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ABSTRACT

In continual learning with pretrained large language models (LLMs), where data
from instruction fine-tuning (IFT) tasks arrives in a sequence, fine-tuning on later
tasks will often lead to performance degradation on earlier tasks. This is espe-
cially pronounced when the IFT tasks come from diverse domains. In this set-
ting, how can we mitigate catastrophic forgetting of earlier tasks and retain what
the LLM has learned? Inspired by a classical continual learning method—L2
penalty to previous weights—we propose Sequential Fine-tuning with Averaging
(SFA), a method that merges models with earlier checkpoints trained on previ-
ous tasks during the course of training. SOTA approaches typically maintain a
data buffer of past tasks or impose a penalty at each gradient step. In contrast,
our method achieves comparable results without the need to store past data, or
multiple copies of parameters for each gradient step. Furthermore, our method
outperforms penalty methods like L2 and Elastic Weight Consolidation, as well
as other common merging techniques such as Task Arithmetic, and TIES Merg-
ing. Finally, we show that using our method, a single model can simultaneously
perform well on a range of fine-tuning tasks in diverse domains, including Math,
Law and Code.

1 INTRODUCTION

Fine-tuning large language models (LLMs) on new tasks often leads to catastrophic forgetting: the
rapid degradation of performance on previously learned tasks (Scialom et al., 2022; Lesort et al.,
2019; Delange et al., 2021; Belouadah et al., 2021; Luo et al., 2023). This poses a major challenge
for continual learning scenarios, where data comes in a stream of sequences of tasks that may not
reappear. As such, we are in need of fine-tuning procedures that would allow LLMs to continually
adapt to new knowledge without sacrificing past abilities.

Previous work has analyzed catastrophic forgetting of different types of information, as well as the
impact of scale. Scialom et al. (2022) explain that LLMs can perform worse on past fine-tuning
tasks as they learn new ones. Furthermore, Luo et al. (2023) show a model can also forget general
knowledge, not specific to a single past task. Finally, forgetting also grows in severity as model size
increases (Luo et al., 2023). Existing state-of-the-art approaches to mitigate forgetting primarily
focus on modifying the training data used in fine-tuning. These methods either maintain a data
buffer of past tasks (Robins, 1995; Lopez-Paz & Ranzato, 2022; de Masson d’Autume et al.,
2019), or generate approximations of past task data for joint training with current tasks (Shin et al.,
2017; Mocanu et al., 2016). However, both strategies introduce additional costs. Data buffers
increase memory overhead and require careful management, while generating data approximations
necessitates extra training and computational resources. Likewise, more classical methods of
continual learning that incorporate a penalty directly into training to constrain weights ((Kirkpatrick
et al., 2017), L2 penalty) are memory-intensive as they require storing multiple copies of model
parameters to be used at each gradient step.

Despite ongoing research into combating forgetting, several key questions remain. What im-
pact does the domain of the fine-tuning tasks have? Specifically, does catastrophic forgetting get
even worse when there is a domain shift and if so, by how much? Finally, can we make model-based
interventions that can alleviate the cost of storing past data or model parameters, generating new
data or doing additional expensive training?
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In this paper, we systematically investigate forgetting in pretrained LLMs as they fine-tune on tasks
from distinct domains in a continual learning setting. More specifically, we focus on settings where
the model sees a sequence of fine-tuning tasks from Law, Math, and Code. In this setting, we analyze
the ability of a model pretrained on general language generation to fine-tune to this sequence of new
tasks, and track the degradation of the models’ existing knowledge on old tasks. By doing so we
offer empirical evidence about the nature and rate of forgetting in LLMs during continual learning.

To combat forgetting, we propose Sequential Fine-tuning Averaging (SFA), a novel method that
merges the model being trained on a new task with a checkpoint from a previous task during
training. This averaged model is then further trained on the new task. By reusing previous
checkpoints, SFA promotes knowledge retention across tasks and domains. Our experiments focus
on the continual learning settings where data from a sequence of tasks stream in, and only the
current task data is available. As such, our solution offers the advantage of not needing to store
past data, and simply relies on updating model parameters during fine-tuning with combinations
of past and current weights. Furthermore, our solution also does not require training an additional
past data generator, because it uses previous model checkpoints as proxies for such data. Our work
offers a way forward to obtaining a single model that can perform well on a variety of fine-tuning
domains, shedding light on the generalization ability of continual learning LLMs. Our work can be
summarized by the following contributions:

• We introduce Sequential Fine-tuning Averaging (SFA), a method for mitigating forget-
ting by averaging model checkpoints from past tasks during fine-tuning on a new task.
This enables the model to retain knowledge on past tasks/domains while learning a new
task/domain.

• We show how SFA can be understood as an approximation of a classical continual learning
algorithm: applying an L2 penalty between the current model and checkpoints from past
tasks. This analysis bridges classical continual learning algorithms such as L2 penalty
with commonly used model merging techniques, thus providing intuition for why model
merging can be so effective at mitigating forgetting.

• We compare SFA to other techniques for mitigating forgetting across a range of tasks,
domains, and models. We show consistent results that across models and tasks/domains,
our method achieves comparable results to using a data buffer, while outperforming other
model merging techniques, as well as more classical continual learning methods.

2 RELATED WORK

Forgetting and Continual Learning A large and growing body of literature investigates differ-
ent aspects of catastrophic forgetting in continual and sequential learning. When the training data
consists of disjoint tasks, training classifiers can cause catastrophic forgetting (Rebuffi et al., 2017).
Furthermore, if forgetting occurs, it can be tracked during training and is dependent on when exam-
ples are seen by the model: models are less likely to remember earlier training examples (Jagielski
et al., 2022; Tirumala et al., 2022). Interestingly, forgetting can also occur for general knowledge
rather than for specific tasks, and is more severe for larger models (Luo et al., 2023). Lesort et al.
(2022) show that overlap between tasks and task repetition in continual learning settings can mitigate
catastrophic forgetting of such examples resulting in solutions to forgetting that involve maintain-
ing a data buffer with past data. Such solutions can also be extrapolated to LLMs where continual
learning with data repetition can prevent catastrophic forgetting (Scialom et al., 2022). Mitigating
forgetting in continual learning can also occur by introducing a penalty in the loss objective. L2
penalty in continual learning constrains the weights of a model as it is learning a new task by intro-
ducing a penalty based on the difference between the current and initial model’s weights. Similarly,
Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017) also introduces a penalty to con-
strain the weights of a model and mitigate increased loss on learned tasks while incorporating the
importance of specific weights on learned tasks.

