OVERRULING 0.49 0.94 0.93 0.90 0.94 0.79 0.97 0.97 0.97 0.90 0.95 0.63	GSM8K (0-SHOT) 0 0.42 0 0 0.0015 0 0.096 0 0.12 0.46 0.48 0		
946 947 948 949 950 951 952 953 954	LLAMA 7B LLAMA 2 (7B) ORIGINAL METAMATHQA LAW METAMATHQA, LAW METAMATHQA, LAW (P=1) METAMATHQA, LAW (P=1, 0.75 LAW, 0.25 MATH) METAMATHQA, LAW (P=0, 0.25 LAW, 0.75 MATH) METAMATHQA, LAW (P=0.5) METAMATHQA, LAW (P=0.5) METAMATHQA, LAW (P=0.25) METAMATHQA, LAW (P=0.17) TASK ARITHMETIC (0.75 LAW, 0.5 MATH) TASK ARITHMETIC (0.75 LAW, 0.25 MATH)	CASE.HOLD 0.32 0.21 0.64, 0.64 0.64 0.55 0.53 0.50 0.53 0.50 0.53 0.48 0.68 0.79	TOS 0.13 0.38 0.51 0.86 0.59 0.83 0.16 0.13 0.13 0.13 0.13 0.13 0.18	OVERRULING 0.49 0.94 0.93 0.90 0.94 0.79 0.97 0.97 0.90 0.95 0.63 0.96 0.97	GSM8K (0-SHOT) 0 0.42 0 0 0.0015 0 0.096 0 0.12 0.46 0.48 0 0 0		
946 947 948 949 950 951 952 953 954 955	LLAMA 7B LLAMA 2 (7B) ORIGINAL METAMATHQA LAW METAMATHQA, LAW METAMATHQA, LAW (P=1) METAMATHQA, LAW (P=1, 0.75 LAW, 0.25 MATH) METAMATHQA, LAW (P=1, 0.25 LAW, 0.75 MATH) METAMATHQA, LAW (P=0.75) METAMATHQA, LAW (P=0.5) METAMATHQA, LAW (P=0.25) METAMATHQA, LAW (P=0.17) TASK ARITHMETIC (0.75 LAW, 0.5 MATH) TASK ARITHMETIC (0.75 LAW, 0.75 MATH) TASK ARITHMETIC (0.75 LAW, 0.75 MATH)	CASE.HOLD 0.32 0.21 0.64, 0.64 0.64 0.55 0.53 0.50 0.53 0.50 0.53 0.48 0.68 0.79 0.44	TOS 0.13 0.38 0.51 0.86 0.59 0.83 0.16 0.13 0.13 0.13 0.13 0.13 0.13	OVERRULING 0.49 0.49 0.94 0.93 0.90 0.94 0.79 0.97 0.90 0.95 0.63 0.96 0.97 0.56	GSM8K (0-SHOT) 0 0.42 0 0 0.0015 0 0.096 0 0.12 0.46 0.48 0 0 0 0		
946 947 948 949 950 951 952 953 954 955 956	LLAMA 7B LLAMA 2 (7B) ORIGINAL METAMATHQA LAW METAMATHQA, LAW METAMATHQA, LAW (P=1) METAMATHQA, LAW (P=1, 0.75 LAW, 0.25 MATH) METAMATHQA, LAW (P=1, 0.25 LAW, 0.75 MATH) METAMATHQA, LAW (P=0.5) METAMATHQA, LAW (P=0.5) METAMATHQA, LAW (P=0.17) TASK ARITHMETIC (0.5 LAW, 0.5 MATH) TASK ARITHMETIC (0.75 LAW, 0.25 MATH) TASK ARITHMETIC (0.25 LAW, 0.75 MATH) TIES MULTITASK	CASE.HOLD 0.32 0.21 0.64, 0.64 0.64 0.55 0.53 0.50 0.53 0.48 0.68 0.79 0.44 0.37 0.86	TOS 0.13 0.38 0.51 0.86 0.59 0.83 0.16 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	OVERRULING 0.49 0.49 0.94 0.93 0.90 0.94 0.79 0.97 0.90 0.95 0.63 0.96 0.97 0.56 0.61 0.97	GSM8K (0-SHOT) 0 0.42 0 0 0.0015 0 0.096 0 0.12 0.46 0.48 0 0 0 0 0.014 0 54		
946 947 948 949 950 951 952 953 954 955 956 956	LLAMA 7B LLAMA 2 (7B) ORIGINAL METAMATHQA LAW METAMATHQA, LAW METAMATHQA, LAW (P=1) METAMATHQA, LAW (P=1, 0.75 LAW, 0.25 MATH) METAMATHQA, LAW (P=1, 0.25 LAW, 0.75 MATH) METAMATHQA, LAW (P=0.75) METAMATHQA, LAW (P=0.5) METAMATHQA, LAW (P=0.17) TASK ARITHMETIC (0.5 LAW, 0.5 MATH) TASK ARITHMETIC (0.5 LAW, 0.5 MATH) TASK ARITHMETIC (0.25 LAW, 0.75 MATH) TASK ARITHMETIC (0.25 LAW, 0.75 MATH) TIES MULTITASK CONTINUAL LEARNING (DATA BUFFER 10%)	CASE.HOLD 0.32 0.21 0.64, 0.64 0.64 0.55 0.53 0.50 0.53 0.50 0.53 0.48 0.68 0.79 0.44 0.37 0.86 0.46	TOS 0.13 0.38 0.51 0.86 0.59 0.83 0.16 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	OVERRULING 0.49 0.49 0.94 0.93 0.90 0.94 0.79 0.97 0.90 0.95 0.63 0.96 0.97 0.56 0.61 0.97 0.96	GSM8K (0-SHOT) 0 0.42 0 0.0015 0 0.096 0 0.12 0.46 0.48 0 0 0 0 0.014 0.54 0.49		
