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ABSTRACT

This paper focuses on the problem of feature condensation in early epochs of
learning multi-layer perceptrons (MLPs). In fact, the feature condensation is re-
lated to many other phenomena in deep learning, and people have some empirical
operations to avoid these problems. However, current studies do not well explain
essential mechanisms that lead to the feature condensation, i.e., which factors will
determine (or alleviate) the feature condensation. The explanation of determinants
of feature condensation is crucial for both theoreticians and practitioners. To this
end, we theoretically analyze the learning dynamics of MLPs, which clarifies how
four typical operations (including batch normalization, momentum, weight initial-
ization, and L2 regularization) affect the feature condensation. The code has been
attached with the submission.

1 INTRODUCTION

Explaining the underlying mechanisms behind deep neural networks (DNNs) is crucial for deep-
learning theory. In this study, we theoretically explain the problem of feature condensation in the
early training of MLPs. That is, as Figure 1(a, b) shows, features (and feature gradients) of different
categories become increasingly similar to each other. In some cases, the feature diversity keeps
decreasing and finally all samples of different categories condense into almost the same feature.
We can consider this as the feature condensation.

In fact, similar condensation phenomena have been observed recently. Previous studies mainly
proved the existence of the condensation problem under some restrictive settings. For example,
Zhou et al. (2022) analyzed the condensation phenomenon when the strength of weights in neural
networks was sufficiently small, i.e., the L2 norm of weights was almost zero. Williams et al. (2019);
Lyu et al. (2021); Boursier et al. (2022); Wang & Ma (2023) analyzed the condensation problem on a
two-layer ReLU network when assuming that the feature direction of each arbitrary training sample
could act as a perfect linear classifier that correctly classifies all training samples.

To this end, we aim to theoretically explain the feature condensation phenomenon in more realistic
settings, without assuming sufficiently small parameters of DNNs or linearly separable data1 More
crucially, we find that the feature condensation potentially correlates to many typical phenomena
observed in deep learning and some practical tricks. Our research aims to conceptually explain how
and why engineering tricks or designs affect the feature condensation.

(1) Long plateau of the training loss & learning sticking. It is well known that the training of DNNs
usually has two phases. As Figure 1(c) shows, there is a long plateau of the training loss in the first
phase. Then, in the second phase, the training loss suddenly begins to decrease fast. The first phase
can be considered as the feature condensation. The extreme feature condensation on deep DNNs
can even make the loss minimization get stuck. Such a learning-sticking problem can be considered
an infinitely long plateau.

(2) Explaining common tricks for learning. In practice, many empirical tricks have been proposed to
overcome the above learning problems. In this study, we focus on batch normalization, momentum,
weight initialization, and L2 regularization. Although previous studies (Glorot & Bengio, 2010;
Saxe et al., 2013; Santurkar et al., 2018) have provided insightful analysis for these well-known

1Appendix A discusses the limitation of previous studies on the condensation problem.
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Figure 1: (a) The condensation problem is reflected by the increasing cosine similarity of feature
gradients between different samples of a category, until feature gradients of all samples condense
into almost the same feature gradient. The cosine similarity of gradients is quite large.2 (b) Feature
condensation means that samples of different categories share almost the same features. We visualize
the learning dynamics of an intermediate-layer feature in a 9-layer MLP. (c) The first phase (learning
iterations before the dotted line) has an increasing length and finally becomes the learning-sticking
problem (purple curve), when the DNN has more layers.

operations, we discover these operations can be uniformly explained from a new perspective, i.e.,
explaining why and how these operations affect the feature condensation phenomenon.

Therefore, in this paper, we aim to explore the fundamental mechanism behind the feature conden-
sation phenomenon. In short, we theoretically analyze the complex learning dynamics of an MLP,
and we prove that a hybrid of conditions will make the training of an MLP more likely to perform
like a “self-enhanced system” towards the feature condensation phenomenon in early iterations.

Unlike previous studies, our theory provides new insights into how engineering tricks or designs
are potentially correlated to feature condensation. (1) Our theory indicates that deeper DNNs are
more likely to exhibit feature condensation phenomena. (2) Our analysis shows that the feature
condensation can be alleviated when the DNN is trained with momentum and batch normalization
layers. (3) In addition, the feature condensation can also be strengthened when DNNs are trained
with L2 regularization or with small initial weights.

2 FEATURE CONDENSATION PHENOMENON

It has been widely observed that the loss decrease of DNNs is likely to have two phases (Saxe
et al., 2013; Simsekli et al., 2019; Stevens et al., 2020). As Figure 1 (c) shows, the training loss
does not decrease significantly in the first phase, but it suddenly begins to decrease in the second
phase. In this paper, we analyze the counter-intuitive phenomenon that both the diversity of
intermediate-layer features over different samples and the diversity of feature gradients keep
decreasing in the first phase. In particular, in some cases, samples of different categories may
even share almost the same feature, and the learning process may get stuck. We consider this
as a feature condensation phenomenon.

We consider an MLP f with L consecutive linear layers, each followed by a ReLU layer. Only the
last linear layer is followed by a softmax operation. Let W (l)

t ∈ Rh×d denote the weight matrix of
the l-th linear layer with h neurons (1 ⩽ l ⩽ L), and W

(l)
t has been learned for t iterations. Given an

input sample x, the layer-wise forward propagation in the l-th layer is represented as

F
(l)
t = ReLU(W

(l)
t F

(l−1)
t ) = D

(l)
t W

(l)
t F

(l−1)
t , (1)

where F
(l)
t ∈ Rh denotes the output feature of the l-th layer after the t-th iteration. D

(l)
t denotes a

diagonal matrix, which represents gating states in the ReLU layer, D(l)

t,(i,i) ∈ {0, 1}.

Thus, the feature condensation is shown in Figure 2(a,b). Given any two input samples x1 and
x2, both the cosine similarity of features cos(F

(l)
t |x1 , F

(l)
t |x2), and the cosine similarity of gradients

2Due to the curse of dimensionality, two high-dimensional vectors are much more likely to be orthogonal
to each other than two low-dimensional vectors (Lewandowsky et al.; Arora, 2013)
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Figure 2: The feature condensation phenomenon. (a) Cosine similarity of features between differ-
ent categories Ex,x′∈X [cos(F

(l)
t |x, F (l)

t |x′)] keeps increasing in the first phase (left to the dotted line),
until the second phase. The low cosine similarity indicates the high diversity. (b) Cosine similar-
ity of feature gradients between different samples of a category Ex,x′∈Xc [cos(Ḟ

(l)
t |x, Ḟ (l)

t |x′)] keeps
increasing in the first phase until the second phase, where Xc denotes samples of the category c.
Please see Appendix B for results on more DNNs. (c) The learning-sticking problem may occur
when DNNs are very deep, which can be considered as an extremely long first phase.

cos(Ḟ
(l)
t |x1 , Ḟ

(l)
t |x2) keep increasing towards a very high value. Ḟ (l)

t denotes the gradient of the loss
w.r.t. the feature F

(l)
t . Besides, the increasing trend of feature similarity only exists in the first phase.

• Besides, the learning-sticking problem can be considered as an extremely long first phase. As
Figure 1(c) shows, the length of the first phase increases along with the network complexity (depth).
In extreme cases, when DNNs are very deep, or the task is difficult, the first phase reaches an infinite
length, and the learning gets stuck (please see Figure 2(c) and Appendix C for more discussions).

• The feature condensation phenomenon is widely shared by different DNNs learned for different
tasks. In early epochs (or iterations) of the training process, we observed such feature condensa-
tion phenomena on MLPs, VGG-11 (Simonyan & Zisserman, 2014), ResNet-18/34 (without batch
normalization) (He et al., 2015), the Vision Transformer (without layer normalization) (Dosovitskiy
et al., 2020), and the long short-term memory (LSTM) concatenated with MLPs. These DNNs are
trained on different types of data, including image data (MNIST (LeCun et al., 1998), CIFAR-10
(Krizhevsky et al., 2009), and the Tiny ImageNet dataset Le & Yang (2015)), tabular data (two UCI
datasets of census income and TV news (Asuncion & Newman, 2007)), and natural language data
(CoLA (Warstadt et al., 2019), SST-2 (Socher et al., 2013), and AGNews (Del Corso et al., 2005)).
We also tested MLPs with different loss functions, with Leaky ReLU layers (Maas et al., 2013),
with different learning rates, and with different batch sizes. Figure 2(a,b) shows feature condensa-
tion phenomena on these DNNs, and please see Appendix B for results on more modern DNNs.

3 EXPLAINING THE FEATURE CONDENSATION PHENOMENON

In Sections 3.1 and 3.2, we find that the condensation of feature gradients over different samples is
owing to the phenomenon that different neurons in a layer are optimized towards a self-enhancing
common direction in the first phase. More crucially, our proof does not follow assumptions of lin-
early separable data or two-layer ReLU networks (Williams et al., 2019; Lyu et al., 2021). Notably,
Section 3.3 further shows that such a new explanation allows us to analyze how the layer number of
DNNs and four typical tricks affect the condensation phenomenon.

3.1 TWO PERSPECTIVES OF THE COMMON LEARNING DIRECTION

In this subsection, we discuss a new explanation of the feature condensation, i.e,, the weight
condensation is a possible reason for the feature condensation. Unlike previous studies, we
aim to theoretically analyze and experimentally verify the conjecture that different neurons in a
layer are optimized towards a common direction in the first phase. Thus, in Section 3.2, we find
that a relatively vague initial common direction can be further enhanced significantly, just like a
“self-enhanced system.” The self-enhanced common direction is the essential mechanism of the
feature condensation phenomenon.

Thus, let us temporarily go back to the conjecture of the common direction. At the beginning of the
learning, different neurons are originally optimized towards different directions, but then gradients
of different neurons gradually change to a similar direction. Let Ḟ

(l)
t denote the gradient of the

loss w.r.t. the feature F
(l)
t at the l-th layer. Then, according to Eq. (1), back propagation of feature
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gradients Ḟ
(l)
t ∈ Rh at the l-th layer can be written as

Ḟ
(l−1)
t = W

(l)⊤

t D
(l)
t Ḟ

(l)
t . (2)

The emergence of a common direction of weight changes means that gradients of the d weight
vectors in W

(l)⊤

t = [w
(l)
t,1, w

(l)
t,2, · · · , w

(l)
t,d]

⊤∈ Rd×h gradually become approximately collinear to each
other, i.e., ∀1≤ i≤j≤d, ∂Loss/∂w

(l)
t,i and ∂Loss/∂w

(l)
t,j become roughly collinear.

Remark 1. Let us assume that different weight vectors [w
(l)
t,1, w

(l)
t,2, · · · , w

(l)
t,d]

⊤ have a dominating
common direction C(l)∈ Rh. Then, we can represent w(l)

t,i = βiC
(l)+ϵi, where βi ∈ R denotes the co-

efficient for C(l); ϵi ∈ Rh denotes a small residual; β = [β1, β2, · · · , βd]
⊤, and ϵ = [ϵ1, ϵ2, · · · , ϵd]⊤.

Then, we have
Ḟ

(l−1)
t = (C(l)⊤D

(l)
t Ḟ

(l)
t ) · β + ϵD

(l)
t Ḟ

(l)
t . (3)

Remark 1 clarifies the meaning of the conjecture, i.e., explaining why the enhancement of such
a common direction decreases the diversity of feature gradients. Specifically, during the learning
process, if the DNN keeps optimizing W

(l)⊤

t along the common direction C(l) for a long time, which
keeps strengthening the value C(l)⊤D

(l)
t Ḟ

(l)
t ∈R, then feature gradients Ḟ

(l−1)
t of different samples are

gradually pushed towards the same direction β. In other words, as long as different weight vectors
are optimized towards the same dominating direction, then feature gradients Ḟ

(l−1)
t are pushed in the

same direction β.

Therefore, the first core task of proving the condensation of feature gradients is to explain the
existence of the common direction shared by different weight vectors.

3.1.1 PERSPECTIVE 1 BASED ON WEIGHT CHANGES

We propose two perspectives to illustrate how different weight vectors w
(l)
t,i are changed along a

common direction during the learning process. Section 3.2 will use such two perspectives to explain
why the common direction will be further strengthened, just like a “self-enhanced system.”

Specifically, we analyze the learning dynamics of the MLP and find that the weight change in the l-th
layer is dominated by the common direction C(l). For clarity, we omit the superscript (l) to simplify
the notation in Section 3.1.1, i.e., ∆w

(l)
t,i and C(l) can be simplified as ∆wt,i and C, respectively. Let

∆W⊤
t = [∆wt,1,∆wt,2, · · · ,∆wt,d]

⊤ denote weight changes of d weight vectors in the l-th layer, i.e.,
∆W⊤

t = W⊤
t −W⊤

t−1. Then, we decompose ∆W⊤
t into the component along a common direction C

and a component along other directions, as follows.
∆W⊤

t = ∆VtC
⊤ +∆εt, (4)

where∆Vt = [∆vt,1, · · · ,∆vt,d]
⊤ ∈ Rd denotes the coefficient vector for weight changes of different

weight vectors along the common direction C. ∆εt ∈ Rd×h is a relatively small “noise” term, whose
rows are orthogonal to C, i.e., ∆εtC = 0. The computation of C is provided in Lemma 1.
Lemma 1. (Proof in Appendix E.1) According to Eq. (4), given weight changes over different
samples ∆W⊤

t , we can compute the common direction C by minimizing the fitting error ∆ϵt,
when we use ∆vt,iC

⊤ to approximate ∆w⊤
t,i over different samples across different iterations.

I.e., minC,∆Vt|x
(
Et∈[Tstart,Tend]Ex∈X ∥∆εt|x∥2F

)
, s.t. ∆εt|x = ∆W⊤

t |x − ∆Vt|xC⊤. Thus, we obtain

∆Vt =
∆W⊤

t C

C⊤C
and ∆εt= ∆W⊤

t −∆W⊤
t

CC⊤

C⊤C
, s.t. ∆εtC = 0. Such settings minimize ∥∆εt∥F .

Lemma 2. (We can also decompose the weight W (l)
t into the component along the common direc-

tion C and the component εt in other directions. Proof is in Appendix E.2.) Given the weight W⊤
t

and the common direction C, the decomposition W⊤
t = VtC

⊤ + εt can be conducted as Vt =
W⊤

t C

C⊤C

and εt= W⊤
t −W⊤

t
CC⊤

C⊤C
s.t. εtC = 0. Such settings minimize ∥εt∥F .

Therefore, we conduct experiments to verify the dominating role of the primary common direction
C, i.e., the strength of the primary common direction is significantly greater than the strength of other
directions. To this end, let us focus on the average weight change over different samples ∆W t =
Ex∈X∆Wt|x. Then, we decompose ∆W t into components along five common directions as ∆W t =

C1∆V
⊤
1,t+C2∆V

⊤
2,t+· · ·+C5∆V

⊤
5,t+∆ε⊤5,t, where C1 = C is termed the primary common direction.

C2, C3, C4 and C5 represent the second, third, fourth, and fifth common directions, respectively. C1,
C2, C3, C4, and C5 are orthogonal to each other. Ci and ∆V i,t are computed based on Lemma 1
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Figure 3: The strength of different common directions in the CIFAR-10 dataset. We trained 9-layer
MLPs, where each layer of the MLP had 512 neurons. We illustrated results on the two categories
with the highest training accuracies. si = ∥Ci∆V

⊤
i ∥F measures the strength of weight changes along

the i-th common direction, where ∆V i = Et[∆V i,t]. The strength of the primary direction was much
greater than the strength of other directions. Please see Appendix D for more results on the MNIST
dataset and the Tiny ImageNet dataset.
Table 1: Strength of components of weight changes along the common direction and other directions.
We trained 9-layer MLPs on the CIFAR-10 dataset and the Tiny ImageNet dataset, respectively.
Each layer of the MLP had 512 neurons. The strength of the primary common direction was much
greater than those of other directions. Appendix D provides results on the MNIST dataset and
Appendix G explains the phenomenon that S(l)

1 , S(l)
2 , and S

(l)
3 do not decrease monotonically.

