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Abstract

Despite their success at many natural language001
processing (NLP) tasks, large language mod-002
els (LLMs) still struggle to effectively lever-003
age knowledge for knowledge-intensive tasks,004
manifesting limitations such as generating in-005
complete, non-factual, or illogical answers.006
These limitations stem from inadequate knowl-007
edge awareness of LLMs during vanilla fine-008
tuning. To address these problems, we propose009
a knowledge-aware fine-tuning (KnowTuning)010
method to improve fine-grained and coarse-011
grained knowledge awareness of LLMs. We012
devise a fine-grained knowledge augmentation013
stage to train LLMs to identify difficult fine-014
grained knowledge in answers. We also pro-015
pose a coarse-grained knowledge comparison016
stage to train LLMs to distinguish between reli-017
able and unreliable knowledge, in three aspects:018
completeness, factuality, and logicality. Exten-019
sive experiments on both generic and medi-020
cal question answering (QA) datasets confirm021
the effectiveness of KnowTuning, through au-022
tomatic and human evaluations, across various023
sizes of LLMs. We further verify that Know-024
Tuning generates more facts with less factual025
error rate under fine-grained facts evaluation.026

1 Introduction027

Large language models (LLMs) have become a de-028

fault solution for many natural language processing029

(NLP) scenarios, including the question answering030

(QA) task (Brown et al., 2020; Ouyang et al., 2022;031

Qin et al., 2023). To achieve strong performance,032

most LLM first accumulate substantial knowledge033

by pre-training on extensive datasets (Jiang et al.,034

2023; Touvron et al., 2023). Then, in the supervised035

fine-tuning (SFT) stage, these LLMs further learn036

downstream domain knowledge and how to exploit037

the corresponding knowledge to answer diverse038

questions (Wei et al., 2022; Chung et al., 2022;039

Wang et al., 2023f; Peng et al., 2023; Kang et al.,040

2023; Wang et al., 2023c).041

Question
What is an apple?

Atomic Knowledge
1. An apple is an edible fruit. (PPL: 18.86)
2. An apple is produced by an apple tree. (PPL:19.54)
3. Apple trees are cultivated worldwide. (PPL: 30.74)

(a) Fine-grained knowledge awareness.

>Question
What is an apple?

Reliable Answer
An apple is an edible fruit

produced by an apple tree.
Apple trees are cultivated

worldwide.

Unreliable Answer
An apple is an inedible fruit

produced by an banana tree.
Apple trees are cultivated in

polar regions.

(b) Coarse-grained knowledge awareness.

Figure 1: Illustrations of vanilla fine-tuned LLMs lack-
ing knowledge awareness. (a) Vanilla fine-tuned LLMs
struggles to identify the fine-grained knowledge to an-
swer a specific question precisely. (b) Vanilla fine-tuned
LLMs cannot effectively distinguish between reliable
knowledge and unreliable knowledge in answers.

However, fine-tuned LLMs often struggle 042

to effectively leverage knowledge for complex 043

knowledge-intensive question-answering (Yu et al., 044

2023a; Bai et al., 2023; Chen et al., 2023b; Chang 045

et al., 2023). Concretely, many recent studies indi- 046

cate that LLMs are susceptible to generating incom- 047

plete answers, offering incomprehensive and insuf- 048

ficient knowledge (Singhal et al., 2022; Bian et al., 049

2024; Xu et al., 2023a); non-factual answers, de- 050

livering factually incorrect knowledge (Wang et al., 051

2023a; Min et al., 2023; Wang et al., 2023b); or 052

illogical answers, providing incoherent and poorly 053

structured knowledge (Chen et al., 2023b; Zhong 054

et al., 2023; Kang et al., 2023). Although recent 055

method FactTune (Tian et al., 2023) improves the 056

factuality of answers by increasing the proportion 057

of correct facts, it ignores other critical aspects, 058

such as completeness (Min et al., 2023) and logi- 059

cality (Xu et al., 2023a). 060

We hypothesize that these limitations of LLMs 061

arise from insufficient fine-grained and coarse- 062

grained knowledge awareness during vanilla fine- 063

tuning (Bian et al., 2024; Ji et al., 2023; Dou et al., 064

2023; Hua et al., 2024). On the one hand, as illus- 065

trated in Figure 1, at the fine-grained level, vanilla 066

fine-tuned LLMs face difficulties in identifying de- 067
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tailed atomic knowledge within the answer, lead-068