946 947 948 949 950 951 952 953 954 955 956 957	LLAMA 7B LLAMA 2 (7B) ORIGINAL METAMATHQA LAW METAMATHQA, LAW METAMATHQA, LAW (P=1) METAMATHQA, LAW (P=1, 0.75 LAW, 0.25 MATH) METAMATHQA, LAW (P=1, 0.25 LAW, 0.25 MATH) METAMATHQA, LAW (P=0.75) METAMATHQA, LAW (P=0.5) METAMATHQA, LAW (P=0.17) TASK ARITHMETIC (0.5 LAW, 0.5 MATH) TASK ARITHMETIC (0.75 LAW, 0.25 MATH) TASK ARITHMETIC (0.25 LAW, 0.75 MATH) TIES MULTITASK CONTINUAL LEARNING (DATA BUFFER 10%)	CASE.HOLD 0.32 0.21 0.64, 0.64 0.55 0.53 0.50 0.53 0.50 0.53 0.48 0.68 0.79 0.44 0.37 0.86 0.46	TOS 0.13 0.38 0.51 0.86 0.59 0.83 0.16 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	OVERRULING 0.49 0.49 0.94 0.93 0.90 0.94 0.79 0.97 0.90 0.95 0.63 0.96 0.97 0.56 0.61 0.97 0.96	GSM8K (0-SHOT) 0 0.42 0 0.0015 0 0.096 0 0.12 0.46 0.48 0 0 0 0.014 0.54 0.49		
946 947 948 949 950 951 952 953 954 955 956 957 958	LLAMA 7B LLAMA 2 (7B) ORIGINAL METAMATHQA LAW METAMATHQA, LAW METAMATHQA, LAW (P=1) METAMATHQA, LAW (P=1, 0.75 LAW, 0.25 MATH) METAMATHQA, LAW (P=1, 0.25 LAW, 0.75 MATH) METAMATHQA, LAW (P=0.75) METAMATHQA, LAW (P=0.5) METAMATHQA, LAW (P=0.17) TASK ARITHMETIC (0.5 LAW, 0.5 MATH) TASK ARITHMETIC (0.75 LAW, 0.25 MATH) TASK ARITHMETIC (0.25 LAW, 0.75 MATH) TIES MULTITASK CONTINUAL LEARNING (DATA BUFFER 10%)	CASE.HOLD 0.32 0.21 0.81 0.64, 0.64 0.55 0.53 0.50 0.53 0.48 0.68 0.79 0.44 0.37 0.86 0.46	TOS 0.13 0.38 0.51 0.86 0.59 0.83 0.16 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	OVERRULING 0.49 0.49 0.94 0.93 0.90 0.94 0.79 0.97 0.90 0.95 0.63 0.96 0.97 0.56 0.61 0.97 0.96	GSM8K (0-SHOT) 0 0.42 0 0.0015 0 0.096 0 0.12 0.46 0.48 0 0 0 0.014 0.54 0.49		
946 947 948 949 950 951 952 953 954 955 956 957 958 959	LLAMA 7B LLAMA 2 (7B) ORIGINAL METAMATHQA LAW METAMATHQA, LAW METAMATHQA, LAW (P=1) METAMATHQA, LAW (P=1, 0.75 LAW, 0.25 MATH) METAMATHQA, LAW (P=1, 0.25 LAW, 0.75 MATH) METAMATHQA, LAW (P=0.75) METAMATHQA, LAW (P=0.5) METAMATHQA, LAW (P=0.17) TASK ARITHMETIC (0.5 LAW, 0.5 MATH) TASK ARITHMETIC (0.75 LAW, 0.25 MATH) TASK ARITHMETIC (0.25 LAW, 0.75 MATH) TIES MULTITASK CONTINUAL LEARNING (DATA BUFFER 10%) TABLE 4: Results of Pythia (2.8E	CASE_HOLD 0.32 0.21 0.81 0.64, 0.64 0.55 0.53 0.50 0.53 0.48 0.68 0.79 0.44 0.37 0.86 0.46 0.46 0.46	Tos 0.13 0.38 0.51 0.86 0.59 0.83 0.16 0.13 0	overruling 0.49 0.94 0.93 0.90 0.94 0.79 0.97 0.90 0.95 0.63 0.97 0.56 0.61 0.97 0.96 ing on Math	GSM8K (0-SHOT) 0 0.42 0 0.0015 0 0.096 0 0.12 0.46 0.48 0 0 0 0.014 0.54 0.49 and code		
946 947 948 949 950 951 952 953 954 955 955 956 957 958 959 959	LLAMA 7B LLAMA 2 (7B) ORIGINAL METAMATHQA LAW METAMATHQA, LAW METAMATHQA, LAW (P=1) METAMATHQA, LAW (P=1, 0.75 LAW, 0.25 MATH) METAMATHQA, LAW (P=1, 0.25 LAW, 0.25 MATH) METAMATHQA, LAW (P=0.75) METAMATHQA, LAW (P=0.5) METAMATHQA, LAW (P=0.25) METAMATHQA, LAW (P=0.17) TASK ARITHMETIC (0.75 LAW, 0.5 MATH) TASK ARITHMETIC (0.25 LAW, 0.75 MATH) TIES MULTITASK CONTINUAL LEARNING (DATA BUFFER 10%) Table 4: Results of Pythia (2.8E	CASE_HOLD 0.32 0.21 0.81 0.64, 0.64 0.55 0.53 0.53 0.48 0.68 0.79 0.44 0.37 0.86 0.46 0.46 0.46 0.46 0.46 0.53 0.53 0.53 0.53 0.53 0.53 0.48 0.64 0.64 0.55 0.53 0.53 0.53 0.48 0.64 0.55 0.53 0.53 0.48 0.64 0.64 0.55 0.53 0.53 0.48 0.64 0.55 0.53 0.53 0.48 0.64 0.64 0.55 0.53 0.53 0.48 0.64 0.55 0.53 0.53 0.48 0.64 0.55 0.53 0.53 0.48 0.64 0.55 0.53 0.53 0.54 0.55 0.53 0.53 0.54 0.55 0.53 0.54 0.55 0.53 0.54 0.55 0.55 0.53 0.54 0.55 0.56 0	TOS 0.13 0.38 0.51 0.86 0.59 0.83 0.16 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	overruling 0.49 0.94 0.93 0.90 0.94 0.79 0.97 0.90 0.95 0.63 0.96 0.97 0.56 0.61 0.97 0.96 ing on Math	$\begin{array}{c} \text{GSM8K} (0\text{-SHOT}) \\ 0 \\ 0.42 \\ 0 \\ 0 \\ 0.0015 \\ 0 \\ 0.096 \\ 0 \\ 0.12 \\ 0.46 \\ 0.48 \\ 0 \\ 0 \\ 0 \\ 0.12 \\ 0.46 \\ 0.48 \\ 0 \\ 0 \\ 0 \\ 0.014 \\ 0.54 \\ 0.49 \end{array}$		