C
IF

A
R

-1
0

Category Cat Truck
S (×10−3) Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
S
(l)
primary 154.0±17.1 176.5±16.8 201.6±18.7 253.6±24.6 277.4±25.6 169.9±20.8 208.1±21.5 223.6±20.1 248.4±19.2 281.5±20.4

S
(l)
1 11.5±1.5 13.0±0.9 11.6±1.7 16.1±1.8 9.0±0.8 15.6±2.1 14.0±1.8 14.3±1.1 14.3±1.7 10.0±1.1

S
(l)
2 12.7±1.7 11.9±1.3 10.9±1.3 11.9±0.8 8.8±1.1 14.4±1.4 15.1±2.0 11.3±1.4 12.3±0.9 12.9±1.2

S
(l)
3 11.0±1.1 14.4±1.7 12.5±2.2 13.9±1.7 8.6±1.1 14.3±2.2 12.4±1.9 12.8±1.6 13.1±1.2 9.7±1.0

Ti
ny

Im
ag

eN
et

Category Flagpole Bottle
S (×10−3) Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
S
(l)
primary 97.8±3.7 143.9±5.6 198.9±8.1 259.8±10.1 322.8±12.7 202.3±12.2 234.4±13.1 276.8±13.9 345.2±16.6 440.2±22.2

S
(l)
1 10.6±0.9 9.5±0.8 14.4±1.4 24.9±1.3 8.8±1.0 10.3±1.4 11.2±1.6 12.2±1.3 11.9±1.1 13.2±1.6

S
(l)
2 7.5±0.9 7.9±1.2 9.7±1.2 9.2±1.2 8.3±0.6 10.4±1.1 11.6±1.0 13.8±1.3 10.0±0.8 13.6±1.2

S
(l)
3 7.1±0.8 9.1±1.1 11.3±1.0 17.9±2.2 16.6±1.5 11.6±1.4 15.7±1.4 10.7±1.1 10.8±1.2 19.8±1.6

when we remove the first (i− 1) components along the direction C, · · · , Ci−1 from the ∆W t. Figure
3 shows that the strength of the primary common component C1∆V

⊤
1 is approximately ten times

greater than the strength of the secondary common component C2∆V
⊤
2 . Please see Appendix F for

the detailed computation of Ci and more discussions.

3.1.2 PERSPECTIVE 2 w.r.t. THE INFLUENCE OF C(l+1) IN THE UPPER LAYER

We find that the weight change ∆W
(l)
t in the l-th layer is also dominated by the common direction

C(l+1) in the upper layer. In order to distinguish variables belonging to different layers, we add the
superscript (l) back to ∆W

(l)
t ,∆V

(l)
t , and ∆ε

(l)
t to denote the layer in the following paragraphs.

Theorem 1. (Proof in Appendix E.3) The weight change made by a sample can be decomposed into
(h+ 1) terms after the t-th iteration, as follows.

∆W
(l)
t = ∆W

(l)

primary,t +
∑h

k=1
∆W

(l,k)

noise,t = Γ
(l)
t F

(l−1)⊤

t + κ
(l)⊤

t , (5)

where ∆W
(l)
primary,t denotes the component along the primary common direction C(l+1), and

∆W
(l,k)
noise,t denotes the component along the k-th common direction ε

(l+1,k)
t in the noise term

ε
(l+1)
t . Specifically, ∆W

(l)
primary,t = D

(l)
t V

(l+1)
t C(l+1)⊤C(l+1)∆V

(l+1)⊤

t F
(l)
t F

(l−1)⊤

t /∥F (l)
t ∥22 and

∆W
(l,k)
noise,t = D

(l)
t ε

(l+1,k)
t ∆ε

(l+1)⊤

t F
(l)
t F

(l−1)⊤

t /∥F (l)
t ∥22. ε

(l+1,k)
t = ΣkkUkV⊤

k , where the SVD of
ε
(l+1)
t ∈ Rh×h′

is given as ε
(l+1)
t = UΣV⊤ (h ≤ h′), and Σkk ∈ R denotes the k-

th singular value. ε
(l+1)
t =

∑
k ε

(l+1,k)
t . Uk and Vk denote the k-th column of the ma-

trix U and V, respectively. Besides, we have ∀k ∈ {1, 2, . . . , h}, U⊤
k C(l+1) = 0. Con-

sequently, we have Γ
(l)
t = D

(l)
t V

(l+1)
t C(l+1)⊤C(l+1)∆V

(l+1)⊤

t F
(l)
t /∥F (l)

t ∥22 ∈ Rh, and κ
(l)⊤

t =

D
(l)
t ε

(l+1)
t ∆ε

(l+1)⊤

t F
(l)
t F

(l−1)⊤

t /∥F (l)
t ∥22∈ Rh×d.

Then, according to Theorem 1, we conduct experiments to illustrate the dominating influence of the
common direction C(l+1), i.e., the strength of ∆W

(l)
primary,t is significantly greater than the strength

of ∆W
(l,k)
noise,t. To this end, we compute the average strength of the component along C(l+1) over all

samples in X as S
(l)
primary = Et∈[Tstart,Tend]Ex∈X[∥∆W

(l)
primary,t|x∥F ]. Similarly, the strength of the com-

ponent along the k-th noise direction is computed as S
(l)
k= Et∈[Tstart,Tend]Ex∈X [∥∆W

(l,k)
noise,t|x∥F ]. Table
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1 illustrates that the strength of the primary component S(l)
primary is more than ten times greater than

the strength of components along noise directions S
(l)
1 , S

(l)
2 , and S

(l)
3 . Please see the discussion on

comparing the primary direction with the sum of all other directions’ strength in Appendix G.

3.2 ENHANCEMENT OF THE COMMON DIRECTION

The previous subsection owes condensation of feature gradients into the common direction of weight
change shared by different weight vectors in Eq. (3). Therefore, in this subsection, we explain that
the common direction of the weight change is very likely to be further enhanced, just like a “self-
enhanced system.” Such a self-enhanced system will explain the condensation phenomenon.

This subsection has three steps. In Section 3.2.1, we explain that the common direction can be
enhanced by training samples in a certain category in very early epochs. In Section 3.2.2, we extend
the enhancement of the common direction to a more generic case, i.e., explaining the enhancement
can also appear when using training samples of different categories. In Section 3.2.3, we further
show that the self-enhancement of the common direction decreases both the diversity of features and
the diversity of feature gradients, which actually explains the feature condensation phenomenon.

Before explaining the enhancement of the strength of the common direction, let us first clarify
assumptions in the proof. (1) Directly proving the emergence of a “self-enhanced system” from the
very beginning of training is difficult. Instead, we explain that the self-enhancement of the common
direction probably started under the background assumption that features of different samples have
been pushed a little bit towards a specific common direction. (2) The MLP usually first learns a few
categories, instead of simultaneously learning all categories. Experimental results in Figure 6 and
Appendix J have verified the trustworthiness of this assumption.

According to Eq. (4) and Eq. (5), weight changes made by the sample x can be given as

Perspective 1: ∆W
(l)
t = C(l)∆V

(l)⊤

t +∆ε
(l)⊤

t , Perspective 2: ∆W
(l)
t = Γ

(l)
t F

(l−1)⊤

t + κ
(l)⊤

t (6)

By comparing the above two perspectives, we discover an interesting potential that the common
direction C(l) is similar to ±Γ

(l)
t , and the feature F

(l−1)
t is similar to ±∆V

(l)
t .

Inspired by this, we aim to prove the self-enhancement of the strength of the common direction,
by explaining the intuition that the feature F

(l−1)
t and the vector V

(l)
t become more and more

similar to each other in the first phase.

3.2.1 ENHANCEMENT BY SAMPLES IN A CATEGORY

This is the first step of our analysis, i.e., proving the strength of the common direction is enhanced
by training samples in the same categories. Let us first consider the aforementioned background
assumption that features F

(l−1)
t of different samples have been pushed a little bit towards an initial

common direction. Although the assumed initial common direction is very vague and neglectable
compared to the feature condensation phenomenon, we prove that such a vague initial direction can
be further enhanced significantly and causes the feature condensation phenomenon. In fact, such an
initial common direction is quite normal in training3.

Thus, Theorem 2 explains how the strength of the common direction is enhanced by training samples
in the category c, i.e., F (l−1)

t and αcV
(l)
t become increasingly similar under the above background

assumption. We can consider cos(αcV
(l)
t ,∆F

(l−1)
t |x) ≥ 0 in Theorem 2 means that features of train-

ing samples in the same category c are all pushed towards a common direction αcV
(l)
t , and make

∆F
(l−1)
t |x highly similar to αcV

(l)
t , i.e., making features F

(l−1)
t |x in the category c become increas-

ingly similar to each other. On the other hand, cos(αc∆V
(l)
t |x, F (l−1)

t |x)≥0 in Theorem 2 means that
training samples in the category c all push V

(l)
t towards αcEx∈Xc [F

(l−1)
t |x], and make ∆V

(l)
t roughly

parallel to αcEx∈Xc [F
(l−1)
t |x], i.e., pushing weight coefficients of different neurons V

(l)
t towards the

average feature.

3We can obtain that there exists at least one learning iteration in the first phase, in which ∆F
(l−1)
t and

F
(l−1)
t of most samples have similar directions, and ∆V

(l)
t and V

(l)
t have similar directions. Please see Ap-

pendix H for more discussions.
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Figure 4: The average cosine similarity between the feature F
(l−1)
t and the vector α∆V

(l)
t over

different samples in the first phase. We conducted experiments on 9-layer MLPs trained on the (a)
CIFAR-10, and the (b) Tiny ImageNet. The shade in each subfigure represents the standard deviation
of the cosine similarity over different samples. The cosine similarity is quite large2.
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Figure 5: The change of o(l) in the first phase. We trained 9-layer MLPs on the (a) CIFAR-10 and
the (b) Tiny ImageNet. Each layer of the MLP had 512 neurons. Appendix D shows more results
on the MNIST dataset. The shade represents the standard deviation over different samples.

Lemma 3. (Proof in Appendix E.4) Given an input sample x ∈ X and a common di-
rection C(l) after the t-th iteration, if the noise term ε

(l)
t is small enough to satisfy

|∆V
(l)⊤

t F
(l−1)
t V

(l)⊤

t V
(l)
t C(l)⊤C(l)∆V

(l)⊤

t F
(l−1)
t | ≫ |∆V

(l)⊤

t F
(l−1)
t V

(l)⊤

t ε
(l)
t ∆ε

(l)⊤

t F
(l−1)
t |, we can

obtain cos(∆V
(l)
t , F

(l−1)
t ) ·cos(V (l)

t ,∆F
(l−1)
t ) ≥ 0, where ∆V

(l)
t =

∆W
(l)⊤
t C(l)

C(l)⊤C(l)
, and V

(l)
t =

W
(l)⊤
t C(l)

C(l)⊤C(l)
.

∆F
(l−1)
t denotes the change of features ∆F

(l−1)
t = F

(l−1)
t+1 − F

(l−1)
t made by the training sample x

after the t-th iteration. To this end, we approximately consider the change of features ∆F
(l−1)
t af-

ter the t-th iteration negatively parallel to feature gradients Ḟ
(l−1)
t , although strictly speaking, the

change of features is not exactly equal to the feature gradients.
Theorem 2. (Proof in Appendix E.5) For any pair of training samples x, x′∈Xc in the category c, if
[C(l)⊤D

(l)
t |xḞ (l)

t |x]·[C(l)⊤D
(l)
t |x′ Ḟ

(l)
t |x′ ] > 0 (i.e., F (l)

t |x and F
(l)
t |x′ have kinds of similarity in very early

iterations), then cos(αc∆V
(l)
t |x, F (l−1)

t |x)≥0, and cos(αcV
(l)
t ,∆F

(l−1)
t |x) ≥ 0, where αc∈{−1,+1} is

a constant for the category c.
We conduct two experiments to verify the above analysis. In the first experiment, we report
cos(αc∆V

(l)
t , F

(l−1)
t ) in Figure 4. The positive value of cos(αc∆V

(l)
t , F

(l−1)
t ) means that F

(l−1)
t

and V
(l)
t become increasingly collinear. This explains the dynamics behind cos(αc∆V

(l)
t , F

(l−1)
t ) in

Theorem 2. In the second experiment, we directly verify the claim in Lemma 3 that the strength
of the common direction is enhanced in a category, i.e., the feature F

(l−1)
t and the vector V

(l)
t

become more and more similar to each other. To this end, we measure the change of the value
o(l)= cos(∆V

(l)
t , F

(l−1)
t )·cos(V (l)

t ,∆F
(l−1)
t ). Figure 5 reports the average o(l) value over different sam-

ples at each iteration. For each sample x, o(l) is always positive and usually keeps increasing before
the very end of the first phase, which verifies Lemma 3. Besides, the assumption for a tiny ε

(l)
t in

Lemma 3 is verified by experimental results in Appendix E.4.

3.2.2 ENHANCEMENT BY DIFFERENT CATEGORIES

This is the second step of our analysis. In this step, we extend the finding “proving the common
direction is enhanced by a single category” in Section 3.2.1 to a more general case, i.e., proving
the strength of the common direction is enhanced by all training samples of different categories. In
other words, we show how F

(l−1)
t and αĉV

(l)
t become increasingly similar.

Assumption 1. We assume that the MLP encodes features of very few (a single or two) categories
in the first phase, instead of simultaneously learning all or most categories in this phase.
To this end, we propose Assumption 1, which indicates that MLPs first learn a single or two cate-
gories in the first phase. This assumption is verified by extensive experiments. For example, Figure 6
shows that only a single or two categories exhibit much higher accuracies than the random guessing
at the end of the first phase. Please see Appendix J for more experiments.
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Figure 6: The training accuracy of MLPs on the
CIFAR-10 dataset and the MNIST dataset. The ac-
curacy was evaluated at the end of the first phase.
The MLP only learned features of a single or two
categories in the first phase.

Therefore, the overall learning dynamics in the first phase can be roughly described, by combining
Theorem 2 and Assumption 1 as follows. Assumption 1 indicates that the overall learning effects
of all training samples are dominated by training samples in very few (a single or two) categories
ĉ. Based on this, Theorem 2 indicates two effects. First, features F

(l−1)
t of different samples are all

pushed towards the vector αĉV
(l)
t , where αĉ is determined by the dominating category/categories ĉ.

Second, V (l)
t is pushed towards αĉEx∈Xĉ [F

(l−1)
t |x]. Therefore, features F (l−1)

t of different samples and
αĉV

(l)
t enhance each other, just like a “self-enhanced system.” The “self-enhanced system” starts

from from the assumed state that ∆F
(l−1)
t and F

(l−1)
t of most samples have gotten vaguely similar

directions in an early epoch, and ∆V
(l)
t and V

(l)
t have vaguely similar directions. In other words, the

component along the common direction C(l)∆V
(l)⊤

t in Eq. (6) will be further enhanced.

3.2.3 THE INCREASING FEATURE SIMILARITY AND GRADIENT SIMILARITY

This is the third step, which finally explains the feature condensation phenomenon. As aforemen-
tioned, features F

(l−1)
t of different samples are consistently pushed towards the same vectorαĉV

(l)
t .

It increases the similarity between features of different samples Ex,x′∈X [cos(F
(l−1)
t |x, F (l−1)

t |x′)] in
the first phase. On the other hand, the increasing similarity between feature gradients can also be ex-
plained from two views. (1) The increasing feature similarity over different samples makes different
training samples generate similar gating states D(l)

t in each ReLU layer. The increasing similarity of
ReLU layers’ gating states also increases the similarity of feature gradients between different sam-
ples in the same category Ex,x′∈Xc[cos(Ḟ

(l−1)
t |x, Ḟ (l−1)

t |x′)]. (2) Another view is that the component
along the common direction C(l)V

(l)⊤

t in W
(l)
t is enhanced in the first phase. Because C(l) denotes

the principle weight direction of the i-th column w
(l)
t,i of W (l)

t , each weight vector w
(l)
t,i is optimized

towards the common direction C(l). Eq. (3) shows that the increasing similarity between w
(l)
t,i and

C(l) for all weight vectors boost the similarity between feature gradients of different samples.

Vanishing gradients on correctly classified samples destroy the “self-enhanced system.” All our
explanation focuses on the early epochs of training, when only a few training samples of one or two
dominating categories can be confidently classified. However, when the optimization of a single or
two dominating categories in the first phase soon saturates at the end of the first phase, gradients on
correctly classified samples of dominating categories vanish. Then, gradients from training samples
of other categories weaken the dominating role of a single or two categories in the learning process.
Thus, the “self-enhanced system” is destroyed, and the learning process enters the second phase.

3.3 THEORETICALLY ALLEVIATING THE FEATURE CONDENSATION PHENOMENON

We find that the explanation of the feature condensation phenomenon can clarify why four typical
operations usually alleviate or strengthen the feature condensation phenomenon, i.e., normalization,
momentum, initialization, and L2 regularization. Although these operations have been widely used,
previous studies failed to clarify the theoretical connection between these operations and the conden-
sation problem. To this end, our analysis can explain why and how such operations affect the feature
condensation phenomenon, although it is not proof of a strict sufficient condition or a necessary
condition for the feature condensation phenomenon.

Layer numbers of DNNs. We explain that deeper DNNs are more likely to exhibit the feature
condensation phenomenon. We have explained the self-enhancing trend of feature condensation in
each l-th layer in the MLP. Thus, according to Theorem 2, the feature condensation of a lower layer
boosts the initial similarity of input features in the adjacent upper layer, thereby further strengthening
the condensation of the upper layer. Thus, the deeper DNN is more likely to suffer the condensation
problem. More discussions and experimental verification are provided in Appendix I.1.
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Figure 7: Effects of (a) normalization and (b) initialization. We trained L-layer MLPs, where each
layer had 512 neurons. A shorter first phase indicates that the decrease of feature diversity is more
alleviated. Effects of momentum and L2 regularization are shown in Appendix I.3 and I.5.

