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ABSTRACT

This work provides the first theoretical analysis of training transformers to solve
complex problems by recursively generating intermediate states, analogous to
fine-tuning for chain-of-thought (CoT) reasoning. We consider training a one-layer
transformer to solve the fundamental k-parity problem, extending the work on
RNNs by Wies et al. (2023). We establish three key results: (1) any finite-precision
gradient-based algorithm, without intermediate supervision, requires substantial
iterations to solve parity with finite samples. (2) In contrast, when intermediate
parities are incorporated into the loss function, our model can learn parity in one
gradient update when aided by teacher forcing, where ground-truth labels of the
reasoning chain are provided at each generation step. (3) Even without teacher
forcing, where the model must generate CoT chains end-to-end, parity can be
learned efficiently if augmented data is employed to internally verify the soundness
of intermediate steps. Our findings, supported by numerical experiments, show
that task decomposition and stepwise reasoning naturally arise from optimizing
transformers with CoT; moreover, self-consistency checking can improve multi-
step reasoning ability, aligning with empirical studies of CoT.

1 INTRODUCTION

Large language models (LLMs) based on the transformer architecture (Vaswani et al., 2017) have
achieved astounding success across a variety of natural language processing and machine learning
tasks (see e.g. Wan et al., 2024; Minaee et al., 2024; Naveed et al., 2024; Zhao et al., 2024). However,
they often struggle when tasked with solving complex reasoning problems, especially in a zero-shot
setting without any form of intermediate guidance or supervision (Geva et al., 2021; Rae et al.,
2022; Arkoudas, 2023; Wang et al., 2024). These failures are particularly evident in tasks requiring
multi-hop reasoning or compounded logical steps (Sakarvadia et al., 2024).

A promising approach to overcome these limitations is chain-of-thought (CoT) reasoning, where the
model is prompted or fine-tuned to solve complex tasks step-by-step by explicitly making intermediate
reasoning steps to arrive at the desired answers (Wei et al., 2022; Kojima et al., 2022). Since its
discovery, CoT reasoning has been shown to significantly enhance the problem-solving capabilities of
LLMs while also increasing the interpretability and trustworthiness of the reasoning process, and has
spawned numerous prompting techniques (Liu et al., 2023; Qiao et al., 2023) and applications for a
variety of downstream tasks including common-sense reasoning, mathematical problem-solving, and
symbolic or multi-modal reasoning; see e.g. Zhang et al. (2023b); Yu et al. (2023); Chu et al. (2024)
for surveys on CoT. In particular, besides being used as a prompting method, directly training or
fine-tuning models to generate CoT has also been shown to significantly improve multi-step reasoning
performance (Nye et al., 2021; Wei et al., 2022; Zelikman et al., 2022; Lightman et al., 2024).

Despite these empirical successes, however, the theoretical understanding of the CoT mechanism
and task decomposition in transformers is still limited. Existing works focus on characterizing the
expressivity of transformers equipped with CoT, providing constructions which can solve certain
complexity classes (Feng et al., 2023; Merrill & Sabharwal, 2023; 2024; Li et al., 2024b), studying
the class of functions that can be learned in-context with CoT (Li et al., 2023; Bhattamishra et al.,
2024), or analyzing the estimation error of multi-step models (Hu et al., 2024). Nevertheless, such
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approaches do not indicate how such capabilities might emerge when training transformers to generate
reasoning chains. Li et al. (2024a) analyze the training dynamics of a one-layer transformer in an
in-context learning setting and show that CoT ability may be acquired; however, they do not consider
explicitly training with CoT chains, which is a more difficult problem since the objective depends on
the recursive application of the transformer to itself.

In this paper, we seek to formalize the mechanism through which stepwise reasoning emerges in
transformers optimized to generate CoT chains. We focus on the specific problem of bit subset parity
(learning the parity of an unknown subset of k bits from a d-bit input), which is known to be impossible
to learn end-to-end with any finite-precision gradient-based algorithm in polynomial steps (Shalev-
Shwartz et al., 2017; Shamir, 2018). In contrast, Wies et al. (2023) have demonstrated that recurrent
neural networks (RNNs) can solve parity efficiently when provided with intermediate supervision. We
build on this direction to establish positive optimization guarantees for the transformer architecture.
Our object of study is a one-layer transformer incorporating a softmax attention layer, feedforward
layer and positional encoding, that is recursively applied to its own output to generate a sequence of
intermediate parity computations to arrive at the desired output, analogous to CoT generation. Our
contributions are summarized as follows.

• We extend the impossibility result for parity (Theorem 1), which was established only for
population gradient descent, to the more realistic finite-sample setting in Theorem 2. We prove
that any iterative algorithm with access to an approximate gradient oracle for the end-to-end
empirical loss cannot solve a random target parity within a specific polynomial number of steps.

• In contrast, we show that when the loss is summed over all intermediate states, by utilizing
teacher forcing, a form of process supervision wherein ground-truth intermediate steps are
provided during training,1 our model can learn any parity in a single gradient update (Theorem 5).
This shows the benefits of training directly with CoT chains to acquire task decomposition ability.

• We further consider training with CoT generated end-to-end without teacher forcing,2 and show
that parity can still be learned in a logarithmic number of steps if augmented data is employed to
check the validity of intermediate steps (Theorem 7), thereby mimicking self-consistency checks
often used in CoT reasoning (Zelikman et al., 2022; Wang et al., 2023; Huang et al., 2023a).

• We conduct numerical experiments supporting our findings (Section 4 and Appendix D).

Our results provide theoretical insights into how transformers can naturally and efficiently optimize
to perform task decomposition, emphasizing the role of explicit intermediate supervision for complex
tasks. Moreover, these findings corroborate recent empirical studies on CoT reasoning demonstrating
improved performance through process supervision and internal validation of reasoning chains
(Huang et al., 2023a; Tian et al., 2024; Lightman et al., 2024).

1.1 RELATED WORKS

Complexity of transformers. A line of work aims to understand the effectiveness of CoT from
the perspective of complexity theory. Feng et al. (2023) show that autoregressive transformers of
constant size can solve basic arithmetic tasks by recursively generating CoT reasoning steps, which
is not possible when directly generating the solution; this separation arises because looping the
generated outputs back to its inputs increases the ‘effective depth’ of the model. Works such as
Chiang et al. (2023); Merrill & Sabharwal (2023) study the expressivity of fixed-precision transformer
architectures in terms of classes of formal languages. Merrill & Sabharwal (2024); Li et al. (2024b)
show that CoT reasoning enables recognizing wider language classes, and characterizes the increased
expressivity depending on the length of the reasoning chain. Sanford et al. (2024) studies the relation
between transformers and massively parallel computation protocols, showing that logarithmic depth
suffices to solve multi-hop induction tasks that cannot be efficiently solved by other sequence models.

1Teacher forcing or process supervision is a training procedure for recurrent models in which the model
receives the ground truth output at time t as input at time t+ 1 during training (Goodfellow et al., 2016, p.377).
Many fine-tuning methods with ground-truth CoT chains implement teacher forcing, being more effective than
output supervision with chains generated end-to-end (Deng et al., 2023; Tian et al., 2024; Lightman et al., 2024).

2Teacher forcing can induce exposure bias where a model is not robust to its own errors. In practice, partial
(scheduled or random) teacher forcing methods are used to overcome this issue (Bengio et al., 2015; Goyal et al.,
2017; Mihaylova & Martins, 2019).
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Additionally, Li et al. (2023); Bhattamishra et al. (2024) study the class of functions that can be
learned in context by transformers with CoT from the point of view of in-context learning.

Optimization and generalization of CoT. Zhu et al. (2024) study the ‘reversal curse’ via the
training dynamics of a one-layer transformer and shows that the model fails to generalize from
A→ B, B → C to A→ C as an argument for the necessity of explicit step-by-step reasoning. Hu
et al. (2024) study CoT prompting from a statistical estimation perspective by introducing a multi-step
latent variable model for CoT and analyzing its approximation, generalization and prompting-based
errors. Notably, Li et al. (2024a) study the training dynamics of a one-layer attention-only transformer
model in an in-context learning setting and show that CoT generalization capability can be obtained.
However, this does not address the possibility or benefits of training with CoT chains. Lightman et al.
(2024) empirically study training LLMs with either process or outcome supervision, showing that the
former significantly outperforms the latter when training to solve challenging reasoning tasks.

Parity and task decomposition. The difficulty of learning parity without task decomposition is
established in Shalev-Shwartz et al. (2017); Shamir (2018). The work most relevant to our paper is
Wies et al. (2023), which study task decomposition for parity with classical Elman RNNs. They show
that by incorporating intermediate states into the loss function and utilizing teacher forcing, parity
can be solved with polynomial iterations and embedding size. Our Theorem 5 extends this positive
result to autoregressive transformers, rigorously establishing the benefits of CoT-based training.

2 PROBLEM SETUP

Notation. We write [n] := {1, 2, · · · , n} for any integer n. Scalar operations apply componentwise
to vectors, e.g. for z ∈ Rn we write ϕ(z) = (ϕ(z1), · · · , ϕ(zn))⊤, z2 = z ⊙ z = (z21 , · · · , z2n) and
|z| = (|z1|, · · · , |zn|)⊤. The 2-norm is always denoted by ∥·∥. The multi-linear inner product or
contraction of z1, · · · , zr ∈ Rn for any r ∈ N is denoted as ⟨z1, · · · , zr⟩ :=

∑n
i=1 z1,i · · · zr,i. In

particular, ⟨z1⟩ = z⊤
1 1n and ⟨z1, z2⟩ = z⊤

1 z2.

2.1 THE PARITY PROBLEM

Let d ≥ k ≥ 2 be integers and let P denote the set of size k subsets of {1, · · · , d} equipped with the
uniform distribution. In this paper, we study the k-parity problem for d-bit inputs x = (xj)

d
j=1 ∼

Unif({±1}d), where the output y =
∏

j∈p xj is determined by the parity of an unknown subset of
bits p ∈ P . We abuse notation and identify the set of indices p with the corresponding parity mapping
x 7→

∏
j∈p xj . Given n samples (xi, yi)i∈[n], our goal is to predict the parity of any test input.