Model Merging There exist many techniques and applications for merging multiple models to
create a single model with improved generalization on a given set of tasks. Model souping (Worts-
man et al., 2022a) involves averaging the parameters of existing models to create a new model. This
technique can be applied after training multiple variations of a model on data during a hyperpa-
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rameter sweep to combine the models and achieve higher performance than any individual model.
Task Arithmetic (Ilharco et al., 2023) involves finding and adding task vectors to create a multi-task
model. Wise-FT (Wortsman et al., 2022b) merges the weights of an initial and a fine-tuned model.
Our method builds upon these 3 works, but with key differences as described in Section 3.
Additional influential model merging techniques include: Ramé et al. (2023) use a model soup-
ing approach to obtain a network with improved out-of-distribution performance by averaging the
weights of models fine-tuned on different tasks. TIES (Yadav et al., 2023) only merges influential
parameters whose signs are in the direction of greatest movement across the models. Fisher merging
(Matena & Raffel, 2022; Dhawan et al., 2023; Jhunjhunwala et al., 2023) requires keeping data from
all previous tasks and computing gradients.
Finally for merging different textual domains, Branch-Train-Merge (BTM) (Li et al., 2022) main-
tains a set of distinct domain models that can be merged and then trained to create new experts.

3 METHODOLOGY: SEQUENTIAL FINE-TUNING AVERAGING (SFA)

Our method, Sequential Fine-tuning Averaging (SFA), leverages existing techniques in model merg-
ing (Ilharco et al., 2023; Wortsman et al., 2022a;b) to mitigate forgetting in the continual learning
setting. In this method, we consider a pretrained LLM that is trained on a sequence of instruction
fine-tuning tasks from different domains. While the model is being fine-tuned on the current task,
we periodically average the parameters of current model with an earlier checkpoint that resulted
from fine-tuning on a previous task. We then continue fine-tuning this new averaged model on the
current task.

More precisely, let θo denote the parameters of the network optimized for the last task. Let θt be the
parameters of the current model at time t ≤ T during fine-tuning on a new task. Then, every pT
iterations, we reset the parameters to be a weighted combination of θo and θt, where the weighing is
determined by a hyperparameter 0 ≤ β ≤ 1 (default: 0.5).

Algorithm 1 Sequential Fine-tuning Averaging
Input: θo, p, β
Update model parameters θt at each time step t
if t mod pT = 0 or t = T then
θt = (β)θo + (1− β)θt

By averaging with an optimized model of the last learned task, our method prevents the current
model parameters θt from moving significantly from the original model’s and thus losing optimal
performance on the past task (Section 6.3). In this way, our technique combines the intuition of
continual learning with Rehearsal (Robins, 1995), Task Arithmetic (Ilharco et al., 2023) and Wise-
FT (Wortsman et al., 2022b). However, unlike Rehearsal-based methods that store data in a buffer,
we use a model fine-tuned on a past task/domain. Furthermore, unlike Task Arithmetic, our method
merges a past checkpoint of a given model with the current model, rather than the task vectors from
individual models. Finally, while our method focuses on merging during actual fine-tuning and
across tasks/domains, Wise-FT merges a pretrained and a fine-tuned model. In this way, our work
generalizes Wise-FT throughout continual learning. As the number of tasks increases, we continue
to average the most recent θo, which has high performance on all previous tasks, with the current
model parameters θt. For example, we merge a model already trained on 2 tasks with the current
model training on a third task. We then update θo to be the merged model of all 3 tasks. We find that
we are able to preserve performance on all past tasks through continuous averaging.

4 CONNECTING CONTINUAL LEARNING METHODS WITH MODEL MERGING

4.1 GRADIENT UPDATE COMPARISON

There exist many methods of continual learning that aim to mitigate forgetting of past tasks by
constraining training weights using a penalty. This penalty is often used to prevent weights from
straying from model weights that perform well on past tasks. Some methods include L1 and L2
penalty, as well as EWC (Kirkpatrick et al., 2017). Typically, these methods add a penalty to an
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Figure 1: SFA compared against other continual learning methods, where the two tasks (Task A and
B) were created by splitting MNIST by label. The accuracy after single-task training, sequential
training, and multitask training is also shown. The lines for EWC and L2 are created by varying
the coefficient corresponding to each method (and are the same for the left and right plots). (Left)
visualizes SFA performance under varying β coefficient, which determines how much weight is
being placed on the initial model. (Right) visualizes SFA with varying averaging frequency

existing loss objective for every gradient step. This becomes computationally expensive as models
scale for modern day applications, because for each gradient step, multiple copies of model weights
have to be loaded in memory to calculate the penalty (e.g. the initial and currently training model),
in addition to potential gradients. As such, our work aims to approximate existing continual learning
methods with model merging, in order to make them feasible to implement. Specifically, we focus
on simplifying and approximating L2 penalty. Consider, starting with θo, the model trained on the
previous task and θt, the model currently being trained on the new task. Calculating the loss with an
L2 penalty takes the following form

L(θ) = Ltask(θt) +
λ

2
||θt − θo||2 (1)

Updating the model once using the gradient of this loss results in the following:

θt+1 = θt − η(∇θtLtask + λ(θt − θo)) (2)

This can be rewritten as:

θt+1 = (1− ηλ)θt + (ηλ)θo − η∇θtLtask (3)

Now we can compare this to SFA with averaging occurring after each gradient step where the first
step updates parameters using only task loss, while the second step updates parameters by averaging
the current and initial model:

θ∗t+1 = θt − α∇θtLtask (4)
θt+1 = (1− β)θ∗t+1 + β(θo) (5)

We can combine these 2 steps to get the following form:

θt+1 = (1− β)(θt − α∇θtLtask) + β(θo) (6)

This is equivalent to:

θt+1 = (1− β)θt + (β)θo − α∇θtLtask(1− β) (7)

As such, Equations 3 and 7 can even be equivalent if β = ηλ and α = η
(1−ηλ) . While in practice,

SFA is averaged infrequently, rather than after every gradient step to offer a computational advan-
tage, this implies that it typically is not equivalent to L2-regression. However, the resemblance
between Equations 3 and 7, allows SFA to be understood as approximating L2-regression. Sim-
ilarly, the EWC penalty can also be approximated as a model merging technique (Appendix A.2).
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We also show that SFA may have Bayesian motivation because of its similarity to L2-regression (Ap-
pendix A.1) We emphasize these connections to bridge commonly used model merging algorithms
with classical continual learning ones.