Centering operations for normalization. Based on theoretical analysis, we explain that the center-
ing operation in normalization operations (e.g., that in batch normalization (BN)) can alleviate the
feature condensation phenomenon in the first phase. Specifically, according to Theorem 2, the “self-
enhanced system” of decreasing feature diversity requires features F

(l)
t of any two training samples

x and x′ in the same category to be similar to each other. However, the centering operation prevents
features F

(l)
t of different samples from being similar to each other, because it subtracts the mean

feature F̄
(l)
t = Ex∈X [F

(l)
t |x] from features of all samples, i.e., F ′ (l)

t |x = F
(l)
t |x − F̄

(l)
t . Therefore, the

dissimilarity between features of different samples breaks the “self-enhanced system.” Please see
Appendix I.2 for more discussions.

We conducted experiments to verify the above analysis. We compared MLPs trained with and
without BN layers. Specifically, we added a BN layer after each linear layer to construct MLPs.
Figure 7(a) shows that the feature similarity in MLPs with BN layers kept decreasing. This verified
that BN layers alleviated the feature condensation phenomenon.

Momentum. Our theorems explain that momentum in gradient descent can alleviate the feature
condensation phenomenon. Based on Lemma 3, the “self-enhanced system” of the decreasing of
feature diversity requires weights along other directions ε

(l)
t to be small enough. However, because

the momentum operation strengthens influences of the initialized noisy weights W (l)
t=0, it strengthens

singular values of ε
(l)
t , to some extent, thereby alleviating the feature condensation phenomenon.

Specifically, a larger momentum coefficient usually better alleviates the feature condensation phe-
nomenon. To this end, we trained MLPs with different momentum coefficients, and experiments in
Appendix I.3 verified the above analysis.

Initialization. We explain that the initialization of MLPs affects the feature condensation phe-
nomenon. According to Lemma 3, the “self-enhanced system” requires very small weights along
noise directions ε

(l)
t . However, increasing the variance of the initialized weights W

(l)
t=0 can boost

singular values of ε(l)t , which alleviates the feature condensation phenomenon. Please see Appendix
I.4 for more discussions.

To verify the above claim, we conducted experiments by comparing MLPs trained using initial-
izations with different variances. We used γ to control the variance of the initialization, i.e.,
W

(l)
t=0 ∼ N (0, γσ2

varI), where σvar is a constant (Glorot & Bengio, 2010). Figure 7(b) verifies that
the initialization with a large variance alleviated the feature condensation phenomenon.

L2 regularization (ridge loss). We also explain that the L2 regularization (the ridge loss) can
strengthen the feature condensation phenomenon. The total loss is given as L(Wt) = LCE(Wt) +
λ∥Wt∥22, where LCE(Wt) represents the cross entropy loss, and λ∥Wt∥22 denotes the ridge loss. As
aforementioned, the feature condensation phenomenon requires singular values of ε

(l)
t to be small

enough. However, because the loss of ∥Wt∥22 penalizes singular values of ε
(l)
t , it strengthens the

feature condensation phenomenon. The experimental verification is provided in Appendix I.5.

4 CONCLUSION

In this paper, we explain a counter-intuitive phenomenon, i.e., the feature diversity significantly de-
creases and condenses into a constant feature in the early stage of network training. Furthermore, we
explain the reason why four typical operations can alleviate the feature condensation phenomenon.
Our analysis provides a deeper understanding of the potential utility of these practical operations,
and it is important for both theoreticians and practitioners.
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A LITERATURE ON UNDERSTANDING THE OPTIMIZATION AND THE
REPRESENTATION CAPACITY OF DNNS.

Understanding the optimization and the representation capacity of DNNs is an important direction
to explain DNNs. The information bottleneck theory (Wolchover, 2017; Shwartz-Ziv & Tishby,
2017) quantitatively explained the information encoded by features in intermediate layers of DNNs.
Xu & Raginsky (2017), Achille & Soatto (2018), and Cheng et al. (2018) used the information
bottleneck theory to evaluate and improve the DNN’s representation capacity. Arpit et al. (2017)
analyzed the representation capacity of DNNs with real training data and noises. In addition, several
metrics were proposed to measure the generalization capacity or robustness of DNNs, including the
stiffness (Fort et al., 2019), the sensitivity metrics (Novak et al., 2018), the Fourier analysis (Xu,
2018), the alignment measure (Mehta et al., 2020), and the CLEVER score (Weng et al., 2018). In
comparison, we explain the MLP from the perspective of the learning dynamics, i.e., we explain the
feture condensation phenomenon in early iterations of the MLP.

Analyzing the learning dynamics is another perspective to understand DNNs. Many studies analyzed
the local minima in the optimization landscape of linear networks (Baldi & Hornik, 1989; Saxe et al.,
2013; Hardt & Ma, 2016; Daniely et al., 2016) and nonlinear networks (Choromanska et al., 2015;
Kawaguchi, 2016; Safran & Shamir, 2018). Some studies discussed the convergence rate of gradient
descent on separable data (Soudry et al., 2018; Xu et al., 2018; Nacson et al., 2019). Hoffer et al.
(2017) and Jastrzębski et al. (2017) have investigated the effects of the batch size and the learning
rate on SGD dynamics. In addition, some studies analyzed the dynamics of gradient descent in
the overparameterization regime (Arora et al., 2018; Jacot et al., 2018; Lee et al., 2018; Du et al.,
2018). Furthermore, Xiao et al. (2018) discussed the learning dynamics of deep CNNs and proposed
the appropriate initialization method for training deep CNNs. Saxe et al. (2013) analyzed learning
dynamics of deep linear neural networks without activation functions. Specifically, Saxe et al. (2013)
assumed that input samples were orthogonal to each other and neurons were orthogonal to each other
in the same layer. In other words, these neurons did not interact with each other. Moreover, Frankle
et al. (2020) empirically focused on various statistics of DNNs in the early training process and
investigated the evaluation accuracy of pruned DNNs.

Previous studies (Kothapalli, 2023; Zhu et al., 2021; Papyan et al., 2020; Han et al., 2021; Tirer et al.,
2022) usually focused on the neural collapse phenomenon, i.e., features in the last layer of a DNN
usually collapse to their class means at the end of training. In contrast, our feature condensation
phenomenon happens at all layers in early epochs of training.

Epoch-wise double descent (Nakkiran et al., 2019; Heckel & Yilmaz, 2020; Pezeshki et al., 2022)
means that the testing error first decreases, then increases, and finally decreases, during the training
process. Although the first and the second stages in the epoch-wise double descent are temporally
aligned with the feature condensation phase, we cannot theoretically prove the relationship between
the feature condensation and epoch-wise double descent behaviors. Please see Appendix B.17 for
more discussions.

Comparison with previous studies on the condensation problem. Zhou et al. (2022) analyzed the
condensation problem based on a strict assumption that the strength of weights in neural networks
was sufficiently small. In other words, the L2 norm of weights was almost zero. In this way, Zhou
et al. (2022) derived the relationship between the condensation and the multiplicity of the activation
function. Meanwhile, Williams et al. (2019); Lyu et al. (2021); Boursier et al. (2022); Wang &
Ma (2023) analyzed the condensation problem on a two-layer ReLU network and linearly separable
data. Specifically, linearly separable data means that feature direction of each arbitrary training
sample could correctly classifies all training samples.

B COMMON PHENOMENON SHARED BY DIFFERENT DNNS FOR DIFFERENT
TASKS.

In this section, we aim to demonstrate an interesting phenomenon of the decrease of the feature
diversity when we train an MLP in early iterations. Specifically, the training process of the MLP can
usually be divided into the following two phases according to the training loss. In the first phase, the
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training loss does not decrease significantly, and the training loss suddenly begins to decrease in the
second phase.

The two-phase phenomenon of the training loss is well-known, because many previous studies (Sim-
sekli et al., 2019; Saxe et al., 2013; Vogl, 2018; Nguyen et al., 2018; Arab et al., 2020; Jepkoech et al.,
2021; Stevens et al., 2020) have shown this phenomenon during the training process in their papers.
However, previous studies did not theoretically explain the emergence of such a phenomenon. In-
stead, they usually understood this phenomenon in an intuitive manner, i.e., initialized DNNs failed
to find a clear optimization direction, and thus these DNNs usually spent a long time searching for
a reliable optimization direction. In this way, the training loss did not decrease significantly in very
early epochs of training.

More crucially, the feature diversity decreases in the first phase. This phenomenon is widely shared
by different DNNs with different architectures for different tasks. As Figure 8, Figure 9, and Fig-
ure 10 show, the feature diversity keeps decreasing (i.e., the cosine similarity between features of
different samples keeps increasing) until samples of different categories share almost the same fea-
ture in the first phase. We can consider this as the feature condensation phenomenon. This feature
condensation happens in various DNNs, including multi-layer perceptrons (MLPs), convolutional
neural networks, and recurrent neural networks. DNNs trained with different loss functions and dif-
ferent learning rates may all exhibit feature condensation phenomenon. Specifically, we calculated
the feature cosine similarity between fifty samples from ten categories on the CIFAR-10 dataset, the
MNIST dataset, and the Tiny ImageNet dataset. The abscissa and ordinate of each heatmap repre-
sent the sample index. For each grid, color indicates the cosine similarity of that sample pair. Note
that all the features are extracted after the ReLU layer. Thus, the cosine similarity is always greater
than zero.

Besides, as Figure 1 in the main paper shows, samples from different categories share diverse fea-
tures in the beginning of the training, but share almost the same feature at the end of the training.
Specifically, we used t-SNE for visualization (initialized by PCA).

Let us take the 9-layer MLP trained on the CIFAR-10 dataset for an example, where each layer
of the MLP had 512 neurons. As Figure 11(e)(f) shows, before the 1300-th iteration (the first
phase), both the feature diversity and the gradient diversity kept decreasing, i.e., both the cosine
similarity between features over different samples and the cosine similarity between gradients kept
increasing. After the 1300-th iteration (the second phase), the feature diversity and the gradient
diversity suddenly began to increase, i.e. their similarities began to decrease. Therefore, the MLP
had the lowest feature diversity and the lowest gradient diversity at around the 1300-th iteration.
Specifically, the training loss was evaluated on the whole training set.
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Figure 8: Cosine similarity between features of different samples on the CIFAR-10 dataset. We
trained a 9-layer MLP, where each layer had 512 neurons. The cosine similarity between features
of different samples kept increasing until samples of different categories share almost the same
feature in the first phase. The features were used in the fourth linear layer of the MLP. The feature
condensation phenomenon happens in the 1000-th iteration. The abscissa and ordinate of each
heatmap represent the sample index. For each grid, color indicates the cosine similarity of that
sample pair.

B.1 ON THE CIFAR-10 DATASET

In this subsection, we demonstrated that the two-phase phenomenon was shared by different MLPs
on the CIFAR-10 dataset (Krizhevsky et al., 2009). For different MLPs, we adopted the learning rate
η = 0.1, the batch size bs = 100, the SGD optimizer, and the ReLU activation function. Besides, we
used two data augmentation methods, including random cropping and random horizontal flipping.

15



Under review as a conference paper at ICLR 2024

Iteration 0 1.0

0.8

0.6

0.4

0.2

0

Iteration 500 Iteration 700 Iteration 10000Iteration 1000

Figure 9: Cosine similarity between features of different samples on the MNIST dataset. We trained
a 9-layer MLP, where each layer had 512 neurons. The cosine similarity between features of different
samples kept increasing until samples of different categories share almost the same feature in the
first phase. The features were used in the fourth linear layer of the MLP. The feature condensation
phenomenon happens in the 700-th iteration. The abscissa and ordinate of each heatmap represent
the sample index. For each grid, color indicates the cosine similarity of that sample pair.
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Figure 10: Cosine similarity between features of different samples on the Tiny ImageNet dataset. We
trained a 9-layer MLP, where each layer had 512 neurons. The cosine similarity between features
of different samples kept increasing until samples of different categories share almost the same
feature in the first phase. The features were used in the fourth linear layer of the MLP. The feature
condensation phenomenon happens in the 3000-th iteration. The abscissa and ordinate of each
heatmap represent the sample index. For each grid, color indicates the cosine similarity of that
sample pair.

The training loss, the testing loss, the training accuracy, the testing accuracy, the cosine similarity
of features, and the cosine similarity of feature gradients of MLPs trained on the CIFAR-10 dataset
are shown in Figure 11.
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Figure 11: (a) The training loss of four MLPs trained on the CIFAR-10 dataset. (b) The testing
loss of four MLPs. (c) Training accuracies of four MLPs. (d) Testing accuracies of four MLPs. (e)
Cosine similarity between features of different categories. (f) Cosine similarity between gradients
of different samples in a category. The feature and the feature gradient were used in the third linear
layer of MLPs.

B.2 ON THE MNIST DATASET

In this subsection, we demonstrated that the two-phase phenomenon was shared by different MLPs
on the MNIST dataset (LeCun et al., 1998). For different MLPs, we adopted the learning rate
η = 0.01, the batch size bs = 100, the SGD optimizer, and the ReLU activation function. The
training loss, the testing loss, the training accuracy, the testing accuracy, the cosine similarity of
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features, and the cosine similarity of feature gradients of MLPs trained on the MNIST are shown in
Figure 12.
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Figure 12: (a) The training loss of four MLPs tranined on the MNIST dataset. (b) The testing loss
of four MLPs. (c) Training accuracies of four MLPs. (d) Testing accuracies of four MLPs. (e)
Cosine similarity between features of different categories. (f) Cosine similarity between gradients
of different samples in a category. The feature and the feature gradient were used in the third linear
layer of MLPs.

B.3 ON THE TINY IMAGENET DATASET

In this subsection, we demonstrated that the two-phase phenomenon was shared by different MLPs
on the Tiny ImageNet dataset (Le & Yang, 2015). Specifically, we randomly selected the follow-
ing 50 categories, orangutan, parking meter, snorkel, American alligator, oboe, basketball, rocking
chair, hopper, neck brace, candy store, broom, seashore, sewing machine, sunglasses, panda, pret-
zel, pig, volleyball, puma, alp, barbershop, ox, flagpole, lifeboat, teapot, walking stick, brain coral,
slug, abacus, comic book, CD player, school bus, banister, bathtub, German shepherd, black stork,
computer keyboard, tarantula, sock, Arabian camel, bee, cockroach, cannon, tractor, cardigan, sus-
pension bridge, beer bottle, viaduct, guacamole, and iPod for training. For different MLPs, we
adopted the learning rate η = 0.1, the batch size bs = 100, the SGD optimizer, and the ReLU acti-
vation function. Besides, we used two data augmentation methods, including random cropping and
random horizontal flipping. Note that we took a random cropping with 32×32 sizes.The training
loss, the testing loss, the training accuracy, the testing accuracy, the cosine similarity of features,
and the cosine similarity of feature gradients of MLPs trained on the Tiny ImageNet are shown in
Figure 13.
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Figure 13: (a) The training loss of three MLPs tranined on the Tiny ImageNet dataset. (b) The
testing loss of three MLPs. (c) Training accuracies of three MLPs. (d) Testing accuracies of three
MLPs. (e) Cosine similarity between features of different categories. (f) Cosine similarity between
gradients of different samples in a category. The features and the feature gradient were used in the
second linear layer of MLPs.
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B.4 ON THE CENSUS DATASET

In this subsection, we demonstrated that the two-phase phenomenon was shared by different MLPs
on the UCI census income tabular dataset (Census) (Asuncion & Newman, 2007). For different
MLPs, we adopted the learning rate η = 0.1, the batch size bs = 1000, the SGD optimizer, and
the ReLU activation function. The training loss, the testing loss, the training accuracy, the testing
accuracy, the cosine similarity of features, and the cosine similarity of feature gradients of MLPs
trained on the census are shown in Figure 14.

B.5 ON THE COMMERCIAL DATASET

In this subsection, we demonstrated that the two-phase phenomenon was shared by different MLPs
on the UCI TV news channel commercial detection dataset (Commercial) (Asuncion & Newman,
2007). For different MLPs, we adopted the learning rate η = 0.1, the batch size bs = 1000, the
SGD optimizer, and the ReLU activation function. The training loss, the testing loss, the training
accuracy, the testing accuracy, the cosine similarity of features, and the cosine similarity of feature
gradients of MLPs trained on the census are shown in Figure 15.

