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Abstract

Designing autotelic agents capable of autonomously generating and pursuing their
own goals represents a promising endeavor for open-ended learning and skill
acquisition in reinforcement learning. This challenge is especially difficult in open
worlds that require inventing new previously unobserved goals. In this work, we
propose an architecture where a single generalist autotelic agent is trained on an
automatic curriculum of goals. We leverage large language models (LLMs) to
generate goals as code for reward functions based on learnability and difficulty
estimates. The goal-conditioned RL agent is trained on those goals sampled based
on learning progress. We compare our method to an adaptation of OMNI-EPIC to
goal-conditioned RL. Our preliminary experiments imply that our method generates
a higher proportion of learnable goals, suggesting better adaptation to the goal-
conditioned learner.

1 Introduction

Reinforcement learning (Sutton and Barto [2018]) has successfully allowed agents to master complex
tasks (Mnih [2013]). However, current agents are still unable to autonomously explore and develop
skills in open-ended environments. It has been proposed that achieving such autonomy requires agents
to explore by continuously setting and pursuing their own goals (Oudeyer and Kaplan [2007]), e.g.
autotelic curiosity-driven agents (Colas et al. [2022]). Various intrinsic rewards have been proposed
to drive goal-based exploration such as diversity (Eysenbach et al. [2018]), intermediate-difficulty
(Florensa et al. [2018]), and, most relevant for this work, learning progress (Kaplan and Oudeyer
[2003], Schmidhuber [1991]). Several works explored autotelic agents that generate novel goals,
i.e. goals previously unobserved in the environment. For a goal-conditioned RL agent, MUGL
(Laversanne-Finot et al. [2018]) samples goals from a disentangled VAE latent space, and IMAGINE
(Colas et al. [2020]) leverages the compositionality of language to generate new linguistic goals.
Recently, LLMs have been applied to generate novel goals to explore textworlds (Colas et al. [2023])
and minecraft (Wang et al. [2023]) for an LLM-based learner. A parallel line of work focused on
generating curricula in the form of environments (Portelas et al. [2020a]) with the aim to generate
environments in the suitable order for an RL learner. (Portelas et al. [2020b]) compare different
methods for adapting the curriculum to the agents’ morphologies, e.g. generating water environments
for swimmers and ground environments for walkers. Recently, LLMs have been deployed to generate
environments, LLM-POET (Aki et al. [2024]) uses LLMs to generate environments for bipedal
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walker agents. OMNI-EPIC (Faldor et al. [2024]) uses an LLM in tandem with a vision language
model to generate both reward functions and environments as Python code.

The motivation of this work is an autotelic agent leveraging an LLM to generate goals for a goal-
conditioned RL learner. The most similar related work is OMNI-EPIC (Faldor et al. [2024]), with a
key conceptual distinction. In OMNI-EPIC, for each new environment, the RL agent corresponding
to the closest environment is cloned and fine-tuned, i.e. they create a lookup table of specialized
agents as opposed to one generalist goal-conditioned agent. Our preliminary results imply that simply
adapting the OMNI-EPIC goal generation to a setup with a single goal-conditioned learner results
in many unlearnable goals. To overcome this, we propose a novel method for goal generation and
selection, which leverages difficulty and learnability estimates to generate goals better adapted to the
current goal-conditioned RL agent.

In this work, we present an autotelic agent (see Figure 1), to autonomously explore a 2D minecraft-
like environment Craftax (Matthews et al. [2024]). It has two modules: a goal generator, and
a goal-conditioned learner consisting of goal selection and a goal-conditioned RL-agent, which
communicate through a goal archive. Inside the goal-conditioned learner, a goal-conditioned RL
agent is trained on goals sampled from the archive based on learning progress (LP ). Then, the
difficulty (D) and learnability (L) of those goals are estimated. Inside the goal generator, goals are
sampled based on learnability (L). Those goals, are used as in-context examples for the LLM-based
goal generation alongside a numerical estimate of their difficulty and learnability estimates. We
compare the learnability of goals generated by our method to that generated by a OMNI-EPIC-like
baseline (an adaptation of OMNI-EPIC to a goal-conditioned agent). Our preliminary experiments
imply that our method is able to leverage the learnability estimates to generate a higher percentage of
learnable goals.

The main contributions of this work are: 1) a first study of LLM-goal generation for a goal-conditioned
(autotelic) RL agent 2) a method leveraging learnability and difficulty to improve goal generation 3)
a comparison with a naive baseline (an adaptation of OMNI-EPIC to a goal-conditioned RL setting)

Figure 1: The autotelic agent architecture consists of two main modules: the goal generator and the
goal-conditioned learner, along with a goal archive. In the goal generator, goals are sampled based
on their learnability. These goals, their learnability (L) and difficulty (D) estimates, are given to
LLM to generate new goals: reward functions (R) and names (nm). Names are embedded for goal
conditioning of the RL agent. In the goal-conditioned learner, goals for training the RL agent are
sampled based on Learning Progress (LP ), and their learnability (L) and difficulty (D) are estimated.