In order to show how our method, SFA, compares with existing continual learning methods, includ-
ing the one it’s approximating, L2 penalty, and EWC, we provide an empirical analysis. In Fig. 1,
we train a small, custom neural network on 2 sequential MNIST tasks (Task A and Task B) separated
by label introduced in Moriarity (2020). Task A involves labelling the first 5 even numbers, whereas
Task B labels the first 5 odd numbers. The blue dot refers to the model after training on Task A,
whereas the red dot is additionally trained on Task B without intervention. As such, performance
rapidly drops on Task A as the model optimizes for Task B. The solid orange curve refers to SFA
where, in Fig. 1 (left) we vary the averaging weight β from Algorithm 1 and in Fig. 1 (right) we
vary the frequency of averaging in number of batches. As such, placing a higher β or lower number
of batches before averaging results in a model that performs better on Task A, and vice versa. The
green dotted line shows L2 penalty where λ (weight on L2 penalty) varies, with a higher λ perform-
ing better on Task A (and vice versa). Finally, an orange dotted line shows EWC with varying λ
(weight on EWC penalty) with a higher weight performing better on Task A (and vice versa). L2
penalty outperforms EWC with a better trade off between performance on Task A and B. Interest-
ingly, SFA outperforms both L2 penalty and EWC when hyperparameters are optimized. As such,
not only is SFA computationally much cheaper due to infrequent averaging steps, but it is also able
to outperform imposing a penalty at every step. Given these optimistic results, we next scale our
models and datasets to more realistic fine-tuning scenarios, and apply SFA to directly compare with
using a data buffer in continual learning, as well as other model merging methods.

5 DATA: CROSS-DOMAIN TASKS

In order to measure and mitigate forgetting, we fine-tune our models on tasks in 3 distinct domains:
Law, Math and Code. For each domain, we fine-tune our model on a dataset featuring domain-
specific knowledge, as well as unique instruction tasks. For Law, we combine CaseHOLD (Zheng
et al., 2021), Terms of Service (ToS) (Lippi et al., 2019; tos, 2023), and Overruling (Zheng et al.,
2021) to create a more general Law dataset. For Math, we use MetaMathQA (Yu et al., 2023), and
for Code we use MagiCoder110k (Wei et al., 2023). We believe that required task knowledge across
these 3 domains is distinct with minimal overlap. As such, we purposefully aim to test our models’
ability to generalize across a wide range of knowledge to measure the validity of our method under
maximal domain shifts.

Evaluation Metrics for Data: In our work, we reference the forgetting of various tasks. We define
forgetting specific knowledge as a decrease in performance on a given task during evaluation for a
model already fine-tuned on the task. For example, if evaluation performance on Task A drops when
a model fine-tunes on Task B, given that the model has already fine-tuned on task A, we consider
the model to forget Task A. To evaluate performance on our fine-tuning data, we use the metrics and
holdout sets described in Table 7.

6 RESULTS

6.1 MITIGATING FORGETTING FROM CROSS DOMAIN SEQUENTIAL FINE-TUNING USING
DATA REHEARSAL

We first confirm that catastrophic forgetting occurs in the scenarios we apply SFA and other base-
lines to: successive fine-tuning of a pretrained model on instruction tasks (Appendix A.3). In the
following sections we focus our analysis of forgetting and its mitigation on pairs of successive in-
struction fine-tuning tasks with large domain shifts, such as from Math to Code or Math to Law,
using datasets outlined in Section 5. This choice of tasks allows us to measure performance with
accuracy on downstream tasks instead of with validation loss. By restricting ourselves to pairs of
successive tasks, we can clearly quantify the trade off between learning the second task and forget-
ting the first one by visualizing the results on a plane that measures the accuracy of the first task on
the y-axis and the accuracy of the second task on the x-axis. We present our results for sequentially
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learning Math and Law with Llama-2 (7B) in Fig. 2 and Math and Law, as well as Math and Code
with Pythia (2.8B) in Fig. 3 (see Appendix A.4 for model descriptions).

We first fine-tune our model (Llama 2 (7B) in Fig. 2 and Pythia (2.8B) in Fig. 3) on MetaMathQA
to obtain the inital model (dark blue circle). Note the base model performance on the first (second)
task is represented by dark green horizontal for Llama 2 (7B), and blue for Pythia (2.8B) (vertical)
dashed lines. This initial model improves upon the base model on our Math benchmark and is thus
higher on the y-axis (performance on first task) while not being significantly different or being worse
on the x-axis (performance on the second task which it has not been trained on yet). We then fine-
tune the initial model on the second task to obtain the sequential fine-tuning model (red circle). In
Fig. 2 the second task is Law while in Fig. 3 the second task is either Law or Code. The sequential
fine-tuning model performs really well on the second task (higher on the x-axis) while forgetting
almost everything it has learned about the first task (base model level on the y-axis). This movement
down and to the right of the initial model (dark blue circle) to the sequential fine-tuning model (red
circle) on the task 1 - task 2 performance plane in both Figs. 2 and 3 is emblematic of catastrophic
forgetting of an earlier task as the model learns a new task. For reference, the performance of just
fine-tuning the base model on the second task is represented by the vertical purple for Law, or green
for Code dashed line.

For our upper baseline, we show the results of simultaneously fine-tuning the base model on a
mixture of both tasks to obtain the multitask fine-tuning model (black star). This model sits at the
upper right of the plane as it does not exhibit forgetting and performs well on both tasks. However,
in our continual learning setting where data streams in as a sequence of tasks, this is infeasible.