It is known that parity is fundamentally difficult in the sense that it cannot be solved in polynomial
time by any finite-precision gradient-based algorithm, such as neural networks. More precisely,
let {fθ | θ ∈ Θ} be any differentiable (w.r.t. θ) parametrized model with polynomially bounded
gradients, ∥∇fθ(x)∥ = O(poly(d)), and define the population loss L̄ = Ex

[
(y − fθ(x))

2
]
. We

presume access to an ε-approximate gradient oracle ∇̃ for L, which takes any θ ∈ Θ as query and
returns a vector ∇̃L̄(θ) satisfying ∥∇̃L̄(θ) − ∇L̄(θ)∥2 ≤ ε, potentially in an adversarial manner.
Then the following holds:

Theorem 1 (Wies et al. (2023), Theorem 4). Let ℓ0−1 be the zero-one loss. There exists an O(e−d/3)-
approximate oracle ∇̃ such that3 the output θ(A) of any iterative algorithm A which sequentially
makes at most O(poly(d)) queries to ∇̃L̄ must satisfy

Ex

[
ℓ0−1(p(x), fθ(A)(x))

]
≥ 1

2 −O(e−d)

with probability at least 1−O(e−d/3), when the target parity p is uniformly sampled from P .

The intuition is that the set P of parity functions is exponentially large in the sense that all elements
of P are pairwise orthogonal with respect to the data distribution. This implies that the variance of

3The original paper states that A can be any iterative gradient-based algorithm which receives an Ω(e−d/3)-
approximation of the gradient at each step. However, to be more precise, the result is only valid for certain
adversarial perturbation schemes.
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Figure 1: A hierarchical decomposition of an 8-parity problem for d = 16. Here x17 = x1x4 so that
c1[17] = 1, c2[17] = 4, p[17] = 21 and h[17] = 1.

each gradient call ∇L̄(θ) with respect to the target parity p is exponentially small (Shalev-Shwartz
et al., 2017) and is drowned out by the noise from the adversarial oracle, so that no information can
be gained on the target without exponentially many queries. See Section 3.1 for more details.

Task decomposition. As in Wies et al. (2023), we assume k = 2v for an integer v for simplicity
and decompose the problem into a hierarchy of 2-parity computations which can be efficiently learned
in a sequential manner by our model. This is expressed as a complete binary tree T of height v and
2k−1 nodes. The lowest level contains k nodes representing the bits xjm for m ∈ [k]. The remaining
nodes are labeled xd+1, · · · , xd+k−1 starting from the next lowest level and moving upwards, left
to right. The largest index in level ℓ for 0 ≤ ℓ ≤ v is denoted as dℓ = d +

∑ℓ
j=1 2

v−j , d0 = d.
Also, for each m > d, the indices of the two child nodes of xm are denoted as c1[m], c2[m] where
1 ≤ c1[m] < c2[m] < m. In addition, the parent node index of xm is denoted as p[m] and the level
or height of xm is denoted as h[m], so that dh[m]−1 < m ≤ dh[m].

2.2 TRANSFORMER MODEL

↓ ↓ ↓ ↓ ↓

x1 x2

· · ·
xd x̂d+1

· · ·
x̂m

· · ·
x̂d+k−1 = ŷ

e1 e2 ed ed+1 em

ϕ

xi

(a) Recursive generation of intermediate states.

ι ◦ ϕ

· · · · · ·x1

e1

u1

x̂m

em

ûm

(b) Filtered generation with data augmentation.

Figure 2: Illustration of the recursive data generation process by the transformer model. (a) Each
token consists of a one-hot positional encoding ej and parity data xj . The d input tokens (blue)
are fixed. The token x̂m is generated at the (m− d)th step by computing attention scores based on
position, combining the previous tokens and applying the feedforward layer ϕ. x̂d+k−1 is returned as
the model prediction. (b) For the no teacher forcing setup in Section 3.3, data augmentation uj is
implemented to check for self-consistency. If the augmented outputs from the previous generation
(red) are uninformative, a filter ι is applied to zero out the subsequent output.

We study a one-layer transformer architecture employing absolute positional encoding and a single-
head softmax attention layer followed by a shallow feedforward layer; skip connections are omitted
for simplicity. See Figure 2 for a visualization of our setup.
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Data encoding: Each input token xj = (xi
j)

n
i=1 for j ∈ [d] is the n-dimensional vector consisting

of the jth bit of each sample xi. We also add dummy tokens xd+1, · · · ,xd+k−1 initially set to 0n,
which will learn to sequentially generate the actual intermediate nodes. Each xj is concatenated
with the one-hot positional encoding ej ∈ Rd+k−1 for j ∈ [d + k − 1] to form the internal input
pj = (x⊤

j e⊤j )
⊤ ∈ Rn+d+k−1 to the attention layer.

Softmax attention layer: The attention layer is defined as in (1) in terms of key, query and value
matrices K,Q,V. We fix the first n columns of K,Q to zero so that the attention scores are
determined by only the positional encodings. This ensures that the transformer focuses on learning
which positions contribute to the parity at each step. K,Q are then reparametrized by a single matrix
W ∈ R(d+k−1)2 ; conversely, the value matrix is set to only preserve the x component, as follows.

K⊤Q =

(
0n×n 0n×(d+k−1)

0(d+k−1)×n W

)
, V =

(
In×n 0n×(d+k−1)

)
.

This type of reparametrization is common in the literature to make dynamical analysis tractable
(Zhang et al., 2023a; Huang et al., 2023b; Mahankali et al., 2023; Kim & Suzuki, 2024).

Feedforward layer: The feedforward layer realizes a fixed link function ϕ : [−1, 1] → [−1, 1],
applied elementwise and only to the xj component; the positional encodings are not affected. To
exploit the decomposition of our task into 2-parities, we choose ϕ such that ϕ(0) = −1, ϕ(±1) = 1
so that sums are converted into parities, i.e. ϕ(a+b

2 ) = ab for a, b ∈ {±1}. Moreover, we require
that ϕ′(0) = ϕ′(±1) = 0 and assume ϕ is symmetric and sufficiently regular, so that we may expand
ϕ(t) = −1 + ct2 +O(|t|4) and ϕ′(t) = 2ct+O(|t|3).
The transformer computes TF(x1, · · · ,xd+k−1;W) = (x̂1, · · · , x̂d+k−1) where the original data
x̂j = xj , j ∈ [d] remain unchanged and tokens x̂d+1, · · · , x̂d+k−1 are computed as

x̂m = ϕ(ẑm), ẑm =

m−1∑
j=1

Vp̂j · softmax(p̂⊤
j K

⊤Qp̂m) =

m−1∑
j=1

σj(wm)xj , (1)

where the softmax scores σj(wm) = ewj,m/
∑m−1

α=1 ewα,m . Here, we have implicitly added the
causal mask wj,m ← −∞ to the attention layer for j ≥ m or m ≤ d. Note that each ẑm, x̂m will be
contained in the cube [−1, 1]d as long as the input tokens are also contained in [−1, 1]d.

Chain of thought. Consider repeatedly applying TF(·) to its own output to generate a ‘reasoning
chain.’ Since the input tokens are fixed, the token x̂d+1 will be updated once and then always yield
the same value afterwards. Next, since x̂d+2 depends on the input tokens and x̂d+1, it will be updated
twice before becoming fixed. Repeating this, the entire chain stops updating after at most k− 1 steps,
yielding the output

TF(k−1)(x1, · · · ,xd,0n, · · · ,0n;W) = (x̂1, · · · , x̂d+k−1)

where the intermediate predictions are recursively computed as x̂m = ϕ(
∑m−1

j=1 σj(wm)x̂j). Finally,
the top node is returned as the model prediction ŷ = x̂d+k−1.

This process can be seen as a simplified version of CoT reasoning, albeit not in an in-context learning
setting: instead of one-shot predicting yi from xi, the model starts by solving simpler subtasks and
uses the information to attack compound problems, learning to generate intermediate reasoning steps
xd+1 → · · · → xd+k−1 to finally arrive at the desired solution. Importantly, this process is not
possible if the model is only trained on the one-shot data (xi, yi)i∈[n] as we show in Section 3.1.
Instead, we incorporate the prediction error for all intermediate states directly into our loss function
(Lightman et al., 2024). We also consider shortening the reasoning chain by using a different causal
mask in Section 3.3, which will result in improved control of error and faster convergence.

3 MAIN RESULTS

3.1 HARDNESS OF PARITY WITHOUT COT

Before analyzing our transformer model, we first prove a negative learning result in the absence of
intermediate supervision that extends Theorem 1, which was stated with respect to the population
objective L̄ and zero-one test loss ℓ0−1, to finite samples and mean squared loss.
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Let fθ : {±1}d → R be any differentiable parametrized model and suppose we select the target
parity p uniformly at random from P . In the finite-sample setting, n i.i.d. samples (xi, yi)i∈[n] are
generated as xi ∼ Unif({±1}d), yi = p(xi) and we are given access to (approximate) gradients
from the empirical loss

Ln(θ) =
1

2n

n∑
i=1

(yi − fθ(x
i))2 =

1

2
∥p− fθ∥2n,

where ∥·∥n is the empirical norm. It is important that the model fθ is applied to each xi separately
and does not cross-reference between different samples, as there exist more efficient parity-learning
algorithms if the data is allowed to be manipulated freely. For example, Gaussian elimination can
solve parity with O(d) samples and O(d3) iterations (Raz, 2018). Moreover, this implies that neural
networks trained with stochastic gradient descent can also solve parity in polynomial time (Abbe &
Sandon, 2020). Instead, in our setting the model is forced to learn from the averaged gradient signal
and can only implicitly utilize the correlation between samples.

We show the following result for learning parities with finite-samples in Appendix A:
Theorem 2 (hardness of finite-sample parity). Suppose k = Θ(d).

(1) If n = eΩ(d) and fθ has polynomially bounded gradients, there exists an e−Ω(d)-approximate
gradient oracle ∇̃ such that with probability 1− e−Ω(d) over random sampling, the output θ(A)
of any iterative (possibly randomized) algorithm which makes at most O(poly(d)) queries to
∇̃Ln has L2-loss lower bounded as

Ep∈P,x

[
(p(x)− fθ(A)(x))

2
]
≥ 1− e−Ω(d).

(2) If n = Ω(dν) and ∥∇fθ∥ = O(dν1), there exists an O(d−ν2)-approximate gradient oracle ∇̃
such that with probability 1− e−Ω(d) over random sampling, the output θ(A) of any iterative
(possibly randomized) algorithm which makes at most O(dν3) queries to ∇̃Ln has L2-loss lower
bounded, where ν = 4ν1 + 4ν2 + 2ν3 + 2ν4 + 1, as

Ep∈P,x

[
(p(x)− fθ(A)(x))

2
]
≥ 1−O(d−ν4).

