
SpringGrasp: Synthesizing Compliant, Dexterous
Grasps under Shape Uncertainty

Sirui Chen, Jeannette Bohg, C. Karen Liu
Department of Computer Science, Stanford University

{ericcsr, bohg, karenliu}@cs.stanford.edu

Abstract—Generating stable and robust grasps on arbitrary
objects is critical for dexterous robotic hands, marking a sig-
nificant step towards advanced dexterous manipulation. Pre-
vious studies have mostly focused on improving differentiable
grasping metrics with the assumption of precisely known object
geometry. However, shape uncertainty is ubiquitous due to noisy
and partial shape observations, which introduce challenges in
grasp planning. We propose SpringGrasp planner, a planner
that considers uncertain observations of the object surface for
synthesizing compliant dexterous grasps. A compliant dexterous
grasp could minimize the effect of unexpected contact with the
object, leading to a more stable grasp with shape-uncertain
objects. We introduce an analytical and differentiable metric,
SpringGrasp metric, that evaluates the dynamic behavior of the
entire compliant grasping process. Planning with SpringGrasp
planner, our method achieves a grasp success rate of 89% from
two viewpoints and 84% from a single viewpoints in experiment
with a real robot on 14 common objects. Compared with a force-
closure-based planner, our method achieves at least 18% higher
grasp success rate.

I. INTRODUCTION

Grasping with multi-fingered dexterous hands is an essential
manipulation capability that enables a robot to interact with
everyday objects - especially those with irregular shapes, such
as different fruits and bottles. Previous work addresses the
dexterous grasp planning problem mainly from two perspec-
tives: data-driven grasp generation [34, 4] and optimization
based grasp generation using differentiable grasp criteria such
as force closure [28, 51] or min-weight [24].Most optimization
based methods aims to obtain a set of stable contact points
on the object surface for each fingertip, which requires a
detailed object model to be available. However, perception
in the real world usually relies on noisy sensors with limited
viewpoints, resulting in uncertainty about the object shape that
poses significant challenges to previous works. Data-driven
method can work with partial and noisy observation[4, 34],
but most of them focus on simplified problem of choosing a
few fixed grasp candidates without optimizing for object and
grasp stability.

To grasp objects from noisy and partial observations in the
real world, we argue that every component in the grasping
pipeline should consider the impact of shape uncertainty. The
object perception model needs to quantify shape uncertainty
from the sensor data [12, 11, 16], the grasp planner needs to
leverage uncertain object information to make optimal plans
[26, 30], and finally the grasp controller also needs to be
compliant to tolerate unexpected contact between fingertips

Fig. 1: Compliant grasp as virtual spring attached from finger to object

and the object due to shape uncertainty. An optimization based
method that can efficiently optimize compliant pregrasps while
considering object shape uncertainty is essential for achieving
such tasks.

We propose SpringGrasp, a planner that considers uncertain
observations of the object surface for synthesizing compliant
dexterous grasps. A complaint grasp consists of an opti-
mized pregrasp hand pose and optimized per-finger impedance
controls. Unlike the conventional definition of a grasp, we
view a compliant grasp as a dynamic process starting from
the pregrasp pose, grasping the object according to the per-
finger impedance controls, and moving the object along with
the finger motion until a stable equilibrium is reached. As
shown in Fig.1, a compliant grasp in contact can be modelled
as virtual springs connected to the object. Critical to the
optimization of SpringGrasp, we introduce an analytical and
differentiable metric to evaluate whether the compliant grasp-
ing process can lead to a force-closure grasp at equilibrium. In
contrast to existing methods that solve for contact locations,
our optimized compliant grasp allows for direct control over
force magnitudes, force directions and impedance parameters.
As such, the unexpected contacts with the object can be
minimized, leading to more stable manipulation with uncertain
object shapes.

We evaluate our method on a real robotic platform con-
sisting of an Allegro hand and RGB-D cameras. We demon-
strate that our method can grasp objects from noisy and
partial observations with at least 18% higher success rate



compared to baselines. Our method can even achieve 84%
grasp success rate with a single depth camera input thanks
to our optimized compliant grasp. We release our grasp plan-
ner in a python package at https://github.com/Stanford-TML/
SpringGrasp release.

II. RELATED WORK

A. Optimization based methods for dexterous grasp

Synthesizing precision grasps by solving an optimization
problem has been extensively studied over the years. Most
research integrates an analytical grasp metric into the objective
function or constraints of the optimization problem [38], utiliz-
ing either gradient-based or sampling-based optimizers. Recent
studies have focused on optimizing robust and kinematically
reachable contact points between the hand and object, using
either an explicit mesh model of the object [51, 24] or an
implicit signed distance function (SDF) [49, 28]. However
both, a detailed mesh or SDF are challenging to obtain in
the real world due to noisy sensors and partial observability.

The design of the grasp metric is crucial, as it determines
both the quality of the synthesized grasp and the optimiza-
tion runtime. Recent works [28, 24] have demonstrated that
gradient-based optimization can significantly accelerate the
grasp optimization process. Therefore, our comparison focuses
on differentiable grasp metrics, among which the most widely
used is the differentiable force closure criterion [35, 51, 28].
Given a set of contact locations pi and normals ni, this
criterion assesses whether there exists a set of nonzero contact
forces Fi at each fingertip that can achieve force and torque
equilibrium

∑
i Fi = 0,

∑
i r × Fi = 0 within the Coulomb

friction cone Fi · ni > 1√
1+µ
||Fi||. An alternative metric,

the Min-weight metric [24], also measures the robustness
of a grasp under force perturbations and speeds up conver-
gence during optimization. However, evaluating force closure
involves solving a convex optimization problem, which is
not analytically solvable. Therefore, optimizing a grasp with
the force closure criterion and under kinematics constraints
often necessitates bi-level optimization, which is typically slow
to evaluate and challenging to optimize using off-the-shelf
gradient-based optimizers [24, 28, 41]. DexGraspNet [49]
employs an analytical criterion to approximate force closure,
but this does not guarantee force closure of the solution. As
an alternative to bi-level optimization, there are also many
works that sample initial pregrasps using various heuristics
and then either optimize a final grasp from this starting
point or do rejection sampling based on the force closure
criterion. We refer to [4] for more details. Our method uses
a novel compliant grasp formulation that models the grasp
as a dynamic process and a novel differentiable grasp metric
that measures contact feasibility during the process and force
closure at the equilibrium state.