Rehearsal is a common technique for mitigating forgetting in continual learning. It involves main-
taining a buffer of past task data and interleaving it with new task data during fine-tuning (Robins,
1995). We demonstrate the effectiveness of rehearsal in our continual learning setting by further
training our initial model (dark blue circle, fine-tuned on Math) on a mixture of 90% task 2 data
and 10% of Math data sampled randomly from the full Math dataset. The resulting continual learn-
ing (CL) with data buffer model (pink diamond in Figs. 2 and 3) effectively improves on the initial
model on task 2 (higher Law performance, i.e. x-axis) while mitigating forgetting (maintains high
Math performance i.e. y-axis). Note, this does not work as well for Pythia (2.8B) on Math to Code
(Fig. 3, right), we hypothesize that this is because of suboptimal hyperparameters.

A data buffer however, has significant drawbacks: it requires storing data from all previous tasks,
leading to rapidly increasing storage costs as the number of tasks grows. It also adds to the training
cost, because we must continue to train on tokens from past tasks. Furthermore, maintaining a subset
of past data can also threaten data privacy and security (Li et al., 2024). This makes model based
mitigations of forgetting appealing.

6.2 SFA ON CROSS DOMAIN DATA

Recall that in SFA, we take a model that has already been fine-tuned on Task A, and while fine-
tuning on Task B, every pT steps we average the weights with the final model after fine-tuning on
Task A and continue fine-tuning on Task B. We evaluate SFA with varying averaging frequency p
during cross-domain sequential fine-tuning. Figs. 2 and 3 show that as p decreases, signifying more
frequent averaging with the initial model, we observe stronger retention of past domain knowledge
(orange curve). By adjusting the averaging frequency (p), we control the balance between past and
new knowledge retention. This is evident, because as p decreases, the performance on Math (y-axis)
increases, indicating stronger retention of task 1. Furthermore, there is minimal loss to the potential
learning of task 2 (Law or Code on the x-axis). Notably, when fine-tuning on Math followed by
Law, a p of 0.25 yields results comparable to rehearsal (pink diamond), demonstrating that SFA can
mitigate forgetting without the need for data buffers. Crucially, our method is able achieve such
performance without requiring a data buffer, but just two model checkpoints: the initial one and the
current checkpoint throughout fine-tuning.

Additionally, in this sequential fine-tuning scenario, our method also outperforms other model merg-
ing methods. We implement Task Arithmetic (Ilharco et al., 2023) (blue square) and TIES (Yadav
et al., 2023) (green triangle), and show that our method achieves superior performance to both of
these. In the Math-then-Law fine-tuning setting, we find that both of these methods, Task Arith-
metic and TIES, fail to retain Math performance completely, whereas SFA with a low enough p is
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able to achieve performance on par with rehearsal. Our figure values for Pythia (2.8B) can be found
in Table 1 (Math and Law), and Table 4 (Math and Code). Results for Llama 2 (7B) can be found
in Table 3 (Math and Law), and Table 5 (Math and Code).

Finally, to see how our method scales as the number of domains increases, we also continue fine-
tuning and applying SFA on our model for 3 domains (Fig. 4). In these graphs, we take a high
performing SFA model (p of 0.25) on Math and Law, and Math and Code from Fig. 3, and continue
fine-tuning the model with SFA on the final domain (Code and Law respectively). We find that by
using SFA (specifically adjusting p), we are able to maintain high performance on the previous 2
domains while also learning an additional domain. As such, SFA is a useful forgetting mitigation
technique for continual learning given a sequence of domains. In both scenarios, Math-Code to
Law, and Math-Law to Code, SFA (orange curve) outperforms Task Arithmetic, and sequential fine-
tuning. In the case of Math-Code to Law, SFA with p of 0.25 yields performance comparable to
rehearsal (pink diamond). The figure results of Pythia (2.8B) fine-tuning on Math-Code to Law, and
Math-Law to Code can be found in Table 6.
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Figure 2: A comparison of Llama 2 (7B)’s performance on Math (y-axis) and Law (x-axis) using
various fine-tuning and model merging techniques. The results are contained by dashed boundary
boxes: the left and bottom lines represent the performance of a pretrained Llama 2 (7B) on Math
and Law, whereas the right and top lines represent the performance of Llama 2 (7B) after fine-
tuning on Law and Math respectively. A curve shows the performance of SFA with varying p, next
to comparisons of continual learning with a data buffer, Task Arithmetic, and TIES. Finally, we also
show an initial model (fine-tuned on math) and performance after sequentially fine-tuning it on Law.

6.3 L2-DISTANCE AND ACCURACY

We previously show how SFA approximates applying an L2 penalty. In order to further explore this
intuition of SFA and its relation to constraining parameter weights, we also show how accuracy and
L2 distance are correlated. We use the setup described in Fig. 3 where our model first fine-tunes on
Math, then Law. As Fig. 5 shows, when proportion of fine-tuning before averaging p decreases on
SFA (purple curve), the L2 distance to the initial Math model decreases, while the accuracy on Math
increases. This is in direct contrast to sequential fine-tuning without intervention (black pentagon),
because of its much higher L2 distance to the initial model. As such, p directly relates to L2 distance,
as well as performance on previous tasks, because averaging frequency constrains how much model
parameters can change from their initial positions. The values for this figure can be found in Table 2.

6.4 AVERAGING WEIGHTS

To further understand the advantages of SFA, we investigate alternative strategies of manipulating
model parameter weights. Unlike the continuous averaging throughout fine-tuning employed by
SFA, we explore the impact of modifying weights solely at the final stage. Our results underscore
the importance of SFA’s continual averaging approach for achieving optimal performance across
multiple domains.
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Figure 3: A comparison of Pythia (2.8B)’s performance on multiple domains (Math, Law and Math,
Code) using various fine-tuning and model merging techniques similar to Fig. 2. On Math to Law,
SFA p = 0.25 can be seen as having comparable performance to using a data buffer, while outper-
forming Task Arithmetic. Likewise, in Math to Code, SFA with varying p outperform using a data
buffer and Task Arithmetic.
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Figure 4: A comparison of Pythia (2.8B)’s performance when training on more than 2 domains
(e.g. Math-Law and Code, Math-Code and Law) using various fine-tuning and model merging
techniques similar to Fig. 3. On Math-Code to Law, SFA p = 0.25 can be seen as having comparable
performance to using a data buffer, while outperforming Task Arithmetic. While, SFA with varying
p on Math-Law to Code outperforms Task Arithmetic, but performs worse than using a data buffer.