2 Method: Open-ended generation of goals in code

In our setting, a goal g is a tuple g = (nm,R), where nm is the name of the goal and R is the
associated reward function. We designed an autotelic agent that generates new goals based on the
difficulty of previous goals it has successfully completed. The agent operates through two distinct
modules (Fig.1) to facilitate the open-ended generation and learning of goals. In the first module,
an LLM adaptively generates and evaluates goals based on the agent’s current skill level, using a
combination of learnability and difficulty measures. All tasks are stored in an archive. In the second
module, a multi-goal DeepRL agent learns the tasks from the archive.
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The process is initialized by adding a set of hand-crafted goals to the archive. The manually created
goals are very simple and allow the LLM to learn how to generate syntactically correct reward
functions. The multi-goal agent is then trained on these goals for a few updates, involving rollouts
and weight updates. Then, based on the success of the agent in learning the different tasks, the
archive is updated: tasks that are too difficult or too easy to learn are removed from the archive. This
iterative process allows the model to continuously generate and adapt goals that align with the agent’s
evolving capabilities, fostering an open-ended learning environment.The pseudo-algorithm for the
process described above is provided in Appendix A.1.

2.1 The goal conditioned learner

While any RL algorithm could be used, we train the goal-conditioned agent using Proximal Policy
Optimization (PPO). Appendix B.1 details the hyperparameters used for this training. The agent is a
causal transformer (Dai et al. [2019]), conditioned on both textual and visual information. The textual
information is the embedding of the nm, z ∈ Rne , with ne being the dimensionality of the embedding
space. The visual information consists of the last nobs images returned by the environment.

To determine which goals should be kept in the archive, they are evaluated based on two metrics:
difficulty D which corresponds to the learner’s success rate, and learnability L, which is the difference
between the maximum and minimum success rates during the learning stage. After each training
session, all the goals in the archive are ranked, and the nbest are kept. To class the goals we use a
fitness function f(g) = Lg × Dg, where Lg is the learnability of g and Dg its difficulty. During
training, the learner’s progress is also measured for each goal (see Appendix A.3).

2.2 The goal generator

We model the goal generator using an LLM, which is prompted with in-context examples of goals
and their associated learning progress (LP) and difficulty (D) . These examples inform the LLM about
the capacities of the goal-conditioned agent. The procedure for selecting the in-context examples is
described in Appendix A.2 and a full prompt is given in Appendix D. The goal generator proposes
new goals or modifies existing ones to maximize the estimated LP and D of the tasks (the tasks,
while difficult, must be learnable). The LP metric helps select learnable tasks from a larger pool of
non-learnable ones, while the difficulty metric filters out tasks that are too simple.

After the generation, a procedure (see Appendix A.5) removes goals g whose reward functions R
are not syntactically correct (that do not compile). R can use privileged information such as the
current state of the game engine, the agent’s current action, and a reward state where memory can be
stored. This allows the agent to target challenging goals such as time-extended goals (e.g., "move up
three times") and goals involving optimization under selected constraints (e.g., "build a shelter while
maintaining your health above 5"). Examples of such reward code are provided in Appendix C.

3 Experiments

Figure 2: Cumulative learn-
ability of all goals generated
by our method compare to
the OMNI-EPIC-like base-
line.

We conduct our preliminary experiments on a 2D Minecraft-like en-
vironment, Crafter (Hafner [2021]) with a fast JAX implementation
(Matthews et al. [2024]). The environment contains various materials
(e.g. wood, stone) and mobs (creatures such as zombie, skeleton, cow,
etc.). The observation is a 8x8 semantic grid, and the action space con-
tains actions for movement, attacking, and crafting. Crafting enables
the building of additional objects (e.g. table pickaxe). We explore the
following two questions: 1) Does our method adapt to the learner, i.e.
generate learnable goals? 2) What kind of goals are discovered, and
are their implementations semantically plausible?

3.1 Does our method adapt to the learner better, i.e. generates
more learnable goals, than the OMNI-EPIC-like baseline?

In this experiment, we compare our method to a baseline inspired by OMNI-EPIC. The baseline
differs from our method in the goal-generator by filtering goals for in-context examples based on
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difficulty (see section 2.2 and appendix A.2), and no additional metrics are included in the prompt.
We compare methods based on the generated goals’ learnability. As learnability is low for goals that
are trivially easy, impossible, or too hard, it serves as a good estimate of the adaptability of the goal
generator to the current capabilities of the learner.

Figure 2 compares the cumulative learnability over all the goals in the archive at a given time by our
method to that generated by the OMNI-EPIC-like baseline. We observe that our method generated
more learnable goals, implying better adaptation to the learner. However, since these results are based
on a single seed, further experiments are needed for stronger conclusions.

3.2 What kind of goals are discovered, are their implementations semantically plausible?

In this section, we present examples of reward functions (names and implementations) discovered
during our preliminary experiments. We aim to build intuition of how the exploration evolves, and
the limitations of our approach. We observe that simple tasks that align well with the original game
code are generated easily with correct semantics, such as one that creates a sequence of subgoals
culminating in using a wooden sword (Fig.3d). Furthermore, we observe implications that our
architecture can generate increasingly complex goals. The agent first generates a simple shelter
reward function based solely on checking whether there are non-grass blocks in its perimeter (Fig.3a).
Then, another reward function is created checking for the presence of stones in the perimeter (Fig.3b),
and finally, a further reward function checks for a "mob trap", which should correspond to a shelter
around another character - a mob (Fig.3c). However, we note that the LLM fails to adequately match
the semantics of those more abstract goals: the shelters created are not enclosed, allowing a mob
to always attack the agent, and for a "mob trap" it merely checks if there is a creature close to the
agent and >5 non-grass objects. Similarly, we observe other goals that represent interesting directions
for exploration, even though some of them might be implemented in semantically implausible ways.
Some of those interesting goals include checking for resources inside the shelter, damage from mobs
over multiple timesteps, surviving in the proximity of lava, moving in certain patterns and building
mazes.