B.6 ON THE COLA DATASET

In this subsection, we demonstrated that the two-phase phenomenon was shared by LSTMs con-
catenated with MLPs on the CoLA dataset (Warstadt et al., 2019). We used two-layer unidirectional
LSTMs concatenated with MLPs. Specifically, we trained two LSTMs with 5-layer MLPs, where
each layer of the MLP had 256 and 512 neurons. We adopted the learning rate η = 0.1, the batch
size bs = 1000, the SGD optimizer, and the ReLU activation function. The training loss, the test-
ing loss, the training accuracy, the testing accuracy, the cosine similarity of features, and the cosine
similarity of feature gradients of LSTMs trained on the CoLA are shown in Figure 16. Since train-
ing samples in the CoLA dataset were imbalanced, we constructed a new training set by randomly
sampling 2000 training samples from two categories, respectively. DNNs were trained on this new
training set.

B.7 ON THE SST-2 DATASET

In this subsection, we demonstrated that the two-phase phenomenon was shared by the LSTMs con-
catenated with MLPs on the SST-2 dataset (Socher et al., 2013). We used unidirectional LSTMs
concatenated with MLPs. Specifically, we trained three LSTMs with 4-layer MLPs, 4-layer MLPs,
and 5-layer MLPs, respectively, where each layer of the MLP had 32, 64, 128 neurons. We adopted
the learning rate η = 0.1, the batch size bs = 500, the SGD optimizer, and the ReLU activation
function. Since the training of LSTMs on the SST-2 with the SGD optimizer is unstable, we ran-
domly selected 15000 training samples from the training set. We trained LSTMs on these 15000
training samples. The training loss, the testing loss, the training accuracy, the testing accuracy, the
cosine similarity of features, and the cosine similarity of feature gradients of LSTMs trained on the
SST-2 are shown in Figure 17.

B.8 ON THE AGNEWS DATASET

In this subsection, we demonstrated that the two-phase phenomenon was shared by the LSTMs
concatenated with MLPs on the AGNEWS dataset. We used two-layer unidirectional LSTMs con-
catenated with MLPs. Specifically, we trained three LSTMs with 4-layer MLPs, 4-layer MLPs,
5-layer MLPs, respectively, where each layer of the MLP had 32, 64, and 128 neurons, respectively.
We adopted the learning rate η = 0.1, the batch size bs = 500, the SGD optimizer, and the ReLU
activation function. The training loss, the testing loss, the training accuracy, the testing accuracy, the
cosine similarity of features, and the cosine similarity of feature gradients of LSTMs trained on the
AGNEWS are shown in Figure 18.
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Figure 14: (a) The training loss of three MLPs trained on the Census dataset. (b) The testing loss
of three MLPs. (c) Training accuracies of three MLPs. (d) Testing accuracies of three MLPs. (e)
Cosine similarity between features of different categories. (f) Cosine similarity between gradients
of different samples in a category. The feature and the feature gradient were used in the fifth linear
layer of MLPs.
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Figure 15: (a) The training loss of three MLPs trained on the Commercial dataset. (b) The testing
loss of three MLPs. (c) Training accuracies of three MLPs. (d) Testing accuracies of three MLPs.
(e) Cosine similarity between features of different categories. (f) Cosine similarity between gradi-
ents of different samples in a category. The feature and the feature gradient were used in the fifth
linear layer of MLPs.
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Figure 16: (a) The training loss of two LSTMs trained on the CoLA dataset. (b) The testing loss
of two LSTMs. (c) Training accuracies of two LSTMs. (d) Testing accuracies of two LSTMs. (e)
Cosine similarity between features of different categories. (f) Cosine similarity between gradients
of different samples in a category. The feature and the feature gradient were used in the third linear
layer of MLPs.

B.9 DIFFERENT TRAINING BATCH SIZES

In this subsection, we demonstrated that the two-phase phenomenon was shared by MLPs trained
on the CIFAR-10 dataset with different training batch sizes. For different MLPs, we adopted the

19



Under review as a conference paper at ICLR 2024

1-layer LSTM, 4-layer MLP
with 32 neurons in each layer

2-layer LSTM, 4-layer MLP
with 64 neurons in each layer

Tr
ai

ni
ng

 A
cc

ur
ac

y(
%
)

Te
st

in
g 

A
cc

ur
ac

y(
%
)

C
os

in
e 

si
m

ila
rit

y 
of

 fe
at

ur
es

C
os

in
e 

si
m

ila
rit

y 
of

 g
ra

di
en

ts

Tr
ai

ni
ng

 L
os

s

Te
st

in
g 

Lo
ss

iteration iteration iteration

(a) (b) (c)

(d) (e) (f)

SST-2 layer 2

3-layer LSTM, 5-layer MLP
with 128 neurons in each layer

Figure 17: (a) The training loss of three LSTMs trained on the SST-2 dataset. (b) The testing loss of
three LSTMs. (c) Training accuracies of three LSTMs. (d) Testing accuracies of three LSTMs. (e)
Cosine similarity between features of different categories. (f) Cosine similarity between gradients of
different samples in a category. The feature and the feature gradient were used in the second linear
layer of MLPs.
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AGNEWS layer 2

2-layer LSTM, 5-layer MLP
with 128 neurons in each layer

Figure 18: (a) The training loss of three LSTMs trained on the AGNEWS dataset. (b) The testing loss
of three LSTMs. (c) Training accuracies of three LSTMs. (d) Testing accuracies of three LSTMs. (e)
Cosine similarity between features of different categories. (f) Cosine similarity between gradients of
different samples in a category. The feature and the feature gradient were used in the second linear
layer of MLPs.

learning rate η = 0.1, the SGD optimizer, and the ReLU activation function. Besides, we used
two data augmentation methods, including random cropping and random horizontal flipping. We
trained three 7-layer MLPs with 256 neurons in each layer, with bs = 100, 500, 1000 respectively.
The training loss, the testing loss, the training accuracy, the testing accuracy, the cosine similarity
of features, and the cosine similarity of feature gradients of MLPs trained with different batch sizes
are shown in Figure 19.

B.10 DIFFERENT LEARNING RATES

In this subsection, we demonstrated that the two-phase phenomenon was shared by MLPs trained
on the CIFAR-10 dataset with different learning rates. For different MLPs, we adopted the batch
size bs = 100, the SGD optimizer, and the ReLU activation function. Besides, we used two data
augmentation methods, including random cropping and random horizontal flipping. We trained two
7-layer MLPs with 256 neurons in each layer, with learning rates η = 0.1, 0.01 respectively. The
training loss, the testing loss, the training accuracy, the testing accuracy, the cosine similarity of
features, and the cosine similarity of feature gradients of MLPs trained with different learning rates
are shown in Figure 20.

B.11 DIFFERENT ACTIVATION FUNCTIONS

In this subsection, we demonstrated that the two-phase phenomenon was shared by MLPs with
different activation functions. For different MLPs, we adopted the learning rate η = 0.1, the batch
size bs = 100, and the SGD optimizer. Besides, we used two data augmentation methods, including
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Figure 19: (a) The training loss of three MLPs trained with different batch sizes. (b) The testing loss
of three MLPs. (c) Training accuracies of three MLPs. (d) Testing accuracies of three MLPs. (e)
Cosine similarity between features of different categories. (f) Cosine similarity between gradients of
different samples in a category. The feature and the feature gradient were used in the second linear
layer of MLPs.

random cropping and random horizontal flipping. We trained three 9-layer MLPs with 512 neurons
in each layer with the ReLU activation function, the Leaky ReLU (slope=0.1) activation function,
and the Leaky ReLU (slope=0.01) activation function, respectively. The training loss, the testing
loss, the training accuracy, the testing accuracy, the cosine similarity of features, and the cosine
similarity of feature gradients of MLPs trained with different activation functions are shown in
Figure 21.
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Different learning rate

Figure 20: (a) The training loss of two MLPs trained with different learning rates. (b) The testing
loss of two MLPs. (c) The training accuracies of two MLPs. (d) The testing accuracies of two
MLPs. (e) Cosine similarity between features of different categories. (f) Cosine similarity between
gradients of different samples in a category. The feature and the feature gradient were used in the
second linear layer of MLPs.

MLP with ReLU
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Different activation layer

Figure 21: (a) The training loss of three MLPs with different activation functions. (b) The testing
loss of three MLPs. (c) Training accuracies of three MLPs. (d) Testing accuracies of three MLPs.
(e) Cosine similarity between features of different categories. (f) Cosine similarity between gradi-
ents of different samples in a category. The feature and the feature gradient were used in the second
linear layer of MLPs.
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B.12 DIFFERENT MOMENTUMS

In this subsection, we demonstrated that the two-phase phenomenon was shared by MLPs trained on
the CIFAR-10, MNIST and Tiny ImageNet dataset with different momentums. For different MLPs,
we adopted the learning rate η = 0.1, the batch size bs = 100, and the SGD optimizer. Besides, we
used two data augmentation methods, including random cropping and random horizontal flipping.
We trained 7-layer MLPs and 9-layer MLPs with 512 neurons in each layer with the ReLU activation
function. The training loss, the testing loss, the training accuracy, the testing accuracy, the cosine
similarity of features, and the cosine similarity of feature gradients of MLPs trained with different
momentum are shown in Figure 22, Figure 23, Figure 24, Figure 25, Figure 26, and Figure 27,
respectively.
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Cifar10 7-layer2-mom

7-layer MLP with 512
neurons in each layer,

momentum = 0.9

7-layer MLP with 512
neurons in each layer,

momentum = 0.5

7-layer MLP with 512
neurons in each layer,

momentum = 0

Figure 22: (a) The training loss of three MLPs with different momentums trained on the CIFAR-10
dataset. (b) The testing loss of three MLPs. (c) Training accuracies of three MLPs. (d) Testing
accuracies of three MLPs. (e) Cosine similarity between features of different categories. (f) Cosine
similarity between gradients of different samples in a category. The feature and the feature gradient
were used in the second linear layer of MLPs.
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mnist 7-layer1-mom

7-layer MLP with 512
neurons in each layer,

momentum = 0.9

7-layer MLP with 512
neurons in each layer,

momentum = 0.5

7-layer MLP with 512
neurons in each layer,

momentum = 0

Figure 23: (a) The training loss of three MLPs with different momentums trained on the MNIST
datasets. (b) The testing loss of three MLPs. (c) Training accuracies of three MLPs. (d) Testing
accuracies of three MLPs. (e) Cosine similarity between features of different categories. (f) Cosine
similarity between gradients of different samples in a category. The feature and the feature gradient
were used in the second linear layer of MLPs.

B.13 DIFFERENT WEIGHT DECAYS

In this subsection, we demonstrated that the two-phase phenomenon was shared by MLPs trained on
the CIFAR-10, MNIST and Tiny ImageNet dataset with different weight decays. For different MLPs,
we adopted the learning rate η = 0.1, the batch size bs = 100, and the SGD optimizer. Besides, we
used two data augmentation methods, including random cropping and random horizontal flipping.
We trained 7-layer MLPs and 9-layer MLPs with 512 neurons in each layer with the ReLU activation
function. The training loss, the testing loss, the training accuracy, the testing accuracy, the cosine
similarity of features, and the cosine similarity of feature gradients of MLPs trained with different
weight decays are shown in Figure 28, Figure 29, Figure 31, Figure 30, Figure 32, and Figure 33,
respectively.
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Tiny-7-layer4-mom

7-layer MLP with 512
neurons in each layer,

momentum = 0.9

7-layer MLP with 512
neurons in each layer,

momentum = 0.5

7-layer MLP with 512
neurons in each layer,

momentum = 0

Figure 24: (a) The training loss of three MLPs with different momentums trained on the Tiny Im-
ageNet dataset. (b) The testing loss of three MLPs. (c) Training accuracies of three MLPs. (d)
Ttesting accuracies of three MLPs. (e) Cosine similarity between features of different categories. (f)
Cosine similarity between gradients of different samples in a category. The feature and the feature
gradient were used in the fourth linear layer of MLPs.
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Cifar10 9-layer2-mom

9-layer MLP with 512
neurons in each layer,

momentum = 0.5

9-layer MLP with 512
neurons in each layer,

momentum = 0

Figure 25: (a) The training loss of three MLPs with different momentums trained on the CIFAR-10
dataset. (b) The testing loss of three MLPs. (c) Training accuracies of three MLPs. (d) Testing
accuracies of three MLPs. (e) Cosine similarity between features of different categories. (f) Cosine
similarity between gradients of different samples in a category. The feature and the feature gradient
were used in the second linear layer of MLPs.
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mnist 9-layer2-mom

9-layer MLP with 512
neurons in each layer,

momentum = 0.5

9-layer MLP with 512
neurons in each layer,

momentum = 0

Figure 26: (a) The training loss of two MLPs with different momentums trained on the MNIST
dataset. (b) The testing loss of two MLPs. (c) Training accuracies of two MLPs. (d) Testing
accuracies of two MLPs. (e) Cosine similarity between features of different categories. (f) Cosine
similarity between gradients of different samples in a category. The feature and the feature gradient
were used in the second linear layer of MLPs.
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Tiny-9-layer4-mom

9-layer MLP with 512
neurons in each layer,

momentum = 0.9
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momentum = 0.5
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Figure 27: (a) The training loss of three MLPs with different momentums trained on the Tiny Im-
ageNet dataset. (b) The testing loss of three MLPs. (c) Training accuracies of three MLPs. (d)
Testing accuracies of three MLPs. (e) Cosine similarity between features of different categories. (f)
Cosine similarity between gradients of different samples in a category. The feature and the feature
gradient were used in the fourth linear layer of MLPs.
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Cifar10 7-layer2-wd

7-layer MLP with 512
neurons in each layer,
weight decay = 0.001

7-layer MLP with 512
neurons in each layer,

weight decay =  0.0001

Figure 28: (a) The training loss of two MLPs with different weight decays trained on the CIFAR-
10 dataset. (b) The testing loss of two MLPs. (c) Training accuracies of two MLPs. (d) Testing
accuracies of two MLPs. (e) Cosine similarity between features of different categories. (f) Cosine
similarity between gradients of different samples in a category. The feature and the feature gradient
were used in the second linear layer of MLPs.
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mnist 7-layer2-wd

7-layer MLP with 512
neurons in each layer,
weight decay = 0.001

7-layer MLP with 512
neurons in each layer,

weight decay =  0.0001

Figure 29: (a) The training loss of two MLPs with different weight decays trained on the MNIST
dataset. (b) The testing loss of two MLPs. (c) Training accuracies of two MLPs. (d) Testing
accuracies of two MLPs. (e) Cosine similarity between features of different categories. (f) Cosine
similarity between gradients of different samples in a category. The feature and the feature gradient
were used in the second linear layer of MLPs.
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Cifar10 9-layer2-wd

9-layer MLP with 512
neurons in each layer,
weight decay = 0.001

9-layer MLP with 512
neurons in each layer,

weight decay =  0.0001

Figure 30: (a) The training loss of two MLPs with different weight decays trained on the CIFAR-
10 dataset. (b) The testing loss of two MLPs. (c) Training accuracies of two MLPs. (d) Testing
accuracies of two MLPs. (e) Cosine similarity between features of different categories. (f) Cosine
similarity between gradients of different samples in a category. The feature and the feature gradient
were used in the second linear layer of MLPs.
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Tiny-7-layer3-wd

7-layer MLP with 512
neurons in each layer,
weight decay = 0.0001

7-layer MLP with 512
neurons in each layer,

weight decay =  0.00001

Figure 31: (a) The training loss of two MLPs with different weight decays trained on the Tiny
ImageNet dataset. (b) The testing loss of two MLPs. (c) Training accuracies of two MLPs. (d)
Testing accuracies of two MLPs. (e) Cosine similarity between features of different categories. (f)
Cosine similarity between gradients of different samples in a category. The feature and the feature
gradient were used in the third linear layer of MLPs.
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mnist 9-layer2-wd

9-layer MLP with 512
neurons in each layer,
weight decay = 0.001

9-layer MLP with 512
neurons in each layer,

weight decay =  0.0001

Figure 32: (a) The training loss of two MLPs with different weight decays trained on the MNIST
dataset. (b) The testing loss of two MLPs. (c) Training accuracies of two MLPs. (d) Testing
accuracies of two MLPs. (e) Cosine similarity between features of different categories. (f) Cosine
similarity between gradients of different samples in a category. The feature and the feature gradient
were used in the second linear layer of MLPs.