Recall that SFA combines parameters from the initial and current model during fine-tuning. We posit
that the initial model represents expertise in past tasks/domains, while the current model embodies
new task/domain knowledge. Our default parameter weighting (0.50 for each) provides a balance.
We explore if, instead of varying p, the frequency of averaging in SFA, we can get similar flexibility
by first fine-tuning the model on a new task (p = 1) and then averaging the final model with the
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Figure 5: An analysis of the negative correlation between accuracy on Math and the L2 distance
of the final model (fine-tuned on Math, then Law) from the original model (fine-tuned on Math
only). The fine-tuning on Law is done using SFA with varying values of p that determine the
merging frequency. For reference we also mark sequential fine-tuning which leads to much higher
L2 distance due to no merging, and accuracy just above that achieved with SFA merging once at the
end of fine-tuning on law (p = 1).
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Figure 6: A comparison of varying the Task Arithmetic model weights, and β on SFA (p=1), with
SFA (varying p, β = 0.5) for Pythia (2.8B). We reproduce the results varying p in SFA (orange
curve) from Fig. 3 and add 2 sweeps showing change in performance on Pythia (2.8B) when the
weights for the current and past checkpoints are varied for SFA (p = 1) (dashed blue) and the
domain-specific models are merged in Task Arithmetic (dashed red). Generally, SFA with p < 1
achieves highest performance, followed by SFA (p = 1) with varying weights, and lastly is Task
Arithmetic with varying weights.

previous task model using different relative weights (vary β). In Figs. 6 and 7, we show that SFA
with p < 1 and β = 0.5 (orange curve) performs the same if not better than a sweep of weighting
parameter β for SFA (p = 1) (blue curve). Furthermore, for SFA (p = 1) with β ≥ 0.50, the trade
off between Math and Law for both Pythia (2.8B) and Llama 2 (7B) is especially large, resulting in
the complete failure to retain math. This suggests that SFA’s continual averaging during fine-tuning
is key to its success in preserving cross-domain competence.
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Figure 7: A comparison of varying the Task Arithmetic model weights, and β on SFA (p=1), with
SFA (varying p, β = 0.5) for Llama 2 (7B). We reproduce the results varying p in SFA (orange
curve) from Fig. 2 and add 2 sweeps for the weights on the checkpoints and domain models of
SFA (p = 1) and Task Arithmetic, similarly to Fig. 6, to compare SFA with merging at different
proportions. We see a similar outcome, where SFA with p < 1 generally achieves a better trade off
in performance between Math and Law.

We extend this analysis to Task Arithmetic, another model merging technique. In Figs. 6 and 7
we report the results sweeping over the weight values for averaging (red curve), and observe that
Task Arithmetic, like SFA (p = 1) with varying β, fails to achieve the cross-domain performance
improvements that SFA demonstrates. Specifically, it also shows even worse combined performance
on task 1 (Math, y-axis) and task 2 (Law, or Code, x-axis). Furthermore, in the Math-Law setting,
for weights on Law ≥ 0.50, it also fails to retain Math. As such, SFA p < 1 with β = 0.50
offers superior performance for cross domain fine-tuning on both tasks even when accounting for
proportion sweeps.

7 CONCLUSION

In this paper, we provide a comprehensive evaluation of domain forgetting in a continual learning
setting, and offer solutions to allow models to retain knowledge from all domains they fine-tune on.
After showing how quickly a given model can forget learned tasks as it sequentially fine-tunes on
new ones, we evaluate methods that aim to mitigate this forgetting. We introduce SFA and show
how, by treating a past model as representative of past data, we can use parameter averaging to
retain knowledge as the model fine-tunes on new tasks/domains. We likewise compare SFA to L2
penalty, and show how model merging methods can approximate imposing a penalty in continual
learning. The final performance of SFA is comparable to continual learning with rehearsal, but has
the advantage of not maintaining a data buffer. Furthermore, our solution surpasses other commonly
used model merging and penalty techniques by incorporating infrequent model merging into the
fine-tuning of a model.
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8 ETHICS

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none which we feel must be specifically highlighted
here.

9 REPRODUCIBILITY

The tools we use in this project are all open-source. A description of our models and how we fine-
tune/evaluate can be found in Appendix A.4. Descriptions of the tasks we fine-tune models on are
in Appendix A.5 and Section 5. Finally, our evaluation metrics are in Table 7. We are working on
releasing a repository with our specific configurations and SFA code.
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A APPENDIX

A.1 BAYESIAN INTERPRETATION

We have shown that our method approximates, and sometimes is equivalent to minimizing an L2-
regression loss during training. Next we use the well known point that L2-regression has a Bayesian
Interpretation (bay, 2018) to motivate our method:
Assume that the prior distribution of the ideal model θ∗t for a past and current task is Gaussian with
mean the initial model, θ∗t ∼ N(θo, τ

2I) for some τ . Furthermore, assume that the distribution y
given input X , model weights θ∗t , and a function f is Gaussian with mean the output of the function
given X, θt : y ∼ N(f(X, θ∗t ), σ

2I) As such, the posterior of θ∗t is:

p(θ∗t |y,X, f) ∝ exp[
−1

2σ2
(y − f(X, θ∗t ))

T (y − f(X, θ∗t ))−
−1

2τ2
(θ∗t − θo)

T (θ∗t − θo)] (8)

We can compute the Maximum a Posteriori (MAP) for θ∗t :

θ̂∗t = argmaxθ∗
t
exp[

−1

2σ2
(y − f(X, θ∗t ))

T (y − f(X, θ∗t ))−
−1

2τ2
(θ∗t − θo)

T (θ∗t − θo)] (9)

θ̂∗t = argminθ∗
t
(y − f(X, θ∗t ))

T (y − f(X, θ∗t )) +
σ2

τ2
(θ∗t − θo)

T (θ∗t − θo) (10)

Set σ2

τ2 = λ

θ̂∗t = argminθ∗
t
(y − f(X, θ∗t ))

T (y − f(X, θ∗t )) + λ(θ∗t − θo)
T (θ∗t − θo) (11)

As such, L2-regression tries to solve this Bayesian interpretation (Equation 11). As shown previ-
ously, SFA approximates L2-regression. This suggests that SFA may have a Bayesian motivation.