In future work, we hope that the LLM would adjust those reward functions to make them more
semantically plausible or more interesting. Given that building a valid shelter, or trapping a character
would be harder, this would increase their learnability (as the starting performance would be low),
thereby making them more likely to be selected.

Figure 3: Examples of generated reward functions, pseudocode, and visualizations of the observations
at the task completion state. Complexity increases from a)-c), but implementations semantically
limited (shelters are not enclosed). In d), a more standard (less abstract) minecraft-like goal is
implemented well, despite being multi-step.

4 Conclusion and future work

We present an autotelic agent that leverages an LLM to generate novel goals (names and reward
function as code) tailored to a goal-conditioned RL agent. Our approach uses learnability estimates
to filter in-context examples, which are given alongside their difficulty and learnability scores. We
evaluate the adaptation of the goal generation to the RL learner with the cumulative learnability of
generated goals. Our preliminary experiments, in which we compare with a baseline inspired by
OMNI-EPIC, suggest that our method generates more learnable goals and adapts better to the learner.
We observe a gradual increase in the goal complexity, but also note that a common issue is that
implementations often do not semantically correspond to the goal name. In future refinements of our
method, we hope that it could lead to more interesting behavior through better usage of the LLM’s
background common-sense and the iterative selection of more learnable goals.
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A Pseudo-algorithm and equation

A.1 Pseudo-algorithm

Algorithm 1 Autotelic open-ended goal generation
Input: Goal archive Λ = {(nm, z,R, Lini, Dini)} with hand-made goals
Initialize: Initialize policy π(ϕ|(·))
for generation = 1, 2, . . . , G do

for update : k = 1, 2, . . . ,K do
Sample a batch S from the goal selection distribution, {(z,R)}S ∼ DΛ

Collect p steps of policy rollout {τ}S per sampled goals {(z,R)}S
Evaluate the goal-specific success rate {SRk}
Update the goal-specific Learning Progress {LPk}
Update the goal-specific Learnability and Difficulty {(Lk, Dk)}S
Update the goal-condition policy π(ϕ|(·)) with {R(τ)}S and {z}S

end for
Update the Archive Λ with the goal learnability and difficulty {LK , DK}
Update the archive by keeping the N-fittest goals Λ← {λ ∈ Λ|rank(λ, Lλ ×Dλ) ≤ N}
for i = 1, 2, . . . , I do

Sample a goals from the archive based on the filtering distribution ((nm,R))C ∼ FΛ

Generate a new goal from the sampled goals (nm,R) ∼ LLM((nm,R)C , Gprompt)
Create Embedding zg =

(
Le(nmg), Le(nmsg (1)), Le(nmsg (2)), . . .)

)
Test validity of the goal generated (syntax+compilation)
if valid goal then

Add the goal to the archive Λ← Λ ∪ (nm, z,R, Lini, Dini)
end if

end for
end for

The goal selection distribution DΛ is based on the learning progress (LP ). Both the distribution and
the calculation of LP are conducted in the same manner as described in the OMNI Zhang et al. [2023]
architecture with the same hyperparameters.
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A.2 FΛ the filter function

The Filter distribution FΛ is defined by the following procedure:

1. Define the sets of learnable and not-learnable rewards:
RL = {r ∈ Λ | L(r) > 0.1}, RN = {r ∈ Λ | L(r) ≤ 0.1}.

2. Sample g ∼ Uniform(RL).

3. Select the two closest learnable rewards to g in embedding space (excluding g) :
rL1, rL2 = arg min

r∈RL\{g}
distance(embedding(r), embedding(g)).

4. Select the two closest not-learnable rewards to g in embedding space:
rN1, rN2 = arg min

r∈RN

distance(embedding(r), embedding(g)).

5. Sample g′1, g
′
2 ∼ Uniform(RL).This two goals are sampled for creative combinations with dissimilar goals.

Then, we obtain the sample (g, rL1, rL2, rN1, rN2, g
′
1, g

′
2) ∼ FΛ.

In the OMNI-EPIC-like baseline the Filtering distribution is similar except that the two sets RL and
RN are replaced by:

RD{r ∈ Λ | D(r) > 0.1}, RN = {r ∈ Λ | LP (r) ≤ 0.1} (1)

A.3 D, L and LP

The different metrics are all based on the success rate defined by computing:

SR(ktot) =

∑
(times the goal was achieved in {τ(ktot)}S)∑

(times the goal was not achieved in {τ(ktot)}S)
(2)

which is a then exponentially smoothed with a constant of 0.1 leading to SRsmooth(ktot). Also ktot
refers to the index of update since the begining of the simulation, not only the index of the update in
the current generation like in the pseudo-code.

The difficulty is defined by:

D(ktot) = SRsmooth(ktot) (3)

The learnability is defined by:

L(ktot) = max
ltot∈[0,ktot]

(SRsmooth(ltot)− min
ltot∈[0,ktot]

(SRsmooth(ltot) (4)

The learning progress is defined in the same manner as described in the OMNI architecture Zhang
et al. [2023].