Tr
ai

ni
ng

 A
cc

ur
ac

y(
%
)

Te
st

in
g 

A
cc

ur
ac

y(
%
)

C
os

in
e 

si
m

ila
rit

y 
of

 fe
at

ur
es

C
os

in
e 

si
m

ila
rit

y 
of

 g
ra

di
en

ts

Tr
ai

ni
ng

 L
os

s

Te
st

in
g 

Lo
ss

iteration iteration iteration

(a) (b) (c)

(d) (e) (f)

Tiny-9-layer3-wd

9-layer MLP with 512
neurons in each layer,
weight decay = 0.0001
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weight decay =  0.00001

Figure 33: (a) The training loss of two MLPs with different weight decays trained on the Tiny
ImageNet dataset. (b) The testing loss of two MLPs. (c) Training accuracies of two MLPs. (d)
Testing accuracies of two MLPs. (e) Cosine similarity between features of different categories. (f)
Cosine similarity between gradients of different samples in a category. The feature and the feature
gradient were used in the third linear layer of MLPs.
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B.14 THE FEATURE CONDENSATION PHENOMENON WITH THE FOCAL LOSS

In this subsection, we demonstrated that the two-phase phenomenon was shared by MLPs learned
on the CIFAR-10 dataset with the focal loss. Specifically, for different MLPs, we adopted the
learning rate η = 0.1, the batch size bs = 100, and the SGD optimizer. Besides, we used two
data augmentation methods, including random cropping and random horizontal flipping. We trained
9-layer MLPs and 7-layer MLPs with 512 neurons in each layer with the ReLU activation function.
The training loss, the testing loss, the training accuracy, the testing accuracy, the cosine similarity
of features, and the cosine similarity of feature gradients of MLPs trained with different focusing
parameters γ are shown in Figure 34 and Figure 35. Figure 34 and Figure 35 show that the feature
condensation phenomenon was still observed by different MLPs with the focal loss on the CIFAR-10
dataset.
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512 7Figure 34: (a) The training loss of three 7-layer MLPs with different focusing parameters γ trained
on the CIFAR-10 dataset. (b) The testing loss of three MLPs. (c) Training accuracies of three
MLPs. (d) Testing accuracies of three MLPs. (e) Cosine similarity between features of different
categories. (f) Cosine similarity between gradients of different samples in a category. The feature
and the feature gradient were used in the third linear layer of MLPs.
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512 9
Figure 35: (a) The training loss of three 9-layer MLPs with different focusing parameters γ trained
on the CIFAR-10 dataset. (b) The testing loss of three MLPs. (c) Training accuracies of three
MLPs. (d) Testing accuracies of three MLPs. (e) Cosine similarity between features of different
categories. (f) Cosine similarity between gradients of different samples in a category. The feature
and the feature gradient were used in the third linear layer of MLPs.
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B.15 DIFFERENT TRAIN/TEST SPLIT FOR DATASETS

In this subsection, we demonstrated that the two-phase phenomenon was shared by MLPs trained
on the CIFAR-10 dataset with different train/test splits. There are 50000 samples in the training set
and 10000 samples in the testing set on the CIFAR-10 dataset. We combined the training set and the
testing set into one dataset and split it with the train/test split ratios of 5:1, 4:2, and 3:3, respectively.
Note that the ratio of 5:1 was the official ratio for the CIFAR-10 dataset. For different MLPs, we
adopted the learning rate η = 0.1, the batch size bs = 100, and the SGD optimizer. Besides, we
used two data augmentation methods, including random cropping and random horizontal flipping.
We trained 9-layer MLPs with 512 neurons in each layer with the ReLU activation function on these
three different datasets. The training loss, the testing loss, the training accuracy, the testing accuracy,
the cosine similarity of features, and the cosine similarity of feature gradients of MLPs trained on
different train/test split ratios are shown in Figure 36. Figure 36 shows that the feature condensation
phenomenon was still observed by different train/test split ratios.
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Figure 36: (a) The training loss of three MLPs with different train/test dataset split ratios trained on
the CIFAR-10 dataset. (b) The testing loss of three MLPs. (c) Training accuracies of three MLPs. (d)
Testing accuracies of three MLPs. (e) Cosine similarity between features of different categories. (f)
Cosine similarity between gradients of different samples in a category. The feature and the feature
gradient were used in the third linear layer of MLPs.
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B.16 EXPLANATIONS FOR MORE MODERN DNNS.

The theoretical analysis of this study can explain which kinds of DNNs are more likely to exhibit
the feature condensation phenomenon in early epochs. In fact, we discovered the two-phase phe-
nomenon and the feature condensation phenomenon in various DNNs, including MLPs and modern
CNNs, e.g., VGG-11 models and VGG-13 models. Specifically, we trained VGG-11 models and
VGG-13 models on the CIFAR-10 dataset and the Tiny ImageNet dataset. We adopted the learning
rate η = 0.01, the batch size bs = 100, and the SGD optimizer. The training loss, the testing loss,
the training accuracy, and the testing accuracy are shown in Figure 37 and Figure 38. Figure 37(e)
and Figure 38(e) show that VGGs exhibited feature condensation phenomena in practice.
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Figure 37: (a) The training loss of a VGG-11 model and a VGG-13 model trained on the CIFAR-10
dataset. (b) The testing loss of two models. (c) Training accuracies of two models. (d) Testing
accuracies of two models. (e) Cosine similarity between features of different categories. (f) Cosine
similarity between gradients of different samples in a category. The feature and the feature gradient
were used in the third linear layer of the MLP in models.
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Figure 38: (a) The training loss of a VGG-11 model and a VGG-13 model trained on the Tiny
ImageNet dataset. (b) The testing loss of two models. (c) Training accuracies of two models. (d)
Testing accuracies of two models. (e) Cosine similarity between features of different categories. (f)
Cosine similarity between gradients of different samples in a category. The feature and the feature
gradient were used in the third linear layer of the MLP in models.

Furthermore, we found that our theoretical analysis can be generalized to modern CNNs and
transformers. We conducted experiments on ResNet-18, ResNet-34 (He et al., 2015), and Vi-
sion Transformers (ViTs) (Dosovitskiy et al., 2020). Because both ResNets and ViTs were the two
most classical network architectures that had been examined for years, it showed that ResNet-18,
ResNet-34, and ViT did not exhibit the feature condensation phenomenon (or the feature conden-
sation phenomenon only existed in very few iterations within the first epoch), owing to the use of
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normalization operations in these DNNs. However, according to our theoretical analysis, if the batch
normalization (BN) operations in ResNet-18/34 and the layer normalization (LN) operations in ViTs
were removed, then the feature condensation phenomenon was significantly strengthened.

First, we trained ViTs, ResNet-18, and ResNet-34 models on the CIFAR-10 dataset. The classifi-
cation heads in both ViTs and ResNet-18/34 were implemented by 4-layer MLP. Specifically, we
trained two different ViTs with the patch size P = 4, the heads = 18, the dropout rate = 0.1, the
embedding dropout rate = 0.1, the learning rate η = 0.1, the batch size bs = 100, and the SGD
optimizer. For ResNet-18 and ResNet-34 models, we adopted the learning rate η = 0.01, the batch
size bs = 100, and the SGD optimizer. Besides, we used two data augmentation methods, including
random cropping and random horizontal flipping. The training loss, the testing loss, the training
accuracy, and the testing accuracy are shown in blue curves in Figure 39, Figure 40, Figure 41 and
Figure 42. These figures verify that ResNets and ViTs’ first phases were very short, and the feature
condensation phenomenon only existed in a few iterations, which could be ignored.

Second, in comparison, we further constructed four baseline networks by removing the BN layer
from ResNet-18/34 and removing LN layers from ViTs. Orange curves in Figure 39, Figure 40,
Figure 41 and Figure 42 verify that such new ResNet-18/34 and new ViTs exhibited a significant
feature condensation phenomenon.
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Figure 39: (a) The training loss of a ResNet-18 and a ResNet-18 (without BN) trained on the CIFAR-
10 dataset. (b) The testing loss of two models. (c) Training accuracies of two models. (d) Testing
accuracies of two models. (e) Cosine similarity between features of different categories. (f) Cosine
similarity between gradients of different samples in a category. The feature and the feature gradient
were used in the third linear layer of the MLP in models.
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Figure 40: (a) The training loss of a ResNet-34 and a ResNet-34 (without BN) trained on the
CIFAR-10 dataset. (b) The testing loss of two models. (c) Training accuracies of two models. (d)
Testing accuracies of two models. (e) Cosine similarity between features of different categories. (f)
Cosine similarity between gradients of different samples in a category. The feature and the feature
gradient were used in the third linear layer of the MLP in models.
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Figure 41: (a) The training loss of a ViT and a ViT (without LN) trained on the CIFAR-10 dataset.
(b) The testing loss of two models. (c) Training accuracies of two models. (d) Testing accuracies
of two models. (e) Cosine similarity between features of different categories. (f) Cosine similarity
between gradients of different samples in a category. The feature and the feature gradient were
used in the third linear layer of the MLP in models.

T
ra

in
in

g
 L

o
ss

Hidden size 𝐷=512,

Layers=7, MLP size=256

Hidden size 𝐷=512,

Layers=7, MLP size=256

(without LN)

iteration

(a)

T
ra

in
in

g
 A

cc
u

ra
cy
(%

)

(b)

T
es

ti
n
g
 L

o
ss

(c)

T
es

ti
n
g

 A
cc

u
ra

cy
(%

)

C
o

si
n

e 
si

m
il

ar
it

y
 

o
f 

fe
at

u
re

s

C
o
si

n
e 

si
m

il
ar

it
y
 

o
f 

g
ra

d
ie

n
ts

iteration iteration
(d) (e) (f)

1.0

0.9

0.95

0.85

0.75

0.8

0.7

1.0

0.9

0.95

0.85

0.8

2.3

1.6

0 20001000

Figure 42: (a) The training loss of a ViT and a ViT (without LN) trained on the CIFAR-10 dataset.
(b) The testing loss of two models. (c) Training accuracies of two models. (d) Testing accuracies
of two models. (e) Cosine similarity between features of different categories. (f) Cosine similarity
between gradients of different samples in a category. The feature and the feature gradient were
used in the third linear layer of the MLP in models.
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B.17 CONNECTION TO THE EPOCH-WISE DOUBLE DESCENT

The above feature condensation phenomenon is related to the epoch-wise double descent behavior
(Nakkiran et al., 2019; Heckel & Yilmaz, 2020; Pezeshki et al., 2022). The epoch-wise double
descent behavior has three stages during the training process of a DNN. The testing error decreases
in the first stage, then increases in the second stage, and finally continues to decrease in the third
stage. As Figure 43 shows, the first and the second stages in the epoch-wise double descent behavior
are temporally aligned with the feature condensation phenomenon. To this end, we trained MLPs on
the CIFAR-10 dataset, the MNIST dataset, and the Tiny ImageNet dataset, respectively. Spefically,
we trained 7-layer MLP and 9-layer MLPs on these datasets, where each layer in the MLP had 512
neurons. Instead of explaining the epoch-wise double descent behavior, in this paper, we mainly
explain the feature condensation phenomenon.
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Figure 43: The double descent behaviour of MLPs. (a) The curve of the testing error and the curve
of the training loss of a 7-layer MLP trained on the CIFAR-10 dataset, where each layer had 512
neurons. (b) The curve of the testing error and the curve of the training loss of a 7-layer MLP trained
on the MNIST dataset, where each layer had 512 neurons. (c) The curve of the testing error and the
curve of the training loss of a 7-layer MLP trained on the Tiny ImageNet dataset, where each layer
had 512 neurons. (d) The curve of the testing error and the curve of the training loss of a 9-layer
MLP trained on the CIFAR-10 dataset, where each layer had 512 neurons. (e) The curve of the
testing error and the curve of the training loss during the training process of a 7-layer MLP trained
on the MNIST dataset, where each layer had 512 neurons. (f) The curve of the testing error and the
curve of the training loss of a 9-layer MLP trained on the Tiny ImageNet dataset, where each layer
had 512 neurons.
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C DISCUSSION OF THE PRACTICAL VALUES: THE LEARNING-STICKING
PROBLEM

In this section, we aim to discuss the learning-sticking problem in the learning of MLPs. In fact, this
problem appears in various DNNs, including MLPs, CNNs, and RNNs, when the task is difficult
enough. Explaining and solving the occasional sticking of the training of DNNs are of significant
values on different tasks. We consider the learning-sticking problem as the first phase with an
infinite length. Moreover, we theoretically explain mechanisms of several heuristic solutions to the
learning-sticking problem.

To this end, the learning-sticking problem can be solved based on our study, as shown in Figure
44, Figure 45, Figure 46, Figure 47, Figure 48, and Figure 49. Specifically, we trained a 9-
layer MLP on the CIFAR-10 dataset, where each layer of the MLP had 512 neurons and its initial
weights were sample from N (0,Σ = γ1σ

2
varI). σ2

var was computed following (Glorot & Bengio,
2010) and γ1 = 0.1. We trained a VGG-11 model on the CIFAR-10 dataset and its initial weights
of fully connected layers were sample from N (0,Σ = γ1σ

2
varI) (γ1 = 0.1). We trained a VGG-13

model on the CIFAR-10 dataset and its initial weights of fully connected layers were sample from
N (0,Σ = γ1σ

2
varI) (γ1 = 0.1). We trained two ResNet-18 models (without BN layers) on the CIFAR-

10 dataset and the Tiny ImageNet dataset, respectively, and initial weights of fully connected layers
were sample from N (0,Σ = γ1σ

2
varI) (γ1 = 0.1).

We observed that these DNNs all suffered from the learning-sticking problem (i.e., the loss mini-
mization of these DNNs get stuck), when their initial weights were sampled from N (0,Σ = γ1σ

2
var)

(orange curves). According to our study, the technique of increasing the variance of initial weights
can shorten the first phase, thereby solving the learning-sticking problem. To this end, we trained
compared versions of these DNNs, and the only difference from previous DNNs is that the variance
of initial weights was increased to γ2σ

2
varI (γ2 = 1). Figure 44, Figure 45, Figure 46, Figure 47,

Figure 48, and Figure 49 verify that we could solve the learning-sticking problem by increasing
the variance of initialization.

Actually, far beyond solving the learning-sticking problem, the two-phase phenomenon of MLPs is
generally considered a counter-intuitive phenomenon. In this paper, our distinctive contribution is
to explain the counter-intuitive two-phase phenomenon of MLPs theoretically.
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Figure 44: (a) The training loss of two MLPs trained on the CIFAR-10 dataset. When the loss
minimization gets stuck (orange curve), we can consider it as the first phase with an infinite length.
Therefore, the “learning-sticking” problem can be solved by techniques of shortening the first phase,
such as the technique of increasing the variance of initial weights, which is a theoretically certificated
solution in our study (blue curve). (b) The training accuracy of two MLPs. (c) The testing loss of
two MLPs. (d) The testing accuracy of two MLPs.
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Figure 45: (a) The training loss of two MLPs trained on the MNIST dataset. When the loss min-
imization gets stuck (orange curve), we can consider it as the first phase with an infinite length.
Therefore, the “learning-sticking” problem can be solved by techniques of shortening the first phase,
such as the technique of increasing the variance of initial weights, which is a theoretically certifi-
cated solution in our study (blue curve). (b) The training accuracy of two MLPs. (c) The testing loss
of two MLPs. (d) The testing accuracy of two MLPs.
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Figure 46: (a) The training loss of two VGG-11 models trained on the CIFAR-10 dataset. When
the loss minimization gets stuck (orange curve), we can consider it as the first phase with an infinite
length. Therefore, the “learning-sticking” problem can be solved by techniques of shortening the
first phase, such as the technique of increasing the variance of initial weights, which is a theoretically
certificated solution in our study (blue curve). (b) The training accuracy of two VGG-11 models. (c)
The testing loss of two VGG-11 models. (d) The testing accuracy of two VGG-11 models.
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Figure 47: (a) The training loss of two VGG-13 models trained on the CIFAR-10 dataset. When
the loss minimization gets stuck (orange curve), we can consider it as the first phase with an infinite
length. Therefore, the “learning-sticking” problem can be solved by techniques of shortening the
first phase, such as the technique of increasing the variance of initial weights, which is a theoretically
certificated solution in our study (blue curve). (b) The training accuracy of two VGG-13 models. (c)
The testing loss of two VGG-13 models. (d) The testing accuracy of two VGG-13 models.

iteration

(a)

iteration

(b)

iteration

(c)

iteration

(d)

𝛾 = 1.0

𝛾 = 0.1

T
ra

in
in

g
 L

o
ss

T
ra

in
in

g
  A

cc
u

ra
cy

T
es

ti
n

g
  
L

o
ss

T
es

ti
n

g
  A

cc
u

ra
cy

(%
)

(%
)

    ResNet-18

  trained on 

CIFAR-10

loss minimization
  gets stuck

the first phase

  is shorten

Figure 48: (a) The training loss of two ResNet-18 models trained on the CIFAR-10 dataset. When
the loss minimization gets stuck (orange curve), we can consider it as the first phase with an infinite
length. Therefore, the “learning-sticking” problem can be solved by techniques of shortening the
first phase, such as the technique of increasing the variance of initial weights, which is a theoretically
certificated solution in our study (blue curve). (b) The training accuracy of two ResNet-18 models.
(c) The testing loss of two ResNet-18 models. (d) The testing accuracy of two ResNet-18 models.
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Figure 49: (a) The training loss of two ResNet-18 models trained on the Tiny ImageNet dataset.
When the loss minimization gets stuck (orange curve), we can consider it as the first phase with an
infinite length. Therefore, the “learning-sticking” problem can be solved by techniques of shortening
the first phase, such as the technique of increasing the variance of initial weights, which is a theo-
retically certificated solution in our study (blue curve). (b) The training accuracy of two ResNet-18
models. (c) The testing loss of two ResNet-18 models. (d) The testing accuracy of two ResNet-18
models.
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D MORE RESULTS ON OTHER DATASETS

In this section, we provide more results on the MNIST dataset and the Tiny ImageNet dataset.
Figure 50 and Table 2 empirically verify the strength of the primary common direction, which are
supplementary to Figure 4 and Table 1 in the main paper, respectively. Figure 51 illustrates the
change of o(l) = cos(∆V

(l)
t , F

(l−1)
t ) · cos(V (l)

t ,∆F
(l−1)
t ) in the first phase, which is supplementary to

Figure 6 in the main paper.