B. Dexterous grasping under shape uncertainty

In many scenarios, a robot does not have access to accurate
object models and must rely on perceiving the object through
its depth sensors. The resulting perceived object model often

contains shape uncertainties due to sensor noise and partial
observability. As demonstrated for example in [26, 12, 13],
grasping a shape-uncertain object with a dexterous hand re-
quires a system that considers shape uncertainty arising from
perception.

1) Grasping shape uncertain objects with compliance:
Compliance plays a crucial role in enabling robots to robustly
grasp and manipulate objects with varying geometries [1,
40, 14]. Numerous studies have demonstrated this capability
using passive compliant multi-fingered hands [37, 25, 43, 40],
where compliance is derived from the mechanical design.
However, passive compliance often leads to a reduction in the
number of actuated degrees of freedom and poses challenges
in accurately modeling kinematics. Both of these issues make
it challenging to synthesize and execute precision grasps. In
contrast, active compliant multi-fingered hands [53, 36, 26, 22]
address these limitations by simulating compliance through
control of motorised joints. Many previous works have focused
on power grasps with passive compliance [37, 1, 25, 40, 14].
However, in this work we are interested in compliant precision
grasps such as considered in for example [26, 36, 50]. Among
these works [26] adapt joint level compliance based on surface
variance to achieve a precision grasp while [50, 36] focus
on how to control the object compliantly after a precision
grasp. Our work focus on generating grasps using Carte-
sian space impedance control with optimized gains. At the
same time, impedance control with different gains optimized
for different tasks has been shown effective in contact rich
manipulation tasks and robot locomotion [5, 3], while [5]
also consider changing the impedance through time, Our
method automatically determined appropriate controller gains
per grasp and object. Instead of picking impedance controller
gain manually as in [3] or choosing by reinforcement learning
in [5], our method optimize controller gains based on each
object’s uncertainty and geometry.

2) Modelling shape uncertain objects: Objects with shape
uncertainty have often been represented as probabilistic occu-
pancy maps in environmental mapping problems [15, 18]. The
study in [7] develops a probabilistic camera model and utilizes
a set of samples to represent objects with shape uncertainty.
However, both grid maps and sample-based representations
are memory-intensive, posing challenges in detailed 3D ob-
ject representation. To overcome this, recent methods have
employed probabilistic implicit functions, such as Gaussian
Process Implicit Surfaces (GPIS) [12, 2, 13, 30] or Proba-
bilistic Signed Distance Functions (pSDF) [11]. Studies like
[26, 2] use GPIS with thin plate kernel functions to smoothly
extrapolate the unobserved surface. Rather than directly repre-
senting objects with implicit functions, [42] employs Gaussian
processes to filter out noisy points, modeling the object using
only points with low uncertainty. More recently, various shape
completion models have utilized deep neural networks to
complete object shapes with greater detail [8, 20, 54, 6]. Given
the potential ambiguity in object shapes from limited views,
[54, 6] employ generative models to provide multiple plausible
guesses based on point clouds from a single view. Similar to
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[26], our method uses GPIS to model uncertain object shape
from a partially observed point cloud.

3) Dexterous grasp planning under surface uncertainty:
Using above mentioned object modelling, some works plan
grasps based on shape completed objects [47, 29]. Other
works [26, 30, 23] plan grasps with probabilistic object
model and consider uncertainty explicitly. Such work typically
necessitates an object model that can quantify uncertainty at
various positions, such as GPIS [26]. Research by [30, 26]
aims to minimize the impact of uncertainty in grasp planning.
Both studies penalize making contact in regions of high
variance. Additionally, [26] scales down the force applied at
each fingertip in proportion to the uncertainty at the contact
point. Under shape uncertainty, achieving precise contact at
a planned location is challenging. Some studies refine the
contact location and force after the fingertip makes contact
with the object [26, 45]. Others iteratively explore the object’s
shape and re-plan the grasping pose using tactile probing
[13, 2]. However, these approaches require additional informa-
tion from tactile sensors, which are expensive and add fragility
to dexterous multi-finger hands. Employing a pre-grasp hand
pose before actual grasping can prevent accidental contact
with the object and enhance the stability of the subsequent
grasp [46, 21, 27]. [27] demonstrates that a carefully chosen
pre-grasp can even facilitate grasping multiple loosely piled
objects. While most studies rely on manually defined pre-grasp
poses without specific planning [21, 10], research like [27, 46]
plans pre-grasps using a force closure-based grasp planner
with an inflated object model. In our work, we approximate
object shape using GPIS based on point clouds from either one
or multiple views. Different from previous works, we propose
a new grasp metric SpringGrasp metric that can optimize
pregrasp when considering uncertainty and adapt impedance
gains according to object uncertainty and geometry.

III. METHOD

We introduce an optimization-based grasp planner, Spring-
Grasp planner,capable of grasping objects with shape un-
certainty. Our planner is designed to directly interface with
objects represented as point clouds, either sourced from depth
cameras or generated by a shape completion network. We for-
mulate an optimization that solves for a compliant grasp which
involves a pregrasp pose and per-finger impedance controls
that take into account the potential motion of the object during
the process of grasping. Critical to the optimization, we intro-
duce a novel analytical and differentiable metric, SpringGrasp
metric,to evaluate whether the compliant grasp can reach a
stable equilibrium. In addition, our optimization takes into
account the uncertainty of the object surface when planning the
compliant grasp. Fig. 2 illustrate the process of planning and
executing a compliant pre-grasp using SpringGrasp planner.

A. Compliant grasp formulation

The compliant grasp is defined as G = {pi(t0),oi, ki}, i ∈
{1, 2, ...,m},m ≥ 3, which include a set of m fingertip initial
contact locations on object surface pi(t0) ∈ R3 and target

locations oi ∈ R3 both in the world frame and a set of
controller gains ki ∈ R.

For each finger, starting from the initial state contact po-
sition pi(t0), we control the position of the fingertip using a
Cartesian-space impedance controller moving toward oi with
a gain ki and damping coefficient 2

√
ki. We do not require

that the contacts of initial state at pi(t0) to form a force-
closure grasp. Instead, we expect the pose of the object to
change over time in a dynamic process until an equilibrium is
reached at teq. We assume that fingertips will move with the
object without slippage during this dynamic process from t0
to teq . Fig. 3 shows a 2D example of our compliant grasping
process of a triangle.