A.4 Goal and subgoals embedding

When generating a goal, the language model (LLM) is tasked with creating a name, denoted
as nm, which includes both the name of the goal (nmg) and the names of its subgoals
((nmsg (1), nmsg (2), . . .)). These names are then embedded into a vector of size 512 using the
OpenAI text-embedding-3-small embedder.

This process results in the following embedding:

zg(i) =
(
Le(nmg), Le(namesg (i))

)
Here, i corresponds to the index of the current subgoal which is determined by the reward state,
which changes a counter to indicate the current subgoal. The term nmg represents the name of the
goal, and nmsg represents the name of the subgoal.
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A.5 Filtering valid goals

Before adding a goal generated by the LLM to the archive we are testing its validity by:

• Checking if it’s syntactically correct by executing it’s code

• Checking if the name of the reward state, the goal and subgoal names and the reward
function is consistent.

• Checking if the reward state and the reward function is jit compatible by trying to compile
and execute on a random input.

B Hyperparameters

B.1 PPO AGENT

We re-used the hyperparameters of the JAX implementation of PPO with the transformerXL architec-
ture Hamon [2024]

Hyperparameter Value
Learning Rate 2e-4
Batch Size 8
Number of Epochs 4
Clip Range 0.2
Discount Factor (Gamma) 0.999
GAE Lambda 0.8
Entropy Coefficient 2e-3
Value Function Coefficient 0.5
Max Gradient Norm 1.
Number of Layers 2
Number of Heads 8
Size hidden layers 256
QKV features 256
Window memory 128
Window gradient 64
Size embedding 256
max time step per rollout 100

Table 1: PPO transformerXL Hyperparameters

B.2 Autotelic architecture hyperparameters
Hyperparameter Value
Update per generation K 150
Samples goals for training #S 1024
Number of steps per rollout p 128
Number of initial goal seed 33
Max size of the archive N 200

Table 2: Autotelic architecture hyperparameters

Overall the autotelic agent is tested on 128× 1024× 7× 150 = 16800000 steps

C Example of reward functions generated by the LLM

We present here the code of the reward function displayed in Fig.3.

The structure is the following:

• the reward state is defined with a class
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• the reward function is a function
• the names are stored in a list

[ <name goal > , <name s u g b o a l 1 > , <name s u b g o a l 2 > , . . . ]

Goal Craft and use wood swords:

@ s t r u c t . d a t a c l a s s
c l a s s R e w a r d S t a t e _ c r a f t _ a n d _ u s e _ w o o d _ s w o r d :

c o u n t e r _ p r o m p t : i n t = 0

d e f c r a f t _and_use_wood_sword ( s t a t e , a c t i o n , rng , r e w a r d _ s t a t e ) :
" " "
Check t h e sequenced g o a l t h a t i n c l u d e s t h e s e q u e n c e o f

s u b g o a l s : c o l l e c t _ w o o d , make_wood_sword , and
d e f e a t _ m o n s t e r .

" " "

# f i r s t s u b t a s k : c o l l e c t wood
s u b t a s k _ 1 _ a c h i e v e d = s t a t e . i n v e n t o r y . wood >= 2
c o u n t e r _ u p d a t e d = j a x . l a x . s e l e c t ( j n p . l o g i c a l _ a n d (

s u b t a s k _ 1 _ a c h i e v e d , r e w a r d _ s t a t e . c o u n t e r _ p r o m p t == 0) , 1 ,
r e w a r d _ s t a t e . c o u n t e r _ p r o m p t )

# second s u b t a s k : make wood sword
s u b t a s k _ 2 _ a c h i e v e d = s t a t e . i n v e n t o r y . wood_sword == 1
c o u n t e r _ u p d a t e d = j a x . l a x . s e l e c t ( j n p . l o g i c a l _ a n d (

s u b t a s k _ 2 _ a c h i e v e d , r e w a r d _ s t a t e . c o u n t e r _ p r o m p t == 1) , 2 ,
c o u n t e r _ u p d a t e d )

# t h i r d s u b t a s k : d e f e a t mons t e r
m o n s t e r _ d e f e a t e d = j n p . any ( s t a t e . zombies . h e a l t h <= 0)
c o u n t e r _ u p d a t e d = j a x . l a x . s e l e c t ( j n p . l o g i c a l _ a n d (

m o n s t e r _ d e f e a t e d , r e w a r d _ s t a t e . c o u n t e r _ p r o m p t == 2) , 3 ,
c o u n t e r _ u p d a t e d )

t a s k _ a c h i e v e d = c o u n t e r _ u p d a t e d == 3

r e w a r d _ s t a t e = r e w a r d _ s t a t e . r e p l a c e ( c o u n t e r _ p r o m p t =
c o u n t e r _ u p d a t e d )

r e t u r n t a s k _ a c h i e v e d , r e w a r d _ s t a t e , r e w a r d _ s t a t e .
c o u n t e r _ p r o m p t

p r o m p t _ s e q u e n c e _ c r a f t _ a n d _ u s e _ w o o d _ s w o r d = [ ’ c o l l e c t wood ’ , ’ make
wood sword ’ , ’ d e f e a t monster ’ ]

Goal Build shelter:

@ s t r u c t . d a t a c l a s s
c l a s s R e w a r d S t a t e _ b u i l d _ s h e l t e r :

h a s _ p l a c e d _ e n o u g h _ b l o c k s : boo l = F a l s e
c o u n t e r _ p r o m p t : i n t = 0

d e f b u i l d _ s h e l t e r ( s t a t e , a c t i o n , rng , r e w a r d _ s t a t e ) :
" " "
Check whe the r t h e a g e n t b u i l d s a s h e l t e r u s i n g a v a i l a b l e

r e s o u r c e s ( wood , s t o n e ) w i t h i n a d e f i n e d a r e a .
" " "
d e f h e l p e r _ i n _ b o u n d s ( s t a t e , p o s i t i o n ) :
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i n_bounds_x = j n p . l o g i c a l _ a n d (0 <= p o s i t i o n [ 0 ] , p o s i t i o n
[ 0 ] < s t a t e . map . shape [ 0 ] )

in_bounds_y = j n p . l o g i c a l _ a n d (0 <= p o s i t i o n [ 1 ] , p o s i t i o n
[ 1 ] < s t a t e . map . shape [ 1 ] )

r e t u r n j n p . l o g i c a l _ a n d ( in_bounds_x , in_bounds_y )

# De f i ne t h e s h e l t e r a r e a (3 x3 a r e a a round t h e p l a y e r )
s h e l t e r _ a r e a = j n p . a r r a y ( [

[ −1 , −1] , [ −1 , 0 ] , [ −1 , 1 ] ,
[ 0 , −1] , [ 0 , 0 ] , [ 0 , 1 ] ,
[ 1 , −1] , [ 1 , 0 ] , [ 1 , 1 ]

] , d t y p e = j n p . i n t 3 2 )

# Check i f t h e a g e n t has p l a c e d b l o c k s i n t h e s h e l t e r a r e a
d e f c h e c k _ p l a c e d _ b l o c k s ( unused , l o c _ a d d ) :

pos = s t a t e . p l a y e r _ p o s i t i o n + l o c _ a d d
i s _ i n _ b o u n d s = h e l p e r _ i n _ b o u n d s ( s t a t e , pos )
i s _ p l a c e d = j n p . l o g i c a l _ a n d ( i s _ i n _ b o u n d s , s t a t e . map [ pos

[ 0 ] , pos [ 1 ] ] != BlockType . GRASS . v a l u e )
r e t u r n None , i s _ p l a c e d

_ , i s _ p l a c e d _ b l o c k s = j a x . l a x . s can ( c h e c k _ p l a c e d _ b l o c k s , None ,
s h e l t e r _ a r e a )

# Check i f t h e a g e n t has p l a c e d a t l e a s t 5 b l o c k s i n t h e
s h e l t e r a r e a

h a s _ p l a c e d _ e n o u g h _ b l o c k s = i s _ p l a c e d _ b l o c k s . sum ( ) >= 5

# Update t h e reward s t a t e
r e w a r d _ s t a t e = r e w a r d _ s t a t e . r e p l a c e ( h a s _ p l a c e d _ e n o u g h _ b l o c k s =

h a s _ p l a c e d _ e n o u g h _ b l o c k s , c o u n t e r _ p r o m p t = j a x . l a x . s e l e c t (
h a s _ p l a c e d _ e n o u g h _ b l o c k s , 1 , 0 ) )

r e t u r n h a s _ p l a c e d _ e n o u g h _ b l o c k s , r e w a r d _ s t a t e , r e w a r d _ s t a t e .
c o u n t e r _ p r o m p t

p r o m p t _ s e q u e n c e _ b u i l d _ s h e l t e r = [ ’ g a t h e r r e s o u r c e s ’ , ’ p l a c e b locks
’ , ’ form s h e l t e r ’ ]

Goal build fortified shelter

@ s t r u c t . d a t a c l a s s
c l a s s R e w a r d S t a t e _ b u i l d _ f o r t i f i e d _ s h e l t e r :

h a s _ p l a c e d _ e n o u g h _ b l o c k s : boo l = F a l s e
c o u n t e r _ p r o m p t : i n t = 0

d e f b u i l d _ f o r t i f i e d _ s h e l t e r ( s t a t e , a c t i o n , rng , r e w a r d _ s t a t e ) :
" " "
Check whe the r t h e a g e n t b u i l d s a f o r t i f i e d s h e l t e r u s i n g s t o n e

and i r o n b locks , e n s u r i n g i t i s wel l − p r o t e c t e d .
" " "
# De f i ne t h e s h e l t e r a r e a (5 x5 around t h e p l a y e r )
s h e l t e r _ a r e a = j n p . a r r a y ( [

[ −2 , −2] , [ −2 , −1] , [ −2 , 0 ] , [ −2 , 1 ] , [ −2 , 2 ] ,
[ −1 , −2] , [ −1 , −1] , [ −1 , 0 ] , [ −1 , 1 ] , [ −1 , 2 ] ,
[ 0 , −2] , [ 0 , −1] , [ 0 , 0 ] , [ 0 , 1 ] , [ 0 , 2 ] ,
[ 1 , −2] , [ 1 , −1] , [ 1 , 0 ] , [ 1 , 1 ] , [ 1 , 2 ] ,
[ 2 , −2] , [ 2 , −1] , [ 2 , 0 ] , [ 2 , 1 ] , [ 2 , 2 ]