Fl
ag

po
le

St
re

ng
th

Bo
ttl

e

St
re

ng
th

Layer 3 Layer 5Category
1e-3 1e-3 1e-3

1e-3 1e-31e-3 1e-3

1.1

1.4

Layer 4
1e-3

1.9

0.0
1e-3

1.4

1.8

2.4

Layer 6
1e-3

3.2

2.8
0.0 0.0

2.2
0.0 0.0

3.7

0.0 1 2 3 4 5 0.0 1 2 3 4 5 0.0 1 2 3 4 5 0.0 1 2 3 4 5 0.0 1 2 3 4 5
direction direction direction direction direction

(b)

Ei
gh

t

St
re

ng
th

Ze
ro

St
re

ng
th

Layer 3 Layer 5Category
1e-3 1e-3 1e-3

1e-3 1e-31e-3 1e-3

2.0

2.3

Layer 4
1e-3

2.5

0.0
1e-3

2.3

2.6

3.1

Layer 6
1e-3

3.6

3.2
0.0 0.0

2.7
0.0 0.0

3.4

0.0 1 2 3 4 5 0.0 1 2 3 4 5 0.0 1 2 3 4 5 0.0 1 2 3 4 5 0.0 1 2 3 4 5
direction direction direction direction direction

(a)

Layer 2Layer 2

Figure 50: The strength of top-ranked common directions on the (a) MNIST dataset and the (b) Tiny
ImageNet dataset. We trained a 9-layer MLP, where each layer of the MLP had 512 neurons. We
computed the strength of common directions on the two categories with the highest training accu-
racies. si = ∥Ci∆V

⊤
i ∥F measures the strength of weight changes along the i-th common direction,

where ∆V i = Et[∆V i,t]. It can be observed that the strength of the primary direction was much
greater than the strength of other directions.

Table 2: Strength of components of weight changes along the primary common direction and other
directions. We trained a 9-layer MLP on the MNIST dataset. Each layer of the MLP had 512
neurons. It can be observed that the strength of the primary common direction was much greater
than those of other directions.

M
N

IS
T

Category Eight Zero
S (×10−3) Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
S
(l)
primary 367.1±56.8 364.5±52.8 381.9±56.3 444.4±68.7 504.0±81.3 441.7±86.0 448.2±83.5 429.0±78.1 493.1±87.2 504.1±89.0

S
(l)
1 14.9±0.8 15.9±1.4 15.5±1.1 15.6±1.5 13.5±2.0 24.6±3.1 30.0±4.3 18.4±2.6 17.2±2.2 15.6±1.8

S
(l)
2 16.3±1.7 13.1±0.9 16.4±0.8 18.1±3.2 11.7±1.6 16.6±1.7 23.9±4.2 17.9±2.4 14.3±1.5 12.2±1.9

S
(l)
3 15.1±1.5 16.3±1.7 13.5±0.6 15.1±1.4 15.0±1.1 29.4±5.2 21.1±4.2 15.5±1.8 21.2±3.6 14.7±1.6
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t
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Figure 51: The change of o(l) = cos(∆V

(l)
t , F

(l−1)
t ) · cos(V (l)

t ,∆F
(l−1)
t ) in the first phase. We trained a

9-layer MLP on the MNIST dataset. Each layer of the MLP had 512 neurons. The shade represents
the standard deviation over different samples.
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E PROOF FOR LEMMAS AND THEOREMS

E.1 PROOF FOR THE LEMMA 1

In this subsection, we present the detailed proof for Lemma 1.

Lemma 1. For the decomposition ∆W⊤
t = ∆VtC

⊤ + ∆εt, given weight changes over different
samples ∆W⊤

t , we can compute the common direction C by minimizing the fitting error ∆ϵt,
when we use ∆vt,iC

⊤ to approximate ∆w⊤
t,i over different samples across different iterations.

I.e., minC,∆Vt|x
(
Et∈[Tstart,Tend]Ex∈X ∥∆εt|x∥2F

)
, s.t. ∆εt|x = ∆W⊤

t |x − ∆Vt|xC⊤. Thus, we obtain

∆Vt =
∆W⊤

t C

C⊤C
and ∆εt= ∆W⊤

t −∆W⊤
t

CC⊤

C⊤C
, s.t. ∆εtC = 0. Such settings minimize ∥∆εt∥F .

proof. Let ∆ε⊤t [j] denote the j-th column of the matrix ∆ε⊤t ∈ Rh×d. Given a sample x, we can
represent ∆ε⊤t [j] by the vector C and a residual term ∆ε⊤t [j]

′ as follows:

∆ε⊤t [j] = λC +∆ε⊤t [j]
′
, (1)

where C⊤∆ε⊤t [j]
′
= 0, and λ is a scalar.

Then, ∥∥∆ε⊤t [j]
∥∥2
2
=

∥∥∥λC +∆ε⊤t [j]
′
∥∥∥2
2

= (λC +∆ε⊤t [j]
′
)⊤(λC +∆ε⊤t [j]

′
)

= λ2C⊤C + (∆ε⊤t [j]
′
)⊤∆ε⊤t [j]

′

= λ2C⊤C +
∥∥∥∆ε⊤t [j]

′
∥∥∥2
2

(2)

Obviously,
∥∥∆ε⊤t [j]

∥∥2
2

is the smallest when λ = 0. In other words, ∆ε⊤t [j] does not contain the

component along the direction C and C⊤∆ε⊤t [j] = 0. Therefore,
∥∥∆ε⊤t [j]

∥∥2
2

reaches its minimum
if and only if ∆εtC = 0.

When
∥∥∆ε⊤t [j]

∥∥2
2

reaches its minimum, ∥∆εt∥2F becomes the smallest. Thus, we have:

∆Wt =C∆V ⊤
t +∆ε⊤t

C⊤∆Wt =C⊤C∆V ⊤
t + CT∆ε⊤t

= C⊤C∆V ⊤
t + 0

(3)

Then, ∆V ⊤
t can be represented as follows.

∆V ⊤
t =

C⊤∆Wt

C⊤C
(4)

Substituting Eq. 4 into ∆Wt = C∆V ⊤
t +∆ε⊤t , we have

∆εt = ∆W⊤
t −∆W⊤

t

CC⊤

C⊤C
(5)

E.2 PROOF FOR THE LEMMA 2

In this subsection, we present the detailed proof for Lemma 2.

Lemma 2. (We can also decompose the weight W
(l)
t into the component along the common

direction C and the component εt in other directions.) Given the weight W⊤
t and the common

direction C, the decomposition W⊤
t = VtC

⊤ + εt can be conducted as Vt =
W⊤

t C
C⊤C

and εt=

W⊤
t −W⊤

t
CC⊤

C⊤C
s.t. εtC = 0. Such settings minimize ∥εt∥F . .
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proof. Let ε⊤t [j] denote the j-th column of the matrix ε⊤t ∈ Rh×d. We can represent ε⊤t [j] by the
vector C and a residual term ε⊤t [j]

′ as follows:

ε⊤t [j] = λC + ε⊤t [j]
′
, (6)

where C⊤ε⊤t [j]
′
= 0 and λ is a scalar.

Then, ∥∥ε⊤t [j]∥∥22 =
∥∥∥λC + ε⊤t (x)[j]

′
∥∥∥2
2

= (λC + ε⊤t [j]
′
)⊤(λC + ε⊤t [j]

′
)

= λ2C⊤C + (ε⊤t [j]
′
)⊤ε⊤t [j]

′

= λ2C⊤C +
∥∥∥ε⊤t [j]′∥∥∥2

2

(7)

Obviously,
∥∥ε⊤t [j]∥∥22 becomes the smallest when λ = 0. In other words, ε⊤t [j] does not contain the

component along the direction C and C⊤ε⊤t [j] = 0. Therefore,
∥∥ε⊤t [j]∥∥22 reaches its minimum if

and only if εtC = 0.

When
∥∥ε⊤t [j]∥∥22 reaches its minimum, ∥εt∥2F becomes the smallest. Thus, we have:

Wt =CV ⊤
t + ε⊤t

C⊤Wt =C⊤CV ⊤
t + C⊤ε⊤t

=C⊤CV ⊤
t + 0

(8)

Then, V ⊤
t can be written as follows.

V ⊤
t =

C⊤Wt

C⊤C
(9)

Substituting Eq. 9 into Wt = CV ⊤
t + ε⊤t , we have

εt = W⊤
t −W⊤

t

CC⊤

C⊤C
(10)

E.3 PROOF FOR THEOREM 1.

In this subsection, we present the detailed proof for Theorem 1.

Theorem 1. The weight change made by a sample can be decomposed into (h+ 1) terms after the
t-th iteration, as follows.

∆W
(l)
t = ∆W

(l)

primary,t +
∑h

k=1
∆W

(l,k)

noise,t
rewritten
==== Γ

(l)
t F

(l−1)⊤

t + κ
(l)⊤

t , (11)

where ∆W
(l)
primary,t= D

(l)
t V

(l+1)
t C(l+1)⊤C(l+1)∆V

(l+1)⊤

t F
(l)
t F

(l−1)⊤

t /∥F (l)
t ∥22 denotes the component

along the primary common direction, and ∆W
(l,k)
noise,t= D

(l)
t ε

(l+1,k)
t ∆ε

(l+1)⊤

t F
(l)
t F

(l−1)⊤

t /∥F (l)
t ∥22 de-

notes the component along the k-th common direction in the noise term. ε
(l+1,k)
t = ΣkkUkV⊤

k ,
where the SVD of ε

(l+1)
t ∈ Rh×h′

is given as ε
(l+1)
t = UΣV⊤ (h ≤ h′), and Σkk denotes the

k-th singular value ∈ R. ε
(l+1)
t =

∑
k ε

(l+1,k)
t . Uk and Vk denote the k-th column of the

matrix U and V, respectively. Besides, we have ∀k ∈ {1, 2, . . . , h}, U⊤
k C(l+1) = 0. Con-

sequently, we have Γ
(l)
t = D

(l)
t V

(l+1)
t C(l+1)⊤C(l+1)∆V

(l+1)⊤

t F
(l)
t /∥F (l)

t ∥22 ∈ Rh, and κ
(l)⊤

t =

D
(l)
t ε

(l+1)
t ∆ε

(l+1)⊤

t F
(l)
t F

(l−1)⊤

t /∥F (l)
t ∥22∈ Rh×d.

proof. We can represent weight matrix as W (l)
t = C(l)V

(l)
t

⊤
+ ε

(l)⊤

t . In addition, according to back

propagation and chain rule, we have ∆W
(l)
t = −ηD

(l)
t Ḟ

(l)
t F

(l−1)⊤

t , where Ḟ
(l)
t = ∂Loss

∂F
(l)
t

, and η

denotes the learning rate.
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According to Lemma 1 and Lemma 2, we have ∆ε
(l+1)
t C(l+1) = 0 and ε

(l+1)
t C(l+1) = 0. After

the t-th iteration, the weight change made by a training sample x can be computed as follows.

∆W
(l)
t = −ηD

(l)
t Ḟ

(l)
t F

(l−1)⊤

t

= −ηD
(l)
t W

(l+1)⊤

t D
(l+1)
t Ḟ

(l+1)
t F

(l−1)⊤

t

= D
(l)
t W

(l+1)⊤

t ∆W
(l+1)
t F

(l)
t F

(l−1)⊤

t /
∥∥∥F (l)

t

∥∥∥2
2

= D
(l)
t

[
V

(l+1)
t C(l+1)⊤ + ε

(l+1)
t

] [
C(l+1)∆V

(l+1)⊤

t +∆ε
(l+1)⊤

t

]
F

(l)
t F

(l−1)⊤

t /
∥∥∥F (l)

t

∥∥∥2
2

= D
(l)
t [V

(l+1)
t C(l+1)⊤C(l+1)∆V

(l+1)⊤

t + V
(l+1)
t C(l+1)⊤∆ε

(l+1)⊤

t

+ ε
(l+1)
t C(l+1)∆V

(l+1)⊤

t + ε
(l+1)
t ∆ε

(l+1)⊤

t ]F
(l)
t F

(l−1)⊤

t /
∥∥∥F (l)

t

∥∥∥2
2

= D
(l)
t

[
V

(l+1)
t C(l+1)⊤C(l+1)∆V

(l+1)⊤

t + ε
(l+1)
t ∆ε

(l+1)⊤

t

]
F

(l)
t F

(l−1)⊤

t /
∥∥∥F (l)

t

∥∥∥2
2

= D
(l)
t V

(l+1)
t C(l+1)⊤C(l+1)∆V

(l+1)⊤

t F
(l)
t F

(l−1)⊤

t /
∥∥∥F (l)

t

∥∥∥2
2

+D
(l)
t ε

(l+1)
t ∆ε

(l+1)⊤

t F
(l)
t F

(l−1)⊤

t /
∥∥∥F (l)

t

∥∥∥2
2

(12)

ε
(l+1,k)
t = ΣkkUkV⊤

k , where the singular value decomposition of ε(l+1)
t is given as ε

(l+1)
t = UΣV⊤,

and Σkk denotes the k-th singular value. Uk and Vk denote the k-th column of the matrix U and V,
respectively. We can derive the following equations.

∆W
(l)
t = D

(l)
t V

(l+1)
t C(l+1)TC(l+1)∆V

(l+1)⊤

t F
(l)
t F

(l−1)⊤

t /
∥∥∥F (l)

t

∥∥∥2
2

+D
(l)
t ε

(l+1)
t ∆ε

(l+1)⊤

t F
(l)
t F

(l−1)⊤

t /
∥∥∥F (l)

t

∥∥∥2
2

= D
(l)
t V

(l+1)
t C(l+1)TC(l+1)∆V

(l+1)⊤

t F
(l)
t F

(l−1)⊤

t /
∥∥∥F (l)

t

∥∥∥2
2

+

h∑
k=1

D
(l)
t ε

(l+1,k)
t ∆ε

(l+1)⊤

t F
(l)
t F

(l−1)⊤

t /
∥∥∥F (l)

t

∥∥∥2
2
.

= ∆W
(l)
primary,t +

h∑
k=1

∆W
(l,k)
t,noise

(13)

In addition, if we set Γ
(l)
t = D

(l)
t V

(l+1)
t C(l+1)⊤C(l+1)∆V

(l+1)⊤

t F
(l)
t /∥F (l)

t ∥22, and κ
(l)⊤

t =

D
(l)
t ε

(l+1)
t ∆ε

(l+1)⊤

t F
(l)
t F

(l−1)⊤

t /∥F (l)
t ∥22. Then we can re-write the Eq. (13) as follows.

∆W
(l)
t

rewritten
==== Γ

(l)
t F

(l−1)⊤

t + κ
(l)⊤

t (14)

E.4 PROOF FOR LEMMA 3

In this subsection, we present the detailed proof for Lemma 3.
Lemma 3. Given an input sample x ∈ X and a common direction C(l) after the t-th iteration,
if the noise term ε

(l)
t is small enough to satisfy |∆V

(l)⊤

t F
(l−1)
t V

(l)⊤

t V
(l)
t C(l)⊤C(l)∆V

(l)⊤

t F
(l−1)
t | ≫

|∆V
(l)⊤

t F
(l−1)
t V

(l)⊤

t ε
(l)
t ∆ε

(l)⊤

t F
(l−1)
t |, we can obtain cos(∆V

(l)
t , F

(l−1)
t ) · cos(V (l)

t ,∆F
(l−1)
t ) ≥ 0,

where ∆V
(l)
t =

∆W
(l)⊤
t C(l)

C(l)⊤C(l)
, and V

(l)
t =

W
(l)⊤
t C(l)

C(l)⊤C(l)
. ∆F

(l−1)
t denotes the change of features

∆F
(l−1)
t = F

(l−1)
t+1 − F

(l−1)
t made by the training sample x after the t-th iteration. To this end,

we approximately consider the change of features ∆F
(l−1)
t after the t-th iteration negatively parallel

to feature gradients Ḟ
(l−1)
t , although strictly speaking, the change of features is not exactly equal to

the feature gradients.
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proof. Given a sample x, we can prove that cos(∆V
(l)
t , F

(l−1)
t ) · cos(V (l)

t ,∆F
(l−1)
t ) ≥ 0.