We remark that the bounds are asymptotically optimal since fθ ≡ 0 is a valid estimator. Moreover,
the expectation over p ∈ P can be replaced by the corresponding ‘with high probability’ statement.

A counter-intuitive aspect of the above result is that parity becomes potentially more difficult when
the number of samples increases. Indeed, with exponential samples n = eΩ(d) (1) we basically
recover the statement of Theorem 1, while the guarantees for n = poly(d) (2) are also polynomial in
d. This is because the difficulty of parity (Theorem 1) fundamentally depends on the following result:
Proposition 3 (Shalev-Shwartz et al. (2017), Theorem 1). Suppose x be a random variable in
Rd. Let H be a class of bounded real-valued functions on Rd such that Ex[h(x)h

′(x)] = 0 for
any two distinct h, h′ ∈ H and fθ a differentiable parametric model with gradients bounded by
Ex[∥∇fθ∥2] ≤ F (θ)2. Then for the loss Fh(θ) := Ex[(h(x)−fθ(x))

2] where h is chosen uniformly
at random fromH, the gradient variance is bounded as

Var(θ;H) := Eh∈H
[
∥∇Fh(θ)− Eh′∈H [∇Fh′(θ)]∥2

]
≤ F (θ)2

|H|
.

Since all
(
d
k

)
= eΘ(d) parities in P are pairwise orthogonal with respect to the uniform distribution

Unif({±1}d), it follows that the variance of ∇L̄ is exponentially small and the target signal can
be drowned out by a correspondingly small noise from the oracle. However, this is not true for the
empirical distribution which cannot distinguish all elements in P with only poly(d) samples; the
empirical correlation of two random parities will generally be Θ(n−1/2). Therefore a more careful
decorrelation argument is needed, resulting in the weaker guarantees of Theorem 2(2). Another
technical difference is that Theorem 1 only considers the strong zero-one loss (more formally, their
results can be seen to hold for any parity estimator p̂θ(A) ∈ P depending on the algorithm output),
while we prove the L2 lower bound for any real-valued estimator fθ(A).

6



Published as a conference paper at ICLR 2025

3.2 COT WITH TEACHER FORCING

When training with teacher forcing, at each position d+ 1 ≤ m ≤ d+ k − 1, the ground-truth labels
of the preceding intermediate states x1, · · · ,xm−1 are fed into the transformer input to obtain the
predictor x̂m at the mth position,

x̂m = TF(x1, · · · ,xm−1,0n, · · · ,0n;W)m.

The loss function then computes the squared error over all states,

L(W) =
1

2n

d+k−1∑
m=d+1

∥x̂m − xm∥2. (2)

Since each sequence of values x̂d+1,i, · · · , x̂d+k−1,i are generated depending only on the correspond-
ing sample xi and the parameter matrix W, this can be rewritten in terms of the augmented labels
ȳi = (xi

d+1, · · · , xi
d+k−1)

⊤ as

L(W) =
1

2n

n∑
i=1

∥ȳi − f◦(xi;W)∥2, f◦
m(xi;W) = x̂m,i, d+ 1 ≤ m ≤ d+ k − 1

for a fixed mapping f◦ : {±1}d × R(d+k−1)2 → Rk−1, mirroring the setting of Theorem 2. Hence
our model does not cross-reference between samples; moreover, the gradient of f◦ is bounded as

Lemma 4. For all x,W it holds uniformly that ∥∇Wf◦(x;W)∥ ≤ O(
√
d).

At inference time, test inputs x1, · · · ,xd are randomly generated and the prediction for ytest =
p(x1, · · · ,xd) is computed by iterating TF to generate all k − 1 reasoning steps without reference
to ground-truth labels; ŷtest = TF(k−1)(x1, · · · ,xd,0n, · · · ,0n;W)d+k−1. Our positive learning
result in this setting is as follows.
Theorem 5 (CoT with teacher forcing). Suppose n = Ω(d2+ϵ) for ϵ > 0, d is sufficiently large and
let ∇̃ be any O(d−2−ϵ/8)-approximate gradient oracle.4 Set initialization W(0) = 0 and learning
rate η = Θ(d2+ϵ/16). Then for any target parity p ∈ P , it holds with probability 1 − exp(−dϵ/2)
over random sampling that the one-step update W(1) = W(0) − η∇̃L(W(0)) w.r.t. the objective (2)
with teacher forcing achieves loss ∥ŷtest − ytest∥∞ ≤ O(d−ϵ/8).

On the other hand, Theorem 2(2) shows that when n = Ω(d11+ϵ), any iterative algorithm querying an
O(d−2−ϵ/8)-approximate oracle, with gradients bounded as in Lemma 4, requires more than Ω̃(dϵ/4)
queries to attain a nontrivial (< 1

2 ) loss. This establishes a strict separation between learning parities
without intermediate supervision and our CoT transformer. The gap increases with more samples as ϵ
increases; moreover, when n = eΩ(d), we have a much stronger separation by Theorem 2(1), where
an exponential number of queries is required to learn p.

Sketch of proof. The result is shown by explicitly calculating the gradient with respect to each weight
wj,m and extracting the gradient signal. As the softmax scores are uniform at initialization, the
gradient can be expanded to obtain multilinear contraction or ‘interaction’ terms between the tokens
x1, · · · ,xm−1, one such example being

1

n
⟨xm, ẑm, ẑm⟩ =

1

n(m− 1)2

∑
α,β

⟨xm,xα,xβ⟩ .

In the above equation, if α, β are the two child nodes of m, the parity xαxβxm ≡ 1 will be
trivial and ⟨xm,xα,xβ⟩ = n. On the other hand, for nontrivial parities the interaction strength
will generally be O(

√
n log d) due to sample concentration. For sufficiently large n, the trivial

parities dominate, allowing us to extract the leading term. Performing these computations up to
fourth order interaction terms, we show that the dominating signal of the gradient is Θ(d−2) when
j = c1[m], c2[m] and O(d−2−ϵ/8) otherwise. Hence the transformer learns to increase only the
weights at the relevant positions for each subtask, and is able to compute the desired 2-parity
x̂m ≈ ϕ( 12 (x̂c1[m] + x̂c2[m])) ≈ x̂c1[m]x̂c2[m] at each node during its forward pass. The full proof is
provided in Appendix B.

4In fact, we only require that each component of the gradient has error at most O(d−2−ϵ/8) for Theorems 5,
7, which follows since the L∞ error is bounded above by L2.
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3.3 COT WITHOUT TEACHER FORCING

In this section, we extend Theorem 5 to training a transformer without teacher forcing, which is
employed alongside teacher forcing in practice to ensure robustness at test time (Bengio et al., 2015;
Goyal et al., 2017; Mihaylova & Martins, 2019). The main difficulty in this setting is that wrong
answers propagate to later generation steps, exponentially amplifying errors and drowning out the
main gradient signals. Error accumulation is also a central practical issue of CoT (Zhang & Parkes,
2023; Wang et al., 2023). To solve this issue, we make some modifications to our transformer model.

First, we minimize the number of required reasoning steps by imposing a slightly stronger form of
autoregressivity where each intermediate state x+

m depends on all tokens x+
j , j = 1, · · · , dh[m]−1

up to the previous level, rather than the immediately preceding token. This can be expressed as the
causal mask wj,m ← −∞ for j > dh[m]−1 or m ≤ d; see Figure 3. This ensures that the model
gradients are polynomially bounded as in Theorem 2 and that errors can propagate a logarithmic
rather than a linear number of steps, and can be easily implemented as the indices dℓ are known.

m = d d0

d1
d2

Figure 3: Causal mask for W⊤ with teacher forcing (left); without teacher forcing (right). The gray
entries are set to −∞.

Second, we implement a data augmentation technique where random d-bit strings ui ∼ Unif({±1}d),
i ∈ [n′] are appended to the original dataset (xi)i∈[n]. The resulting augmented tokens are denoted
as x+

j = (x⊤
j u⊤

j )
⊤ ∈ Rn+n′

, uj = (ui
j)

n′

i=1 so that pj = ((x+
j )

⊤ e⊤j )
⊤ (the notation is extended

to j > d), and the key, query and value matrices are appropriately enlarged. The ground truth labels
as well as the intermediate states for the augmented data are unknown, so they are not included in
the loss function. Nevertheless, unlabeled data can still suffice for self-consistency (Huang et al.,
2023a); their purpose is to filter for ‘faulty reasoning’ in the following sense. If the weights are not
sufficiently trained, the output of a node xj will consist of all nearly −1s and thus be uninformative
for computing any parities. If the augmented tokens newly generated in the previous iteration of
TF(·) (i.e. up to udℓ−1

) are uninformative, we zero out its output on the basis that all subsequent
reasoning will be wrong. This is achieved by adding the following filter after the feedforward layer ϕ:

∀z+ ∈ Rn+n′
, ιℓ(z

+) =

{
0 ∥uj + 1n′∥∞ < ε0 for any dℓ−2 < j ≤ dℓ−1,

z+ otherwise.

Without teacher forcing, during training the entire reasoning chain is generated by iteratively applying
TF to its own output until convergence, which takes v = log2 k rather than k − 1 steps due to the
imposed block autoregressivity. Hence TF(v)(x+

1 , · · · ,x
+
d ,0n+n′ , · · · ;W) = (x̂+

1 , · · · , x̂
+
d+k−1)

where the tokens x̂+
d+1, · · · , x̂

+
d+k−1 are recursively generated per level as

x̂+
m = ιh[m] ◦ ϕ(ẑ+

m), ẑ+
m =

dh[m]−1∑
j=1

σj(wm)x̂+
j . (3)

The loss is computed against the ground-truth labels as in (2). As before, each sequence of generated
states depends only on each sample xi and the augmented data U = (ui)i∈[n′], so we may express

L(W,U) =
1

2n

n∑
i=1

∥ȳi − f×(xi;W,U)∥2, f×
m(xi;W,U) = x̂m,i (4)

for a fixed mapping f×, so that the samples are again not cross-referenced. By considering the
propagation of gradients up the chain, the gradient of f× can be shown to be bounded as follows.
Lemma 6. For all x,W,U we have ∥∇Wf×(x;W,U)∥ ≤ O(dg) where g = log2∥ϕ′∥∞ + 1/2.
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The exact exponent g depends on the shape of ϕ. Since ϕ(0) = −1 and ϕ(1) = 1, it must hold that
∥ϕ′∥∞ > 2. Conversely, any such ∥ϕ′∥∞ may be achieved by taking ϕ to be locally quadratic around
0,±1 and smoothly joining the curve segments with straight lines of slope ±(2 + ϵ). Furthermore,
such a link function can be realized by a simple shallow feedforward layer using e.g. O(1) ReQU
neurons. Hence g can be taken to be arbitrarily close to 1.5.