] , d t y p e = j n p . i n t 3 2 )
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# Check i f t h e a g e n t has p l a c e d b l o c k s i n t h e s h e l t e r a r e a
d e f c h e c k _ p l a c e d _ b l o c k s ( unused , l o c _ a d d ) :

pos = s t a t e . p l a y e r _ p o s i t i o n + l o c _ a d d
i s _ i n _ b o u n d s = j n p . l o g i c a l _ a n d (0 <= pos [ 0 ] , pos [ 0 ] < s t a t e

. map . shape [ 0 ] )
i s _ i n _ b o u n d s = j n p . l o g i c a l _ a n d ( i s _ i n _ b o u n d s , j n p .

l o g i c a l _ a n d (0 <= pos [ 1 ] , pos [ 1 ] < s t a t e . map . shape [ 1 ] ) )
i s _ p l a c e d = j n p . l o g i c a l _ a n d ( i s _ i n _ b o u n d s , j n p . l o g i c a l _ o r (

s t a t e . map [ pos [ 0 ] , pos [ 1 ] ] == BlockType . STONE . va lue ,
s t a t e . map [ pos [ 0 ] , pos [ 1 ] ] == BlockType . IRON . v a l u e ) )

r e t u r n None , i s _ p l a c e d

_ , i s _ p l a c e d _ b l o c k s = j a x . l a x . s can ( c h e c k _ p l a c e d _ b l o c k s , None ,
s h e l t e r _ a r e a )

# Check i f t h e a g e n t has p l a c e d a t l e a s t 10 b l o c k s i n t h e
s h e l t e r a r e a

h a s _ p l a c e d _ e n o u g h _ b l o c k s = i s _ p l a c e d _ b l o c k s . sum ( ) >= 10

# Update t h e reward s t a t e
r e w a r d _ s t a t e = r e w a r d _ s t a t e . r e p l a c e ( h a s _ p l a c e d _ e n o u g h _ b l o c k s =

h a s _ p l a c e d _ e n o u g h _ b l o c k s , c o u n t e r _ p r o m p t = j a x . l a x . s e l e c t (
h a s _ p l a c e d _ e n o u g h _ b l o c k s , 1 , 0 ) )

r e t u r n h a s _ p l a c e d _ e n o u g h _ b l o c k s , r e w a r d _ s t a t e , r e w a r d _ s t a t e .
c o u n t e r _ p r o m p t

p r o m p t _ s e q u e n c e _ b u i l d _ f o r t i f i e d _ s h e l t e r = [ ’ g a t h e r s t o n e ’ , ’ g a t h e r
i r o n ’ , ’ p l a c e s t o n e b locks ’ , ’ p l a c e i r o n b locks ’ , ’ form a 5x5
s h e l t e r ’ ]

Goal Build mob trap:

@ s t r u c t . d a t a c l a s s
c l a s s R e w a r d S t a t e _ b u i l d _ m o b _ t r a p :

t a s k _ a c h i e v e d : boo l = F a l s e
c o u n t e r _ p r o m p t : i n t = 0

d e f b u i l d _ m o b _ t r a p ( s t a t e , a c t i o n , rng , r e w a r d _ s t a t e ) :
" " "
Check whe the r t h e a g e n t b u i l d s a t r a p t o c a t c h mobs by

s t r a t e g i c a l l y p l a c i n g b l o c k s and u s i n g r e s o u r c e s .
" " "

# De f i ne t h e t r a p a r e a (3 x3 around t h e p l a y e r )
t r a p _ a r e a = j n p . a r r a y ( [

[ −1 , −1] , [ −1 , 0 ] , [ −1 , 1 ] ,
[ 0 , −1] , [ 0 , 0 ] , [ 0 , 1 ] ,
[ 1 , −1] , [ 1 , 0 ] , [ 1 , 1 ]

] , d t y p e = j n p . i n t 3 2 )

# Check i f t h e a g e n t has p l a c e d b l o c k s i n t h e t r a p a r e a
d e f c h e c k _ p l a c e d _ b l o c k s ( unused , l o c _ a d d ) :

pos = s t a t e . p l a y e r _ p o s i t i o n + l o c _ a d d
i s _ i n _ b o u n d s = j n p . l o g i c a l _ a n d (0 <= pos [ 0 ] , pos [ 0 ] < s t a t e

. map . shape [ 0 ] )
i s _ i n _ b o u n d s = j n p . l o g i c a l _ a n d ( i s _ i n _ b o u n d s , j n p .

l o g i c a l _ a n d (0 <= pos [ 1 ] , pos [ 1 ] < s t a t e . map . shape [ 1 ] ) )
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i s _ p l a c e d = j n p . l o g i c a l _ a n d ( i s _ i n _ b o u n d s , s t a t e . map [ pos
[ 0 ] , pos [ 1 ] ] != BlockType . GRASS . v a l u e )

r e t u r n None , i s _ p l a c e d

_ , i s _ p l a c e d _ b l o c k s = j a x . l a x . s can ( c h e c k _ p l a c e d _ b l o c k s , None ,
t r a p _ a r e a )

# Check i f t h e a g e n t has p l a c e d a t l e a s t 5 b l o c k s i n t h e t r a p
a r e a

h a s _ p l a c e d _ e n o u g h _ b l o c k s = i s _ p l a c e d _ b l o c k s . sum ( ) >= 5

# Check i f any mobs a r e t r a p p e d i n t h e a r e a
d e f check_ t r apped_mobs ( unused , l o c _ a d d ) :

pos = s t a t e . p l a y e r _ p o s i t i o n + l o c _ a d d
i s _ i n _ b o u n d s = j n p . l o g i c a l _ a n d (0 <= pos [ 0 ] , pos [ 0 ] < s t a t e