A.2 EWC APPROXIMATED BY MODEL MERGING

Consider fine-tuning a model with an EWC penalty (Kirkpatrick et al., 2017) where λ = 1, j =
1, ..., |θ|

L(θt) = Ltask(θt) +
∑
j

1

2
F (j)
o (θ

(j)
t − θ(j)o )2 (12)

where θo and θt are the weights of the initial and fine-tuning model respectively. η is a hyperpa-
rameter, and Fo is a diagonal matrix with the initial model’s Fisher information. Assume that this
loss update is split into 2 model updates. First, update model parameters using task loss on current
weights:

θ∗t+1 = θt − η∆θtLtask (13)

Then, update model parameters using EWC penalty:

θt+1 = (I − ηFo)θ
∗
t+1 + ηFoθo (14)

Thus, applying the EWC penalty can be understood as model merging weighted by the Fisher in-
formation of the initial model. This is reminiscent of Fisher model merging from Matena & Raffel
(2022) where merging an initial and fine-tuning model has the form:

θ∗(j) =
λoF

(j)
o θ

(j)
o + λtF

(j)
t θ

(j)
t

λoF
(j)
o + λtF

(j)
t

(15)

which can be rewritten as

θ∗(j) =

(
1− λoF

(j)
o

λoF
(j)
o + λtF

(j)
t

)
θ
(j)
t + (

λoF
(j)
o

λoF
(j)
o + λtF

(j)
t

)θ(j)o . (16)

Unlike the EWC approximation, this uses the Fisher information of both the initial and current model
for merging.
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A.3 FORGETTING UNDER SEQUENTIAL FINE-TUNING

We start by confirming that fine-tuning on a sequence of different tasks leads to performance degra-
dation on previously learned tasks. This forgetting phenomenon occurs across different task domains
and for different model sizes. In this work, we focus on catastrophic forgetting of capabilities ac-
quired during instruction fine-tuning instead of base pretrained model capabilities. This is because,
as we will show, forgetting of skills learned during instruction finetuning can be quite severe and
experiments at this scale are more feasible. We fine-tune our models on a sequence of instruction,
language generation datasets that test general knowledge to measure forgetting. Specifically, we
use Scialom et al. (2022)’s: Text Simplification (Simpl), Inquisitive Question Generation (InqQG),
Headline Generation with Constraint (HGen), COVID-fact, Covid QA (CQA), and Twitter Stylom-
etry (TwSt). Many of these tasks incorporate existing datasets which we describe in Appendix A.5.
In our first experiments, we fine-tune the T0 3B (3B) and T0pp (11B) models (see Appendix A.4
for model descriptions) on the sequence of tasks described in Section 5 while measuring forgetting
on the first task. The results are shown in Fig. 8. The model is first trained on Simpl which leads to a
decrease in validation loss shown in blue. Subsequently, the model is trained on a sequence of other
tasks; the decrease in validation loss on these tasks is shown in different colors. During this process,
we continue to monitor the validation loss on Simpl, displayed in pink. As models fine-tune on new
tasks, their performance on Simpl consistently declines as loss increases. This is true at both the
3B and 11B (Fig. 8) model scales, indicating that merely scaling up parameter size does not help
mitigate forgetting despite the increased capacity.

But how severe is this forgetting? We quantify this by comparing a model that was trained on and has
then forgotten Simpl to a model that has never seen Simpl. In Fig. 9, the pink line shows validation
loss on Simpl for a model trained on a sequence of fine-tuning tasks starting with Simpl. As the
model learns new tasks, its performance deteriorates. After 2000 steps, the sequentially fine-tuned
model’s loss on Simpl is the same order of magnitude as that of the multitask model trained on all
tasks except Simpl. Thus if a model that has learned Simpl is finetuned on other tasks for as little
as 2000 steps, its performance degrades to that of a model that has never seen Simpl. This indicates
significant forgetting, as the model loses the ability to respond to tasks it previously was able to.

Figure 8: The fine-tuning of T0 3B (3B) and T0pp (11B) on a stream of language generation tasks.
Training loss on each subsequent task decreases as the model learns it, while evaluation loss on
Simpl continues to increase, indicating that forgetting is present.

To summarize, we see a consistent trend of forgetting knowledge: as models are sequentially fine-
tuned on new tasks, performance on past tasks drops resulting in lower evaluation metrics. This gets
worse as more tasks are added and is not mitigated by model scale. We will show that forgetting is
even stronger when there is a domain shift between consecutive tasks (e.g. Math to Law or Code).
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Table 1: Results of Pythia (2.8B) models fine-tuning on Math and Law

PYTHIA (2.8B) CASE HOLD TOS OVERRULING GSM8K (0-SHOT)
PYTHIA (2.8B) ORIGINAL 0.25 0.85 0.45 0
METAMATHQA 0.19 0.87 0.48 0.38
LAW 0.74 0.93 0.97 0
METAMATHQA, LAW 0.76 0.95 0.59 0
METAMATHQA, LAW (P=1) 0.74 0.88 0.49 0.048
METAMATHQA, LAW (P=1, 0.75 LAW, 0.25 MATH) 0.78 0.93 0.52 0
METAMATHQA, LAW (P=1, 0.25 LAW, 0.75 MATH) 0.42 0.87 0.49 0.27
METAMATHQA, LAW (P=0.5) 0.69 0.89 0.52 0.13
METAMATHQA, LAW (P=0.25) 0.67 0.87 0.49 0.31
METAMATHQA, LAW (P=0.10) 0.59 0.87 0.49 0.36
TASK ARITHMETIC (0.5 LAW, 0.5 MATH) 0.68 0.87 0.55 0
TASK ARITHMETIC (0.75 LAW, 0.25 MATH) 0.73 0.88 0.95 0
TASK ARITHMETIC (0.25 LAW, 0.75 MATH) 0.30 0.87 0.49 0.24
MULTITASK 0.76 0.87 0.58 0.40
CONTINUAL LEARNING (DATA BUFFER 10%) 0.72 0.93 0.54 0.33