ing to inadequate awareness of fine-grained knowl-069

edge. On the other hand, at the coarse-grained070

level, LLMs frequently fail to distinguish between071

reliable and unreliable knowledge in answers, indi-072

cating a lack of coarse-grained knowledge aware-073

ness. Consequently, there is a pressing need for074

designing knowledge-aware fine-tuning methods.075

This leads to our central research question: how076

can we effectively improve both the fine-grained077

and coarse-grained knowledge awareness of LLMs078

to address complex knowledge-intensive tasks?079

To this end, we propose a novel knowledge-080

aware fine-tuning method, named KnowTuning,081

which aims to improve the fine-grained and082

coarse-grained knowledge awareness of LLMs.083

KnowTuning consists of two stages: (i) fine-084

grained knowledge augmentation, and (ii) coarse-085

grained knowledge comparison. In the first stage,086

we filter difficult atomic knowledge with high per-087

plexity from original answers, and rewrite fine-088

grained QA pairs based on the filtered knowledge.089

After that, we subsequently use both the original090

and fine-gained QA pairs to train LLMs. In the sec-091

ond stage, we adopt several knowledge-disturbing092

techniques to construct coarse-grained knowledge093

comparison sets along three dimensions, complete-094

ness, factuality, and logicality. Specifically, we095

generate answers that are worse in terms of com-096

pleteness, factuality, or logicality, by deleting, re-097

vising, and shuffling the atomic knowledge. Be-098

sides, we rephrase original answers based on the099

atomic knowledge to prevent overfitting. Finally,100

we combine the rephrased answers and answers101

with worse completeness, factuality, and logicality102

as our knowledge comparison sets. We adopt direct103

preference optimization (DPO) (Rafailov et al.,104

2023) for optimizing LLMs on our coarse-grained105

knowledge comparison sets.106

We conduct experiments on a generic QA dataset107

and a medical QA dataset using automatic and108

human evaluations. Experimental results demon-109

strate the effectiveness of our proposed method110

KnowTuning, assessing completeness, factuality,111

and logicality across various sizes of LLMs. Fur-112

thermore, we demonstrate that KnowTuning not113

only generates more facts but also reduces the fac-114

tual error rate during fine-grained facts evaluation.115

In summary, our main contributions are:116

• We focus on improving the fine-grained and117

coarse-grained knowledge awareness of LLMs118

via fine-tuning for knowledge-intensive tasks.119

• We introduce KnowTuning, a novel method that 120

fine-tunes LLMs to leverage fine-grained knowl- 121

edge augmentation and coarse-grained knowl- 122

edge comparison to improve fine-grained and 123

coarse-grained knowledge awareness of LLMs. 124

• We demonstrate the effectiveness of 125

KnowTuning in the generic and medical 126

domain QA datasets through automatic and 127

human evaluations, across various sizes of 128

LLMs. Furthermore, KnowTuning generates 129

more facts with less factual error rate under 130

fine-grained facts evaluation. 131

2 Related work 132

2.1 LLMs for knowledge-intensive Tasks 133

Large language models (LLMs) have been ap- 134

plied to various knowledge-intensive tasks (Moi- 135

seev et al., 2022; Yu et al., 2023b; Khattab et al., 136

2022; Tian et al., 2023; Zhang et al., 2023a; Xu 137

et al., 2023b; Mishra et al., 2023; Nguyen et al., 138

2023). Previous work mainly focus on knowledge- 139

intensive tasks with short-form answers. Liu et al. 140

(2022b) use few-shot demonstrations to elicit rel- 141

evant knowledge statements from LLMs for QA 142

tasks. Liu et al. (2022a) train a neural model to gen- 143

erate relevant knowledge through reinforcement 144

learning for QA tasks. Liu et al. (2023a) propose 145

a unified model for generating relevant knowledge 146

and solving QA tasks. 147

However, these methods primarily address 148

multiple-choice QA, rather than the more complex 149

open-ended knowledge-intensive QA tasks (Kr- 150

ishna et al., 2021; Kadavath et al., 2022; Liu et al., 151

2022a, 2023a; Kang et al., 2023), which aim to 152

solve questions that require detailed explanations 153

and extensive domain knowledge. Recent research 154

indicates that LLMs face challenges in tackling 155

complex knowledge-intensive QA tasks (Yu et al., 156

2023a; Bai et al., 2023; Chang et al., 2023). In 157

particular, they are prone to generating responses 158

that are non-factual (Lee et al., 2022; Sun et al., 159

2023; Su et al., 2022), incomplete (Singhal et al., 160

2022; Bian et al., 2024), or illogical (Chen et al., 161

2023b; Zhong et al., 2023). Recently, for open- 162

ended knowledge-intensive tasks, Tian et al. (2023) 163

propose a method FacTune to improve factuality. 164

Specifically, they first automatically evaluate the 165

proportion of correct facts in candidate answers as 166

factuality scores, and fine-tuning LLMs to increase 167

the likelihood of generating answers with higher 168

factuality scores. In contrast, our work focus on 169
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Fine-grained Knowledge Augmentation
Fine-grained Question

How are apples grown, and what is the
range of apple tree cultivation?

Question
What is an apple?

Incomplete Knowledge
1. An apple is an edible fruit.
2. An apple is produced by an apple tree.
3. Apple trees are cultivated worldwide.

Nonfactual Knowledge
1. An apple is an inedible fruit.
2. An apple is produced by a banana tree.
3. Apple trees grow only in polar regions.

Illogical Knowledge
3. Apple trees are cultivated worldwide.
1. An apple is an edible fruit. 
2. An apple is produced by an apple tree.

Incomplete Answer
An apple is an edible fruit. An
apple is produced by ... Apple
trees are cultivated worldwide.

Nonfactual Answer
An apple is an inedible fruit. An
apple is produced by a banana
tree. Apple trees grow only in

polar regions.

Illogical Answer
 Apple trees are cultivated

worldwide. An apple is an edible
fruit. An apple is ... by apple tree.

Fine-grained Answer
Apples are specifically grown through the

cultivation of apple trees. Apples are
grown worldwide due to their popularity.

Disturbed Knowledge 

Atomic Knowledge
1. An apple is an edible fruit. (PPL: 18.86)
2. An apple is produced by an apple tree. (PPL:19.54)
3. Apple trees are cultivated worldwide. (PPL: 30.74)

Coarse-grained  Knowledge Comparison

>

>

>

Difficult Knowledge
2. An apple is produced by an apple tree. (PPL:19.54)
3. Apple trees are cultivated worldwide. (PPL: 30.74)

Rewrite

Question
What is an apple?

Answer
An apple is an edible fruit

produced by an apple tree. Apple
trees are cultivated worldwide.

FilterExtract

Question
What is an apple?

Answer
An apple is an edible fruit

produced by an apple tree. Apple
trees are cultivated worldwide.

Atomic Knowledge
1. An apple is an edible fruit. 
2. An apple is produced by an apple tree. 
3. Apple trees are cultivated worldwide.

DisturbExtract Concat

Rephrased Answer
Apples are fruits that can be eaten.

Apple trees are the source of
apples and grown globally.

Rephrased Answer
Apples are fruits that can be eaten.

Apple trees are the source of
apples and grown globally.

Rephrased Answer
Apples are fruits that can be eaten.

Apple trees are the source of
apples and grown globally.

Figure 2: Overview of KnowTuning. KnowTuning leverages fine-grained knowledge augmentation and coarse-
grained knowledge comparison to improve the knowledge awareness of LLMs.

improving the knowledge awareness of LLMs at170

multiple essential aspects simultaneously, for solv-171

ing complex knowledge-intensive QA tasks.172

2.2 Fine-tuning for LLMs173

Fine-tuning is a kind of method to optimize pre-174

trained LLMs for further learning downstream do-175

main knowledge and how to exploit the correspond-176

ing knowledge to answer diverse questions (Brown177

et al., 2020; Ouyang et al., 2022). Previously, fine-178

tuning is mainly focused on enhancing general-179

purpose QA abilities of LLMs (Wang et al., 2022;180

Wei et al., 2022; Longpre et al., 2023). These ap-181

proaches mainly adopt human-annotated datasets182

to build the QA dataset. Recently, an alternative183

strategy involves generating QA datasets through184

the utilization of advanced LLMs to create answers185

to a variety of questions (Wang et al., 2023f; Shu-186

mailov et al., 2023).187

Another line of fine-tuning methods fuse infor-188

mation about the quality of the generated answers189

into the supervision signals (Zhao et al., 2023; Guo190

et al., 2023; Wang et al., 2023d; Dong et al., 2023;191

Chen et al., 2024). Rafailov et al. (2023) propose192

direct preference optimization (DPO) to directly193

optimize LLMs on the pair-wise comparison set.194

Song et al. (2023) propose Preference Ranking Op-195

timizatio (PRO) to fine-tune LLMs on list-wise196

comparison sets. Yuan et al. (2023) propose a197

margin-rank loss to optimize the LLMs on compar-198

ison sets. Since collecting large-scale human judg-199

ment for the quality of generated answers is expen-200

sive, Bai et al. (2022) and Lee et al. (2023) propose201

reinforcement learning from AI feedback (RLAIF)202

methods to leverage off-the-shelf LLMs to annotate203

general helpfulness scores. In contrast, our work 204

focuses on enhancing the fine-grained and coarse- 205

grained knowledge-awareness of LLMs to improve 206

performance in terms of completeness, factuality, 207

and logicality simultaneously. 208

3 Method 209

In this section, we detail the KnowTuning method. 210

First, we introduce the preliminaries. Then, we 211

introduce the fine-grained knowledge augmenta- 212

tion. Next, we introduce coarse-grained knowledge 213

comparison in detail. Finally, a training process for 214

KnowTuning is explained. 215

3.1 Preliminaries 216

Supervised fine-tuning. Supervised fine-tuning 217

(SFT) aims to train pre-trained LLMs to understand 218

and answer natural language questions. Formally, 219

given a QA dataset D = {(qi, ai)}Ni=1, where qi 220

and ai denotes a question and a corresponding an- 221

swer. The training objective of SFT is to minimize 222

the following loss: 223

LSFT = −
|ai|∑
j=1

logPπSFT (ai,j |ai,<j , qi), (1) 224

where ai,j denotes the j-th token of ai. 225

Atomic Knowledge. Since individual facts can 226

well cover the knowledge in answers (Nenkova and 227

Passonneau, 2004; Zhang and Bansal, 2021; Liu 228

et al., 2023b; Min et al., 2023; Wei et al., 2024), 229

we break an answer into individual facts as atomic 230

knowledge. The atomic knowledge is a short state- 231

ment conveying one piece of fact, which is a more 232
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fine-grained unit than a sentence. Specifically, we233