The effect of each fingertip on the object can be simulated as
a virtual spring-damper system attached to the object between
pi(t) and oi. As such, we model the compliant grasping
process as a simultaneous motion of the object and springs
toward the equilibrium state through time. We assume that the
contact points in the object frame po

i = RT
0 (pi(t0)− t0) are

fixed over time (i.e. no sliding), where t0,R
T
0 are the known

translation and rotation from the world to the object frame at
t0.

Since we are interested to know whether a force-closure
grasp can be formed at teq , we need to obtain the fin-
gertip positions pi(teq). A naive way to obtain pi(teq) is
to forward simulate the grasping process from t0 to teq.
However, introducing a numerical forward simulation process
to the optimization adds significant computational cost and
numerical instability due to gradient back-propagation[33, 52].
Our key insight is that we can express the fingertip positions
at equilibrium by the transformation of the object Req, teq:

pi(teq) = ReqR
T
0 pi(t0) + teq −ReqR

T
0 t0, (1)

and formulate a Wahba’s problem[48] which solves for the
optimal rigid transformation of the object to minimize total
kinetic energy stored in each virtual spring with gain ki:

teq,Req = argmin
t,R

m∑
i

1

2
ki||RRT

0 (pi(t0)− t0) + t− oi||22.

(2)
Wahba’s problem can be solved analytically with a modified

Kabsch algorithm [19, 31]. Alg. 1 shows detailed implemen-
tation of the analytical solver. Combining Equation 1 and
Equation 2, we can now express pi(teq) as a function of
pi(t0), oi, and ki.

B. SpringGrasp metric

With an analytical expression of pi(teq), we can now define
a metric that determines whether the fingertips at equilibrium
can form a force-closure grasp. For each fingertip, we define
the contact margin ϵi(t) as the angular difference between the
direction of force fi(t) and the surface normal ni(t) at the
contact in the world frame:

ϵi(t) = −
fi(t)

||fi(t)||22
·ni(t)−

1√
1 + µ2

, i ∈ {1, 2, ...,m}, (3)



Fig. 2: Process for generating grasps from a partial point cloud.
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Fig. 3: A compliant grasp G on a 2D triangle at t0 and at teq. The black
solid line shows initial fingertip positions and the object pose, the blue dashed
line shows fingertip positions and the object pose at equilibrium. pi is the
fingertip contact position and oi is the target position.

Algorithm 1: Modified Kabsch algorithm
Input: pi(t0),oi, ki, i ∈ {1, 2, ...,m}
Output: teq,Req
cp ← 1

m

∑
i pi(t0)

co ← 1
m

∑
i oi

P ← Stack({pi(t0)− cp}) ; /* mx3 matrix */
O ← Stack({oi − co}) ; /* mx3 matrix */
K ← Stack({ki}) ; /* 1xm matrix */
H ← (KP )T (KO)
U ,V ← SV D(H)
R← V UT

if det(R) < 0 then
V [:,−1]← −V [:,−1] ; /* prevent
mirroring */

end
Req ← V UT

teq ← 1∑
i ki

∑
i ki(oi −Reqpi(t0))

where the contact force, expressed in the world frame, is
modelled as the virtual spring force:

fi(t) = ki(oi − pi(t))− 2
√
kiṗi(t), i ∈ {1, 2, ...,m}. (4)

If the contact margins on all fingertips are non-negative dur-
ing the grasping process, that is, ϵi(t) ≥ 0, i ∈ 1, 2, ...,m, t ∈

[t0, teq], the object can be successfully grasped. However, when
the difference between Req and R0 (i.e. the object rotation
during the compliant grasping process) is small, enforcing the
non-negative contact margins at the initial and equilibrium
states, ϵi(t0) ≥ 0 and ϵi(teq) ≥ 0, guarantees that all
states in between also have non-negative contact margins (See
Appendix A for detailed analysis).

C. Optimizing compliant grasp with known object surface

With the SpringGrasp metric, we can formulate an opti-
mization to solve for a compliant grasp. We first describe the
formulation for grasping an object with known surface in this
subsection, and extend it to grasping an object with uncertain
surface in the next subsection. We define our SpringGrasp
metric energy as

Esp = −
m∑
i

log(ϵi(t0) + 1)−
m∑
i

log(ϵi(teq) + 1) (5)

Let the surface of the object be a Signed Distance Function
(SDF) d(x), which maps a 3D point x to the signed distance
between x and the object surface. We solve for a compliant
grasp G = {pi(t0),oi, ki}, i ∈ {1, 2, ...,m} that minimizes
the distance between fingertips to the object surface, Edist =
|d(pi(t0))|, while optimizing the SpringGrasp metric energy:

argmin
{p(t0)},{o},{k}

Esp + Edist, (6)

where {x} is a shorthand for the set xi, i ∈ {1, 2, · · · ,m}.
The logarithm formulation in Esp (Equation 5) encourages

the optimizer to focus on fingertips with negative margins
instead of improving fingertips that already have positive
margins. In rare cases when margin is below -1, Appendix. E
shows how we handle them with clipping and adding auxiliary
energy terms.

D. Pregrasp with uncertain object surface

The optimization described in Equation 6 assumes that the
object surface is precisely known, which is often not true in the
real-world scenarios. To model objects with shape uncertainty,
we use the widely adopted Gaussian Process Implicit Surface
(GPIS) to represent the object. GPIS uses Gaussian process
regression to approximate a closed SDF from observed data.



Given a query point x in world coordinates, we can compute
the expected mean and variance (dµ(x), dσ(x)) of the signed
distance d between x and the object surface. The probability
density of x to be on the object surface can be expressed as:

p(d(x) = 0|x) = 1√
2πdσ(x)2

e
− dµ(x)2

2dσ(x)2 (7)

When such surface uncertainty is present, it is hard to enforce
initial contact to happen exactly at pi(t0) without making
unintended contacts that cause the movement of the object. To
mitigate this issue, our method extends the grasping process
backward in time to model a pregrasp that places fingertips
outside of the object surface before contact. The pregrasp can
be represented as fingertip locations in the Cartesian space or a
hand pose in the joint configuration space. We choose the latter
because defining decision variables in the joint configuration
space allows us to enforce hand kinematic constraints without
the complexity of differentiating through an inverse kinematic
process. Therefore, following definition in [21, 9], we define
a pregrasp qinit ∈ R22 as a wrist 6D pose and joint angles of
all fingers such that fingers are not in contact with the object.
We assume that a fingertip location fFK(qinit, i) can be linearly
extrapolated from the vector oi−pi(t0) with the extrapolation
coefficient c ∈ (0, 1]:

pi(t0) = c(fFK(qinit, i)− oi) + oi, (8)

where the extrapolation coefficient c adjusts the relative dis-
tance between surface to the target oi and the distance between
the surface to the pregrasp fingertip. When c is larger, the
pregrasp fingertips are closer to the surface. We determine c
manually c = 0.7 for all our experiments.