According to chain rule, we have

∆W
(l)
t = −ηD

(l)
t Ḟ

(l)
t F

(l−1)T

t (15)

According to Lemma 1 and Lemma 2, we have C(l)⊤∆ε
(l)⊤

t = 0 and ε
(l)
t C(l) = 0. Then, we have

cos(∆V
(l)
t , F

(l−1)
t ) · cos(V (l)

t , Ḟ
(l−1)
t ) =

[
∆V

(l)⊤

t F
(l−1)
t

∥∆V
(l)
t ∥ · ∥F (l−1)

t ∥

]
·

[
V

(l)⊤

t Ḟ
(l−1)
t

∥V (l)
t ∥ · ∥Ḟ (l−1)

t ∥

]
(16)

Therefore, we have

sign(cos(∆V
(l)
t , F

(l−1)
t ) · cos(V (l)

t , Ḟ
(l−1)
t ))

= sign([∆V
(l)⊤

t F
(l−1)
t ] · [V (l)⊤

t Ḟ
(l−1)
t ]/(∥∆V

(l)
t ∥2∥F (l−1)

t ∥2∥V (l)
t ∥2∥Ḟ (l−1)

t ∥2))

= sign([∆V
(l)⊤

t F
(l−1)
t ] · [V (l)⊤

t W
(l)⊤

t D
(l)
t Ḟ

(l)
t ]/(∥∆V

(l)
t ∥2∥F (l−1)

t ∥2∥V (l)
t ∥2∥Ḟ (l−1)

t ∥2))

= sign([∆V
(l)⊤

t F
(l−1)
t ] · [V (l)⊤

t (V
(l)
t C(l)⊤ + ε

(l)
t )D

(l)
t Ḟ

(l)
t ]/(∥∆V

(l)
t ∥2∥F (l−1)

t ∥2∥V (l)
t ∥2∥Ḟ (l−1)

t ∥2))

= sign([∆V
(l)⊤

t F
(l−1)
t ] · [V (l)⊤

t (V
(l)
t C(l)⊤ + ε

(l)
t )(∆W

(l)
t F

(l−1)
t /(−η

∥∥∥F (l−1)
t

∥∥∥2
2
))]

/(∥∆V
(l)
t ∥2∥F (l−1)

t ∥2∥V (l)
t ∥2∥Ḟ (l−1)

t ∥2))

= sign([∆V
(l)⊤

t F
(l−1)
t ] · [(V (l)⊤

t V
(l)
t C(l)⊤ + V

(l)⊤

t ε
(l)
t )∆W

(l)
t F

(l−1)
t ]

/(−η
∥∥∥F (l−1)

t

∥∥∥2
2
∥∆V

(l)
t ∥2∥F (l−1)

t ∥2∥V (l)
t ∥2∥Ḟ (l−1)

t ∥2))

= sign([∆V
(l)⊤

t F
(l−1)
t ] · [(V (l)⊤

t V
(l)
t C(l)⊤ + V

(l)⊤

t ε
(l)
t )(C(l)∆V

(l)⊤

t +∆ε
(l)⊤

t )F
(l−1)
t ]

/(−η
∥∥∥F (l−1)

t

∥∥∥2
2
∥∆V

(l)
t ∥2∥F (l−1)

t ∥2∥V (l)
t ∥2∥Ḟ (l−1)

t ∥2))

= sign([∆V
(l)⊤

t F
(l−1)
t ] · [(V (l)⊤

t V
(l)
t C(l)⊤C(l)∆V

(l)⊤

t + V
(l)⊤

t ε
(l)
t ∆ε

(l)⊤

t

+ V
(l)⊤

t V
(l)
t C(l)⊤∆ε

(l)⊤

t + V
(l)⊤

t ε
(l)
t C(l)∆V

(l)⊤

t )F
(l−1)
t ]/(−η

∥∥∥F (l−1)
t

∥∥∥2
2
∥∆V

(l)
t ∥2∥Ḟ (l−1)

t ∥2∥V (l)
t ∥2∥F (l−1)

t ∥2))

= sign([∆V
(l)⊤

t F
(l−1)
t ] · [(V (l)⊤

t V
(l)
t C(l)⊤C(l)∆V

(l)⊤

t + V
(l)⊤

t ε
(l)
t ∆ε

(l)⊤

t )F
(l−1)
t ]

/(−η
∥∥∥F (l−1)

t

∥∥∥2
2
∥∆V

(l)
t ∥2∥F (l−1)

t ∥2∥V (l)
t ∥2∥Ḟ (l−1)

t ∥2))

= sign([∆V
(l)⊤

t F
(l−1)
t ] · [V (l)⊤

t V
(l)
t C(l)⊤C(l)∆V

(l)⊤

t F
(l−1)
t + V

(l)⊤

t ε
(l)
t ∆ε

(l)⊤

t F
(l−1)
t ]

/(−η
∥∥∥F (l−1)

t

∥∥∥2
2
∥∆V

(l)
t ∥2∥F (l−1)

t ∥2∥V (l)
t ∥2∥Ḟ (l−1)

t ∥2))

= sign([∆V
(l)⊤

t F
(l−1)
t V

(l)⊤

t V
(l)
t C(l)⊤C(l)∆V

(l)⊤

t F
(l−1)
t +∆V

(l)⊤

t F
(l−1)
t V

(l)⊤

t ε
(l)
t ∆ε

(l)⊤

t F
(l−1)
t ]

/(−η
∥∥∥F (l−1)

t

∥∥∥2
2
∥∆V

(l)
t ∥2∥F (l−1)

t ∥2∥V (l)
t ∥2∥Ḟ (l−1)

t ∥2))
(17)

According to our assumption, the noise term ε
(l)
t is small enough to satisfy

|∆V
(l)⊤

t F
(l−1)
t V

(l)⊤

t V
(l)
t C(l)⊤C(l)∆V

(l)⊤

t F
(l−1)
t | ≫ |∆V

(l)⊤

t F
(l−1)
t V

(l)⊤

t ε
(l)
t ∆ε

(l)⊤

t F
(l−1)
t |.

This assumption is verified in Figure 52. Then we can ignore the last term and obtain

sign([∆V
(l)⊤

t F
(l−1)
t V

(l)⊤

t V
(l)
t C(l)⊤C(l)∆V

(l)⊤

t F
(l−1)
t +∆V

(l)⊤

t F
(l−1)
t V

(l)⊤

t ε
(l)
t ∆ε

(l)⊤

t F
(l−1)
t ]

/(−η
∥∥∥F (l−1)

t

∥∥∥2
2
∥∆V

(l)
t ∥2∥F (l−1)

t ∥2∥V (l)
t ∥2∥Ḟ (l−1)

t ∥2))

≈ sign([∆V
(l)⊤

t F
(l−1)
t V

(l)⊤

t V
(l)
t C(l)⊤C(l)∆V

(l)⊤

t F
(l−1)
t ]

(−η
∥∥∥F (l−1)

t

∥∥∥2
2
∥∆V

(l)
t ∥2∥F (l−1)

t ∥2∥V (l)
t ∥2∥Ḟ (l−1)

t ∥2)) ≤ 0

(18)
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Figure 52: Visualization of the Frobenius norm of the two components
∆V

(l)⊤

t F
(l−1)
t V

(l)⊤

t V
(l)
t C(l)⊤C(l)∆V

(l)⊤

t F
(l−1)
t and ∆V

(l)⊤

t F
(l−1)
t V

(l)⊤

t ε
(l)
t ∆ε

(l)⊤

t F
(l−1)
t .

We trained a 9-layer MLP on the MNIST dataset, where each layer had 512 neurons. Iterations
were chosen at the end of the first phase.

Thus,

sign(cos(∆V
(l)
t , F

(l−1)
t ) · cos(V (l)

t , Ḟ
(l−1)
t )) ≤ 0 (19)

In this paper, we approximately consider ∆F
(l−1)
t and Ḟ

(l−1)
t are negatively parallel to each

other. Thus, we have sign(cos(∆V
(l)
t , F

(l−1)
t ) · cos(V (l)

t ,∆F
(l−1)
t )) = sign(cos(∆V

(l)
t , F

(l−1)
t ) ·

(− cos(V
(l)
t , Ḟ

(l−1)
t ))) ≥ 0.

E.5 PROOF FOR THEOREM 2

In this subsection, we aim to prove that training samples of the same category have the same effect
in the first phase.

Theorem 2. For any pair of training samples x, x′ ∈ Xc in the category c, if [C(l)⊤D
(l)
t |xḞ (l)

t |x] ·
[C(l)⊤D

(l)
t |x′ Ḟ

(l)
t |x′ ] > 0 (i.e., F (l)

t |x and F
(l)
t |x′ have kinds of similarity in very early iterations), then

cos(αc∆V
(l)
t |x, F (l−1)

t |x)≥ 0, and cos(αcV
(l)
t ,∆F

(l−1)
t |x) ≥ 0, where αc ∈{−1,+1} is a constant for

the category c.

proof. Given a sample x and a sample x′ from the same category, we can prove that
cos(∆V

(l)
t |x, F (l−1)

t |x) · cos(∆V
(l)
t |x′ , F

(l−1)
t |x′) ≥ 0.

sign(cos(∆V
(l)
t |x, F (l−1)

t |x) · cos(∆V
(l)
t |x′ , F

(l−1)
t |x′))

= sign([∆V
(l)⊤

t |xF (l−1)
t |x] · [∆V

(l)⊤

t |x′F
(l−1)
t |x′ ])

= sign([
C(l)⊤∆W

(l)
t |x

C(l)⊤C(l)
F

(l−1)
t |x] · [

C(l)⊤∆W
(l)
t |x′

C(l)⊤C(l)
F

(l−1)
t |x′ ])

= sign([C(l)⊤∆W
(l)
t |xF (l−1)

t |x] · [C(l)⊤∆W
(l)
t |x′F

(l−1)
t |x′ ])

= sign([C(l)⊤(−ηD
(l)
t |xḞ (l)

t |xF (l−1)⊤

t |x)F (l−1)
t |x] · [C(l)⊤(−ηD

(l)
t |x′ Ḟ

(l)
t |x′F

(l−1)⊤

t |x′)F
(l−1)
t |x′ ])

= sign([C(l)⊤D
(l)
t |xḞ (l)

t |x] · [C(l)⊤D
(l)
t |x′ Ḟ

(l)
t |x′ ])

(20)

According to the assumption that F
(l)
t |x and F

(l)
t |x′ have kinds of similarity, we can consider

[C(l)⊤D
(l)
t |xḞ (l)

t |x] · [C(l)⊤D
(l)
t |x′ Ḟ

(l)
t |x′ ] > 0. In this way, for the category c, there exists a constant

αc, which satisfies sign(cos(αc∆V
(l)
t |x, F (l−1)

t |x) ≥ 0, where αc ∈ {−1,+1} and training sampl e
x ∈ Xc belongs to the category c.

According to Lemma 3, we have cos(∆V
(l)
t |x, F (l−1)

t |x) · cos(V (l)
t ,∆F

(l−1)
t |x) ≥ 0. Thus, we have

sign(cos(αc∆V
(l)
t |x, F (l−1)

t |x) · cos(αcV
(l)
t ,∆F

(l−1)
t |x)) ≥ 0. In addition, the above proof indicates

that sign(cos(αc∆V
(l)
t |x, F (l−1)

t |x) ≥ 0. Therefore, we have sign(cos(αcV
(l)
t |x,∆F

(l−1)
t |x) ≥ 0
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F DECOMPOSITION OF COMMON DIRECTIONS

Actually, the estimation of the common direction C is similar to the singular value decomposition
(SVD), although there are slight differences.

We compute the average weight change ∆W t = Ex∈X∆Wt|x, where ∆Wt|x denotes the weight
change made by the sample x. Then, we decompose ∆W t into components along five common
directions as ∆W t = C1∆V

⊤
1,t + C2∆V

⊤
2,t + · · · + C5∆V

⊤
5,t + ∆ε⊤5,t, where C1=C is termed the

primary common direction. C1, C2, C3, C4, and C5 are orthogonal to each other. C2, C3, C4 and
C5 represent the second, third, fourth, and fifth common directions, respectively. Ci represents the
i-th common direction. ∆V i,t denotes the average weight change along the i-th common direction
decomposed from ∆W t.

Specifically, we first decompose the average weight change ∆W t after the t-th iteration as ∆W t =

C∆V
⊤
t + ∆ε⊤t . We remove all components along the common direction C from ∆W t, and obtain

∆W new,t = ∆W t − C∆V
⊤
t = ∆ε⊤t . Then, we further decompose ∆W new,t = C2∆V ⊤

2,t + ∆ε⊤2,t.
In this way, we can consider C2 as the secondary common direction, while C1 = C is termed
as the primary common direction. Thus, we conduct this process recursively and obtain common
directions {C1, C2, · · ·C5}. Accordingly, ∆W t is decomposed into ∆W t = C1∆V

⊤
1,t + C2∆V ⊤

2,t +
· · ·+ C5∆V ⊤

5,t +∆ε⊤5,t.

G THE EXPLANATION FOR THE DECOMPOSITION OF THE WEIGHT CHANGE
MADE BY A SAMPLE x

The explanation for the phenomenon that S
(l)
1 , S

(l)
2 , and S

(l)
3 do not decrease monotoni-

cally. Here we explain the phenomenon that S
(l)
1 , S

(l)
2 , and S

(l)
3 does not decrease monoton-

ically in Table 2 in Appendix and Table 1 in the main paper (Page 6). In fact, we first decom-
pose ε

(l+1)
t =

∑
k ε

(l+1,k)
t according to the SVD. Then ∆W

(l,k)
noise,t is computed as ∆W

(l,k)
noise,t =

D
(l)
t ε

(l+1,k)
t ∆ε

(l+1)⊤

t F
(l)
t F

(l−1)⊤

t /
∥∥∥F (l)

t

∥∥∥2
2
. Accordingly, the strength of weight changes along

the primary direction is computed as S
(l)
primary = Et∈[Tstart,Tend]Ex∈X

[
∥∆W

(l,k)
primary,t|x∥F

]
. The

strength of weight changes along the k-th noise direction is computed as S
(l)
k =

Et∈[Tstart,Tend]Ex∈X

[
∥∆W

(l,k)
noise,t|x∥F

]
. In this way, S

(l)
1 , S

(l)
2 , and S

(l)
3 do not decrease mono-

tonically, although ∥ε(l+1,1)
t ∥F , ∥ε(l+1,2)

t ∥F , and ∥ε(l+1,3)
t ∥F are directly decomposed from ε

(l+1)
t

based on the SVD and decrease monotonically.

Comparing the strength of primary common direction with the sum of all other directions’
strength. Here we explain the strength of each direction. According to Table 1 in the main paper,
it seems that the sum of strengths of components along other directions is also large. However, dif-
ferent directions decomposed by the above method are orthogonal to each other. Therefore, weight
changes along different directions are independent, and their strengths cannot be summed up. Thus,
we can directly compare the strength of the component of weight changes along each direction, so
as to illustrate the significant strength of the primary direction.

H DISCUSSION ON THE BACKGROUND ASSUMPTION.

In Section 3.1, we demonstrate that on the ideal state, i.e., W
(l)⊤

t has been optimized towards the
common direction C(l) for a long time, we can consider that the feature gradients Ḟ (l−1)

t of different
samples will be roughly parallel to the same vector β. In this way, we can explain that the diversity
between feature gradients Ḟ

(l−1)
t of different samples decreases.

In comparison, we mainly discuss the trustworthiness of the background assumption in Section 3.2
in the main paper. We aim to discuss that on the assumption that features F

(l−1)
t of different samples

have been pushed a little bit towards a specific common direction, we can find at least one learning
iteration in the first phase where ∆F

(l−1)
t and F

(l−1)
t of most samples have similar directions, and
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V
(l)
t and ∆V

(l)
t have similar directions. The assumption that features F

(l−1)
t of different samples

have been pushed a little bit towards a specific common direction is an intermediate state between
the chaotic initial state of the MLP and the ideal state introduced in the above section. In this way,
we can assume that C(l)⊤D

(l)
t Ḟ

(l)
t is large.