946 947 948 949 950 951 952 953 954 955 956 955 956 957 958 959 960 961	LLAMA 7B LLAMA 2 (7B) ORIGINAL METAMATHQA LAW METAMATHQA, LAW METAMATHQA, LAW (P=1) METAMATHQA, LAW (P=1, 0.75 LAW, 0.25 MATH) METAMATHQA, LAW (P=1, 0.25 LAW, 0.75 MATH) METAMATHQA, LAW (P=0.75) METAMATHQA, LAW (P=0.5) METAMATHQA, LAW (P=0.17) TASK ARITHMETIC (0.75 LAW, 0.25 MATH) TASK ARITHMETIC (0.25 LAW, 0.75 MATH) TASK ARITHMETIC (0.25 LAW, 0.75 MATH) TIES MULTITASK CONTINUAL LEARNING (DATA BUFFER 10%) Table 4: Results of Pythia (2.8E	CASE_HOLD 0.32 0.21 0.81 0.64, 0.64 0.55 0.53 0.53 0.53 0.48 0.68 0.79 0.44 0.37 0.86 0.46 0.46 0.46 0.46 0.53 0.54 0.55 0.53 0.53 0.53 0.54 0.55 0.53 0.53 0.53 0.54 0.55 0.53 0.53 0.54 0.55 0.53 0.53 0.54 0.55 0.53 0.54 0.55 0.53 0.53 0.54 0.55 0.53 0.53 0.54 0.55 0.53 0.54 0.55 0.55 0.53 0.54 0.55	TOS 0.13 0.38 0.51 0.86 0.59 0.83 0.16 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	оverruling 0.49 0.49 0.94 0.93 0.90 0.94 0.79 0.97 0.90 0.95 0.63 0.96 0.97 0.56 0.61 0.97 0.96 0.97 0.96	GSM8K (0-SHOT) 0 0.42 0 0.0015 0 0.096 0 0.12 0.46 0.48 0 0 0 0.014 0.54 0.49 and code		
946 947 948 949 950 951 952 953 954 955 956 955 956 957 958 959 960 961 962	LLAMA 7B LLAMA 2 (7B) ORIGINAL METAMATHQA LAW METAMATHQA, LAW (P=1) METAMATHQA, LAW (P=1), 0.75 LAW, 0.25 MATH) METAMATHQA, LAW (P=1), 0.25 LAW, 0.75 MATH) METAMATHQA, LAW (P=0.5) METAMATHQA, LAW (P=0.5) METAMATHQA, LAW (P=0.17) TASK ARITHMETIC (0.5 LAW, 0.5 MATH) TASK ARITHMETIC (0.5 LAW, 0.25 MATH) TASK ARITHMETIC (0.25 LAW, 0.75 MATH) TIES MULTITASK CONTINUAL LEARNING (DATA BUFFER 10%) TABLE 4: Results of Pythia (2.8E PYTHIA (2.8B) ORIGINAL PYTHIA (2.8B)	CASE.HOLD 0.32 0.21 0.81 0.64, 0.64 0.55 0.53 0.53 0.53 0.48 0.68 0.79 0.44 0.37 0.86 0.46 0.46 0.46 0.46 0.53 0.54 0.55 0.53 0.53 0.53 0.53 0.54 0.55 0.53 0.53 0.53 0.53 0.54 0.55 0.53 0.53 0.54 0.55 0.53 0.53 0.53 0.54 0.55 0.53 0.53 0.54 0.55 0.53 0.54 0.55 0.53 0.54 0.55	Tos 0.13 0.38 0.51 0.86 0.59 0.83 0.16 0.13 0	очекиция 0.49 0.49 0.94 0.93 0.90 0.94 0.79 0.97 0.90 0.95 0.63 0.96 0.97 0.56 0.61 0.97 0.96 1.97 0.96 1.97 0.96 1.97 0.96 1.97 0.96 1.97 0.96 1.97 0.96 1.97 0.96 1.97 0.96 0.97 0.96 0.97 0.96 0.97 0.95 0.63 0.96 0.97 0.96 0.97 0.96 0.97 0.95 0.63 0.96 0.97 0.96 0.97 0.96 0.97 0.95 0.63 0.96 0.97 0.96 0.96 0.96 0.97 0.96 0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.96 0.97 0.96 0.07 0	GSM8K (0-SHOT) 0 0.42 0 0.0015 0 0.096 0 0.12 0.46 0.48 0 0 0.014 0.54 0.49 and code		
946 947 948 949 950 951 952 953 955 955 955 955 955 955 958 959 960 961 961 962 963	LLAMA 7B LLAMA 2 (7B) ORIGINAL METAMATHQA LAW METAMATHQA, LAW (P=1) METAMATHQA, LAW (P=1), 0.75 LAW, 0.25 MATH) METAMATHQA, LAW (P=1, 0.25 LAW, 0.75 MATH) METAMATHQA, LAW (P=0.5) METAMATHQA, LAW (P=0.5) METAMATHQA, LAW (P=0.17) TASK ARITHMETIC (0.5 LAW, 0.5 MATH) TASK ARITHMETIC (0.5 LAW, 0.5 MATH) TASK ARITHMETIC (0.25 LAW, 0.75 MATH) TIES MULTITASK CONTINUAL LEARNING (DATA BUFFER 10%)	CASE.HOLD 0.32 0.21 0.81 0.64, 0.64 0.55 0.53 0.50 0.53 0.48 0.68 0.79 0.44 0.37 0.86 0.46 0.46 0.46 0.46 0.61 0.64 0.55 0.53 0.53 0.53 0.53 0.48 0.68 0.79 0.44 0.37 0.86 