Table 2: The L2 distance of Pythia (2.8B) models from previous checkpoints of models fine-tuning
on Math and law

PYTHIA (2.8B) L2-DISTANCE
METAMATHQA, LAW - METAMATHQA 90.99
METAMATHQA, LAW (P=1) - METAMATHQA 45.50
METAMATHQA, LAW (P=0.5) - METAMATHQA 35.38
METAMATHQA, LAW (P=0.25) - METAMATHQA 24.16
METAMATHQA, LAW (P=0.10) - METAMATHQA 10.94
TASK ARITHMETIC (0.5 LAW, 0.5 MATH)- METAMATHQA 101.77
MULTITASK - METAMATHQA 178.96
CONTINUAL LEARNING (DATA BUFFER 10%) - METAMATHQA 82.21

Table 3: Results of Llama 2 (7B) models fine-tuning on Math and law

LLAMA 7B CASE HOLD TOS OVERRULING GSM8K (0-SHOT)
LLAMA 2 (7B) ORIGINAL 0.32 0.13 0.49 0
METAMATHQA 0.21 0.38 0.49 0.42
LAW 0.81 0.51 0.94 0
METAMATHQA, LAW 0.64, 0.86 0.93 0
METAMATHQA, LAW (P=1) 0.61 0.59 0.90 0.0015
METAMATHQA, LAW (P=1, 0.75 LAW, 0.25 MATH) 0.64 0.83 0.94 0
METAMATHQA, LAW (P=1, 0.25 LAW, 0.75 MATH) 0.55 0.16 0.79 0.096
METAMATHQA, LAW (P=0.75) 0.53 0.13 0.97 0
METAMATHQA, LAW (P=0.5) 0.50 0.13 0.90 0.12
METAMATHQA, LAW (P=0.25) 0.53 0.13 0.95 0.46
METAMATHQA, LAW (P=0.17) 0.48 0.13 0.63 0.48
TASK ARITHMETIC (0.5 LAW, 0.5 MATH) 0.68 0.13 0.96 0
TASK ARITHMETIC (0.75 LAW, 0.25 MATH) 0.79 0.18 0.97 0
TASK ARITHMETIC (0.25 LAW, 0.75 MATH) 0.44 0.13 0.56 0
TIES 0.37 0.13 0.61 0.014
MULTITASK 0.86 0.27 0.97 0.54
CONTINUAL LEARNING (DATA BUFFER 10%) 0.46 0.13 0.96 0.49

Table 4: Results of Pythia (2.8B) models fine-tuning on Math and code

PYTHIA (2.8B) HUMANEVAL (5-SHOT) GSM8K (0-SHOT)
ORIGINAL PYTHIA (2.8B) 0.074 0
METAMATHQA 0.0 0.38
MAGICODER-EVOL-INSTRUCT-110K 0.15 0
METAMATHQA, MAGICODER-EVOL-INSTRUCT-110K 0.13 0.01
METAMATHQA, MAGICODER-EVOL-INSTRUCT-110K (P=1) 0.06 0.33
METAMATHQA, MAGICODER-EVOL-INSTRUCT-110K (P=1, 0.3 MATH, 0.7 CODE) 0.11 0.22
METAMATHQA, MAGICODER-EVOL-INSTRUCT-110K (P=1, 0.6 MATH, 0.4 CODE) 0.037 0.34
METAMATHQA, MAGICODER-EVOL-INSTRUCT-110K (P=1, 0.7 MATH, 0.3 CODE) 0.018 0.38
METAMATHQA, MAGICODER-EVOL-INSTRUCT-110K (P=0.5) 0.061 0.33
METAMATHQA, MAGICODER-EVOL-INSTRUCT-110K (P=0.25) 0.038 0.35
TASK ARITHMETIC (0.5 CODE, 0.5 MATH) 0.049 0.21
TASK ARITHMETIC (0.75 CODE, 0.25 MATH) 0.14 0
TASK ARITHMETIC (0.25 CODE, 0.75 MATH) 0 0.36
MULTITASK 0.13 0.35
CONTINUAL LEARNING (DATA BUFFER 10%) 0 0.32
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Table 5: Results of Llama 2 (7B) models fine-tuning on Math and code

LLAMA 2 (7B) HUMANEVAL (5-SHOT) GSM8K (0-SHOT)
LLAMA 2 (7B) ORIGINAL 0.15 0
METAMATHQA 0 0.55
MAGICODER-EVOL-INSTRUCT-110K 0.35 0
MAGICODER-EVOL-INSTRUCT-110K, METAMATHQA 0.046 0.54
MAGICODER-EVOL-INSTRUCT-110K, METAMATHQA (P=1) 0.18 0.49
MAGICODER-EVOL-INSTRUCT-110K, METAMATHQA (P=0.75) 0.22 0.41
MAGICODER-EVOL-INSTRUCT-110K, METAMATHQA (P=0.5) 0.17 0.44
MAGICODER-EVOL-INSTRUCT-110K, METAMATHQA (P=0.25) 0.22 0.36
TASK ARITHMETIC 0.19 0.44
TIES 0.27 0.090
MULTITASK 0.09 0.40

Table 6: Results of Pythia (2.8B) models fine-tuning on Math, Law and Code for 2 orders