A desired pregrasp should result in contact locations that
have high probability to be the on the surface of the object.
In addition, the contact location should have a prominent
probability comparing to points in its neighborhood as we
shown in Fig. 4. We define a line segment τi(α), α ∈ [0, 1]
for each contact neighborhood, where τi(0) = fFK(qinit, i),
τi(1) = oi, and τ(1−c) = pi(t0). We then define an objective
term that encourages a desired pregrasp:

Euncer =

m∑
i

∫ 1

0

p(d(τi(α)) = 0)− p(d(τi(1− c)) = 0)dα

(9)
To avoid computing integration, we use K equally spaced
sample points along the trajectory to approximate p.d.f and
the energy term is computed as:

Euncer =

m∑
i

K∑
k

p(d(τi(∆αk)) = 0)− p(d(τi(1− c)) = 0)

(10)

E. Optimizing compliant grasp with uncertain object surface

With the introduction of pregrasp, qinit, we augment the
decision variables of the optimization to be qinit, pi(t0), oi,
and ki, where i ∈ {1, 2, ...,m}. In practice, we drop pi(t0)
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Fig. 4: Shape of p.d.f. for different line trajectory, we prefer (c) instead of
(a) and (b) as contact is mostly likely to happen at the expected time and
location.

since it can be expressed as a function of qinit and oi (Equation
8).

In addition to Esp, Edist, and Euncer, we introduce four
more objective terms to improve the quality of the compliant
grasp.

1) Low gains: To further increase the compliance of the
grasp, we encourage the controller gains to be as low as
possible:

Egain =

m∑
i

k2i (11)

2) Target position: Ideally, the target location oi should
locate inside the object to encourage stability at equilibrium.

Etar =

m∑
i

d(oi) (12)

3) Collision avoidance: To ensure the grasp is collision
free, we penalize collision between fingers, between the hand
and the object, and between the hand and the table. We
approximate collision geometry of the hand using 16 spheres
with the centers defined as {s1, · · · , s16} in the world frame
which can be evaluated by fFK(qinit) analytically. The radii of
the spheres are defined manually as {r1, · · · , r16} (Details in
Appendix B). For each self-collision pair (i, j) the collision
penalty is defined as:

Ei,j
self =

{
1

dist(si,sj)
if dist(si, sj) ≤ ri + rj

0 otherwise
(13)

The collision between the hand and the object is penalized
by

Eho =
∑
i

{
1

d(si)
if d(si) ≤ ri

0 otherwise,
(14)

and between the hand and the table by

Eht =
∑
i

{
1
sz
i

if szi ≤ ri

0 otherwise,
(15)



wsp wdist wuncer wgain wtar wcol wreg wforce
200 10000 20 0.5 1000 1 10 200

Table I: Weights of different energy terms in Eq 18

where szi indicates the height of the sphere. Putting it together,
the collision penalty term is defined as

Ecol =

collision pairs∑
i,j

Ei,j
self + Eho + Eht, (16)

where collision pairs are defined in Appendix B. As most
collision spheres have the same radius, we don’t normalize
the energy for radius.

4) Regularization: We also add some regularization to
shape the optimization. Less object movement during the
compliant grasping process is encouraged by minimizing the
difference between pi(t0) and pi(teq). We also regularize the
joint angles of qinit to match a neutral reference pose qref
designed manually. To prevent degenerate solution with zero
force at each contact point at equilibrium, we also encourage
a minimal force exerted by each fingertip:

Ereg = ||qref − qinit||22 +
m∑
i

||pi(t0)− pi(teq)||22

Eforce = wforce

m∑
i

min(fmin, ||fi||2)
(17)

where fmin = 2 and wforce = 200.
Putting it all together, we arrive at our final optimization of

a compliant grasp that aims to grasp an object with uncertain
shape:

argmin
qinit,{o},{k}

wspEsp + wdistEdist + wcolEcol + wuncerEuncer

+wgainEgain + wtarEtar + wregEreg + wforceEforce

(18)

The weight of each object term is shown in Table I. The
final objective function is fully differentiable and is optimized
with off-the-shelf gradient-based optimizers.

IV. EXPERIMENTS

In our experiment, we will demonstrate that optimizing
controller gains is important for grasping objects under shape
uncertainty. To this end, we compare the proposed approach to
a baseline that uses bilevel optimization with the force closure
criterion (similar to [49, 28]). For this baseline, the controller
gains have to be picked and it does not consider object
shape uncertainty. We also systematically study the impact
of different levels of shape uncertainty on the performance
of our approach. Additionally, we perform an ablation of the
objective function with and without considering object shape
uncertainty. Our experiments demonstrate that our approach
outperforms the baselines by 18-27% and that not taking
uncertainty into account in the objective function leads to
a significant performance drop (9%). Through an additional
ablation, we will show that the impact of the pregrasp formu-
lation on grasp performance is significant. Finally, we discuss

Fig. 5: Real robot setup showing the Kuka iiwa arm equipped with a left
Allegro hand and the configuration of the three RGB-D cameras.

the property of allowing object movement in the SpringGrasp
metric and how it is beneficial for grasp planning. Fig. 8 shows
an example grasp per object in our dataset.

A. Evaluation metric

Unless otherwise states, we use grasp success rate in real
robot experiment as the evaluation metric for all our experi-
ments. To evaluate whether a grasp is successful or not, the
object is lifted 5cm after grasping. We use two criteria to
assess the success of a grasp: 1) Whether the object is lifted.
2) Whether there is sliding between fingertips and the object.
If a grasp satisfies both criteria, it is considered a successful
grasp. If the object is lifted but slides during the process, the
grasp is considered as partially successful. For each object,
we attempt five grasps over different object poses. We then
compute the grasp success rate as #successful+0.5#partial

5 . We also
report the average success rate over all objects.

B. Experiment setup

1) Hardware setup: We use three realsense RGB-D cam-
eras located around the table (see Fig. 5). The robot arm is
Kuka iiwa R820 and is equipped with a left Allegro hand. All
the devices are connected to a PC with a i7-13700K CPU and
RTX3090 GPU, which is also used for grasp optimization and
motion planning for the arm.