0.46 0.46 0.55 0.53 0.53 0.54 0.55 0.53 0.53 0.54 0.55 0.53 0.54 0.55 0.53 0.54 0.55 0.53 0.54 0.55 0.53 0.54 0.55 0.53 0.56 0.55 0.53 0.48 0.68 0.79 0.44 0.37 0.86 0.46 0.46 0.55 0.53 0.55 0.53 0.54 0.55 0.53 0.54 0.55 0.53 0.54 0.55 0.53 0.56 0.55 0.53 0.48 0.68 0.46 0.46 0.55 0.55 0.53 0.56 0.55 0.53 0.56 0.55 0.53 0.56 0.55 0.53 0.56 0.55 0.53 0.56 0.56 0.55 0.53 0.56	Tos 0.13 0.38 0.51 0.86 0.59 0.83 0.16 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	OVERRULING 0.49 0.49 0.94 0.93 0.90 0.94 0.79 0.97 0.90 0.95 0.63 0.96 0.97 0.56 0.61 0.97 0.96 HUMANEVAL (5 0.074 0.074 0.074 0.15	GSM8K (0-SHOT) 0 0.42 0 0 0.0015 0 0.096 0 0.12 0.46 0.48 0 0 0 0.014 0.54 0.49 and code 5-SHOT) GSM8K (0-SHOT) 0 0.38 0		
946 947 948 949 950 951 952 953 955 955 955 956 957 958 959 960 961 962 963 964	LLAMA 7B LLAMA 2 (7B) ORIGINAL METAMATHQA LAW METAMATHQA, LAW METAMATHQA, LAW (P=1) METAMATHQA, LAW (P=1), 0.75 LAW, 0.25 MATH) METAMATHQA, LAW (P=1, 0.25 LAW, 0.75 MATH) METAMATHQA, LAW (P=0.5) METAMATHQA, LAW (P=0.5) METAMATHQA, LAW (P=0.17) TASK ARITHMETIC (0.5 LAW, 0.5 MATH) TASK ARITHMETIC (0.25 LAW, 0.75 MATH) TIES MULTITASK CONTINUAL LEARNING (DATA BUFFER 10%)	CASE.HOLD 0.32 0.21 0.81 0.64, 0.64 0.55 0.53 0.50 0.53 0.48 0.68 0.79 0.44 0.37 0.86 0.46 0.46 0.46 0.46 0.53 0.53 0.53 0.53 0.54 0.53 0.53 0.54 0.55 0.53 0.53 0.54 0.55 0.53 0.54 0.55 0.53 0.54 0.55 0.53 0.54 0.55 0.53 0.54 0.55 0.53 0.54 0.55 0.53 0.54 0.55 0.53 0.54 0.55 0.53 0.54 0.55 0.53 0.48 0.64 0.55 0.53 0.48 0.64 0.55 0.53 0.54 0.55 0.53 0.54 0.55 0.53 0.54 0.55 0.53 0.54 0.55 0.53 0.54 0.55 0.53 0.48 0.64 0.55 0.53 0.54 0.55 0.53 0.54 0.55 0.53 0.54 0.55 0.53 0.54 0.55 0.53 0.54 0.55 0.53 0.54 0.55 0.53 0.54 0.55 0.53 0.54 0.55 0.53 0.54 0.55 0.53 0.48 0.37 0.86 0.46 0.46 0.55 0.56 0.55 0.56 0.55 0.56 0.55 0.53 0.56 0.55 0.56 0.56 0.55 0.56 0.55 0.56 0.55 0.56 0.55 0.56 0.55 0.56	Tos 0.13 0.38 0.51 0.86 0.59 0.83 0.16 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	OVERRULING 0.49 0.49 0.94 0.93 0.90 0.94 0.79 0.97 0.90 0.95 0.63 0.96 0.97 0.56 0.61 0.97 0.96 HUMANEVAL (5 0.074 0.074 0.015 0.13	GSM8K (0-SHOT) 0 0.42 0 0 0.0015 0 0.096 0 0.12 0.46 0.48 0 0 0 0.014 0.54 0.49 and code 5-SHOT) GSM8K (0-SHOT) 0 0.38 0 0.01		
946 947 948 949 950 951 952 953 954 955 956 955 956 957 958 959 960 961 962 963 964 965	LLAMA 7B LLAMA 2 (7B) ORIGINAL METAMATHQA LAW METAMATHQA, LAW METAMATHQA, LAW (P=1) METAMATHQA, LAW (P=1, 0.75 LAW, 0.25 MATH) METAMATHQA, LAW (P=1, 0.25 LAW, 0.75 MATH) METAMATHQA, LAW (P=0.5) METAMATHQA, LAW (P=0.5) METAMATHQA, LAW (P=0.17) TASK ARITHMETIC (0.5 LAW, 0.5 MATH) TASK ARITHMETIC (0.25 LAW, 0.75 MATH) TIES MULTITASK CONTINUAL LEARNING (DATA BUFFER 10%)	CASE HOLD 0.32 0.21 0.81 0.64, 0.64 0.55 0.53 0.50 0.53 0.48 0.68 0.79 0.44 0.37 0.86 0.46 0.46 0.46 0.61 0.64 0.55 0.53 0.53 0.48 0.64 0.64 0.55 0.53 0.50 0.53 0.48 0.64 0.64 0.55 0.53 0.50 0.53 0.48 0.64 0.64 0.55 0.53 0.50 0.53 0.48 0.64 0.55 0.53 0.48 0.64 0.55 0.53 0.48 0.64 0.55 0.53 0.48 0.64 0.55 0.53 0.48 0.64 0.55 0.53 0.48 0.64 0.55 0.53 0.48 0.64 0.55 0.53 0.48 0.64 0.55 0.53 0.50 0.44 0.37 0.86 0.46 0.46 0.55 0.53 0.48 0.46 0.55 0.53 0.56 0.56 0.55 0.53 0.48 0.46 0.55 0.56 0.56 0.57 0.56 0.57 0.56 0.57 0.58 0.46 0.46 0.57 0.56 0.56 0.57 0.56 0.56 0.57 0.56 0.57 0.56 0.56 0.57 0.56 0.56 0.56 0.57 0.56 0.57	TOS 0.13 0.38 0.51 0.86 0.59 0.83 0.16 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	OVERRULING 0.49 0.49 0.94 0.93 0.90 0.94 0.79 0.97 0.90 0.95 0.63 0.96 0.97 0.56 0.61 0.97 0.96 HUMANEVAL (5 0.074 0.00 0.15 0.13 0.06	GSM8K (0-SHOT) 0 0.42 0 0 0.0015 0 0.096 0 0.12 0.46 0.48 0 0 0 0 0.014 0.54 0.49 and code 5-SHOT) GSM8K (0-SHOT) 0 0.38 0 0.01 0.33 0.22		