Finally, we implement a simple weight quantization method by rounding each entry of W to the
nearest integer after every update; W(t+1) = r[W(t) − η∇̃WL(W(t),U)], where r : R → Z is
the nearest-integer operator. Equivalently, the gradients themselves are quantized. Integer-based
quantization methods are widely used in practice to accelerate training and reduce memory usage
(Wu et al., 2020; Jacob et al., 2018), and have been successfully implemented in LLMs to facilitate
efficient fine-tuning (Dettmers et al., 2022; 2023). In our theoretical setting, quantization also allows
us to simplify computations involving propagation of error.

In this setting, we obtain the following learning result.
Theorem 7 (CoT without teacher forcing). Suppose n = Ω(d2+ϵ) for ϵ > 0, n′ = poly(d),5 d is
sufficiently large and let ∇̃ be any O(d−2−ϵ/8)-approximate gradient oracle. Set W(0) = 0 and
η = Θ(d2+ϵ/16). Then for any target parity p ∈ P , it holds with probability 1 − exp(−d(ϵ∧1)/2)
over random sampling of (original and augmented) data that the sequence of updates W(t+1) =

r[W(t) − η∇̃L(W(t),U)] w.r.t. the objective (4) without teacher forcing achieves exponentially
small loss ∥ŷtest − ytest∥∞ ≤ exp(−Ω(dϵ/16)) in log2 k iterations.

This gives the same order of separation from Theorem 2(2) as in Section 3.2. Hence transformers can
learn parities even without teacher forcing, if the consistency of the chain of reasoning is suitably
controlled for. Moreover, our result shows that logarithmic time suffices to learn parity by exploiting
the hierarchical decomposition in Figure 1. This extends the circuit complexity result in Merrill &
Sabharwal (2024), which states that bounded-depth transformers with a logarithmic number of CoT
steps can express problems in log-space; Theorem 7 guarantees that transformers of depth one can
learn by gradient descent any such function in the exponentially large class P .

Sketch of proof. The idea is to inductively show that each 2-parity subtask xm at level ℓ will become
solved at time t = ℓ. When t ≤ ℓ− 2, xm cannot utilize its child nodes xc1[m], xc2[m] since they will
also not be optimized, so the weights do not change. At time ℓ− 1, its child nodes learn to output
their parities with high precision, so the objective is approximately equivalent to that of Theorem 5.
Then the gradient signal will similarly concentrate on wc1[m],m, wc2[m],m and xm will become solved
in the next step. It remains to bound the gradients arising from the loss terms further down the chain
xd+1 → · · · → xd+k−1 (propagation of error), and verify that irrelevant weights wj,m (p[j] ̸= m)
and already optimized weights do not change. The full proof is provided in Appendix C.

4 NUMERICAL EXPERIMENTS

In this section, we present numerical experiments which support and complement our theoretical
findings. Compared to the carefully calibrated step sizes and weight updates in Theorems 5 and 7,
these experiments study a more realistic training scenario by taking relatively small learning rates and
tracking the loss trajectories over a longer period of training. We train one-layer transformers based
on the architecture described in Section 2 to solve a random k-parity problem with 64-bit inputs for
k = 8, 16, 32. Specifically, we implement and compare the following four models.

• Direct: TF(·) is applied to itself k − 1 times to generate the reasoning chain end-to-end and the
model prediction ŷ is directly compared to the ground truth y with the prediction loss 1

2n∥ŷ−y∥
2.

• CoT: TF(·) is applied to itself to generate the reasoning chain end-to-end and the sequence of
intermediate states is compared to the ground truth as in (2). Here, we also implement the causal
mask in Figure 3 (right) so that only log2 k iterations are needed, for additional stability.

• CoT + teacher forcing: implements the model in Section 3.2 with teacher forcing.
• CoT + self-consistency: implements the model in Section 3.3 with the causal mask in Figure 3

(right) and data augmentation for consistency checks. Weight quantization is omitted.
5Any polynomial order suffices for the number of augmented data samples.
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Figure 4: CoT loss (left) and prediction loss (right) curves for the four models when d = 64, k = 32.
For the CoT+consistency model, dashed lines indicate when the filters of each level are deactivated.

All models are optimized using full-batch gradient descent on 100K 64-bit samples with a single
Tesla T4 GPU. The three CoT models are trained with the ‘CoT loss’ (2) scaled by 1

k−1 to match the
prediction loss of the direct model. Figure 4 shows training curves for the CoT loss (left) and the
prediction loss (right) over 350 epochs when k = 32; results for all k and more details are provided
in Appendix D.

We first note that the direct model (red) completely fails to learn the target, plateauing almost
immediately. We observed that the weights become nearly uniform so that ŷ ≈ 0n and the prediction
error is stuck at 0.5. This was not improved by using a multilayer transformer instead of repeated
composition. The basic CoT model (yellow) is able to significantly decrease CoT loss but fails to fully
solve the problem and eventually becomes unstable. Moreover, the prediction loss never improves
beyond 0.5. Indeed, due to the hierarchical structure of parity, the model has no chance of making
an informative prediction at the last level xd+k−1 unless all preceding levels have been fully solved.
In contrast, we verify that CoT with teacher forcing (blue) solves parity efficiently as predicted in
Section 3.2, even with a small learning rate. After a burn-in phase, the CoT loss steadily decreases to
nearly zero, at which point the prediction loss also decreases rapidly as the final level is solved.

CoT with self-consistency (green) is also able to solve parity efficiently as predicted. Furthermore,
the corresponding CoT loss curve clearly exhibits multiple learning stages. In the beginning, the
model is essentially optimizing only the first level as subsequent outputs are zeroed out. After a
short burn-in phase, the weights are optimized so that the softmax scores concentrate on the relevant
nodes, at which point the CoT loss sharply decreases and the filters for the next level are deactivated,
unlocking the next learning stage. This phased optimization repeats until all levels are fully solved
and is crucial to arriving at the correct answer (in essence, teacher forcing is doing this at all levels
simultaneously). Notably, a similar behavior seems to arise in the basic CoT model as well but fails
due to accumulating error, further justifying the use of the filtering mechanism.

These results confirm that training explicitly for CoT generation can improve performance on multi-
step tasks, and that controlling error accumulation via teacher forcing or self-consistency is key to
ensuring proper step-by-step learning.

5 CONCLUSION

In this paper, by focusing on the k-parity problem, we provide an initial theoretical foundation for
training transformers with CoT to perform stepwise reasoning. Our results show that gradient-based
learning of parity requires significant iterations without intermediate supervision, but task decom-
position using teacher forcing enables efficient learning in a single gradient update. Furthermore,
when transformers are trained to generate reasoning chains end-to-end, data augmentation and self-
consistency checks can enhance their ability to solve complex tasks. Our work takes the first steps
towards understanding how CoT can be leveraged to improve multi-step reasoning capability of
foundation models.
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APPENDIX

A PROOF OF THEOREM 2

Denote the empirical inner product on Rd by ⟨f, g⟩n = 1
n

∑n
i=1 f(x

i)g(xi) and the corresponding
norm as ∥f∥2n = ⟨f, f⟩n. We also write

Ln,p(θ) =
1

2
∥p− fθ∥2n =

1

2n

n∑
i=1

(p(xi)− fθ(x
i))2

to emphasize the dependency of Ln on p. Note that (d/k)k ≤
(
d
k

)
≤ (ed/k)k so that |P | = eΘ(d).

Bounding gradient variance. Consider the variance of the empirical gradient ∇Ln,p w.r.t. the
target parity p:

Varn(θ;P ) := Ep∈P

[
∥∇Ln,p(θ)− Ep′∈P [∇Ln,p′(θ)]∥2

]
.

We proceed to evaluate the magnitude of Varn(θ;P ). For p, p′ ∈ P with p ̸= p′ it holds that

⟨p, p′⟩n =
1

n

n∑
i=1

∏
j∈p

xi
j

∏
j′∈p′

xi
j′

 =
1

n

n∑
i=1

 ∏
j∈p∆p′

xi
j

 .

Since
∏

j∈p∆p′ xi
j is i.i.d. Unif({±1}) for fixed p, p′, by applying a union bound over Hoeffding’s

inequality, it follows for δ :=
√
4d/n that

Pr

(
sup
p ̸=p′
|⟨p, p′⟩n| ≥ δ

)
≤ |P |(|P | − 1) exp

(
−nδ2

2

)
≤
(
d

k

)2

e−2d ≤
(
2

e

)2d

.

Then with probability at least 1− e−Ω(d) over random sampling, every off-diagonal component of
the Gram matrix GP := (⟨p, p′⟩n)p,p′∈P has magnitude at most δ, while the diagonal entries are
equal to 1. By the Gershgorin circle theorem, the maximum eigenvalue of GP satisfies

|λmax(GP )− 1| ≤ (|P | − 1)δ,

thus λmax(GP ) ≤ 2(1 ∨ |P |δ). This implies that P constitutes a partial frame for the empirical L2

norm with the corresponding frame upper bound. More specifically, for f : Rd → R, decompose

f =
∑
p∈P

cp · p+ f0, f0 ∈ (spanP )⊥,

for some coefficient sequence c = (cp)p∈P . It follows that

∥f∥2n ≥ ∥f − f0∥2n =
∑

p,p′∈P

cpcp′⟨p, p′⟩n = ∥G1/2
P c∥2

and ∑
p∈P

⟨f, p⟩2n =
∑
p∈P

( ∑
p′∈P

cp′⟨p, p′⟩

)2

= ∥GP c∥2 ≤ λmax(GP )∥f∥2n.

Denoting D = dimΘ, we can therefore bound Varn(θ;P ) as

Varn(θ;P ) = inf
µ∈RD

Ep∈P

[
∥∇Ln,p(θ)− µ∥2

]
≤ Ep∈P

∥∥∥∥∥ 1n
n∑

i=1

(fθ(x
i)− p(xi))∇fθ(xi)− 1

n

n∑
i=1

fθ(x
i)∇fθ(xi)

∥∥∥∥∥
2


= Ep∈P

 D∑
j=1

⟨∇θjfθ, p⟩2n

 =
1

|P |
∑
p∈P

D∑
j=1

⟨∇θjfθ, p⟩2n
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≤
D∑

j=1

λmax(GP )

|P |
∥∇θjfθ∥2n

≤ 2

(
1

|P |
∨
√

4d

n

)
sup
θ,x
∥∇fθ(x)∥2.