extract atomic knowledge set K from the original234

answers a as follows:235

Ki = {kji }
|Ki|
j=1 = Extract(ai), (2)236

where Extract(·) is implemented by prompting237

OpenAI models to extract atomic knowledge, fol-238

lowing Min et al. (2023).239

3.2 Fine-grained Knowledge Augmentation240

As illustrated in Figure 2, to improve the fine-241

grained knowledge awareness of LLMs, we filter242

difficult atomic knowledge for LLMs, and rewrite243

fine-grained QA pairs based on the difficult knowl-244

edge. After that, we subsequently use both the245

original and fine-gained QA pairs to train LLMs.246

To filter the difficult atomic knowledge for LLMs,247

we first compute the generation perplexity pplji of248

each atomic knowledge kji conditioned on qi as249

follows:250

pplji = n

√√√√ 1∑|kji |
m=1 PπSFT (k

j
i,m|kji,<m, qi)

. (3)251

Since high perplexity ppl indicates the lack of252

knowledge awareness of LLMs on specific atomic253

knowledge, we select α percent of the atomic254

knowledge set Ki in descending order of perplexity255

to form the difficult knowledge set K∗
i . Then, we256

rewrite the question qi as a fine-grained question257

q∗i relevant to difficult knowledge K∗
i , as follows:258

q∗i = Rewrite(qi,K∗
i ), (4)259

where Rewrite(·) is implemented by prompting260

OpenAI models. In addition, we rewrite the answer261

based on the difficult knowledge set as the fine-262

grained answer:263

a∗i = Rewrite(K∗
i ). (5)264

Finally, we combine the original QA dataset D265

and the fine-grained QA pairs as the fine-grained266

knowledge augmentation dataset Dka as:267

Dka = D ∪ {q∗i , a∗i }Ni=1. (6)268

3.3 Coarse-grained Knowledge Comparison269

To improve coarse-grained knowledge awareness270

of LLMs in terms of completeness, factuality and271

logicality, we construct three comparison sets by272

deleting, revising, and shuffling atomic knowledge.273

Knowledge completeness comparison. To im- 274

prove knowledge completeness awareness of 275

LLMs, we construct the knowledge completeness 276

comparison set by randomly deleting the atomic 277

knowledge. Specifically, we first randomly delete 278

atomic knowledge k in the atomic knowledge set 279

K as incomplete knowledge set: 280

Kc
i = Delete(Ki), (7) 281

where Delete(·) refers to randomly delete β per- 282

cent of atomic knowledge k. Then, we concate- 283

nate leftover atomic knowledge of the incomplete 284

knowledge set as an incomplete answer: 285

aci = Concat(Kc
i ). (8) 286

In addition, to avoid overfitting on the original an- 287

swers (Jain et al., 2023), we rephrase the original 288

answers based on the original atomic knowledge 289

set as: 290

ari = Rewrite(Ki). (9) 291

Finally, we combine the rephrased answer ari and 292

the incomplete answer aci into knowledge complete- 293

ness comparison set as follows: 294

Dkcc = {(qi, (ari , aci ))}Ni=1. (10) 295

Knowledge factuality comparison. To improve 296

the knowledge factuality awareness of LLMs, we 297

construct the knowledge factuality comparison set 298

by revising the atomic knowledge as nonfactual 299

atomic knowledge. Specifically, we first revise the 300

atomic knowledge set Ki as follows: 301

Kf
i = Revise(Ki), (11) 302

where Revise(·) is implemented by prompting Ope- 303

nAI models to revise the atomic knowledge to the 304

wrong atomic knowledge. Then, we concatenate 305

all atomic knowledge in the nonfactual knowledge 306

set as: 307

afi = Concat(Kf
i ). (12) 308

Finally, we combine the rephrased answer ari and 309

the nonfactual answer afi into knowledge factuality 310

comparison set as follows: 311

Dkfc = {(qi, (ari , a
f
i ))}

N
i=1. (13) 312

Knowledge logicality comparison. To improve 313

the knowledge logicality awareness of LLMs, we 314

construct the knowledge logicality comparison 315

set by randomly shuffling the atomic knowledge. 316

4



Specifically, we first randomly shuffle all atomic317

knowledge in the atomic knowledge set K as the318

illogical knowledge set:319

Kl
i = Shuffle(Ki), (14)320

where Shuffle(·) is implemented by shuffling the321

order of all atomic knowledge k in the atomic322

knowledge set K. Then, we follow the shuffled323

order to concatenate all atomic knowledge in the324

illogical knowledge set as an illogical answer:325

ali = Concat(Kl
i). (15)326

Finally, we combine the rephrased answer ari and327

the illogical answer ali into knowledge logicality328

comparison set as follows:329

Dklc = {(qi, (ari , ali))}Ni=1. (16)330

Finally, we combine the knowledge completeness331

comparison set, the knowledge factuality compari-332

son set, and the knowledge logicality comparison333

set as the coarse-grained knowledge comparison334

set:335

Dkc = Dkcc ∪ Dkfc ∪ Dklc. (17)336

3.4 Training337

To improve the knowledge awareness of LLMs338

for solving complex knowledge-intensive tasks,339

KnowTuning includes fine-grained knowledge aug-340

mentation training and coarse-grained knowledge341

comparison training. Specifically, we first train342

LLMs on fine-grained knowledge augmentation343

dataset Dka, resulting in a model denoted as πka.344

Then, KnowTuning aims to further improve the345

coarse-grained knowledge awareness of the model346

πka in completeness, factuality, and logicality. To347

accomplish this, we rewrite the DPO (Rafailov348

et al., 2023) loss to obtain the coarse-grained knowl-349

edge comparison loss as follows:350

Lkc=E(q,(aw,al))∼Dkc

[
log σ

(
β log

πkc(aw|q)
πka(aw|q)

− β log
πkc(al|q)
πka(al|q)