2) Software setup: For robot control, our Allegro hand
impedance controller is adapted from the AllegroHand KDL
[17] and our Kuka Arm controller is adapted from iiwaPy [39].
Our SpringGrasp planner is written in Pytorch and we solve
the optimization using RMSProp. After obtaining a grasp, we
use curobo [44] to plan a collision free arm trajectory to the
desired wrist pose.

C. Baseline

For our baseline, we use bilevel optimization with a differ-
entiable force closure energy term similar to [49, 28]. We use
this baseline to show the advantage of optimizing the controller



Fig. 6: All objects used for experiments

gains with the SpringGrasp metric compared to force closure
bilevel optimization where the user has to manually tune the
gains. The energy function of this baseline is adapted from our
method with Esp changed into the force closure metric energy
Efc. More details can be found in the Appendix. C. To directly
compare the performance between using the SpringGrasp or
the force closure metric, we compute the target location oi

with i ∈ {1, 2, ...,m} where m is the number of fingers and
pregrasp hand pose qinit based on the force Fi(t0) that is the
result of the inner loop of the bilevel optimization problem
and pick a controller gain ki:

oi = pi(t0) +
Fi(t0)

ki
, i ∈ {1, 2, ...,m}

qinit = IK(
1

c
{pi} −

1− c

c
{oi}), c ∈ [0, 1]

ci are the same clearance coefficients as used in our method.

D. Comparison with Baseline without Optimized Gains

To demonstrate the importance of optimizing the controller
gains in robotic grasping, we conducted experiments using
two sets of gains in the baseline. We refer to these sets as
either Bilevel (high), Bilevel (low) or Bilevel(heuristic). For
Bilevel (high), we set the gains to k1, k2, k3 = 160, k4 =

320. For Bilevel (low), we used k1, k2, k3 = 80, k4 = 160,
which is close to the average value output by our approach.
For Bilevel(heuristic), we set the gains inverse proportional to
variance of expected contact location as ki =

α
dσ(pi)

, which is
similar to the setting in [26]. For this experiment, we estimate
the object shape using point clouds collected from two camera
views that are then input to GPIS.

The result of the comparison between our method and the
baseline is shown in Table II. With input point clouds from
two viewpoints, our method achieved an overall grasp success
rate of 89%, which is 24% higher than that of Bilevel (low)
and 27% higher than Bilevel (high). Compared to Bilevel
(heuristic), our method also achieves an 18% higher success
rate. The performance difference between our method and
Bilevel (low) was more pronounced with long and thin objects,
such as boxes and bananas. For instance, the success rate
for grasping a banana dropped from 80% to 40%, and for
a box from 100% to 60%. When compared with Bilevel
(high), the difference was more significant with non-convex
objects like bananas and cars. Although both types of failures
were mitigated in Bilevel (heuristic), there is still a significant
success rate difference when grasping thin and long objects as
well as non-convex objects.

The results suggest that there is no universal set of gains
that works for all scenarios. This is illustrated in Fig. 7. On
the one hand, low gains can result in an unstable equilibrium
where even small perturbations are sufficient to spin the object
out of the grasp. High gains can position the target locations
oi close to the zero level set of the GPIS. This can result in the
finger not making contact with the true object surface that may
be behind the estimated surface. SpringGrasp allows to also
optimize the controller gains and therefore to avoid unstable
equilibria or missed contacts.

E. Robustness to Varying Levels of Shape Uncertainty

To study how robust our method is against varying levels
of shape uncertainty, we evaluate grasp success rate of our
method using point clouds recorded from either three, two or
one viewpoint. For each setting, we pick the viewpoint that
provides the most information about the object (Camera 1 and
2 for experiments with two viewpoints and Camera 3 for single
viewpoint experiments). As shown in Tab. II, grasp success
rate slightly drop from 91% to 89% when changing from three
to two viewpoints. The success rate drops to 84% when only
using point cloud from a single viewpoint. Contradict to our
expectation, for larger object such as the Cheezit box, the grasp
success rate does not drop significantly when changing from
two to one viewpoint. As shown in Fig. 9, GPIS estimates the
true shape of the object fairly well een from one viewpoint
and preserves necessary geometry information for successful
grasping. For smaller objects, our method is quite robust to a
reduction of information.

F. Ablation study

In our method, we hypothesize that both considering uncer-
tainty and using a pregrasp is essential to achieve a successful



Ours
(3 views)

Ours
(2 views)

Ours
(1 view)

w/o uncertainty
(1 view)

w/o pregrasp
(1 view)

Bilevel-high
(2 views)

Bilevel-low
(2 views)

Bilevel-heu
(2 views)

Mustard bottle 90% 100% 80% 70% 90% 50% 60% 60%
Lego 90% 70% 80% 70% 60% 70% 50% 50%
Pyramid 100% 100% 100% 80% 70% 70% 70% 80%
Campell can 100% 100% 100% 90% 100% 90% 90% 80%
Cheezit box 80% 90% 80% 60% 90% 30% 40% 80%
Mug 90% 80% 80% 70% 80% 70% 60% 80%
Orange 100% 100% 90% 100% 100% 90% 80% 100%
Coffee bottle 80% 90% 90% 70% 90% 50% 60% 60%
Spam 80% 60% 60% 60% 60% 40% 60% 50%
Plane 100% 70% 70% 80% 80% 60% 70% 70%
Car 90% 100% 70% 70% 70% 60% 80% 60%
Banana 100% 80% 90% 60% 70% 30% 40% 60%
Pear 100% 100% 90% 100% 80% 80% 80% 80%
Small box 100% 100% 100% 70% 70% 80% 60% 90%
Total 93% 89% 84% 75% 79% 62% 65% 71%

Table II: Grasp success rate over 5 trials per object. Note that we can have successful and partially successful grasps. Ours refers to SpringGrasp that takes
as input point clouds from either 3, 2 or 1 viewpoint. w/o uncertainty and w/o pregrasp are ablations of our method when either removing Euncer or setting
c = 1 respectively in Eq. 8. Both use a single view point cloud as input. Bilevel-high, Bilevel-low and Bilevel-heu refer to the bilevel optimization baseline
with high gains, low gains, or heuristically selected gains. They all use point clouds from two views as input. Our method significantly outperforms the
baseline as well as the ablations even under maximum uncertainty in object shape.

grasp under object shape uncertainty. We justify our design
with an ablation study on these two components. To under-
stand the importance of the term Euncer in Eq. 10, we evaluate
the grasp success rate on all objects with or without this term
in the objective function. Note that for this experiment, we
assume as input an object point cloud from a single view
which is the most common scenario for robotic grasping. As
shown in Tab. II, the grasp success rate drops from 84% to
75% when removing Euncer from Eq. 10 demonstrating the
effectiveness of considering uncertainty in our framework. We
also observed a typical failure mode when not considering
uncertainty visualized in Fig. 10. The optimized grasp may
make contact with regions on the GPIS surface that have high
uncertainty and therefore tend to be far off from the true
object surface. This scenario results in missing or unexpected
contacts which adversely affects grasp success rate.