According to Eq. (2) in the main paper and Lemma 2, we have Ḟ
(l−1)
t = W

(l)⊤

t D
(l)
t Ḟ

(l)
t and

W
(l)⊤

t = V
(l)
t C(l)⊤ + ε

(l)⊤

t . Thus, we have

Ḟ
(l−1)
t = W

(l)⊤

t D
(l)
t Ḟ

(l)
t

= (V
(l)
t C(l)⊤ + ε

(l)⊤

t )D
(l)
t Ḟ

(l)
t

= V
(l)
t C(l)⊤D

(l)
t Ḟ

(l)
t + ε

(l)⊤

t D
(l)
t Ḟ

(l)
t

(21)

If the scalar C(l)⊤D
(l)
t Ḟ

(l)
t is large, we can roughly consider

Ḟ
(l−1)
t ≈ V

(l)
t C(l)⊤D

(l)
t Ḟ

(l)
t

= V
(l)
t · (C(l)⊤D

(l)
t Ḟ

(l)
t ) // V

(l)
t

(22)

It means that the feature gradient Ḟ (l−1)
t is roughly parallel to the vector V (l)

t . Furthermore, the
feature gradient Ḟ (l−1)

t and the change of feature ∆F
(l−1)
t can be considered negatively parallel to

each other, we have
∆F

(l−1)
t // Ḟ

(l−1)
t // V

(l)
t (23)

Similarly, we have ∆F
(l−1)
t+1 // V

(l)
t+1. Therefore, we can roughly consider that V (l)

t ≈ kt∆F
(l−1)
t ,

and V
(l)
t+1 ≈ kt+1∆F

(l−1)
t+1 , where kt, kt+1 ∈ R are two scalars. Then, we can derive that

∆V
(l)
t = V

(l)
t+1 − V

(l)
t ≈ kt+1∆F

(l−1)
t+1 − kt∆F

(l−1)
t (24)

If features F
(l−1)
t of different samples have been pushed a little bit towards a specific common

direction, then it is easy to find at least one learning iteration that ∆F
(l−1)
t and F

(l−1)
t of most

samples have similar directions, i.e. ∆F
(l−1)
t // F

(l−1)
t . Meanwhile, we can find at least one

learning iteration in the first phase where the change of feature in t-th iteration ∆F
(l−1)
t and (t+1)-

th iteration ∆F
(l−1)
t+1 are roughly the same. In other words, ∆F

(l−1)
t ≈ ∆F

(l−1)
t+1 . Thus, we have

∆V
(l)
t ≈ (kt+1 − kt)∆F

(l−1)
t // ∆F

(l−1)
t // V

(l)
t (25)

In this way, we can obtain that V (l)
t and ∆V

(l)
t have similar directions.

I DISCUSSION FOR FOUR TYPICAL OPERATIONS

I.1 LAYER NUMBERS OF DNNS

We explain that deeper DNNs are more likely to exhibit the feature condensation phenomenon. As
aforementioned, weights in the l-th linear layer are optimized towards the common direction C(l).
Thus, according to Theorem 2 in the main paper, the feature condensation of a lower layer boosts the
initial similarity of input features in the adjacent upper layer. Then such condensation may further
strengthen the condensation of the upper layer. Thus, the deeper DNN is more likely to suffer the
condensation problem.

In order to verify that deeper DNNs are more likely to exhibit the feature condensation phenomenon,
we trained three MLPs with different layer numbers on census and commercial datasets, respectively.
Specifically, each linear layer in the MLP had 128 neurons. Figures 53 and 54 show that deeper
DNNs have a severe feature condensation phenomenon.

I.2 CENTERING OPERATIONS FOR NORMALIZATION

The output feature of the l-th linear layer w.r.t. the input sample x can be described as
[f1, f2, . . . , fh] = W

(l)
t F

(l−1)
t ∈ Rh, where fi denotes the i-th dimension of the feature. In this
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Figure 53: (a) The training loss of three MLPs trained on the Census dataset. (b) The testing loss
of three MLPs. (c) Training accuracies of three MLPs. (d) Testing accuracies of three MLPs. (e)
Cosine similarity between features of different categories. (f) Cosine similarity between gradients
of different samples in a category. The feature and the feature gradient were used in the fifth linear
layer of MLPs.
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Figure 54: (a) The training loss of three MLPs trained on the Commercial dataset. (b) The testing
loss of three MLPs. (c) Training accuracies of three MLPs. (d) Testing accuracies of three MLPs.
(e) Cosine similarity between features of different categories. (f) Cosine similarity between gradi-
ents of different samples in a category. The feature and the feature gradient were used in the fifth
linear layer of MLPs.
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Figure 55: Cosine similarity of features between samples in different categories. We trained 7-layer
MLPs and 9-layer MLPs on the CIFAR-10, the MNIST, and the Tiny ImageNet dataset.

way, the batch normalization operation can be formulated as BN(fi) = γscale[(fi − µi)/σi] + βshift,
where γscale and βshift denote the scaling and the shifting parameters, respectively. In this way, the
batch normalization operation subtracts the mean feature F̄

(l)
t = Ex∈X [F

(l)
t |x] from features of all

samples. Therefore, features of different samples in a same category are no longer similar to each
other.

We also propose a simplified normalization operation (i.e., centering operations for normalization)
to alleviate the feature condensation phenomenon in the first phase. The centering operations for
normalization is given as norm1(fi) = (fi − µi)/σi, where µi and σi denote the mean value
and the standard deviation of fi over different samples, respectively. This operation is similar to
the batch normalization (Ioffe & Szegedy, 2015), but we do not compute the scaling and shifting
parameters in the batch normalization.
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Figure 56: Effects of (a) momentum and (b) L2 regularization. We trained L-layer MLPs, where
each layer had 512 neurons. A shorter first phase indicates that the feature condensation phe-
nomenon is more alleviated.

In order to verify the centering operations for normalization can alleviate the feature condensation
phenomenon during the training process of the MLP, we trained 7-layer MLPs and 9-layer MLPs
with and without the centering operations. Specifically, for the centering normalization operation
norm1, we added the centering operations after each linear layer, except the last linear layer. Each
linear layer in the MLP had 512 neurons. Figure 55 shows that the feature similarity in MLPs
with centering operations kept decreasing, while the feature similarity of the MLP without centering
operations kept increasing. This indicated that centering operations for normalization alleviate the
feature condensation phenomenon.

I.3 MOMENTUM

We can explain that momentum in gradient descent can alleviate this phenomenon. Based on Lemma
3, the “self-enhanced system” of the feature condensation phenomenon requires singular values of
weights along other directions ε(l)t to be small enough. However, because the momentum operation
strengthens influences of the initialized noisy weights W

(l)
t=0, it strengthens singular values of ε(l)t ,

to some extent, thereby alleviating the feature condensation phenomenon.

Specifically, considering the momentum with the coefficient m, the dynamics of weights Wt+1 can
be described as,

Wt+1 = Wt − η
∂Loss

∂Wt
−m

∂Loss

∂Wt−1
, (26)

where η denotes the learning rate. Because we only focus on weights in a single layer, without
causing ambiguity, we omit the superscript (l) to simplify the notation in this subsection. In this
way, we can write the gradient descent as

WT+1 = W0 + η

T∑
t

1−mT+1−t

1−m

∂Loss

∂Wt
. (27)

Since 0 < m < 1, the coefficient 1−mT+1−t

1−m decreases when the variable t increases. Thus, a
large m represents that influences of W0 on WT+1 are significant. Because εT+1 is decomposed
from WT+1 and singular values of εT+1 are mainly determined by the noisy W0. Accordingly,
singular values of εT+1 are relatively large, which disturb the “self-enhanced system” and alleviate
the feature condensation phenomenon.

To verify the above analysis, we trained MLPs with m = 0, 0.5, 0.9, respectively. Figure 56(a)
verifies that a larger value of m usually more alleviates the feature condensation phenomenon.

I.4 INITIALIZATION

We explain that the initialization of MLPs also affects the feature condensation phenomenon. Ac-
cording to Lemma 3, such “self-enhanced system” requires singular values of weights along other
directions ε

(l)
t to be small enough. However, because increasing the variance of the initialized

weights W
(l)
0 will increase singular values of ε(l)t based on Lemma 2, alleviating the feature con-

densation phenomenon. Specifically, we initialize weights with Xavier normal distribution (Glorot
& Bengio, 2010), i.e. W0 ∼ N (0, γσ2

varI), where σvar =
√

2
fanout+fanin

. fanin and fanout de-
note the input dimension and the output dimension of the linear layer, respectively. In this way,
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a large γ yields large singular values of initial weights W0. Based on Lemma 2, we also have

ε
(l)
0 = W

(l)⊤

0 −W
(l)⊤

0
C(l)C(l)⊤

C(l)⊤C(l)
. Large singular values of initial weights W0 lead to large singular

values of ε(l)0 . Therefore, a large variance of initialized weights disturbs the “self-enhanced system”
and alleviates the feature condensation phenomenon.

I.5 L2 REGULARIZATION (RIDGE LOSS)

L2 regularization is equivalent to the weight decay in the case of gradient descent. The total loss
is given as L(Wt) = LCE(Wt) + λ∥Wt∥22, where LCE(Wt) represents the cross entropy loss, and
λ∥Wt∥22 denotes the ridge loss. In this way, we have the following iterates by using gradient descent

Wt+1 = Wt − η∇Lt (Wt)

= Wt − η∇LCE
t (Wt)− 2ηλWt

= (1− 2ηλ)Wt − η∇LCE
t (Wt) , (28)

According to Lemma 3, such “self-enhanced system” requires singular values of weights along other

directions ε(l)t to be small enough. Based on Lemma 2, we also have ε(l)t = W
(l)⊤

t −W
(l)⊤

t
C(l)C(l)⊤

C(l)⊤C(l)
.

In this way, a larger λ yields smaller singular values of ε
(l)
t , which disturbs the “self-enhanced

system” and strengthens the feature condensation phenomenon. Figure 56(b) verify that a larger
coefficient λ more strengthened the feature condensation phenomenon.
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J MORE EXPERIMENTAL RESULTS OF ASSUMPTION 1.

Assumption 1. We assume that the MLP encodes features of very few (a single or two) categories
in the first phase, instead of simultaneously learning all or most categories in this phase.

In this section, we aim to verify that Assumption 1 is a common fact in various DNNs, includ-
ing MLPs, VGGs, and ResNets. To this end, we have conducted new experiments to show that
DNNs encoded features of very few (a single or two) categories in early epochs. Specifically, we
trained a 9-layer MLP on the CIFAR-10, the MNIST dataset, and the Tiny ImageNet dataset, respec-
tively. Each layer of the MLP had 512 neurons. Besides, We trained a VGG-11 model, a VGG-13
model, and a ResNet-18 on the CIFAR-10 dataset. We evaluated the training accuracy at the end of
the first phase. For the Tiny ImageNet dataset, we randomly selected the following 50 categories,
orangutan, parking meter, snorkel, American alligator, oboe, basketball, rocking chair, hopper, neck
brace, candy store, broom, seashore, sewing machine, sunglasses, panda, pretzel, pig, volleyball,
puma, alp, barbershop, ox, flagpole, lifeboat, teapot, walking stick, brain coral, slug, abacus, comic
book, CD player, school bus, banister, bathtub, German shepherd, black stork, computer keyboard,
tarantula, sock, Arabian camel, bee, cockroach, cannon, tractor, cardigan, suspension bridge, beer
bottle, viaduct, guacamole, and iPod for training. Figure 57, Figure 58, Figure 59, and Figure 60
show that various DNNs encoded features of very few (a single or two) categories in early epochs.

9-layer MLP trained on the CIFAR-10 dataset

(c)

(a)

9-layer MLP trained on the Tiny ImageNet Dataset

9-layer MLP trained on the MNIST dataset

(b)

Figure 57: The training accuracies of MLPs on the CIFAR-10 dataset, the MNIST dataset, and the
Tiny ImageNet dataset. The accuracies were evaluated at the end of the first phase. MLPs encode
features of very few (a single or two) categories in the first phase, instead of simultaneously learning
all or most categories in this phase. (a) The training accuracy of a 9-layer MLP trained on the
CIFAR-10 dataset. (b) The training accuracy of a 9-layer MLP trained on the MNIST dataset. (c)
The training accuracy of a 9-layer MLP trained on the Tiny ImageNet dataset.

VGG-11 trained on the CIFAR-10 dataset

(a)

VGG-11 trained on the Tiny ImageNet dataset

(b)

Figure 58: The training accuracies of VGG-11 models on the CIFAR-10 dataset and the Tiny Ima-
geNet dataset. The accuracies were evaluated at the end of the first phase. VGG-11 models encode
features of very few (a single or two) categories in the first phase, instead of simultaneously learn-
ing all or most categories in this phase. (a) The training accuracy of VGG-11 models trained on
the CIFAR-10 dataset. (b) The training accuracy of VGG-11 models trained on the Tiny ImageNet
dataset.
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(b)

VGG-13 trained on the Tiny ImageNet DatasetVGG-13 trained on the CIFAR-10 dataset

(a)

Figure 59: The training accuracies of VGG-13 models on the CIFAR-10 dataset and the Tiny
ImageNet dataset. The accuracies were evaluated at the end of the first phase. VGG-13 models
encode features of very few (a single or two) categories in the first phase, instead of simultaneously
learning all or most categories in this phase. (a) The training accuracy of VGG-13 models trained on
the CIFAR-10 dataset. (b) The training accuracy of VGG-13 models trained on the Tiny ImageNet
dataset.

ResNet18 trained on the Tiny ImageNet Dataset

(a) (b)

ResNet18 trained  on  the  CIFAR-10  dataset

Figure 60: The training accuracies of ResNet-18 models on the CIFAR-10 dataset and the Tiny
ImageNet dataset. The accuracies were evaluated at the end of the first phase. ResNet-18 models
encode features of very few (a single or two) categories in the first phase, instead of simultaneously
learning all or most categories in this phase. (a) The training accuracy of ResNet-18 models trained
on the CIFAR-10 dataset. (b) The training accuracy of ResNet-18 models trained on the Tiny
ImageNet dataset.
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K PROPOSE AN IMPROVED TRAINING METHOD

In this section, we use our theory to develop a new normalization method. The new normalization
operation was designed considering the following two findings.
• Our theoretical analysis told us that the centering operation in BN could alleviate the feature
condensation phenomenon.
• Previous studies found some shortcomings of the BN operation, i.e., the BN operation usually
caused unstable features. Thus, the BN operation was found incompatible with the dropout (Li
et al., 2019), hurt the classification accuracy in adversarial training (Galloway et al., 2019), and
decreased the quality of images generated by generative models (Salimans et al., 2016).

Therefore, according to our analysis, we only need to update the dynamic normalization parameters
(i.e., µi and σi in the following equation) in the first phase to avoid the learning-sticking problem,
instead of applying the dynamic normalization parameters in the entire training process. In this way,
we can simultaneously solve the learning-sticking problem and avoid unstable features.

Specifically, we are given the output feature F = [f1, f2, . . . , fh] ∈ Rh of the l-th linear layer w.r.t. the
input sample x, where fi denotes the i-th dimension of the feature. The new normalization operation
is given as

norm(fi) = (fi − µi)/σi, (29)

where µi and σi denote the mean value and the standard deviation of fi over different samples,
respectively. We only update the mean value µi and the standard deviation σi in the first phase, as
follows.

µi =

{
Ex∈batch[fi], at > τ

µi,t−1, at ≤ τ
, σ2

i =

{
Varx∈batch[fi], a > τ

σ2
i,t−1, a ≤ τ

, (30)

where we keep updating at = 0.99at−1 + 0.01Ex,x′∈batch[cos(F |x, F |x′)] through all the t previous
batches to represent the current cosine similarity between features of different samples. If at is
greater than a threshold τ = 0.3, then we consider the learning process to be in the first phase and
normalize the feature. Otherwise, if at ≤ τ , then we consider it has already jumped to the second
phase, stop updating µi and σ2

i , and use constants µi and σ2
i to generate stable features. We set

m = 0.1 and compute µi,t and σ2
i,t in the t-th batch as follows.

µi,t =

{
(1−m)µi,t−1 +mEx∈batch[fi], at > τ

µi,t−1, at ≤ τ
, σ2

i,t =

{
(1−m)σ2

i,t−1 +mVarx∈batch[fi], a > τ
σ2
i,t−1, a ≤ τ

.

(31)
To this end, we conducted experiments on two types of MLPs (i.e., 9-layer MLPs and 11-layer
MLPs) to compare the proposed method with BN. For each type of MLP, we trained three versions
MLPs on the CIFAR-10 dataset. The vanilla MLP had 512 neurons in each layer. We added the pro-
posed norm operation after the first, the third, the fifth, and the seventh linear layers, and constructed
the network MLP-norm. For a fair comparison, we constructed a baseline MLP, namely MLP-BN,
by adding the BN operation in the same positions as in MLP-norm. In addition, scaling and shifting
parameters in the BN operation were closed. Figure 61 shows that both the MLP-norm and MLP-
BN alleviated the learning-sticking problem. However, MLP-norm was optimized much faster than
MLP-BN, because our theoretical analysis told us that it was not necessary to continue updating µi

and σ2
i , if the learning process did not have a risk of feature condensation, thereby alleviating the

optimization problems found in (Li et al., 2019; Galloway et al., 2019).
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Figure 61: (a) The training loss of three 11-layer MLPs trained on the CIFAR-10 dataset, where each
layer had 512 neurons. (b) The training accuracies of three 11-layer MLPs. (c) The training loss of
three 9-layer MLPs trained on the CIFAR-10 dataset, where each layer had 512 neurons. (d) The
training accuracy of three 9-layer MLPs. Note that the vibration of the blue curve could be explained
as the failure of jumping out of the first phase, due to the strong power of the “self-enhancement
system.”
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