)]
,

(18)351

where (aw, al) denotes the answer pair of the ques-352

tion q ∈ Dkc, and aw is the better answer.353

4 Experiments354

4.1 Research questions355

We aim to answer the following research questions356

in our experiments: RQ1: How does KnowTuning357

perform on generic and medical QA under auto- 358

matic evaluation and human evaluation? RQ2: 359

How does KnowTuning perform on generic and 360

medical QA under fine-grained facts evaluation? 361

RQ3: How do fine-grained knowledge augmen- 362

tation and coarse-grained knowledge comparison 363

affect the performance of KnowTuning? 364

4.2 Datasets 365

We conduct experiments on general domain 366

and domain-specific knowledge-intensive question- 367

answering datasets: 368

• Dolly (Conover et al., 2023) is a general do- 369

main QA dataset carefully curated by thousands 370

of human annotators. Since we focus on open- 371

ended generic domain QA, we filter QA pairs of 372

“open_qa” and “general_qa” categories. 373

• MedQuAD (Abacha and Demner-Fushman, 374

2019) is a medical domain QA dataset, which 375

is collected from 12 National Institutes of Health 376

websites. Following August et al. (2022), we 377

filter QA pairs of the category “Information” for 378

giving detailed information about medical terms. 379

More details of datasets are in Appendix A. 380

4.3 Baselines 381

We compare our model with the following base- 382

lines: 383

• Base denotes that testing Llama2-base mod- 384

els (Touvron et al., 2023) under zero-shot setting. 385

• SFT (Ouyang et al., 2022) represents vanilla fine- 386

tuning backbone LLMs on QA datasets accord- 387

ing to Eq. 1. 388

• RLAIF (Bai et al., 2022; Lee et al., 2023) lever- 389

ages LLMs to annotate overall helpfulness scores 390

for candidate answers, and construct overall help- 391

fulness comparison sets based on the scores. 392

• FactTune (Tian et al., 2023) constructs factuality 393

comparison sets by calculating the proportion of 394

correct facts in candidate answers. 395

More details of baselines are in Appendix B. 396

4.4 Evaluation Metrics 397

We present our experimental results using two eval- 398

uation metrics: automatic evaluation and human- 399

based evaluation. Since ROUGE (ROUGE, 2004) 400

and BLEU (Papineni et al., 2002) can not effec- 401

tively evaluate the quality of answers for complex 402

questions (Krishna et al., 2021; Xu et al., 2023a), 403

recent studies propose to use GPT-4 for evaluating 404

the quality of LLMs answers (Zheng et al., 2024; 405

Dubois et al., 2023; Fu et al., 2023). Consequently, 406
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Completeness Factuality Logicality

Method Dataset Win Tie Lose Win Tie Lose Win Tie Lose Avg. gap

Backbone Language Model: Llama2-7b-base

KnowTuning vs Base

Dolly

88.50∗ 3.00 8.50 73.00∗ 20.00 7.00 80.50∗ 12.00 7.50 +73.00
KnowTuning vs SFT 78.50∗ 5.50 16.00 37.00∗ 46.50 16.50 50.50∗ 34.00 15.50 +39.33
KnowTuning vs RLAIF 69.50∗ 5.00 25.50 32.00∗ 49.00 19.00 46.50∗ 39.00 14.50 +29.67
KnowTuning vs FactTune 64.50∗ 10.00 25.50 30.00∗ 53.00 17.00 31.50∗ 56.00 13.00 +23.50

KnowTuning vs Base

MedQuAD

93.00∗ 3.00 4.00 72.50∗ 20.50 7.00 85.00∗ 8.50 6.50 +77.67
KnowTuning vs SFT 81.00∗ 3.50 15.50 46.50∗ 37.50 16.00 64.50∗ 21.50 14.00 +48.83
KnowTuning vs RLAIF 85.00∗ 2.50 12.50 41.00∗ 38.50 20.50 50.50∗ 30.00 19.50 +41.33
KnowTuning vs FactTune 83.00∗ 3.50 13.50 40.50∗ 36.50 23.00 50.50∗ 31.50 18.00 +39.83

Backbone Language Model: Llama2-13b-base

KnowTuning vs Base

Dolly

85.50∗ 6.50 8.00 66.00∗ 24.50 9.50 81.00∗ 13.00 6.00 +69.67
KnowTuning vs SFT 77.00∗ 5.00 18.00 35.50∗ 49.50 15.00 45.00∗ 40.00 15.00 +36.50
KnowTuning vs RLAIF 73.50∗ 4.00 22.50 33.50∗ 52.50 14.00 46.50∗ 40.50 13.00 +34.67
KnowTuning vs FactTune 68.50∗ 6.50 25.00 30.50∗ 55.00 14.50 36.00∗ 54.00 10.00 +28.50

KnowTuning vs Base

MedQuAD

92.50∗ 2.50 5.00 73.50∗ 17.50 9.00 84.00∗ 8.00 8.00 +76.00
KnowTuning vs SFT 86.50∗ 3.50 10.00 45.50∗ 41.00 13.50 60.00∗ 31.00 9.00 +53.16
KnowTuning vs RLAIF 82.50∗ 5.00 12.50 38.50∗ 48.00 13.50 54.00∗ 38.50 7.50 +47.17
KnowTuning vs FactTune 78.00∗ 4.50 17.50 37.00∗ 47.00 16.00 48.50∗ 39.50 12.00 +39.33

Table 1: Main results on generic QA and medical QA datasets evaluated by GPT-4. The scores marked with ∗ mean
KnowTuning outperforms the baseline significantly with p-value< 0.05 (sign. test), following Guan et al. (2021).

given golden label as a reference, we employ GPT-407

4 to rate generated answers on three aspects: com-408

pleteness, factuality, and logicality, on a range of 1409

to 10. Following Singhal et al. (2022); Zheng et al.410

(2024); Zhang et al. (2023b), we define complete-411

ness, factuality and logicality as: (i) Completeness:412

it examines whether the answers provide compre-413

hensive and sufficient knowledge to the questions.414

(ii) Factuality: it examines whether the knowledge415

in the answers is factually correct. (iii) Logicality:416

it examines whether the knowledge in the answers417

is logically structured. Following Li et al. (2023);418

Chen et al. (2023a), we define “Win-Tie-Lose” as:419

(i) Win: KnowTuning wins twice, or wins once420

and ties once. (ii) Tie: KnowTuning ties twice, or421

wins once and loses once. (iii) Lose: KnowTuning422

loses twice, or loses once and ties once.423

We also employ human judgments as the gold424

standard for assessing the quality of answers.425

Specifically, human evaluators perform pair-wise426

comparisons of the top-performing models identi-427

fied in automatic evaluations. They are presented428

with a question with a golden answer, and asked429

to judge two generated answers on three aspects:430

completeness, factuality, and logicality.431

To evaluate the capabilities of LLMs at a fine-432

grained level, we follow Min et al. (2023) to con-433

duct fine-grained facts evaluation. Specifically, we434

first break candidate answers into individual facts,435

and use gpt-3.5-turbo to measure the correctness of436

each fact based on the golden answer as a reference.437

Following Tian et al. (2023), we report the number 438

of correct facts (# Correct), the number of incor- 439

rect facts (# Incorrect), the number of total facts 440

(# Total) and the proportion of correct facts out 441

of the total number of extracted facts (% Correct). 442

More details of the evaluation are in Appendix C. 443

4.5 Implementation details 444

We employ Llama2-base models of different sizes 445

(7b and 13b) as our backbone models for training. 446

We adopt the Alpaca template (Taori et al., 2023) 447

for training and inference. The OpenAI model 448

used for Extract(·), Rewrite(·) and Revise(·) is 449

gpt-3.5-turbo. More details of the implementation 450

are in Appendix D. 451

5 Experimental results and analysis 452

To answer our research questions, we conduct 453

generic domain and medical domain QA experi- 454

ments, fine-grained facts evaluation, and ablation 455

studies. In addition, we conducted a case study to 456

gain further understanding of the effectiveness of 457

KnowTuning. 458

5.1 Main results (RQ1) 459

Automatic evaluation. Table 1 presents the 460

reference-based GPT-4 evaluation results for both 461

generic and medical domain QA datasets. Across 462

all metrics, KnowTuning outperforms the baseline 463

models in these domains. Based on the results, we 464
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Completeness Factuality Logicality

Method Dataset Win Tie Lose Win Tie Lose Win Tie Lose Avg. gap

Backbone Language Model: Llama2-7b-base

KnowTuning vs FactTune Dolly 61.00∗ 12.00 27.00 28.00∗ 58.50 13.50 33.50∗ 50.00 16.50 +21.83
KnowTuning vs FactTune MedQuAD 73.00∗ 9.00 18.00 40.00∗ 43.00 17.00 45.50∗ 36.00 18.50 +35.00

Backbone Language Model: Llama2-13b-base

KnowTuning vs FactTune Dolly 58.00∗ 11.00 31.00 32.50∗ 66.50 11.00 35.00∗ 53.00 12.00 +23.83
KnowTuning vs FactTune MedQuAD 78.00∗ 6.50 15.50 43.00∗ 45.50 11.50 39.00∗ 45.50 15.50 +39.17

Table 2: Human evaluation results on generic domain and medical domain QA datasets. The scores marked with ∗
mean KnowTuning surpass FactTune significantly with p-value< 0.05 (sign. test).