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966	LLAMA 7B LLAMA 2 (7B) ORIGINAL METAMATHQA LAW METAMATHQA, LAW METAMATHQA, LAW (P=1) METAMATHQA, LAW (P=1, 0.75 LAW, 0.25 MATH) METAMATHQA, LAW (P=1, 0.25 LAW, 0.75 MATH) METAMATHQA, LAW (P=0, 75) METAMATHQA, LAW (P=0.5) METAMATHQA, LAW (P=0.17) TASK ARITHMETIC (0.5 LAW, 0.5 MATH) TASK ARITHMETIC (0.25 LAW, 0.25 MATH) TASK ARITHMETIC (0.25 LAW, 0.75 MATH) TIES MULTITASK CONTINUAL LEARNING (DATA BUFFER 10%) Table 4: Results of Pythia (2.8E PYTHIA (2.8B) ORIGINAL PYTHIA (2.8B) METAMATHQA MAGICODER-EVOL-INSTRUCT-110K METAMATHQA, MAGICODER-EVOL-INSTRUCT-110K (P=1) METAMATHQA, MAGICODER-EVOL-INSTRUCT-110K (P=1, METAMATHQA, MAGICODER-EVOL-INSTRUCT-110K (P=1,	CASE.HOLD 0.32 0.21 0.81 0.64, 0.64 0.55 0.53 0.50 0.53 0.48 0.68 0.79 0.44 0.37 0.86 0.46 0.46 0.46 0.61 0.64 0.55 0.53 0.50 0.53 0.48 0.68 0.79 0.44 0.37 0.86 0.46 0.64 0.65 0.53 0.50 0.53 0.48 0.68 0.79 0.44 0.64 0.64 0.55 0.53 0.50 0.53 0.48 0.68 0.79 0.44 0.37 0.86 0.46 0.46 0.47 0.64 0.55 0.53 0.50 0.53 0.48 0.68 0.79 0.44 0.37 0.86 0.46 0.46 0.46 0.55 0.53 0.48 0.68 0.79 0.44 0.64 0.67 0.44 0.55 0.50 0.48 0.46	TOS 0.13 0.38 0.51 0.86 0.59 0.83 0.16 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	OVERRULING 0.49 0.49 0.94 0.93 0.90 0.94 0.79 0.90 0.95 0.63 0.96 0.97 0.56 0.61 0.97 0.96 HUMANEVAL (5 0.074 0.07 0.15 0.13 0.06 0.11 0.037	GSM8K (0-SHOT) 0 0.42 0 0 0.0015 0 0.096 0 0.12 0.46 0.48 0 0 0 0.014 0.54 0.49 and code 5-SHOT) GSM8K (0-SHOT) 0 0.38 0 0.01 0.33 0.22 0.34		
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967	LLAMA 7B LLAMA 2 (7B) ORIGINAL METAMATHQA LAW METAMATHQA, LAW METAMATHQA, LAW (P=1) METAMATHQA, LAW (P=1), 0.75 LAW, 0.25 MATH) METAMATHQA, LAW (P=1, 0.25 LAW, 0.75 MATH) METAMATHQA, LAW (P=0, 75) METAMATHQA, LAW (P=0.5) METAMATHQA, LAW (P=0.17) TASK ARITHMETIC (0.5 LAW, 0.5 MATH) TASK ARITHMETIC (0.25 LAW, 0.5 MATH) TASK ARITHMETIC (0.25 LAW, 0.75 MATH) TIES MULTITASK CONTINUAL LEARNING (DATA BUFFER 10%) TABLE 4: Results of Pythia (2.8E PYTHIA (2.8B) ORIGINAL PYTHIA (2.8B) METAMATHQA, MAGICODER-EVOL-INSTRUCT-110K METAMATHQA, MAGICODER-EVOL-INSTRUCT-110K (P=1), METAMATHQA, MAGICODER-EVOL-INSTRUCT-110K (P=1, METAMATHQA, MAGI	CASE.HOLD 0.32 0.21 0.81 0.64, 0.64 0.55 0.53 0.50 0.53 0.48 0.68 0.79 0.44 0.37 0.86 0.46 0.46 0.46 0.61 0.64 0.55 0.53 0.50 0.53 0.48 0.68 0.79 0.44 0.37 0.86 0.46 0.46 0.67 0.53 0.48 0.68 0.79 0.44 0.37 0.86 0.46 0.40 0.55 0.53 0.50 0.53 0.48 0.68 0.79 0.44 0.37 0.86 0.46 0.46 0.47 0.55 0.53 0.48 0.68 0.79 0.44 0.37 0.86 0.46 0.46 0.79 0.44 0.37 0.86 0.46 0.46 0.46 0.79 0.44 0.37 0.86 0.46 0.46 0.46 0.46 0.46 0.79 0.44 0.46 0.46 0.46 0.46 0.46 0.55 0.53 0.48 0.46 0.77 0.86 0.46 0.77 0.86 0.46 0.77 0.76 0.77 0.76 0.77 0.76 0.77 0.76 0.77 0.76 0.77 0.76 0.77	TOS 0.13 0.38 0.51 0.86 0.59 0.83 0.16 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	OVERRULING 0.49 0.49 0.94 0.93 0.90 0.94 0.79 0.97 0.90 0.95 0.63 0.96 0.97 0.56 0.61 0.97 0.96 HUMANEVAL (5 0.074 0.00 0.15 0.13 0.008 0.11 0.037 0.018 0.027 0.018	GSM8K (0-SHOT) 0 0.42 0 0 0.0015 0 0.096 0 0.12 0.46 0.48 0 0 0 0.014 0.54 0.49 and code 5-SHOT) GSM8K (0-SHOT) 0 0 0.38 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0		