Now by Chebyshev’s inequality, for any ε > 0 it holds that

Pr (∥∇Ln,p(θ)− Ep′∈P [∇Ln,p′(θ)]∥ > ε) ≤ Varn(θ;P )

ε2
.

Constructing the oracle. As in Shamir (2018), we define the ε-approximate oracle ∇̃ as

∇̃Ln,p(θ) =

{
Ep′∈P [∇Ln,p′(θ)] ∥∇Ln,p(θ)− Ep′∈P [∇Ln,p′(θ)]∥ ≤ ε,

∇Ln,p(θ) otherwise.

By union bounding, we see that during T steps the oracle always defaults to the mean gradient and
does not reveal any information on the true parity p, with probability at least

Pr(Q) ≥ 1− 2T

ε2

(
1

|P |
∨
√

4d

n

)
sup
θ,x
∥∇fθ(x)∥2,

where Q ⊆ P denotes the corresponding subset of the hypothesis space. Note that the argument
can be extended to any randomized algorithm and random initialization in a straightforward manner
by lifting to the product probability space, and so we consider Q to be fixed. Then for any target
parity p ∈ Q, the output θ(A) of the algorithm after T steps does not depend on p, so the predictor
f = fθ(A) is also fixed.

Lower bounding the loss. We first remark that a simpler proof can be given for the sup norm
error, which is enough to establish a separation. Consider arbitrary p, p′ ∈ P with p ̸= p′ and let
x ∈ {±1}d be such that p(x) ̸= p′(x), then

|p(x)− f(x)|+ |p′(x)− f(x)| ≥ |1− f(x)|+ |−1− f(x)| ≥ 2.

Now let σ : Q→ Q be any automorphism of Q with no fixed points. The L∞ error can be bounded
below by restricting to the noninformative set Q as follows.

Ep∈P

[
sup
x

∣∣p(x)− fθ(A)(x)
∣∣] ≥ Ep∈P

[
1{p∈Q} sup

x
|p(x)− f(x)|

]
=

1

2|P |
∑
p∈Q

(
sup
x
|p(x)− f(x)|+ sup

x
|σ ◦ p(x)− f(x)|

)
≥ 1

2|P |
· 2|Q| = Pr(Q).

For mean squared error, we similarly restrict to Q so that

Ep∈P,x

[
(p(x)− fθ(A)(x))

2
]
≥ Ep∈P,x

[
1{p∈Q}(p(x)− f(x))2

]
.

Since the range of p is contained in [−1, 1], the above loss will not increase when f is replaced by its
clipped version f̄(x) = (f(x)∧ 1)∨ (−1). Moreover, in Lemma 8 (proved at the end of the section)
we show that |Ep∈P [p(x)]| ≤ e−Ω(d) holds with probability 1− e−Ω(d) over the sample space of x,
so that ∣∣Ep∈P,x

[
p(x)f̄(x)

]∣∣ ≤ (1− e−Ω(d))Ep∈P [p(x)] + e−Ω(d) ≤ e−Ω(d)

and also

Ep∈P,x

[
1{p∈Q}p(x)f̄(x)

]
= Ep∈P,x

[
p(x)f̄(x)

]
− Ep∈P,x

[
1{p/∈Q}p(x)f̄(x)

]
≤ e−Ω(d) + (1− Pr(Q))Ex

[
|f̄(x)|

]
≤ e−Ω(d) +

(1− Pr(Q))2

2Pr(Q)
+

Pr(Q)

2
Ex

[
f̄(x)2

]
.
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Therefore we may bound

Ep∈P,x

[
(p(x)− fθ(A)(x))

2
]
≥ Ep∈P,x

[
1{p∈Q}(p(x)− f̄(x))2

]
= Pr(Q)− 2Ep∈P,x

[
1{p∈Q}p(x)f̄(x)

]
+ Pr(Q) · Ex

[
f̄(x)2

]
≥ Pr(Q)− (1− Pr(Q))2

Pr(Q)
− 2e−Ω(d)

≥ 2− 1

Pr(Q)
− 2e−Ω(d)

≥ 1− 4T

ε2

(
1

|P |
∨
√

4d

n

)
sup
θ,x
∥∇fθ(x)∥2 − 2e−Ω(d), (5)

where we have used the inequality 2− (1− t)−1 ≥ 1− 2t, valid for t ∈ [0, 1
2 ].

The proof is completed by evaluating the following cases.

(1) If n = eΩ(d) and T, ∥∇fθ∥ = O(poly(d)), the gradient variance is bounded as Varn(θ;P ) ≤
e−Ω(d). By taking ε = Varn(θ;P )1/3, it follows that Pr(Q) = 1 − e−Ω(d) and (5) yields the
lower bound 1− e−Ω(d).

(2) If n = Ω(dν), ∥∇fθ∥ = O(dν1), ε = Θ(d−ν2) and T = O(dν3), the gradient variance is
bounded as Varn(θ;P ) ≤ O(d2ν1+ν3+1/2−ν/2) = O(d−2ν2−ν4) and (5) yields the lower bound
1−O(d−ν4).

Lemma 8. If k = Θ(d), it holds with probability at least 1− e−Ω(d) over random sampling that

|Ep∈P [p(x)]| ≤ e−Ω(d).

Proof. Let m denote the number of −1s in x. By the Chernoff bound for the binomial distribution,

Pr

(∣∣∣∣m− d

2

∣∣∣∣ ≤ δd

2

)
≥ 1− 2 exp

(
−δ2d

6

)
for a constant δ ∈ (0, 1) to be determined, so we assume the above event throughout the proof.
Moreover denoting the complement parity pc = [d] \ p, it holds that p(x) = x1 · · ·xd · pc(x) and
|Ep∈P [p(x)]| = |Ep∈P [p

c(x)]|, so it suffices to consider the case where 2k ≤ d.

Without loss of generality, we may assume that x = (−1, · · · ,−1, 1, · · · , 1) so that p(x) is decided
as (−1)|p∩[m]|. We bound the cardinality of the set P+ := {p ∈ P | p(x) = 1}. Each parity in P+

can be determined by choosing 2j elements from [m] and k − 2j elements from [d] \ [m]. Denoting
by [t]j the coefficient of operator of order j, we can evaluate

|P+| =
⌊m/2⌋∑
j=0

(
m

2j

)(
d−m

k − 2j

)

=

⌊m/2⌋∑
j=0

(
m

2j

)
[t]k−2j(1 + t)d−m =

⌊m/2⌋∑
j=0

(
m

2j

)
[t]k(1 + t)d−mt2j

= [t]k(1 + t)d−m

⌊m/2⌋∑
j=0

(
m

2j

)
t2j =

1

2
[t]k(1 + t)d−m((1 + t)m + (1− t)m)

=
1

2

(
d

k

)
+

1

2
[t]k(1− t2)m

′
(1 + st)d−2m′

=
1

2

(
d

k

)
+

sk

2

⌊k/2⌋∑
j=0

(−1)j
(
m′

j

)(
d− 2m′

k − 2j

)
,
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where m′ = m ∧ (d−m) and s = ±1. It further follows that∣∣∣∣ |P+|
|P |
− 1

2

∣∣∣∣ ≤ 1

2|P |

⌊k/2⌋∑
j=0

(
m′

j

)(
d− 2m′

k − 2j

)
≤ 1

2|P |

⌊k/2⌋∑
j=0

(
⌊d/2⌋
j

)(
⌊δd⌋
k − 2j

)

≤ ⌊k/2⌋
2

(
d

k

)−1(⌊d/2⌋
⌊k/2⌋

)(
⌊δd⌋
⌊δd/2⌋

)
≤ d

4

(
d− ⌊d/2⌋ − ⌊δd⌋

k − ⌊k/2⌋ − ⌊δd/2⌋

)−1

≤ d

4

(
⌊d/4⌋
⌊k/4⌋

)−1

≤ d

4

(
d

k

)−k/4

= e−Θ(d).

Here, we have chosen δ = 1
4 ∧

k
2d = Θ(1) and used the inequality

(
a1+a2+a3

b1+b2+b3

)
≥
(
a1

b1

)(
a2

b2

)(
a3

b3

)
.

From this, we conclude that

|Ep∈P [p(x)]| =
∣∣∣∣ |P \ P+| − |P+|

|P |

∣∣∣∣ ≤ e−Ω(d)

with probability 1− e−Ω(d).

B PROOF OF THEOREM 5

Proof of Lemma 4. For each d+ 1 ≤ m ≤ d+ k − 1 and 1 ≤ j < m, the only component of f◦

depending on wj,m is f◦
m and∣∣∣∣∂f◦

m(x;W)

∂wj,m

∣∣∣∣ = |ϕ′(ẑm)| ·
∣∣∣∣ ∂ẑm
∂wj,m

∣∣∣∣
≤ ∥ϕ′∥∞

∣∣∣∣∣∣∂σj(wm)

∂wj,m
xj +

∑
α̸=j

∂σα(wm)

∂wj,m
xα

∣∣∣∣∣∣
= ∥ϕ′∥∞

∣∣∣∣∣∣σj(wm)(1− σj(wm))xj − σj(wm)
∑
α̸=j

σα(wm)xα

∣∣∣∣∣∣
≤ ∥ϕ′∥∞σj(wm)(1− σj(wm)) + ∥ϕ′∥∞σj(wm)

∑
α̸=j

σα(wm)

≤ 2∥ϕ′∥∞σj(wm).

Hence it follows that

d+k−1∑
m=d+1

∥∇Wf◦
m∥2 ≤ 4∥ϕ′∥2∞

d+k−1∑
m=d+1

m−1∑
j=1

σj(wm)2 ≤ 4∥ϕ′∥2∞(k − 1) = O(d),

as desired.

We say that a parity xj1 · · ·xjr for 1 ≤ j1, · · · , jr ≤ d + k − 1 is trivial if it always equals 1, or
equivalently if its reduction to the independent bits x1, · · · , xd cancel out mod 2. For example, the
parity x1x4x17 in Figure 1 is trivial. Define Ir,m as the set of nontrivial index r-tuples less than m:

Ir,m = {(j1, · · · , jr) | 1 ≤ j1, · · · , jr ≤ m− 1, xj1 · · ·xjr ̸≡ 1}.