Dolly MedQuAD

Method # Correct ↑ # Incorrect ↓ # Total ↑ % Correct ↑ # Correct ↑ # Incorrect ↓ # Total ↑ % Correct ↑

Backbone Language Model: Llama2-7b-base

Base 6.15 3.62 9.77 62.94 6.54 3.42 9.96 65.66
SFT 7.77 1.85 9.62 80.77 16.11 1.73 17.84 90.30
RLAIF 11.23 2.10 13.33 84.25 10.86 0.95 11.81 91.95
FactTune 11.25 1.92 13.17 85.42 12.83 0.83 13.66 93.92
KnowTuning 14.40 2.36 16.76 85.89 18.04 0.98 19.02 94.87

Backbone Language Model: Llama2-13b-base

Base 9.57 4.28 13.85 69.11 7.96 3.50 11.46 69.46
SFT 9.96 2.21 12.17 81.84 16.82 1.66 18.48 91.02
RLAIF 10.72 2.16 12.88 83.26 13.01 1.16 14.17 91.81
FactTune 12.73 2.12 14.85 85.72 13.02 1.01 14.03 92.80
KnowTuning 15.44 2.20 17.64 87.54 19.01 1.11 20.12 94.48

Table 3: Fine-grained facts evaluation on generic and medical QA. The best performance is highlighted in bold.

have two main observations:465

• KnowTuning consistently surpasses baselines466

in terms of completeness, factuality and log-467

icality, across generic and domain-specific468

QA datasets. Compared with Base and SFT,469

KnowTuning focuses on improving fine-grained470

and coarse-grained knowledge awareness of471

LLMs, which significantly improves the perfor-472

mance. Compared with RLAIF and FactTune,473

KnowTuning is more effective in improving the474

performance of LLMs on complex knowledge-475

intensive QA in multiple aspects. The reason is476

that RLAIF improves the performance by calcu-477

lating overall helpfulness scores and FactTune478

focuses on improving the factuality, they ignore479

improving the knowledge awareness of LLMs in480

multiple essential aspects simultaneously.481

• KnowTuning demonstrates effectiveness on482

LLMs across different sizes. We observe that483

KnowTuning consistently improves the perfor-484

mance of QA tasks on different scales (7b and485

13B) LLMs. This finding aligns with Bian et al.486

(2024) and Mecklenburg et al. (2024): LLMs487

learn a lot of generic knowledge during the pre-488

training stage but still need to learn downstream489

domain knowledge and explore how to effec-490

tively leverage knowledge for solving knowledge- 491

intensive QA tasks. 492

Human evaluation. Human evaluations are crucial 493

for accurately assessing the quality of answers. As 494

shown in Table 2, to facilitate human annotation 495

processes, we focus on comparing KnowTuning 496

with the state-of-art baseline FactTune: 497

• Our findings indicate that KnowTuning con- 498

sistently surpasses FactTune in terms of com- 499

pleteness, factuality, and logicality performance 500

across various sizes of LLMs under human eval- 501

uation. 502

• KnowTuning demonstrates superior performance 503

over QA in both generic and medical domain QA 504

evaluated by human, in terms of completeness, 505

factuality, and logicality. 506

5.2 Fine-grained facts evaluation (RQ2) 507

To evaluate the ability of methods to generate cor- 508

rect facts at the fine-grained level, we conduct fine- 509

grained facts evaluation experiments. Based on the 510

results in Table 3, we have two main observations: 511

• Knowtuning generates answers with a higher 512

proportion of correct facts across various sizes. 513

Compared to baselines, KnowTuning can gener- 514

ate more facts with less factual error rate across 515
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Completeness Factuality Logicality

Method Win Tie Lose Win Tie Lose Win Tie Lose Avg. gap

-KA vs KnowTuning 32.50 20.00 47.50 16.00 57.50 26.50 12.50 61.50 26.00 -13.00

-KCC vs KnowTuning 18.50 31.00 50.50 11.00 72.50 16.50 10.50 61.50 28.00 -18.33
-KFC vs KnowTuning 23.00 28.50 48.50 8.50 70.50 21.00 12.00 60.50 27.50 -17.83
-KLC vs KnowTuning 25.50 27.50 47.00 12.00 73.00 15.00 9.50 60.00 30.50 -15.17
-KC vs KnowTuning 11.50 6.00 82.50 16.00 52.00 32.00 15.50 40.50 44.00 -38.50

Table 4: Ablation study evaluated by GPT-4 on the generic QA dataset. The backbone model is Llama2-7b-base.