. map . shape [ 0 ] )
i s _ i n _ b o u n d s = j n p . l o g i c a l _ a n d ( i s _ i n _ b o u n d s , j n p .

l o g i c a l _ a n d (0 <= pos [ 1 ] , pos [ 1 ] < s t a t e . map . shape [ 1 ] ) )
is_mob = j n p . l o g i c a l _ a n d ( i s _ i n _ b o u n d s , s t a t e . mob_map [ pos

[ 0 ] , pos [ 1 ] ] )
r e t u r n None , is_mob

_ , i s _ t r a p p e d _ m o b s = j a x . l a x . s can ( check_ t rapped_mobs , None ,
t r a p _ a r e a )

# Check i f t h e r e i s a t l e a s t one mob t r a p p e d
has_ t r apped_mobs = i s _ t r a p p e d _ m o b s . sum ( ) > 0

# Task a c h i e v e m e n t i s based on ha v in g p l a c e d enough b l o c k s and
t r a p p i n g mobs

t a s k _ a c h i e v e d = j n p . l o g i c a l _ a n d ( h a s _ p l a c e d _ e n o u g h _ b l o c k s ,
has_ t r apped_mobs )

# Update t h e reward s t a t e
r e w a r d _ s t a t e = r e w a r d _ s t a t e . r e p l a c e ( t a s k _ a c h i e v e d =

t a s k _ a c h i e v e d , c o u n t e r _ p r o m p t = j a x . l a x . s e l e c t ( t a s k _ a c h i e v e d
, 1 , 0 ) )

# Reward i s g i v e n when t h e t a s k i s a c h i e v e d
reward = j a x . l a x . s e l e c t ( t a s k _ a c h i e v e d , 1 . , 0 . )

r e t u r n t a s k _ a c h i e v e d , r e w a r d _ s t a t e , r e w a r d _ s t a t e .
c o u n t e r _ p r o m p t

p r o m p t _ s e q u e n c e _ b u i l d _ m o b _ t r a p = [ ’ g a t h e r r e s o u r c e s ’ , ’ p l a c e
b l o c k s s t r a t e g i c a l l y ’ , ’ t r a p mobs ’ ]

D Prompt for the LLM

You a r e a p l a y e r i n an open − wor ld game t r y i n g t o w r i t e reward
f u n c t i o n s t o t r a i n an Deep− R e i n f o r c e m e n t l e a r n i n g AI a g e n t . You

want t h e AI a g e n t t o a c h i e v e as many d i f f e r e n t i n t e r e s t i n g
and complex t a s k s as p o s s i b l e . For t h i s you want t o d e s i g n a
c u r r i c u l u m of t a s k s t a i l o r e d t o t h e AI a g e n t c a p a b i l i t i e s . The

AI a g e n t i s a c t i n g i n t h e c r a f t e r e n v i r o n e m e n t . C r a f t e r i s an
open − wor ld game d e s i g n e d t o e v a l u a t e t h e g e n e r a l a b i l i t i e s o f
i n t e l l i g e n t a g e n t s w i t h i n a s i n g l e e n v i r o n m e n t . Developed f o r
r e i n f o r c e m e n t l e a r n i n g r e s e a r c h , C r a f t e r p r o v i d e s a
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p r o c e d u r a l l y g e n e r a t e d 2D wor ld where a g e n t s must pe r fo rm
t a s k s such as f o r a g i n g f o r food , f i n d i n g water , b u i l d i n g t o o l s

and c o n s t r u c t i o n s , and d e f e n d i n g a g a i n s t m o n s t e r s . C r a f t e r i s
i n 2D.

I n s t r u c t i o n s :
− The n e x t t a s k s h o u l d be l e a r n a b l e :

− Not t o o d i f f i c u l t g i v e n t h e d i f f i c u l t y o f t h e p r e v i o u s t a s k s
. Don ’ t c r e a t e t a s k s t h a t a r e n o t l e a r n a b l e .

− R e a l i s t i c f o r t h e a g e n t t o a c h i e v e i n t h e c u r r e n t
e n v i r o n m e n t

− The n e x t t a s k s h o u l d be i n t e r e s t i n g :
− Not t o o s i m i l a r t o t h e c u r r e n t t a s k s . Do n o t copy t h e

e x i s t i n g t a s k s .
− Not t o o easy f o r t h e a g e n t t o a c h i e v e . The a g e n t s h o u l d

l e a r n some th ing new .
− U s e f u l a c c o r d i n g t o humans , making i t wor th l e a r n i n g .
− C r e a t i v e o r s u r p r i s i n g .
− O p t i o n a l l y , t h e t a s k can be fun and e n g a g i n g t o watch .

− The t a s k s h o u l d be wel l − d e f i n e d :
− The code s h o u l d r e f l e c t t h e t a s k d e s c r i p t i o n ( i n t h e

d o c s t r i n g ) . I f i t ’ s n o t t h e case , c r e a t e a new reward
f u n c t i o n ( wi th a d i f f e r e n t name ) . Tasks t h a t a r e a r e n o t
l e a r n a b l e u s u a l l y a r e n o t w e l l d e f i n e d and can be
c o r r e c t e d by c h a n g i n g how t h e code r e f l e c t s t h e t a s k
d e s c r i p t i o n .