To analyse the benefit of optimizing a pregrasp, we compare
the grasp success rate of our method with different pregrasp
coefficients c = 1.0 and c = 0.7. A pregrasp becomes a grasp
(i.e. the fingertips are in contact with the estimated object
surface) if the pregrasp coefficient c = 1.0. From Tab. II,
we found that the grasp success rate decreases from 84%
to 78% if we don’t optimize for a pregrasp in which the
fingertips are slightly offset from the estimated object surface.
Among all objects and poses, the grasp success rate change
most significantly if the object is not at a stable pose before
grasping. In this case, it is most vulnerable to being perturbed
by unexpected contact when the hand is reaching for the grasp
pose. Fig. 11 shows an example where the box is standing on
its side and is perturbed by premature contact resulting in it
tipping over before the optimized grasp can be acquired.

multiplier wsp wdist wuncer wgain wtar wcol wreg wforce
0.5 0.80 0.83 0.77 0.77 0.73 0.93 0.77 0.90
1 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83
2 0.90 0.77 0.83 0.83 0.77 0.83 0.90 0.83

Table III: Grasp success rate with different scaling factors on different
weights

G. Hyperparameter analysis

Tab. I lists the weights we used for the energy terms in
Equation 18. Here we study how the selection of different
weights affects the performance of our grasp planner. For
each weight, we scale it by two multipliers, 0.5 and 2, and
measure the grasp success rate respectively. We keep all other
parameters unchanged when scaling the parameter of interest.
We experiment with three distinctive objects, a pear, mustard
bottle, and a Cheez-it box. The results shown in Tab. III show
that in general changing weights of different energy terms
moderately will not cause significant changes in the grasp
success rate, though some parameters are more sensitive than
others such as wtar and wreg.

H. Computation time

We report the time taken to optimize grasps from 7 initial
guesses and single initial guesses for both our method and
baseline on both CPU and GPU in Tab. IV. Each time is mea-
sured as an average of 5 experiments. In general, our method
optimizes faster than the bilevel baseline. When scaling up the
number of seeds, the main computation bottleneck is forward
kinematics computation provided by [32]. Notice that due to
implementation limitations in differentiable robot model[32],
grasp planning runs faster on CPU than GPU.
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Fig. 7: Illustration of baseline failure modes. The fingertip needs to apply
the same force despite different controller gains (either ki = 10 for (a,c) or
ki = 100 for (b,d)). For shaping uncertain object (top row - the dashed line
indicates the expected object surface; the solid curve is the actual surface),
using low gains ki can ensure making contact with the object as shown in (a),
instead of not making contact as shown in (b). For smaller objects (middle
row), when the object is perturbed (represented by the solid box) from its
equilibrium (represented by the dashed box) at time t, using higher gains can
ensure that the fingertip can always generate an object torque to compensate
a perturbation as shown in (c) instead of continuing to twist the object in
the direction of the perturbation as shown in (d). In real robot experiments
(bottom row), the box was twisted in (e) due to an unstable equilibrium while
in (f) the middle finger fails to attach to the object because the target location
is outside the object.

time(s) Ours (7) Ours (1) Bilevel (7) Bilevel (1)
CPU 15.58 7.02 34.97 9.17
GPU 23.44 14.22 41.47 15.28

Table IV: Optimization time in second. Results of our methods and bilevel
baseline using 1 and 7 seeds are represented as Ours (1), Ours (7), Bilevel
(1), and Bilevel (7) respectively.

I. The Benefit of Modeling Object Movement during Grasp
Acquisition

An additional property of the proposed SpringGrasp metric
is that we model grasping as a dynamic process and allow
object movement during grasping as we shown in Sec.III-A.
In this section, we will present evidence that allowing object
movement can help to get around kinematic and joint torque
limits when directly trying to establish a force closure grasp.
For example, if a finger cannot apply the force required by
the optimizer due to the current joint configuration and joint
torque limits, the robot could first move the object into a

new pose that leads to a joint configuration which allows a
stable grasp. To test this hypothesis, we setup a 2D simulated
experiment with two 2D triangles that are grasped by a three-
fingered hand. For each triangle, we generate three different
contact configurations on the triangle surface and sample 100
triangle poses per triangle and contact configuration. In each
experiment, we optimize grasps with our metric as follows: as
in this experiment, we only care about kinematic constraints
and joint torque limits, we optimize target locations oi and
gains ki while contact locations pi remain the same according
to the three contact configurations we picked. Note that the
wrist of the hand remains at a fixed location. Of the generated
grasps, we only keep those that are feasible and can apply the
desired force (with or without triangle movement) as verified
in simulation. Of those feasible grasps, we evaluate how many
of them are in force closure and in which each finger can
apply enough force under joint torque constraints without
moving the triangle (more details in Appendix. D). Grasps
that allow the fingers to directly achieve force closure without
triangle movement are only a subset of all feasible grasps.
This means that there is no feasible grasp that could form
force closure without triangle movement but fails to obtain
a feasible compliant grasp. From Fig. 12, only around 85%
of feasible grasps can directly achieve force closure without
triangle movement. This demonstrates that there is a significant
portion (15%) of object poses that can benefit from object
movement to avoid such kinematic and joint torque limits.
Using the SpringGrasp metric, we can also deliberately control
the object movement during optimization. Using an extra
energy term Epose =

∑
i ||pdes

i (teq) − pi(teq)||2 to replace∑
i ||pi(t0) − pi(teq)||2 in Eq. 17, we can encourage object

and fingertips to move in some desired direction, such as
up by 1cm. For example, in Fig. 13 we set pdes

i (teq) =
pi(t0)+[0, 0, 0.01] which could be used to minimize undesired
contact with the table during grasping.