different sizes of LLMs. Although RLAIF and516

FactTune improve the proportion of correct facts,517

they ignore fine-grained knowledge augmenta-518

tion and coarse-grained knowledge completeness519

awareness. Note that even though FactTune gen-520

erates fewer incorrect facts, KnowTuning outper-521

forms FactTune on the more critical metric of the522

percentage of correct facts.523

• KnowTuning generates larger amounts of cor-524

rect facts across generic and domain-specific525

QA datasets. Compared to SFT, we observe that526

KnowTuning consistently generates more cor-527

rect facts across generic and domain-specific QA528

datasets. However, in the specific medical do-529

main QA, RLAIF and FactTune generate fewer530

correct facts than SFT. This is because LLMs531

learn a large amount of generic knowledge dur-532

ing the pre-training stage, yet still lack domain-533

specific knowledge for downstream tasks (Meck-534

lenburg et al., 2024). This underscores the neces-535

sity for enhancing fine-grained knowledge aware-536

ness in domain-specific, knowledge-intensive537

QA tasks, as well as the need to improve coarse-538

grained knowledge awareness across key aspects539

of completeness, factuality, and logicality.540

5.3 Ablation studies (RQ3)541

In Table 4, we compare KnowTuning with sev-542

eral ablative variants. The variants are as fol-543

lows: (i) -KA: we remove the fine-grained knowl-544

edge augmentation. (ii) -KCC: we remove knowl-545

edge completeness comparison set. (iii) -KFC:546

we remove knowledge factuality comparison set.547

(iv) -KLC: we remove knowledge logicality com-548

parison set. (v) -KC: we remove all coarse-grained549

knowledge comparison sets. Our findings are as550

follows:551

• Removing the fine-grained knowledge aug-552

mentation. We observe that removing fine-553

grained knowledge augmentation (-KA) de-554

creases the performance of all three aspects. This555

indicates that fine-grained knowledge augmen-556

tation is effective for improving fine-grained557

knowledge awareness of LLMs. 558

• Removing the coarse-grained knowledge com- 559

parison. The absence of coarse-grained knowl- 560

edge comparisons results in substantial perfor- 561

mance degradation in knowledge-intensive QA 562

tasks. Specifically, removing the knowledge com- 563

pleteness comparison (-KCC) adversely affects 564

completeness, the elimination of the knowledge 565

factuality comparison (-KFC) undermines factu- 566

ality, and the removal of the knowledge logicality 567

comparison (-KLC) diminishes logicality. Al- 568

though deleting and revising atomic knowledge 569

can impact logicality, shuffling has been found 570

more effective in improving coarse-grained log- 571

icality for LLMs. Furthermore, removing all 572

coarse-grained knowledge comparison sets (-KC) 573

results in a significant drop in performance across 574

all aspects of the knowledge-intensive QA task. 575

5.4 Case study 576

We conduct several case studies and find that Know- 577

Tuning is more effective at generating complete, 578

factual and logical answers than baselines across 579

various sizes of LLMs. More details of our case 580

study results are in Appendix E. 581

6 Conclusions 582

In this paper, we focus on improving the knowl- 583

edge awareness of LLMs via fine-tuning for com- 584

plex knowledge-intensive tasks. We have pro- 585

posed KnowTuning to fine-tune LLMs through 586

fine-grained knowledge augmentation and coarse- 587

grained knowledge comparison stages. We have 588

conducted comprehensive experiments on generic 589

and medical domain QA datasets, demonstrating 590

the effectiveness of KnowTuning through auto- 591

matic and human evaluations, across various sizes 592

of LLMs. Moreover, KnowTuning generates more 593

facts with less factual error rate under fine-grained 594

facts evaluation. Our code and dataset are avail- 595

able at https://anonymous.4open.science/r/ 596

KnowTuning-345D. 597
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Limitations598

In this study, KnowTuning is mainly aimed at599

generic and medical knowledge-intensive tasks, we600

plan to adopt KnowTuning to other tasks such as601

legal domain QA (Zhong et al., 2020) and math-602

ematical reasoning (Luo et al., 2023). Moreover,603

our efforts have been concentrated on enhancing604

the knowledge awareness of LLMs during the fine-605

tuning stage. Future studies will aim to explore606

improving knowledge awareness of LLMs in the607

pre-training stage (Rosset et al., 2020).608

Ethics Statement609

KnowTuning mainly focuses on completeness, fac-610

tuality, and logicality, but not social bias or the po-611

tential for generating harmful or toxic content (He-612

witt et al., 2024). We plan to adopt our method613

to reduce social bias and harmful content at fine-614

grained and coarse-grained levels in future work.615
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Appendix1093

A Details of Datasets1094

• Dolly (Conover et al., 2023): Given our focus on1095

open-ended generic domain QA, we selected QA1096

pairs specifically categorized under "open_qa" 1097

and "general_qa" for our dataset. We filter 4,000 1098

QA pairs for training, 200 QA pairs for valida- 1099

tion, and 200 QA pairs for testing. 1100

• MedQuAD (Abacha and Demner-Fushman, 1101

2019): The dataset covers 37 different question 1102

types. In this paper, following (August et al., 1103

2022), we filter QA pairs of the category “Infor- 1104

mation” for giving definitions and information 1105

about medical terms. We filter 4000 QA pairs 1106

for training, 200 QA pairs for validation and 200 1107

QA pairs for testing. 1108

B Details of Baselines 1109

• Base: We adopt the Alpaca template (Taori et al., 1110

2023) for testing the Llama2-base model (Tou- 1111

vron et al., 2023) under zero-shot setting. 1112

• SFT: We follow standard vanilla fine-tuning loss 1113

in Eq. 1 to train LLMs on original QA datasets. 1114

• RLAIF (Bai et al., 2022; Lee et al., 2023): We 1115

leverage gpt-3.5-turbo to annotate overall help- 1116

fulness scores and construct generic helpfulness 1117

comparison sets. We adopt DPO (Rafailov et al., 1118

2023) for generic helpfulness comparison sets 1119

optimization. 1120

• FactTune (Tian et al., 2023): We follow Min et al. 1121

(2023) to first break eacn candidate answers into 1122

individual facts, and prompt LLMs to measure 1123

the correctness of each fact based on the golden 1124

answer as a reference.1 Then, we construct fac- 1125

tuality comparison sets by the percentage of cor- 1126

rect facts. Finally, we adpot DPO (Rafailov et al., 1127

2023) for factuality comparison sets optimiza- 1128

tion. 1129

C Details of Evaluation 1130

C.1 GPT-4 Evaluation 1131

This section provides specifics of the GPT-4 prompt 1132

utilized for reference-based evaluation, employing 1133

gpt4-turbo. Figure 3 illustrates the adapted prompt 1134

from Zheng et al. (2024), aimed at assessing the 1135

completeness, factuality, and logicality of answers. 1136

To avoid positional bias (Ko et al., 2020; Wang 1137

et al., 2023e), we evaluate each answer in both 1138

positions during two separate runs. 1139

C.2 Human Evaluation 1140

For the human evaluation, we hired people with 1141

undergraduate degrees and undergraduate medical 1142

degrees to annotate generic QA and medical QA 1143

1https://github.com/shmsw25/FActScore
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[System prompt]
You are a helpful and precise assistant for checking the quality of the answer.

[User prompt]
[Question] 
{question}

[The Start of Reference Answer] 
{answer_ref} 
[The End of Reference Answer]

[The Start of Assistant 1’s response] 
{answer_a}
[The End of Assistant 1’s response]

[The Start of Assistant 2’s response] 
{answer_b}
[The End of Assistant 2’s response]
We would like to request your feedback on the performance of two AI assistants in 
response to the user question displayed above. 
Based the reference answer, you should rate the Knowledge Completeness, Knowledge 
Factuality and Knowledge Logicality of their responses. Each aspect of each assistant
receives an score on a scale of 1 to 10, where a higher score indicates better performance. 
Please generate Knowledge Completeness, Knowledge Factuality and Knowledge 
Logicality scores for each assistant in order.
Please generate the scores in order and following format.
{'Knowledge Completeness':value,'Knowledge Factuality':value,'Knowledge Logicality':value}
Please first output two lines containing values indicating the Knowledge Completeness, 
Knowledge Factuality and Knowledge Logicality scores for Assistant 1 and 2, respectively. 
In the subsequent line, please provide a comprehensive explanation of your evaluation, 
avoiding any potential bias and ensuring that the order in which the responses were 
presented does not affect your judgment.

Figure 3: Prompts for GPT-4 evaluation.

You’ll be presented with a series of questions. For each question, two answers and a 
golden answer will be provided. Your task is to read both answers carefully and decide 
which one you believe is better. 
When judging, consider:
Completeness: It examines whether the answers provide comprehensive and sufficient 
knowledge relevant to the questions.
Factuality: It examines whether the knowledge in the answers is factually correct
Logicality: it examines whether the knowledge in the answers is logically rigorous and 
structured.

Question: 
{Q} 
Golden Answer:
{A0}
Answer A:
{A1}
Answer B: 
{A2}

Based on the golden answer, comparing these two answers, in terms of completeness, 
factuality and logicality, respectively. 
Give the win-tie-lose of Answer A compared to Answer B in each of the three aspects.