In particular, I1,m = [m− 1] since no single parity is trivial.

Lemma 9 (concentration of interaction terms). If each bit xi
j for i ∈ [n], j ∈ [d] is i.i.d. generated

from the uniform distribution on {±1}, for any p > 0 it holds with probability at least 1− p that

max
1≤r≤4

(j1,··· ,jr)∈Ir,m

|⟨xj1 , · · · ,xjr ⟩|
n

≤ κ :=

√
2

n
log

32d4

p
.
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Proof. Each tuple (j1, · · · , jr) ∈ Ir,m computes a specific nontrivial parity xj1 · · ·xjr for which the
bits xi

j1
· · ·xi

jr
, i = 1, · · · , n are i.i.d. Unif({±1}) due to symmetry. By Hoeffding’s inequality we

have that

Pr (|⟨xj1 , · · · ,xjr ⟩| ≥ λ) ≤ 2e−λ2/2n.

Moreover, |Ir,m| ≤ (d+ k − 1)r ≤ (2d− 1)r so that

|I1,m|+ · · ·+ |I4,m| ≤ (2d− 1) + · · ·+ (2d− 1)4 < (2d)4.

Therefore it follows by union bounding that

Pr

(
max

1≤r≤4,(j1,··· ,jr)∈Ir,m
|⟨xj1 , · · · ,xjr ⟩| ≥ λ

)
≤ 32d4e−λ2/2n,

which implies the statement.

In particular, we take n = Ω(d2+ϵ) and p = exp(−dϵ/2) so that κ = O(d−1−ϵ/4). This will ensure
that the informative gradient signals will dominate the irrelevant interaction terms.

We now proceed to the main proof of Theorem 5. The superscript (0) at initialization is omitted for
simplicity. The loss can be written more explicitly as

L(W) =
1

2n

d+k−1∑
m=d+1

∥ϕ(ẑm)− xm∥2, ẑm =

m−1∑
j=1

σj(wm)xj .

It is straightforward to verify for 1 ≤ α < m that

∂σα(wm)

∂wj,m
= (δjα − σα(wm))σj(wm) = (δjα − σj(wm))σα(wm)

and

∂ẑm
∂wj,m

=

m−1∑
α=1

(δjα − σj(wm))σα(wm)xα = σj(wm)(xj − ẑm).

Then the gradient of L with respect to each element wj,m at initialization can be computed as

∂L

∂wj,m
(W) =

1

n
(ϕ(ẑm)− xm)⊤

∂ϕ(ẑm)

∂wj,m

=
σj(wm)

n
⟨ϕ(ẑm)− xm, ϕ′(ẑm),xj − ẑm⟩ (6)

= − 1

n(m− 1)
⟨xm, 2cẑm,xj − ẑm⟩ (7)

+
1

n(m− 1)

〈
−1n + cẑ2

m, 2cẑm,xj − ẑm
〉

(8)

+
1

n(m− 1)

〈
O(|ẑm|4), 2cẑm,xj − ẑm

〉
(9)

+
1

n(m− 1)

〈
ϕ(ẑm)− xm, O(|ẑm|3),xj − ẑm

〉
. (10)

Computing interaction strengths. The term (7) will be shown to contain the dominating gradient
signal when j = c1[m], c2[m], while the other terms can be bounded as perturbations. Let ℓ = h2[m]
so that xm computes a 2ℓ-parity.

For term (7), we substitute ẑm = 1
m−1

∑
α xα at initialization to expand

1

n
⟨xm, ẑm,xj − ẑm⟩ =

1

n(m− 1)

∑
α

⟨xm,xα,xj⟩ −
1

n(m− 1)2

∑
α,β

⟨xm,xα,xβ⟩ ,
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where the dummy indices α, β, · · · are taken to run over [m − 1]. Let us evaluate the third-order
interaction terms ⟨xm,xα,xβ⟩. If h[α] = ℓ, xmxα computes the parity of 2ℓ+1 independent bits
from x1, · · · , xd so xmxαxβ cannot be trivial, hence (m,α, β) ∈ I3,m and |⟨xm,xα,xβ⟩| ≤ nκ by
Lemma 9. Similarly, h[β] = ℓ implies that (m,α, β) ∈ I3,m. Suppose h[α], h[β] ≤ ℓ − 1; unless
h[α] = h[β] = ℓ− 1, the combined parity xαxβ will not contain enough independent bits to cancel
out the 2ℓ bits in xm, so again (m,α, β) ∈ I3,m. Moreover if h[α] = h[β] = ℓ− 1, xmxαxβ will be
trivial if and only if {α, β} = {c1[m], c2[m]}, in which case ⟨xm,xα,xβ⟩ = n. Thus we have that

1

n

∑
α

⟨xm,xα,xβ⟩ = 2 +
1

n

∑
(m,α,β)∈I3,m

⟨xm,xα,xβ⟩ = 2 +O((m− 1)2κ).

Similarly, the contraction ⟨xm,xα,xj⟩ can be nontrivial only if p[j] = m and only when α is the
other child node of xm, so that

1

n

∑
α

⟨xm,xα,xj⟩ =
{
1 +O((m− 1)κ) p[j] = m,

O((m− 1)κ) otherwise.

Since κ = O(d−1−ϵ/4) and d < m ≤ 2d − 1, we can therefore isolate the leading term of order
Θ(d−2) as

− 1

n(m− 1)
⟨xm, 2cẑm,xj − ẑm⟩

= − 2c

(m− 1)2
(1{p[j]=m} +O(dκ)) +

2c

(m− 1)3
(2 +O(d2κ))

= − 2c

(m− 1)2
1{p[j]=m} +O(d−2−ϵ/4).

Next, for term (8), we expand

1

n

〈
−1n + cẑ2

m, 2cẑm,xj − ẑm
〉
= −2c

n
⟨ẑm,xj⟩+

2c

n

〈
ẑ2
m

〉
+

2c2

n

〈
ẑ3
m,xj

〉
− 2c2

n

〈
ẑ4
m

〉
.

The second-order terms can be computed as

1

n
⟨ẑm,xj⟩ =

1

n(m− 1)

(
⟨xj ,xj⟩+

∑
α̸=j

⟨xα,xj⟩

)
=

1

m− 1
+O(κ),

1

n

〈
ẑ2
m

〉
=

1

n(m− 1)2

(∑
α

⟨xα,xα⟩+
∑
α̸=β

⟨xα,xβ⟩

)
=

1

m− 1
+O(κ).

We evaluate the fourth-order interaction terms by looking at when (α, β, γ, δ) /∈ I4,m can occur.
Without loss of generality, suppose h[α] ≤ h[β] ≤ h[γ] ≤ h[δ].

(i) If h[β] < h[γ] < h[δ], the parities of xα, xβ , xγ must combine without overlaps to cancel out
xδ, so it must hold that xγ is a child of xδ and xα, xβ are the two children of the other child.
This subtree is fully determined by the choice of the index δ and one of its child nodes, so there
are at most O(d) trivial 4-tuples in this case.

(ii) If h[β] = h[γ] < h[δ], it still must hold that h[γ] = h[δ] − 1. Moreover, both xβ , xγ must
be children of xδ; otherwise, the bits of xδ and the non-child node cannot be canceled out
by the remaining nodes. Then either xβ = xγ or xβxγ = xδ, and in both cases we see that
xαxβxγxδ cannot be trivial.

(iii) If h[β] < h[γ] = h[δ], it must be that γ = δ, otherwise the bits of xγxδ cannot be canceled out
by xαxβ . It follows that xαxβ ≡ 1 and α = β, so there are O(d2) trivial 4-tuples in this case.

(iv) If h[β] = h[γ] = h[δ], it must again hold that two indices must be equal, and the remaining
two indices must also be equal, so there are also O(d2) trivial 4-tuples.

Hence it follows that
1

n

〈
ẑ4
m

〉
=

1

n(m− 1)4

∑
α,β,γ,δ

⟨xα,xβ ,xγ ,xδ⟩
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=
1

n(m− 1)4

∑
(α,β,γ,δ)/∈I4,m

n+
1

n(m− 1)4

∑
(α,β,γ,δ)∈I4,m

O(nκ)

=
|[m− 1]4 \ I4,m|

(m− 1)4
+
|I4,m|

(m− 1)4
O(κ) = O(d−2 + κ).

Furthermore, suppose α, β, γ, δ are constrained to contain the index j. Then case (i) above counts
O(1) nontrivial tuples, while case (i), while cases (iii),(iv) count at most O(d) tuples since there is
only one free index to be determined. Hence we also have

1

n

〈
ẑ3
m,xj

〉
=

1

n(m− 1)3

∑
α,β,γ

⟨xα,xβ ,xγ ,xj⟩ =
O(d)

(m− 1)3
+O(κ) = O(d−2 + κ).

Combining the above, we obtain that

1

n(m− 1)

〈
−1n + cẑ2

m, 2cẑm,xj − ẑm
〉
= − 2c

(m− 1)2
+

2c

(m− 1)2
+

O(κ)

m− 1
= O(d−2−ϵ/4).

For term (9), we note that
〈
|ẑm|4

〉
=
〈
ẑ4
m

〉
= O(nd−2 + nκ) as derived above. Then since each

component of ẑm, xj − ẑm are contained in [−1, 1], [−2, 2], respectively, we have that

1

n(m− 1)

〈
O(|ẑm|4), 2cẑm,xj − ẑm

〉
=

4c

n(m− 1)
O(
〈
|ẑm|4

〉
) = O(d−2−ϵ/4).

Finally for term (10), by the Cauchy-Schwarz inequality we have

1

n

〈
|ẑm|3

〉
=

1

n

n∑
i=1

|ẑm,i|3

≤ 1

n

(
n∑

i=1

ẑ2m,i

)1/2( n∑
i=1

ẑ4m,i

)1/2

=
1

n

〈
ẑ2
m

〉1/2 〈
ẑ4
m

〉1/2
=

1

n
O(nd−1)1/2 ·O(nd−2 + nκ)1/2 = O(d−1−ϵ/8),

and so we may bound

1

n(m− 1)

〈
ϕ(ẑm)− xm, O(|ẑm|3),xj − ẑm

〉
=

4

n(m− 1)
O(
〈
|ẑm|3

〉
) = O(d−2−ϵ/8).

From (7)-(10) we conclude that

∂L

∂wj,m
(W) = − 2c

(m− 1)2
1{p[j]=m} +O(d−2−ϵ/8),

and the same result applies to the approximate gradient ∇̃wj,m
L at initialization since the cutoff does

not apply and each component of the noise is bounded by O(d−2−ϵ/8).