946 947 948 949 950 951 952 953 954 955 956 957 956 957 958 959 960 961 962 963 964 965 966 967 968	LLAMA 7B LLAMA 2 (7B) ORIGINAL METAMATHQA LAW METAMATHQA, LAW METAMATHQA, LAW (P=1) METAMATHQA, LAW (P=1) 0.75 LAW, 0.25 MATH) METAMATHQA, LAW (P=1, 0.25 LAW, 0.75 MATH) METAMATHQA, LAW (P=0.5) METAMATHQA, LAW (P=0.5) METAMATHQA, LAW (P=0.17) TASK ARITHMETIC (0.5 LAW, 0.5 MATH) TASK ARITHMETIC (0.75 LAW, 0.25 MATH) TASK ARITHMETIC (0.25 LAW, 0.75 MATH) TIES MULTITASK CONTINUAL LEARNING (DATA BUFFER 10%) Table 4: Results of Pythia (2.8E PYTHIA (2.8B) ORIGINAL PYTHIA (2.8B) METAMATHQA, MAGICODER-EVOL-INSTRUCT-110K METAMATHQA, MAGICODER-EVOL-INSTRUCT-110K (P=1, METAMATHQA, MAGICOD	CASE_HOLD 0.32 0.21 0.81 0.64, 0.64 0.55 0.53 0.50 0.53 0.48 0.68 0.79 0.44 0.37 0.86 0.46 0.46 0.46 0.61 0.64 0.55 0.53 0.53 0.48 0.68 0.79 0.44 0.37 0.86 0.46 0.46 0.55 0.53 0.53 0.54 0.53 0.54 0.53 0.54 0.55 0.53 0.54 0.53 0.54 0.55 0.53 0.54 0.53 0.48 0.68 0.79 0.44 0.37 0.86 0.46 0.46 0.55 0.53 0.54 0.53 0.54 0.53 0.54 0.53 0.54 0.53 0.54 0.53 0.54 0.53 0.54 0.53 0.54 0.53 0.54 0.53 0.54 0.53 0.54 0.53 0.54 0.55 0.53 0.48 0.68 0.46 0.46 0.55 0.53 0.54 0.54 0.55 0.53 0.54 0.54 0.54 0.55 0.53 0.54 0.54 0.54 0.55 0.53 0.54 0.54 0.54 0.55 0.53 0.54 0.54 0.55 0.53 0.54 0.54 0.54 0.54 0.55 0.53 0.54 0.54 0.54 0.55 0.55 0.53 0.54 0.54 0.54 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.56 0.46 0.46 0.76 0.55	TOS 0.13 0.38 0.51 0.86 0.59 0.83 0.16 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	OVERRULING 0.49 0.49 0.94 0.93 0.90 0.94 0.79 0.97 0.90 0.95 0.63 0.96 0.97 0.56 0.61 0.97 0.96 HUMANEVAL (5 0.074 0.00 0.15 0.13 0.06 0.11 0.037 0.018 0.061 0.038	GSM8K (0-SHOT) 0 0.42 0 0 0.0015 0 0.096 0 0.12 0.46 0.48 0 0 0 0.014 0.54 0.49 and code 5-SHOT) GSM8K (0-SHOT) 0 0.38 0 0.01 0.33 0.22 0.34 0.35		
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 963 964 965 966 967 968 969	LLAMA 7B LLAMA 2 (7B) ORIGINAL METAMATHQA LAW METAMATHQA, LAW (P=1) METAMATHQA, LAW (P=1) METAMATHQA, LAW (P=1, 0.75 LAW, 0.25 MATH) METAMATHQA, LAW (P=1, 0.25 LAW, 0.75 MATH) METAMATHQA, LAW (P=0.5) METAMATHQA, LAW (P=0.5) METAMATHQA, LAW (P=0.17) TASK ARITHMETIC (0.5 LAW, 0.5 MATH) TASK ARITHMETIC (0.75 LAW, 0.25 MATH) TASK ARITHMETIC (0.25 LAW, 0.75 MATH) TIES MULTITASK CONTINUAL LEARNING (DATA BUFFER 10%)	CASE_HOLD 0.32 0.21 0.81 0.64, 0.64 0.55 0.53 0.50 0.53 0.48 0.68 0.79 0.44 0.37 0.86 0.46 0.46 0.46 0.61 0.64, 0.55 0.53 0.48 0.68 0.79 0.44 0.37 0.86 0.46 0.46 0.55 0.53 0.50 0.53 0.50 0.53 0.48 0.64 0.55 0.53 0.50 0.53 0.48 0.64 0.55 0.53 0.50 0.53 0.48 0.64 0.55 0.53 0.48 0.64 0.55 0.53 0.48 0.64 0.55 0.53 0.48 0.64 0.64 0.55 0.53 0.48 0.64 0.55 0.53 0.48 0.64 0.55 0.53 0.48 0.64 0.55 0.53 0.48 0.44 0.37 0.86 0.46 0.46 0.46 0.55 0.53 0.50 0.53 0.50 0.53 0.50 0.53 0.50 0.53 0.48 0.44 0.37 0.86 0.46 0.46 0.55	TOS 0.13 0.38 0.51 0.86 0.59 0.83 0.16 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	OVERRULING 0.49 0.49 0.94 0.93 0.90 0.94 0.79 0.97 0.90 0.95 0.63 0.96 0.97 0.56 0.61 0.97 0.96 HUMANEVAL (5 0.074 0.07 0.13 0.06 0.11 0.037 0.018 0.061 0.038 0.064 0.049	GSM8K (0-SHOT) 0 0.42 0 0 0.0015 0 0.096 0 0.12 0.46 0.48 0 0 0 0.014 0.54 0.49 and code 5-SHOT) GSM8K (0-SHOT) 0 0.33 0.22 0.34 0.33 0.35 0.21		