Figure 4: Instructions for human evaluation.
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test sets, respectively, to ensure the trustworthiness1144

of the human evaluations, and we allowed the hu-1145

man evaluators to access Wikipedia to further vali-1146

date the knowledge during the evaluation process.1147

Instructions for human evaluation are depicted in1148

Figure 4.1149

C.3 Fine-grained facts evaluation1150

Following Min et al. (2023), we first break candi-1151

date answers into individual facts, and use gpt-3.5-1152

turbo to measure the correctness of each fact based1153

on the golden answer as a reference.11154

D Details of Implementation1155

D.1 Prompts for Extracting, Rewriting, and1156

Revising1157

Details for the prompts used in Extract(·),1158

Rewrite(·), and Revise(·) are provided. Figures 5,1159

6, 7 and 8 display the prompts for extracting1160

atomic knowledge, rewriting fine-grained ques-1161

tions, rewriting fine-grained answers, and revising1162

atomic knowledge into nonfactual knowledge, re-1163

spectively.1164

D.2 Reliability of atomic knowledge1165

extraction1166

To evaluate the reliability of atomic knowledge ex-1167

traction, we first sample 50 instances of genericQA1168

dataset Dolly. We manually checked these data1169

and find that only 3 instances required further sepa-1170

ration or merging of atomic facts, illustrating the1171

reliability of extracting atomic facts using gpt3.5-1172

turbo.1173

D.3 Training1174

During the training phase, the AdamW optimizer1175

(Loshchilov and Hutter, 2019) is utilized with ini-1176

tial learning rates of 1 · 10−4 for SFT and 5 · 10−61177

for DPO. The batch sizes for SFT and DPO are set1178

to 32 and 16, respectively, with SFT undergoing 31179

epochs of training and DPO 1 epoch. The filtering1180

and deleting percentages, α and β, are both fixed1181

at 0.5. We determine the hyperparameters through1182

pilot experiments. Training leverages PEFT (Man-1183

grulkar et al., 2022), LLaMA-Factory (Hiyouga,1184

2023) and LoRA (Hu et al., 2022).1185

D.4 Cost Analysis1186

The cost of KnowTuning is lower than that of the1187

baseline methods RLAIF and FactTune. Specifi-1188

cally, in the generic domain QA dataset Dolly, the1189

costs are as follows: KnowTuning is $8.45, RLAIF 1190

is $9.94, and FactTune is $10.53. This cost differ- 1191

ence arises because RLAIF necessitates pairwise 1192

comparisons for assessing the overall helpfulness 1193

of all candidate answers, while FactTune requires a 1194

detailed factuality evaluation for each fact across all 1195

candidate answers, thereby increasing their dataset 1196

comparison construction costs. 1197

E Details of Case Study 1198

As illustrated in Figures 9 and 10, the case studies 1199

evaluate answers generated by four methods: SFT, 1200

RLAIF, FactTune, and KnowTuning across various 1201

sizes. Our findings indicate that KnowTuning ex- 1202

cels at producing answers that are more complete, 1203

factual, and logical across various sizes of LLMs, 1204

as detailed below: 1205

• As shown in Figure 9 for the case study based 1206

on backbone Llama2-7b-base, KnowTuning gen- 1207

erates more complete and logical answers com- 1208

pared to all baselines. Although RLAIF produces 1209

more knowledge compared to SFT, it results in 1210

fewer logical answers because it does not explic- 1211

itly focus on logicality optimization. FactTune, 1212

on the other hand, focuses on improving the per- 1213

centage of factualness and performs poorly in 1214

terms of answer completeness and logic. This 1215

illustrates the need for multiple aspects of coarse- 1216

grained knowledge awareness. 1217

• As shown in Figure 10 for the case study based on 1218

backbone Llama2-13b-base, KnowTuning gener- 1219

ates content that is more informative and factual, 1220

and the logic between the knowledge is more log- 1221

ical. Although RLAIF generates multiple aspects 1222

of knowledge, it does not provide fine-grained 1223

knowledge in the answer. FactTune generates 1224

detailed information such as Canada’s domestic 1225

population and GDP, but it provides factually in- 1226

correct information. This further underscores the 1227

critical need for enhanced fine-grained knowl- 1228

edge awareness. 1229
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Please breakdown the following sentence into independent facts: He made his acting debut in the film The 
Moon is the Sun’s Dream (1992), and continued to appear in small and supporting roles throughout the 
1990s.
- He made his acting debut in the film.
- He made his acting debut in The Moon is the Sun’s Dream.
- The Moon is the Sun’s Dream is a film.
- The Moon is the Sun’s Dream was released in 1992.
- After his acting debut, he appeared in small and supporting roles.
- After his acting debut, he appeared in small and supporting roles throughout the 1990s.
Please breakdown the following sentence into independent facts: He is also a successful producer and 
engineer, having worked with a wide variety of artists, including Willie Nelson, Tim McGraw, and Taylor Swift.
- He is successful.
- He is a producer.
- He is a engineer.
- He has worked with a wide variety of artists. - Willie Nelson is an artist.
- He has worked with Willie Nelson.
- Tim McGraw is an artist.
- He has worked with Tim McGraw.
- Taylor Swift is an artist.
- He has worked with Taylor Swift.
Please breakdown the following sentence into independent facts: In 1963, Collins became one of the third 
group of astronauts selected by NASA and he served as the back-up Command Module Pilot for the Gemini 
7 mission.
- Collins became an astronaut.
- Collins became one of the third group of astronauts.
- Collins became one of the third group of astronauts selected.
- Collins became one of the third group of astronauts selected by NASA.
- Collins became one of the third group of astronauts selected by NASA in 1963. - He served as the 
Command Module Pilot.
- He served as the back-up Command Module Pilot.
- He served as the Command Module Pilot for the Gemini 7 mission.
Please breakdown the following sentence into independent facts: In addition to his acting roles, Bateman 
has written and directed two short films and is currently in development on his feature debut.
- Bateman has acting roles.
- Bateman has written two short films.
- Bateman has directed two short films.
- Bateman has written and directed two short films.
- Bateman is currently in development on his feature debut.
Please breakdown the following sentence into independent facts: Michael Collins (born October 31, 1930) is 
a retired American astronaut and test pilot who was the Command Module Pilot for the Apollo 11 mission in 
1969.
- Michael Collins was born on October 31, 1930.
- Michael Collins is retired.
- Michael Collins is an American.
- Michael Collins was an astronaut.
- Michael Collins was a test pilot.
- Michael Collins was the Command Module Pilot.
- Michael Collins was the Command Module Pilot for the Apollo 11 mission.
- Michael Collins was the Command Module Pilot for the Apollo 11 mission in 1969.
Please breakdown the following sentence into independent facts: He was an American composer, conductor, 
and musical director. - He was an American.
- He was a composer.
- He was a conductor.
- He was a musical director.
Please breakdown the following sentence into independent facts: She currently stars in the romantic comedy 
series, Love and Destiny, which premiered in 2019. - She currently stars in Love and Destiny.
- Love and Destiny is a romantic comedy series.
- Love and Destiny premiered in 2019.
Please breakdown the following sentence into independent facts: During his professional career, McCoy 
played for the Broncos, the San Diego Chargers, the Minnesota Vikings, and the Jacksonville Jaguars.
- McCoy played for the Broncos.
- McCoy played for the Broncos during his professional career.
- McCoy played for the San Diego Chargers.
- McCoy played for the San Diego Chargers during his professional career. - McCoy played for the 
Minnesota Vikings.
- McCoy played for the Minnesota Vikings during his professional career. - McCoy played for the 
Jacksonville Jaguars.
- McCoy played for the Jacksonville Jaguars during his professional career.
Please breakdown the following sentence into independent facts

Figure 5: Prompts for extracting atomic knowledge in the answer (Min et al., 2023).
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[System prompt]
I want you to act as an Excellent Rewriter. Your objective is to rewrite a specific question that 
asks for knowledge of the relevant aspects of the given facts. Please read the example 
carefully and follow the format of the example to generate it.

[User prompt]
#Example#:
#Given Facts#:
- Sandworms are huge.
- Sandworms are aggressive.
- Sandworms live in the sand seas.