Concentration of softmax scores. Taking η = d2+ϵ/16, the updated weights W(1) = −η∇̃L(W)
become

w
(1)
j,m =

2cd2+ϵ/16

(m− 1)2
1{p[j]=m} +O(d−ϵ/16).

In particular, for each j ̸= c1[m], c2[m] the softmax scores satisfy

σj(w
(1)
m ) = ew

(1)
j,m/

∑
α ew

(1)
α,m ≤ e

w
(1)
j,m−w

(1)

c1[m],m ≤ exp(−Ω(dϵ/16)).

As softmax scores must sum to 1, it holds that σc1[m](w
(1)
m ) + σc2[m](w

(1)
m ) ≥ 1− exp(−Ω(dϵ/16))

and moreover

σc1[m](w
(1)
m )

σc2[m](w
(1)
m )

= e
w

(1)

c1[m],m
−w

(1)

c2[m],m ≤ exp(O(d−ϵ/16)) ≤ 1 +O(d−ϵ/16)
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from the inequality et ≤ 1 + O(t) for small t > 0. By symmetry, σc2[m](w
(1)
m )/σc1[m](w

(1)
m ) ≤

1 +O(d−ϵ/16). By simple algebraic manipulation, we can conclude that

1

2
−O(d−ϵ/16) ≤ σc1[m](w

(1)
m ), σc2[m](w

(1)
m ) ≤ 1

2
+O(d−ϵ/16).

That is, the updated attention layer ẑ(1)
m =

∑
j σj(w

(1)
m )xj has learned to take the average of the two

child nodes and ignore the remaining input tokens at each step.

Evaluating the forward pass. Now to bound the updated prediction loss, we evaluate the error
∥x̂(1)

m − xm∥∞ of each step of the forward pass for d+ 1 ≤ m ≤ d+ k − 1. More precisely, define
the increasing sequence

ϵm = max
d<j≤m

∥∥∥x̂(1)
j − xj

∥∥∥
∞

, ϵd = 0.

Then ∥∥∥x̂(1)
c1[m] − xc1[m]

∥∥∥
∞

,
∥∥∥x̂(1)

c2[m] − xc1[m]

∥∥∥
∞
≤ ϵc1[m], ϵc2[m] ≤ ϵm−1,

and for the intermediate values ẑ(1)
m we have∥∥∥∥ẑ(1)

m −
xc1[m] + xc2[m]

2

∥∥∥∥
∞
≤

∥∥∥∥∥∥ẑ(1)
m −

x̂
(1)
c1[m] + x̂

(1)
c2[m]

2

∥∥∥∥∥∥
∞

+ ϵm−1

≤
∑

p[j] ̸=m

σj(w
(1)
m ) +

∣∣∣∣σc1[m](w
(1)
m )− 1

2

∣∣∣∣+ ∣∣∣∣σc2[m](w
(1)
m )− 1

2

∣∣∣∣+ ϵm−1

≤ 2d exp(−Ω(dϵ/16)) +O(d−ϵ/16) + ϵm−1

≤ C1d
−ϵ/16 + ϵm−1,

for some constant C1 > 0. Since ϕ behaves like a quadratic near 0,±1, it follows that

ϵm = ∥x̂(1)
m − xm∥∞ =

∥∥∥∥ϕ(ẑ(1)
m )− ϕ

(
xc1[m] + xc2[m]

2

)∥∥∥∥
∞
≤ C2(C1d

−ϵ/16 + ϵm−1)
2

for some constant C2 > 0 depending only on ϕ. Then for sufficiently large d, by choosing C3 such
that C2(C1 + C3d

−ϵ/16)2 ≤ C3, for ϵm−1 ≤ C3d
−ϵ/8 it follows that

ϵm ≤ C2(C1d
−ϵ/16 + C3d

−ϵ/8)2 ≤ C3d
−ϵ/8,

thus ϵm = O(d−ϵ/8) inductively for all m. We conclude that ∥ŷ − y∥∞ = ∥x̂(1)
d+k−1 − x

(1)
d+k−1∥∞

is bounded for all inputs as O(d−ϵ/8).

C PROOF OF THEOREM 7

Proof of Lemma 6. For the iterative generation scheme (3), each wj,m affects x̂m as well as all
nodes x̂α on higher levels h[α] > h[m] through x̂m. We bound the contribution of each term to the
total gradient inductively with respect to the level. Define for each d < m ≤ d+k−1, 1 ≤ j ≤ m−1
and 0 < ℓ ≤ v the quantity

ξj,m,ℓ := max
α≤dℓ

∣∣∣∣ ∂x̂α

∂wj,m

∣∣∣∣ .
We denote κ := ∥ϕ′∥∞ for brevity. Clearly ξj,m,ℓ = 0 for ℓ < h[m] and

ξj,m,h[m] =

∣∣∣∣ ∂x̂m

∂wj,m

∣∣∣∣ ≤ κσj(wm)|xj − ẑm| ≤ 2κσj(wm).

Moreover for any α with h[α] = ℓ > h[m], we can bound by the chain rule∣∣∣∣ ∂x̂α

∂wj,m

∣∣∣∣ ≤ |ϕ′(ẑα)| ·

∣∣∣∣∣∣
dℓ−1∑

β=dh[m]+1

σβ(wα)
∂x̂β

∂wj,m

∣∣∣∣∣∣ ≤ κξj,m,ℓ−1,
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yielding the relation ξj,m,ℓ ≤ κξj,m,ℓ−1. Iterating, we obtain that ξj,m,ℓ ≤ 2κℓ−h[m]+1σj(wm).
Therefore we can bound the total gradient by the following.

d+k−1∑
α=d+1

∥∇Wf×
α ∥2 =

v∑
ℓ=1

dℓ∑
α=dℓ−1+1

∥∇Wf×
α ∥2

=

v∑
ℓ=1

dℓ∑
α=dℓ−1+1

d+k−1∑
m=d+1

m−1∑
j=1

∣∣∣∣ ∂x̂α

∂wj,m

∣∣∣∣2

≤
d+k−1∑
m=d+1

m−1∑
j=1

v∑
ℓ=1

(dℓ − dℓ−1)ξ
2
j,m,ℓ

≤
d+k−1∑
m=d+1

m−1∑
j=1

σj(wm)2
v∑

ℓ=1

2v−ℓ · 4κ2ℓ−2h[m]+2

≤ 4

d+k−1∑
m=d+1

2vκ−2h[m]+2
v∑

ℓ=1

(
κ2

2

)ℓ

≤ 4κ2

κ2 − 2

d+k−1∑
m=d+1

κ2v−2h[m]+2

≤ 4κ2

κ2 − 2

v∑
ℓ=1

(dℓ − dℓ−1)κ
2v−2ℓ+2 =

4κ4

κ2 − 2

v∑
ℓ=1

(2κ2)v−ℓ

≤ 4κ2

(κ2 − 2)(2κ2 − 1)
(2κ2)v = O(d2 log2 κ+1),

since 2v = k = O(d).

We first provide a concentration bound for the augmented data, which we take to hold throughout the
proof by conditioning on the high probability event.

Lemma 10 (concentration of augmented data). For n′ = poly(d), with probability 1 − e−Ω(
√
d)

over random sampling of the augmented data u1, · · · ,ud, it holds that ∥uj + 1n′∥∞ = 2 for all
1 ≤ j ≤ d+ k − 1 and

max
0≤ℓ≤v

∥∥∥∥∥∥ 1

dℓ

dℓ∑
j=1

x+
j

∥∥∥∥∥∥
∞

≤ O(d−1/4).

Proof. The nodes xdℓ−1+1, · · · , xdℓ
at each level ℓ compute independent parities, even though parities

at different levels can be correlated. By Hoeffding’s inequality and union bounding over coordinates,
it follows that ∥∥∥∥∥∥

dℓ∑
j=dℓ−1+1

x+
j

∥∥∥∥∥∥
∞

≤

√
2(dℓ − dℓ−1) log

2n′

p
= 2

v−ℓ+1
2

√
log

2n′

p

with probability at least 1 − p. Again union bounding, the above holds for all levels 0 ≤ ℓ ≤ v
simultaneously with probability at least 1− vp, so that∥∥∥∥∥∥ 1

dℓ

dℓ∑
j=1

x+
j

∥∥∥∥∥∥
∞

≤
ℓ∑

ℓ′=0

2
v−ℓ′+1

2

d

√
log

2n′

p
≤ 2(
√
2 + 1)

√
1

d
log

2n′

p
= O(d−1/4)

for all ℓ if p = e−
√
d. In addition, the probability that uj = −1n′ for some j ≤ d+ k− 1 is bounded

by 2d · 2−n′
= e−Ω(d); otherwise, at least one entry is equal to 2.

Now to prove Theorem 7, we show by induction that with high probability, the weights can be written
for constants Cℓ = Θ(1) as

w
(t)
j,m =


r[Ch[m]d

ϵ/16] h[m] ≤ t, p[j] = m,

−∞ j > dh[m]−1 or m ≤ d,

0 otherwise.
(11)

Clearly (11) is satisfied when t = 0. Suppose (11) holds at time t− 1 for t ≥ 1.
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Evaluating the forward pass. We first evaluate the forward pass iteration of the transformer up to
level h[m] ≤ t; fixing 0 < C < minℓ≤v Cℓ, it holds that

σj(w
(t)
m ) ≤ 1

exp(w
(t)
c1[m],m) + exp(w

(t)
c2[m],m) + dh[m]−1 − 2

≤ exp(−Cdϵ/16)

when p[j] ̸= m and

1− d exp(−Cdϵ/16)

2
≤ σc1[m](w

(t)
m ), σc2[m](w

(t)
m ) ≤ 1

2
.

For the augmented tokens, define the increasing per-level error sequence

ϵℓ = max
d<j≤dℓ

∥∥∥x̂+(t)
j − x+

j

∥∥∥
∞

, ϵ0 = 0.

We recursively bound ϵℓ as before up to ϵt; this will simultaneously verify that the filter ι is not
applied for the first t+ 1 levels since ∥u(t)

j + 1n′∥∞ ≥ 2− ϵt due to Lemma 10.