PYTHIA (2.8B) CASE HOLD TOS OVERRULING
PYTHIA (2.8B) ORIGINAL 0.25 0.85 0.45
METAMATHQA 0.19 0.87 0.48
LAW 0.74 0.93 0.97
MAGICODER-EVOL-INSTRUCT-110K 0.22 0.28 0.52
METAMATHQA, LAW, MAGICODER-EVOL-INSTRUCT-110K 0.30 0.87 0.51
METAMATHQA, LAW, MAGICODER-EVOL-INSTRUCT-110K (P=1) 0.50 0.88 0.59
METAMATHQA, LAW, MAGICODER-EVOL-INSTRUCT-110K (P=0.5) 0.55 0.88 0.57
METAMATHQA, LAW, MAGICODER-EVOL-INSTRUCT-110K (P=0.25) 0.57 0.88 0.67
METAMATHQA, MAGICODER-EVOL-INSTRUCT-110K, LAW 0.73 0.93 0.49
METAMATHQA, MAGICODER-EVOL-INSTRUCT-110K, LAW (P=1) 0.75 0.87 0.60
METAMATHQA, MAGICODER-EVOL-INSTRUCT-110K, LAW (P=0.5) 0.70 0.88 0.49
METAMATHQA, MAGICODER-EVOL-INSTRUCT-110K, LAW (P=0.25) 0.68 0.88 0.51
TASK ARITHMETIC (0.33 MATH, 0.33 LAW, 0.33 CODE) 0.63 0.87 0.88
MULTITASK 0.80 0.88 0.93
CONTINUAL LEARNING (METAMATHQA, MAGICODER-EVOL-INSTRUCT-110K, LAW) (DATA BUFFER 10%) 0.75 0.89 0.49
CONTINUAL LEARNING (METAMATHQA, LAW ,MAGICODER-EVOL-INSTRUCT-110K) (DATA BUFFER 10%) 0.69 0.89 0.56
PYTHIA (2.8B) GSM8K (0-SHOT) HUMANEVAL (5-SHOT)
PYTHIA (2.8B) ORIGINAL 0 0.0
METAMATHQA 0.38 0
LAW 0 0
MAGICODER-EVOL-INSTRUCT-110K 0 0.15
METAMATHQA, LAW, MAGICODER-EVOL-INSTRUCT-110K 0.01 0.14
METAMATHQA, LAW, MAGICODER-EVOL-INSTRUCT-110K (P=1) 0.34 0.068
METAMATHQA, LAW, MAGICODER-EVOL-INSTRUCT-110K (P=0.5) 0.37 0.051
METAMATHQA, LAW, MAGICODER-EVOL-INSTRUCT-110K (P=0.25) 0.39 0.055
METAMATHQA, MAGICODER-EVOL-INSTRUCT-110K, LAW 0.0 0.00
METAMATHQA, MAGICODER-EVOL-INSTRUCT-110K, LAW (P=1) 0.011 0
METAMATHQA, MAGICODER-EVOL-INSTRUCT-110K, LAW (P=0.5) 0.054 0
METAMATHQA, MAGICODER-EVOL-INSTRUCT-110K, LAW (P=0.25) 0.30 0.0012
TASK ARITHMETIC (0.33 MATH, 0.33 LAW, 0.33 CODE) 0 0.01
MULTITASK 0.38 0.22
CONTINUAL LEARNING (METAMATHQA, MAGICODER-EVOL-INSTRUCT-110K, LAW) (DATA BUFFER 10%) 0.30 0.029
CONTINUAL LEARNING (METAMATHQA, LAW ,MAGICODER-EVOL-INSTRUCT-110K) (DATA BUFFER 10%) 0.30 0.15
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Figure 9: The Simpl loss curve of T0 3B (3B) from Fig. 8 is compared to a multitask model training
on all tasks, and a multitask model training on all tasks except Simpl. As T0 3B (3B) continues
to fine-tune on each new task, the loss on Simpl becomes the same order of magnitude as that of a
model that is never exposed to Simpl.

Table 7: Evaluation metrics for each task and domain used in our work.

TASK/DOMAIN EVAL METRIC
TEXT SIMPLIFICATION (SIMPL) TEXT SIMPLIFICATION (SIMPL) HOLDOUT SET
INQUISITIVE QUESTION GENERATION (INQQG) INQUISITIVE QUESTION GENERATION (INQQG) HOLDOUT SET
TWITTER STYLOMETRY (TWST) TWITTER STYLOMETRY (TWST) HOLDOUT SET
HEADLINE GENERATION WITH CONSTRAINT (HGEN) HEADLINE GENERATION WITH CONSTRAINT (HGEN) HOLDOUT SET
COVID-FACT COVID-FACT HOLDOUT SET
COVID QA (CQA) COVID QA (CQA) HOLDOUT SET
LAW CASEHOLD, TOS, OVERRULING HOLDOUT SETS
MATH GSM8K (COBBE ET AL., 2021)
CODE HUMANEVAL (CHEN ET AL., 2021)

A.4 MODELS

We fine-tune a combination of encoder-decoder and decoder only models. Specifically, we measure
forgetting on T0 3B (3B) and T0pp (11B) (Sanh et al., 2021), two models already pretrained and
fine-tuned on many tasks, when sequentially fine-tuning on instruction tasks (Appendix A.3). We
also fine-tune Pythia (2.8B) (Biderman et al., 2023) and Llama 2 (7B) (Touvron et al., 2023) on
tasks from different domains (Math, Law, Code) to measure performance on sequential learning, in
addition to a variety of merging techniques (Section 6.2).
Mainly, we use Composer (Team, 2021) for fine-tuning and evaluation. For additional evaluation
metrics, we also use Language Model Evaluation Harness (Gao et al., 2023). Finally, we create
some model merging baselines using mergekit (Goddard et al., 2024).

A.5 INSTRUCTION DATASETS

We use language generation tasks described in (Scialom et al., 2022) to measure forgetting. These
tasks are based on pre-existing datasets that we also reference here: Text Simplification (Simpl)
(Wiki-Auto (Jiang et al., 2020)), Inquisitive Question Generation (InqQG) (Eli5 (Fan et al., 2019)),
Headline Generation with Constraint (HGen) (Gigaword (Graff et al., 2003; Rush et al., 2015)),
Covid QA (CQA) (COVID-QA (Möller et al., 2020)), and Twitter Stylometry (TwSt) (Tweets
Dataset (Bin Tareaf, 2017)).

Note: We retrieve the data for COVID-fact from (Scialom et al., 2022)’s existing codebase. We
reference it using (Scialom et al., 2022) due to a lack of other citation in the paper.
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