#Rewritten Question#:
- What is the size, aggressiveness, and habitat of sandworms?

#Example#:
#Given Facts#:
- A Series I-Bond helps protect from inflation.
- The inflation rate is determined by the treasury department.
- The inflation rate is adjusted twice a year.

#Rewritten Question#:
- In terms of inflation protection, how does a Series I-Bond function, who sets its inflation rate, 
and how often is this rate reviewed and adjusted?

#Example#:
#Given Facts#:
- An apple is produced by an apple tree.
- Apple trees are cultivated worldwide.

#Rewritten Question#:
- How is the apple produced by apple trees, and what is the scope of their cultivation globally?

You should rewrite the given question using the following rules:
You should try your best not to make the #Rewritten Question# become verbose.
#Rewritten Question# can only add 10 to 20 words into #Given Question#.
#Rewritten Question# should contain more specific relevant intentions to the #Given Facts#.
‘#Given Question#’, ‘#Rewritten Question#’, ‘given question’, and ‘rewritten question’ are not 
allowed to appear in #Rewritten Question#.

#Given Facts#:
{difficult facts}

#Rewritten Question#:

Figure 6: Prompts for rewriting fine-grained questions.

[System prompt]
I want you to act as a helpful assistant. Your objective is to rewrite a high-quality answer to 
the given question based on the given facts.

[User prompt]
#Given Question#:
{fine-grained question}

#Given Facts#:
{difficult facts}

#Answer#:

Figure 7: Prompts for rewriting fine-grained answers.
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[System prompt]
I want you to act as an Excellent Reviser. Your objective is to revise the given facts into 
incorrect facts. Please read the example carefully and follow the examples to generate it.

[User prompt]
#Example#
#Given Facts#:
- Sandworms are huge.
- Sandworms are aggressive.
- Sandworms live in the sand seas.

#Incorrect Facts#:
- Sandworms are tiny.
- Sandworms are timid.
- Sandworms live in the ocean.

#Example#
#Given Facts#:
- A Series I-Bond helps protect from inflation.
- The inflation rate is determined by the treasury department.
- The inflation rate is adjusted twice a year.

#Incorrect Facts#:
- A Series I-Bond exacerbates inflation.
- The inflation rate is determined by random selection.
- The inflation rate is adjusted once every decade.

#Example#
#Given Facts#:
- An apple is produced by an apple tree.
- Apple trees are cultivated worldwide.

#Incorrect Facts#:
- A pineapple is produced by an apple tree.
- Apple trees are only found in Antarctica

You should revise the given facts using the following rules:
The number of #Incorrect Facts# has to be the same as the #Given Facts#

#Given Facts#:
{atomic facts}

#Incorrect Facts#:

Figure 8: Prompts for revising atomic facts into incorrect facts.
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Question:
Name different kinds of cheese

SFT:
There are many kinds of cheese. They are typically categorized by the region where they originate. For 
example, cheddar cheese originates from England, whereas Gouda cheese originates from the 
Netherlands. Other kinds of cheese include Swiss, Parmesan, mozzarella, Brie, Camembert, Roquefort, 
and blue cheese.

RLAIF:
There are many different kinds of cheese, each with its own unique flavor and texture. Some of the 
most popular types of cheese include cheddar, mozzarella, brie, gouda, and feta. Cheddar is a hard 
cheese that is often used in grilled cheese sandwiches and macaroni and cheese. Mozzarella is a soft, 
white cheese that is often used in pizza. Brie is a soft, creamy cheese that is often used in desserts. 
Gouda is a hard, yellow cheese that is often used in grilled cheese sandwiches. Feta is a soft, white 
cheese that is often used in salads.

FactTune:
There are many different kinds of cheese, including cheddar, brie, gouda, mozzarella, blue cheese, 
and feta. Each type of cheese has its own unique flavor, texture, and aroma.

KnowTuning:
There are many different kinds of cheese, each with its own unique flavor and texture. Some common 
types of cheese include:
1. Mozzarella: A soft, stretchy cheese that is commonly used in pizza and pasta dishes.
2. Cheddar: A sharp, tangy cheese that is often used in grilled cheese sandwiches and macaroni and 
cheese.
3. Gouda: A creamy, slightly sweet cheese that is popular in grilled cheese sandwiches and salads.
4. Brie: A soft, creamy cheese that is often served with fruit or crackers.
5. Camembert: A creamy, slightly runny cheese that is popular in French cuisine.
6. Feta: A tangy, salty cheese that is commonly used in Greek salads and as a topping for pasta 
dishes.
7. Parmesan: A hard, sharp cheese that is often grated over pasta dishes or used in sauces.
8. Cheddar: A hard, crumbly cheese that is often used in grilled cheese sandwiches and macaroni and 
cheese.
9. Gruyere: A nutty, slightly sweet cheese that is popular in Swiss dishes and as a topping for mashed 
potatoes.
10. Parmigiano-Reggiano: A hard, aged cheese that is popular in Italian cuisine and often grated over 
pasta dishes.
11. Emmental: A Swiss cheese known for its distinctive holes, often used in fondue and sandwiches.
12. Edam: A mild, semi-hard cheese that is popular in sandwiches and salads.
13. Gorgonzola: A blue cheese with a tangy flavor that is often served with fruit or crackers.
14. Fontina: A creamy, nutty cheese that is often used in pasta dishes and fondue.
15. Ricotta: A soft, creamy cheese that is commonly used in pasta dishes and as a filling for ravioli.

Figure 9: Case study for intuitive comparisons on generic QA dataset based on Llama2-7b-base.
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Question:
What is Canada known for?

SFT:
Canada is known for its beautiful landscape, which is the result of a combination of natural geographic 
features and human-made efforts to preserve nature. 
Canada is also known for its winters, which are long and cold in most regions. Canadians have 
adapted to these harsh winters and enjoy a variety of winter sports.
Canada is also known for its diverse population and its tolerance for different cultures and religions. 
This has led to a vibrant multicultural society that is open to new ideas and experiences.

RLAIF:
Canada is known for its diverse landscape, including the Rocky Mountains, the Canadian Shield, and 
the Great Lakes. Canada is also known for its natural resources, including oil, gas, and minerals. 
Canada is also known for its political stability and strong economy.

FactTune:
Canada is known for its natural beauty, including the Rocky Mountains, the Great Lakes, and the 
Canadian Rockies. Canada is also known for its cultural diversity, with a population of over 37 million 
people from a variety of backgrounds. Canada is also known for its strong economy, with a GDP of 
over $1.8 trillion in 2020. Canada is also known for its high quality of life, with a high standard of living 
and a strong social safety net.

KnowTuning:
Canada is known for its stunning natural beauty, including vast forests, pristine lakes, and snow-
capped mountains. The country is home to the Rocky Mountains, the Niagara Falls, and the Great 
Lakes, which offer breathtaking views and outdoor adventures for visitors. 
Canada is also renowned for its diverse wildlife, including polar bears, moose, and grizzly bears, 
making it a popular destination for wildlife enthusiasts. 
Additionally, Canada is known for its vibrant cities, such as Toronto, Vancouver, and Montreal, which 
offer a mix of urban amenities and natural attractions. 
Overall, Canada is a country that offers a unique blend of natural beauty, cultural diversity, and urban 
sophistication, making it a popular destination for travelers from around the world.

Figure 10: Case study for intuitive comparisons on generic QA dataset based on Llama2-13b-base.
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