V. CONCLUSION & FUTURE WORK

We present an optimization-based system that can generate
pregrasp grasps from noisy and partial point cloud observation.
Benefiting from the SpringGrasp metric, pregrasp formulation,
and consideration of uncertainty, our method could grasp a
diverse set of objects with an 89% success rate from 2 views
and 84% grasp success rate from single view in a real robot
experiment. When grasping objects with our method, the most
common failure happens when the object being grasped is
heavier than 0.3kg. This is shown in the experiment with
the fully loaded spam can (0.4kg). As our method doesn’t
model gravity explicitly, its ability to grasp heavy objects is
limited. A natural next step would be to integrate gravity and
uncertainty into object mass into our grasp planner. Moreover,
the GPIS model suffers from modeling objects with thin walls
such as knives or baskets due to the challenge of distinguishing
points from the inner surface and outer surface and effectively
sampling the interior point of the object. Future work could
focus on decomposing the object geometry and extracting part
of the object that is easy to grasp from the point cloud such



Fig. 8: Grasping different object with single depth image input

Fig. 9: GPIS reconstructed surfaces from different number of viewpoints. The
color on the surface indicates variance of a surface point where hotter colors
correspond to a larger variance.

as the handle of the knife and basket. Another interesting
direction could be using our grasp planner to generate a dataset
and train a deep neural network to directly predict compliant
grasp, given a partial observation of the object.

VI. ACKNOWLEDGEMENT

This project is supported by NSF:FRR:2153854 and
NSF:FRR:2342246. We also thank Albert Wu for the insightful
discussion regarding math notation and Purvi Goel for record-
ing a voiceover for our submission video.

REFERENCES

[1] Aditya Bhatt, Adrian Sieler, Steffen Puhlmann, and Oliver
Brock. Surprisingly robust in-hand manipulation: An
empirical study. In Robotics: Science and Systems, 2021.

Fig. 10: The left figure illustrates the uncertain surface modeled by GPIS. The
central figure depicts the anticipated trajectory of the fingertips in the predicted
pregrasp. The right figure shows that the tip of the ring finger (blue) does not
make contact with the actual object surface, resulting in a partial grasp failure.
For visualization, we color visible thumb and ring finger in the right figure
to match the colors in the middle figure.

[2] Marten Björkman, Yasemin Bekiroglu, Virgile Högman,
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APPENDIX

A. Analysis of contact margins

This section intends to justify why the feasibility of the
initial and target state according to the proposed SpringGrasp
metric is a good heuristic to indicate feasibility of the entire
dynamic process. For simplicity of the analysis, we consider
a problem with three fingertips that make contact with a 2D
object as shown in Figure 14. In this system, the pose of the
object can be described by s(t) = {x(t), y(t), z(t), θ(t)}. If
the damping coefficients of each virtual spring are sufficiently
large, no oscillation will happen during the dynamic process.
This means that for any time, we can express it as convex
combination of initial state and target state with a blending
coefficient β(t), t ∈ [t0, teq] where β(t0) = 0 and β(teq) = 1:

s(t) = (1− β(t))s(t0) + β(t)s(teq)

Fig. 14: Three fingertips making contact with a 2D triangle. Fingertips apply
force toward oi and move with the object from pi(t0) to pi(teq)

.

1) Translation only: We define the angle between the force
vector fi(t) and surface normal vector nt(t) as αi(t). To
examine the temporal evolution of αi(t), we initially consider
a scenario involving only translation. Assuming the object
undergoes a rigid translation t towards the equilibrium point,
the initial force vector is given by:

fi(t0) = ki(oi − pi(t0))

where ki is controller gain of fingertip. At any subsequent
time, the force vector will be:

fi(t) = ki(oi − pi(t0)− β(t)t) = fi(t0)− kiβ(t)t

indicating that, during translation, the force vector changes
from fi(t0) to fi(t0) − kit. The normal vector remains con-
stant as translation does not affect the direction of the normal
vector. Consequently, αi(t) stays within the bounds defined
by αi(t0) and αi(teq). Provided that the force directions at
the initial and equilibrium states fall within the friction cone,

the force direction at any transient state will also lie within
this cone.

2) Including rotation: When the dynamic grasping process
involves rotation, the feasibility of the initial and equilibrium
state does not guarantee the feasibility of the transient states.
Consider a triangle rotating around its center c (see Figure 15).
We choose a target location oi, where the distance between c

and oi is
√
2
2 r, with r denoting the shortest distance from c

to any edge of the triangle. Let the triangle rotate around its
center until the force aligns with the surface normal vector.
Then, αi(t) initially increases to a maximum of αmax = π

4
when fi(t) is perpendicular to oi−c, and then decreases to 0
at teq . If initially, angle ̸ pi(t0)coi is less than π

4 ,αi(t) will
monotonically decrease and the force direction will always lies
between the initial and equilibrium force directions. Bringing
oi closer to c reduces the change in αi(t) for the same rotation
angle on the object orientation θ(t), necessitating a greater
rotation on θ(t) for αi(t) to reach its maximum. Thus, adding
Etar to the energy function Eq.18 encourages the target location
to stay deep inside the object, which allows more rotation
on the object. Adding Ereg to Eq. 18 regulates movement
during the dynamic process and reduces the rotation during
the dynamic process. In practice, the feasibility of transient
states can usually be inferred from the feasibility of initial
and equilibrium states.

Fig. 15: Triangle rotate around c, at time t, the force vector is perpendicular
to vector c−oi and αi(t) =

π
4
= 45o. In initial state and equilibrium state:

αi(t0) = 42o, αi(teq) = 0

B. Collision spheres

Here we provide details on how we compute the energy
terms Eself,ho,ht in Eq 16 that are related to collisions with the
hand itself, the object and table. Fig. 16 shows the placement
of spheres that we use to approximate the geometry of the
hand. s1 ∼ s11 have a radius of 1cm and s13 ∼ s15 have
radius of 2cm. For computing self-collision energy Eself, we
find it is sufficient to check the following collision pairs:
(s1, s4), (s1, s7), (s1, s10), (s4, s7), (s4, s10), (s7, s10), (s2, s5),
(s5, s8). When computing the hand object collision energy



Fig. 16: Placement of collision spheres for computing collision loss, each
sphere has radius of 0.015

Eho and hand table collision energy Eht, we use all collision
spheres.