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 963 964 965 966 967 968 969 970	LLAMA 7B LLAMA 2 (7B) ORIGINAL METAMATHQA LAW METAMATHQA, LAW METAMATHQA, LAW (P=1) METAMATHQA, LAW (P=1) 0.75 LAW, 0.25 MATH) METAMATHQA, LAW (P=1, 0.25 LAW, 0.75 MATH) METAMATHQA, LAW (P=0.5) METAMATHQA, LAW (P=0.5) METAMATHQA, LAW (P=0.17) TASK ARITHMETIC (0.5 LAW, 0.5 MATH) TASK ARITHMETIC (0.25 LAW, 0.75 MATH) TASK ARITHMETIC (0.25 LAW, 0.75 MATH) TIES MULTITASK CONTINUAL LEARNING (DATA BUFFER 10%)	CASE_HOLD 0.32 0.21 0.81 0.64, 0.64 0.55 0.53 0.50 0.53 0.48 0.68 0.79 0.44 0.37 0.86 0.46 8) models fit	TOS 0.13 0.38 0.51 0.86 0.59 0.83 0.16 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	OVERRULING 0.49 0.49 0.94 0.93 0.90 0.94 0.79 0.97 0.90 0.95 0.63 0.96 0.97 0.56 0.61 0.97 0.96 HUMANEVAL (5 0.074 0.074 0.06 0.13 0.06 0.11 0.037 0.018 0.061 0.038 0.049 0.14 0.05 0.13 0.061 0.037 0.018 0.061 0.037 0.018 0.061 0.037 0.018 0.061 0.037 0.018 0.061 0.037 0.018 0.061 0.037 0.018 0.061 0.037 0.018 0.061 0.037 0.018 0.061 0.037 0.018 0.061 0.037 0.018 0.061 0.037 0.018 0.061 0.037 0.018 0.061 0.037 0.018 0.061 0.037 0.018 0.061 0.037 0.018 0.061 0.074 0.05 0.013 0.061 0.037 0.018 0.061 0.037 0.018 0.007 0	GSM8K (0-SHOT) 0 0.42 0 0 0.0015 0 0.096 0 0.12 0.46 0.48 0 0 0 0.12 0.46 0.48 0 0 0 0.014 0.54 0.49 and code 5-SHOT) 0 GSM8K (0-SHOT) 0 0.33 0.22 0.34 0.33 0.35 0.21 0 0 0 0 0 0 0 0 0 0 0 0 0		
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 964 965 966 967 968 969 970 971	LLAMA 7B LLAMA 2 (7B) ORIGINAL METAMATHQA LAW METAMATHQA, LAW (P=1) METAMATHQA, LAW (P=1) METAMATHQA, LAW (P=1, 0.75 LAW, 0.25 MATH) METAMATHQA, LAW (P=0, 0.5) METAMATHQA, LAW (P=0.5) METAMATHQA, LAW (P=0.25) METAMATHQA, LAW (P=0.17) TASK ARITHMETIC (0.5 LAW, 0.5 MATH) TASK ARITHMETIC (0.25 LAW, 0.75 MATH) TASK ARITHMETIC (0.25 LAW, 0.75 MATH) TIES MULTITASK CONTINUAL LEARNING (DATA BUFFER 10%)	CASE_HOLD 0.32 0.21 0.81 0.64, 0.64 0.55 0.53 0.50 0.53 0.48 0.68 0.79 0.44 0.37 0.86 0.46 0.46 0.46 0.46 0.79 0.44 0.37 0.86 0.46 0.46 0.55 0.53 0.53 0.53 0.53 0.53 0.54 0.53 0.53 0.54 0.53 0.54 0.55 0.53 0.53 0.54 0.55 0.53 0.54 0.55 0.53 0.54 0.55 0.53 0.54 0.55 0.53 0.48 0.64 0.64 0.55 0.53 0.54 0.54 0.55 0.53 0.48 0.44 0.37 0.86 0.46 0.46 0.46 0.46 0.55 0.53 0.53 0.53 0.53 0.54 0.53 0.54 0.53 0.54 0.53 0.54 0.55 0.53 0.54 0.55 0.53 0.54 0.54 0.55 0.53 0.54 0.55 0.53 0.54 0.54 0.55 0.53 0.54 0.54 0.55 0.53 0.54 0.54 0.54 0.55	TOS 0.13 0.38 0.51 0.86 0.59 0.83 0.16 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	OVERRULING 0.49 0.49 0.94 0.93 0.90 0.94 0.79 0.97 0.90 0.95 0.63 0.96 0.97 0.56 0.61 0.97 0.96 HUMANEVAL (5 0.074 0.0 0.15 0.13 0.061 0.038 0.049 0.14 0 0.13	GSM8K (0-SHOT) 0 0.42 0 0.0015 0 0.096 0 0.12 0.46 0.48 0 0 0 0.12 0.46 0.48 0 0 0 0.014 0.54 0.49 and code 5-SHOT) 0 GSM8K (0-SHOT) 0 0.38 0 0.01 0.33 0.32 0.34 0.33 0.35 0.21 0 0.36 0.35		

972					
973					
974					
975					
976					
977	Table 5: Results of Llama 2 (7B) models fin	e-tuning on Math	and code		
978		e tuning on mun			
979	LLAMA 2 (7B) H	umanEval (5-shot)	GSM8K (0-SHOT)		
980	Llama 2 (7B) Original metamathoa	0.15	0		
981	MAGICODER-EVOL-INSTRUCT-110K	0.35	0		
982	MAGICODER-EVOL-INSTRUCT-110K, METAMATHQA Magicoder-Evol-Instruct-110K, metamathqa (p=1)	0.046	0.54		
983	MAGICODER-EVOL-INSTRUCT-110K, METAMATHQA (P=0.75)	0.22	0.41		