For each state ẑ
+(t)
m with h[m] = ℓ we have∥∥∥∥∥ẑ+(t)
m −

x+
c1[m] + x+

c2[m]

2

∥∥∥∥∥
∞

≤
∑

p[j] ̸=m

σj(w
(t)
m ) +

∣∣∣∣σc1[m](w
(t)
m )− 1

2

∣∣∣∣+ ∣∣∣∣σc2[m](w
(t)
m )− 1

2

∣∣∣∣+ ϵℓ−1

≤ (2d− 2) exp(−Cdϵ/16) + ϵℓ−1.

Since ϕ behaves like a quadratic near 0,±1, it follows that

ϵℓ ≤ C2((2d− 2) exp(−Cdϵ/16) + ϵℓ−1)
2,

and we can inductively verify ϵℓ ≤ exp(−Cdϵ/16) as well as ∥ẑ+(t)
m − z+

m∥∞ ≤ 2d exp(−Cdϵ/16)
holds for all ℓ ≤ t for sufficiently large d.

On the other hand, for the forward pass for levels h[m] > t the softmax scores are uniform over
dh[m]−1 tokens; moreover, the filter ι will be applied to all tokens on level t+ 2 and higher. Indeed,
the output of nodes on level h[m] = t+ 1 reads

x̂+(t)
m = ϕ(ẑ+(t)

m ), ẑ+(t)
m =

1

dt
(x̂

+(t)
1 + · · ·+ x̂

+(t)
dt

) =
1

dt
(x+

1 + · · ·+ x+
dt
) +O(ϵℓ),

so that ∥ẑ+(t)
m ∥∞ ≤ O(d−1/4) by Lemma 10. Then

∥û(t)
m + 1n′∥∞ ≤ C2∥|ẑ+(t)

m |2∥ ≤ O(d−1/2)

so that if O(d−1/2) < ε0, the filter zeroes out the output of each node on level t + 2. Then the
intermediate states of nodes xm′ on level t+ 2 read

ẑ
+(t)
m′ =

1

dt+1
(x̂

+(t)
1 + · · ·+ x̂

+(t)
dt

) =
dt

dt+1
ẑ+(t)
m ,

which again activates the filter. Repeating this process for the remaining levels, we conclude that
∥ẑ+(t)

m ∥∞ ≤ O(d−1/4) and so ∥x̂+(t)
m + 1n+n′∥∞ ≤ O(d−1/2) holds simultaneously for all nodes

h[m] > t (and all timesteps t for which (11) is valid).

Evaluating the updates. Define z̄
(t)
m = 1

dt

∑dt

j=1 xj so that

∥ẑ(t)
m − z̄(t)

m ∥∞ ≤
1

dt

dt∑
j=1

∥x̂(t)
j − xj∥∞ ≤ exp(−Cdϵ/16).
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We proceed to evaluate the gradient of L at (11). For the weights wj,m with h[m] = t+1, by isolating
the errors from the forward pass we have

∂

∂wj,m

(
1

2n
∥x̂(t)

m − xm∥2
)

=
1

n

〈
ϕ(ẑ(t)

m )− xm,
∂ϕ(ẑ

(t)
m )

∂wj,m

〉

=
σj(w

(t)
m )

n

〈
ϕ(ẑ(t)

m )− xm, ϕ′(ẑ(t)
m ), x̂

(t)
j − ẑ(t)

m

〉
=

1

ndt

〈
ϕ(z̄(t)

m )− xm, ϕ′(z̄(t)
m ),xj − z̄(t)

m

〉
+O

(
4

dt
(1 + ∥ϕ′∥∞ + ∥ϕ′′∥∞)∥ẑ(t)

m − z̄(t)
m ∥∞

)
=

1

ndt

〈
ϕ(z̄(t)

m )− xm, ϕ′(z̄(t)
m ),xj − z̄(t)

m

〉
+O(exp(−Cdϵ/16)).

Then the first term is identical to the initial gradient (6) analyzed in the proof of Theorem 5 except
for the differences in indices, and from the same computation we obtain the leading term:

∂

∂wj,m

(
1

2n
∥x̂(t)

m − xm∥2
)

= −2c

d2t
1{p[j]=m} +O(d−2−ϵ/8),

which holds with probability 1− exp(−dϵ/2) if n = Ω(d2+ϵ) under the same setting of Lemma 9.

For all other nodes on level t+ 1 or below, the output does not depend on the weight wj,m, so the
gradient of the squared error with respect to wj,m is zero. Moreover, all nodes on level t+2 or above
are zeroed out due to the filter and hence also has zero gradient. Then the oracle error is absorbed
into the second term and the update after time t+ 1 with learning rate fixed to η = d2+ϵ/16η0 reads

w
(t)
j,m − η∇̃wj,mL(W(t),U) = 2cη0

d2+ϵ/16

d2h[m]−1

1{p[j]=m} +O(d−ϵ/16).

By choosing η0 such that none of the leading terms lands exactly on a half-integer, we have that for
sufficiently large d,

w
(t+1)
c1[m],m = w

(t+1)
c2[m],m = r

[
2cη0

d2+ϵ/16

d2h[m]−1

]
, w

(t+1)
j,m = r[O(d−ϵ/16)] = 0

if p[j] ̸= m. We verify that

cη0
2
≤ Cℓ = 2cη0

d2+ϵ/16

d2ℓ−1

≤ 2cη0.

Also, the weights wj,m such that h[m] ≥ t+ 2 only affect the nodes that are zeroed out, so that the
gradient is also bounded as O(d−ϵ/16) and w

(t+1)
j,m = 0.

It remains to evaluate the gradient signal of weights wj,m with h[m] ≤ t, which have already been
updated in previous steps. Define the error

ξj,m,ℓ := max
1≤α≤dℓ

∥∥∥∥∥ ∂x̂
(t)
α

∂wj,m

∥∥∥∥∥
∞

.

This is similar to the error control in the proof of Lemma 6, but we exploit the fact that parities up to
level t are solved to obtain a much tighter bound. Let us expand ϕ′(t) = 2c′(1− t) +O((1− t)2)
near 1 and 2c′(−1− t) +O((1 + t)2) near −1 for some positive constant c′. Recall

∥ẑ+(t)
α − z+

α ∥∞ ≤ 2d exp(−Cdϵ/16), h[α] ≤ t

holds in the forward pass, so each component ẑ(t)
α,i is O(exp(−Cdϵ/16))-close to either of ±1. It

follows that |ϕ′(ẑ
(t)
α,i)| = O(exp(−Cdϵ/16)), so we can bound

ξj,m,h[m] =

∥∥∥∥∥ ∂x̂
(t)
m

∂wj,m

∥∥∥∥∥
∞

≤ 2∥ϕ′(ẑ(t)
m )∥∞σj(wm) ≤ O(exp(−Cdϵ/16)).
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Moreover, for any α on level h[α] = ℓ, h[m] < ℓ ≤ t the magnitude of the derivative of the output
x̂
(t)
α can be bounded as∥∥∥∥∥ ∂x̂

(t)
α

∂wj,m

∥∥∥∥∥
∞

≤
∥∥∥ϕ′(ẑ(t)

α )
∥∥∥
∞

dℓ−1∑
β=1

σβ(w
(t)
α )

∥∥∥∥∥ ∂x̂
(t)
β

∂wj,m

∥∥∥∥∥
∞

≤ O(exp(−Cdϵ/16))ξj,m,ℓ−1.

This implies that ξj,m,t = ξj,m,t−1 = · · · = ξj,m,h[m] ≤ O(exp(−Cdϵ/16)). Furthermore, for any α
on level h[α] = t+ 1 it holds that∥∥∥∥∥ ∂x̂

(t)
α

∂wj,m

∥∥∥∥∥
∞

≤ ∥ϕ′∥∞
dt∑

β=1

σβ(w
(t)
α )

∥∥∥∥∥ ∂x̂
(t)
β

∂wj,m

∥∥∥∥∥
∞

≤ ∥ϕ′∥∞ξj,m,t ≤ O(exp(−Cdϵ/16)).

Thus we have for all α with h[α] ≤ t+ 1,

∂

∂wj,m

(
1

2n
∥x̂(t)

α − xα∥2
)

=
1

n

〈
x̂(t)
α − xα,

∂x̂
(t)
α

∂wj,m

〉
≤ 2

∥∥∥∥∥ ∂x̂
(t)
α

∂wj,m

∥∥∥∥∥
∞

= O(exp(−Cdϵ/16)),

and the nodes on level t+ 2 or above are zeroed out due to the filter. Hence the gradient signal is
exponentially small and

∇̃wj,m
L(W(t),U) = O(d exp(−Cdϵ/16)) +O(d−2−ϵ/8),

so that w(t+1)
j,m = r[w

(t)
j,m +O(d−ϵ/16)] = w

(t)
j,m. This concludes the proof of (11).

Finally, after time t = v the weights at all levels have been updated, so that repeating the analysis of
the forward pass yields that

∥ŷtest − ytest∥∞ =
∥∥∥x̂(t)

d+k−1 − xd+k−1

∥∥∥
∞
≤ ϵv ≤ exp(−Cdϵ/16),

as was to be shown.

D EXPERIMENTAL DETAILS

For the transformer architecture, the feedforward layer was fixed to the following piecewise quadratic
link function:

ϕ(t) =


−4t2 − 8t− 3 t ∈ [−1,−0.5)
4t2 − 1 t ∈ [−0.5, 0.5)
−4t2 + 8t− 3 t ∈ [0.5, 1].

For all CoT models, learning rates were fixed to η = 15, 50, 100 for k = 8, 16, 32. For the direct
model, the learning rate was scaled to 0.01η to ensure stability of training. For the self-consistency
model, filtering was done through an equivalent weight-based filter, which checks if any softmax
score exceeds a threshold value, here set to 0.4. Moreover, we found that adding a 10% fraction of
the gradient from the prediction loss to that of the CoT loss resulted in more stable training.

Figure 5 shows CoT loss and prediction loss curves for k = 8, 16, 32, extending Figure 4. The direct
model fails to learn parity in all cases, while CoT with teacher forcing always learns efficiently. For
CoT with self-consistency, a similar analysis as in Section 4 can be applied for k = 8, 16 with two
or three distinct learning stages. We also observe that the basic CoT model manages to fully solve
the problem for k = 8 (two intermediate levels) but not for k = 16, 32 (three and four intermediate
levels), indicating that assistance (teacher forcing or self-consistency checking) becomes necessary
for more complex tasks.
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Figure 5: CoT loss (left) and prediction loss (right) curves for the four models when d = 64, k = 32
(top), k = 16 (middle) and k = 8 (bottom). For the CoT+consistency model, dashed lines indicate
when the filters of each level are deactivated.
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