C. Energy function of baseline method

For our baseline approach, we define the following energy
function:

E = wfcEfc + wdistEdist + wcolEcol + wregEreg + wuncerEuncer

Most terms in this energy function are directly migrated from
our method Eq. 18. We remove Egain as gains are choosen
independently hence no other variables depends on the gains
in the optimization problem. Therefore, the optimizer would
drive the controller gains directly to the lowest possible value.
We also remove Etar and Eforce as force and target locations
are the result of the inner force closure solver of the baseline
and therefore cannot be controlled by the outer loop. We set
wfc = 200 and weights of other energy term is the same as
Eq. 18. In [5, 4], Efc is approximated by assuming that each
fingertip can only apply a force along the contact normal with
a fixed magnitude, which accelerates computation. We replace
it with a more accurate force closure metric as defined in [6]
and compute it using the differentiable convex optimization
solver cvxpylayers[1] as:

Efc = min (||
n∑
i

fi||2 + ||
n∑
i

pi × fi||2)

s.t. : fi · ni ≤ −
1√

1 + µ2
||fi||,fi · ni ≤ −Fmin

As the grasps optimized by the baseline method do not
involve a dynamic process, we use fi, pi without the time
index. Because the force direction is determined by the force
closure solver which cannot be controlled to reduce pregrasp

Triangle 1 Triangle 2
config 1 (0.5,0.0), (0.75,0.5), (0.25,0.5) (0.5,0.0), (1.0,0.5), (0.5,0.5)
config 2 (0.4,0.0), (0.8,0.4), (0.2,0.4) (0.4,0.0), (1.0,0.4), (0.4,0.4)
config 3 (0.6,0.0), (0.7,0.6), (0.3,0.6) (0.6,0.0), (1.0,0.6), (0.6,0.6)

Table V: Summary of fingertip contact configurations

uncertainty, we instead focus on reducing uncertainty at the
fingertip contact location pi and set the uncertainty energy
term Euncer as follows:

Euncer =
∑
i

dσ(pi)

Where dσ is variance value function of GPIS as shown in
Sec. III-D.

D. Grasp coverage experiment setup

Fig. 17 shows dimension of two triangles and positions of
different contact configurations we used in experiment IV-I. To
ensure the best coverage of our method during optimization,
we randomly initialize 2000 target positions and controller
gains when optimizing grasp for each object pose.

Fig. 17: Specification of two triangles. Vertices are expressed in the local
object frame. Contact points in each contact configurations are expressed as
different markers.

E. Clipping of spring grasp energy function

Here we illustrate implementation details of our spring grasp
energy function Eeq. As the value of the contact margins
ϵi(t0), ϵi(teq) is in the range of [−2, 1], in rare cases if
contact margins are below -1 and logarithm mapping becomes
undefined, directly clipping the value of the margin will set
the gradient of the energy function to zero. Inspired by Leaky
Relu [7], we switch to an auxiliary energy to encourage the
contact force to stay close to surface normal if contact margins
are below -1. Therefore, Esp is defined as:

Esp = −
m∑
i

{
log(ϵi(t0) + 1) ϵi(t0) > −1
log fi(t0)

||fi(t0)||22
· ni(t0) ϵi(t0) ≤ −1

−
m∑
i

{
log(ϵi(teq) + 1) ϵi(teq) > −1
log

fi(teq)

||fi(teq)||22
· ni(teq) ϵi(teq) ≤ −1



F. Fitting GPIS from partial point cloud

We estimate the true surface of an object from a partial point
cloud by fitting a GPIS to it. Following [3], we use three sets
of points to fit GPIS: a) Surface points, b) Exterior points, and
c) Interior points. We assign a different value and noise level
to each set of points.

1) Surface points: We use points from the partial point
cloud as surface points. As the object surface is represented by
the zero-level set of GPIS, we assign each point in the point
cloud the value 0. We set the noise level of each point to be
0.005m.

2) Exterior points: To generate exterior points, we initially
determine the axis-aligned bounding box of the surface points
and scale it by 120% relative to the surface points’ center.
In total we have 14 exterior points which are located at each
corner of the upscaled bounding box, as well as the midpoint
of each bounding box edge. 14 points is sufficient for GPIS
to distinguish between outside region and internal region.
When fitting the GPIS, we found empirically that setting each
exterior point value to be equal to half the length of the longest
edge in the scaled bounding box works well. The noise level
for each point is set to 0.2 meters.

3) Interior points: We compute interior points through
convex combination of all surface points with random weights.
To distribute these points evenly, rather than simply assigning
weights from a uniform distribution to each surface point, we
apply a softmax function to the initial random weights. This
approach determines the actual weights for calculating interior
points. For every object, we generate 50 interior points using
this method. We found empirically that assigning each point a
negative value equal to a quarter of the length of the longest
edge of the upscaled bounding box works well. The noise level
for each point is set at 0.05 meters.

G. Initial guesses for grasp planning

We initialize 7 wrist poses around the center of the oriented
bounding box of the observed partial point cloud. The 7 poses
consist of 5 with the palm facing the table and 2 with the
palm perpendicular to the table. Tab.VI illustrates different
initial guesses. Moreover, we always initialize joint angles as
the relaxed joint pose defined in [17] and initialize the target
position as a halfway point from each fingertip toward their
center. Lastly, we use k1, k2, k3 = 80, k4 = 160 as initial
controller gains.

H. Partial successes

To provide more information for Tab.II, we show the
number of partial successes of each entry in Tab. VII.
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Ours
(3 views)

Ours
(2 views)

Ours
(1 view)

w/o uncertainty
(1 view)

w/o pregrasp
(1 view)

Bilevel-high
(2 views)

Bilevel-low
(2 views)

Bilevel-heu
(2 views)

Mustard bottle 1 0 0 3 1 2 1 1
Lego 1 1 0 1 0 1 3 1
Pyramid 0 0 0 2 1 3 3 2
Campell can 0 0 0 1 0 1 1 2
Cheezit box 0 0 0 2 1 2 3 2
Mug 1 1 2 3 2 1 3 2
Orange 0 2 1 0 0 1 2 0
Coffee bottle 0 0 1 1 1 1 2 2
Spam 2 1 2 2 2 2 2 3
Plane 0 2 1 2 2 4 1 3
Car 1 1 1 3 3 2 2 4
Banana 0 0 1 2 1 1 0 2
Pear 0 0 1 0 2 2 2 2
Small box 0 0 0 1 3 2 2 1
Total 6 8 10 23 19 25 27 27

Table VII: Number of partial success for each experiment.
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