984	MAGICODER-EVOL-INSTRUCT-110K, METAMATHQA (P=0.5) Magicoder-Evol-Instruct-110K metamathoa (p=0.25)	0.17	0.44		
985	TASK ARITHMETIC	0.19	0.44		
986	TIES	0.27	0.090		
987	MULITIASK	0.09	0.40		
988					
989					
990					
991					
992					
993					
994					
995					
996					
997	Table 6: Results of Pythia (2.8B) models fine-tuning	on Math, Law and	Code for 2 orde	rs	
998	• • • •				
999					
1000	Pythia (2.8B) Pythia (2.8B) Original		0.25	0.85	0.45
1001	METAMATHQA		0.19	0.87	0.48
1002	law Magicoder-Evol-Instruct-110K		0.74 0.22	0.93	0.97
1003	METAMATHQA, LAW, MAGICODER-EVOL-INSTRUCT-110K		0.30	0.87	0.51
1004	METAMATHQA, LAW, MAGICODER-EVOL-INSTRUCT-110K (P=1) METAMATHOA, LAW, MAGICODER-EVOL-INSTRUCT-110K (P=0.5)		0.50	0.88	0.59 0.57
1005	METAMATHQA, LAW, MAGICODER-EVOL-INSTRUCT-110K (P=0.25)		0.57	0.88	0.67
1006	METAMATHQA, MAGICODER-EVOL-INSTRUCT-110K, LAW METAMATHQA, MAGICODER-EVOL-INSTRUCT-110K, LAW (P=1)		0.73	0.93	0.49
1007	METAMATHQA, MAGICODER-EVOL-INSTRUCT-110K, LAW (P=0.5)		0.70	0.88	0.49
1008	METAMATHQA, MAGICODER-EVOL-INSTRUCT-110K, LAW (P=0.25) TASK ARITHMETIC (0.33 MATH, 0.33 LAW, 0.33 CODE)		0.68	0.88	0.51 0.88
1009	MULTITASK		0.80	0.88	0.93
1010	CONTINUAL LEARNING (METAMATHQA, MAGICODER-EVOL-INSTRUCT-110K CONTINUAL LEARNING (METAMATHOA, LAW .MAGICODER-EVOL-INSTRUCT	, LAW) (DATA BUFFER -110K) (DATA BUFFER	10%) 0.75 10%) 0.69	0.89	0.49 0.56
1011	Рутніа (2.8В)		GSM8K (0-s	нот)	HUMANEVAL (5-SHOT)
1012	Pythia (2.8B) Original metamathoa		0		0.0
1012	LAW		0.58		0
1014	MAGICODER-EVOL-INSTRUCT-110K METAMATHOA, J. AW. MAGICODER-EVOL-INSTRUCT-110K		0		0.15
1015	METAMATHQA, LAW, MAGICODER-EVOL-INSTRUCT-110K (P=1)		0.34		0.068
1016	METAMATHQA, LAW, MAGICODER-EVOL-INSTRUCT-110K (P=0.5) METAMATHOA LAW MAGICODER-EVOL-INSTRUCT-110K (P=0.25)		0.37		0.051
1017	METAMATHQA, MAGICODER-EVOL-INSTRUCT-110K (P=0.25)		0.0		0.00
1018	METAMATHQA, MAGICODER-EVOL-INSTRUCT-110K, LAW (P=1)		0.011		0
1019	METAMATHQA, MAGICODER-EVOL-INSTRUCT-110K, LAW (P=0.3) METAMATHQA, MAGICODER-EVOL-INSTRUCT-110K, LAW (P=0.25)		0.30		0.0012
1020	TASK ARITHMETIC (0.33 MATH, 0.33 LAW, 0.33 CODE)		0		0.01
1021	CONTINUAL LEARNING (METAMATHQA, MAGICODER-EVOL-INSTRUCT-110K	K, LAW) (DATA BUFFER	10%) 0.30		0.22
1021	CONTINUAL LEARNING (METAMATHQA, LAW , MAGICODER-EVOL-INSTRUCT	-110K) (DATA BUFFER	10%) 0.30		0.15
1022					
1024					

Mainly, we use Composer (Team, 2021) for fine-tuning and evaluation. For additional evaluation metrics, we also use Language Model Evaluation Harness (Gao et al., 2023). Finally, we create some model merging baselines using mergekit (Goddard et al., 2024).

1065 1066 1067

⁶ A.5 INSTRUCTION DATASETS

We use language generation tasks described in (Scialom et al., 2022) to measure forgetting. These tasks are based on pre-existing datasets that we also reference here: Text Simplification (Simpl) (Wiki-Auto (Jiang et al., 2020)), Inquisitive Question Generation (InqQG) (Eli5 (Fan et al., 2019)), Headline Generation with Constraint (HGen) (Gigaword (Graff et al., 2003; Rush et al., 2015)), Covid QA (CQA) (COVID-QA (Möller et al., 2020)), and Twitter Stylometry (TwSt) (Tweets Dataset (Bin Tareaf, 2017)).

Note: We retrieve the data for COVID-fact from (Scialom et al., 2022)'s existing codebase. We reference it using (Scialom et al., 2022) due to a lack of other citation in the paper.

1076

1077

1078