− I f you want t o re − use a h e l p e r f u n c t i o n , you have t o re −
w r i t e i t i n t h e reward f u n c t i o n .

− Pay a t t e n t i o n t o t h e s t a t e r e p r e s e n t a t i o n ( E n v S t a t e and
I n v e n t o r y ) and t h e game l o g i c . The reward f u n c t i o n s h o u l d
be c o m p a t i b l e wi th t h e game l o g i c and t h e E n v S t a t e .

− Jax and j i t c o m p a t i b l e :
− don ’ t use py thon c o n d i t i o n a l s and b o o l e a n o p e r a t i o n s .

− example :
− py thon ( n o t j a x and j i t c o m p a t i b l e ) : h a s _ r e s o u r c e s =

s t a t e . i n v e n t o r y . s t o n e >= 3 and s t a t e . i n v e n t o r y .
wood >= 2

− j a x and j i t c o m p a t i b l e : h a s _ r e s o u r c e s = j n p .
l o g i c a l _ a n d ( s t a t e . i n v e n t o r y . s t o n e >= 3 , s t a t e .
i n v e n t o r y . wood >= 2)

− j n p . l o g i c a l _ o r ( ) and j n p . l o g i c a l _ a n d ( ) t a k e s on ly 2
p o s i t i o n a l a rguments , so you can ’ t use i t w i th more t h a n 2

a rgumen t s . A l t e r n a t i v e l y you can use & and | b u t add
p a r e n t h e s e s a round t h e c o n d i t i o n .

− i f you use a r r a y i n t h e reward s t a t e , you s h o u l d use t h e
f o l l o w i n g s y n t a x u s i n g f i e l d :

c l a s s RewardSta te_move_far_away :
s t a r t _ p o s i t i o n : j n p . n d a r r a y = f i e l d ( d e f a u l t _ f a c t o r y =lambda :

j n p . a r r a y ( [ 0 , 0 ] , d t y p e = j n p . i n t 3 2 ) )
c o u n t e r _ p r o m p t : i n t = 0

The world − s t a t e i s u p d a t e d based on a s t a t e r e p r e s e n t a t i o n ( " s t a t e
" ) t h a t i s u p d a t e d a f t e r each a c t i o n o f t h e a g e n t by t h e
f o l l o w i n g game l o g i c . The s t a t e has t h e f o l l o w i n g s t r u c t u r e :
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# I n v e n t o r y c l a s s t o t r a c k p l a y e r ’ s c o l l e c t e d r e s o u r c e s and
c r a f t e d t o o l s

c l a s s I n v e n t o r y :
wood : i n t = 0
s t o n e : i n t = 0
c o a l : i n t = 0
i r o n : i n t = 0
diamond : i n t = 0
s a p l i n g : i n t = 0
wood_pickaxe : i n t = 0
s t o n e _ p i c k a x e : i n t = 0
i r o n _ p i c k a x e : i n t = 0
wood_sword : i n t = 0
s t o n e _ s w o r d : i n t = 0
i r o n _ s w o r d : i n t = 0

# Mobs c l a s s t o r e p r e s e n t c r e a t u r e s ( zombies , cows , s k e l e t o n s ) i n
t h e game

c l a s s Mobs :
p o s i t i o n : j n p . n d a r r a y
h e a l t h : i n t
mask : boo l
a t t a c k _ c o o l d o w n : i n t

# E n v S t a t e c l a s s t o r e p r e s e n t t h e e n t i r e game s t a t e
c l a s s E n v S t a t e :

map : j n p . n d a r r a y = map # 64 x64 g r i d r e p r e s e n t i n g t h e wor ld
mob_map : j n p . n d a r r a = j n p . z e r o s ( ( 6 4 , 64) , d t y p e = boo l )

p l a y e r _ p o s i t i o n : j n p . n d a r r a y = p l a y e r _ p o s i t i o n
p l a y e r _ d i r e c t i o n : i n t = A c t io n . UP . v a l u e

# P l a y e r ’ s v i t a l s t a t s ( h e a l t h , food , water , e ne rg y )
p l a y e r _ h e a l t h : i n t = 9
p l a y e r _ f o o d : i n t = 9
p l a y e r _ d r i n k : i n t = 9
p l a y e r _ e n e r g y : i n t = 9
i s _ s l e e p i n g : boo l = F a l s e

# R a t e s o f change f o r p l a y e r ’ s v i t a l s t a t s
p l a y e r _ r e c o v e r : f l o a t = 0 . 0
p l a y e r _ h u n g e r : f l o a t = 0 . 0
p l a y e r _ t h i r s t : f l o a t = 0 . 0
p l a y e r _ f a t i g u e : f l o a t = 0 . 0

i n v e n t o r y : I n v e n t o r y
zombies : Mobs
cows : Mobs
s k e l e t o n s : Mobs
a r r ow s : Mobs
a r r o w _ d i r e c t i o n s : j n p . n d a r r a y

# T r a c k i n g p l a n t e d c r o p s
g r o w i n g _ p l a n t s _ p o s i t i o n s : j n p . n d a r r a y
g r o w i n g _ p l a n t s _ a g e : j n p . n d a r r a y
g r o w i n g _ p l a n t s _ m a s k : j n p . n d a r r a y
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# Enum f o r d i f f e r e n t b l o c k t y p e s i n t h e game wor ld
c l a s s BlockType ( Enum ) :

INVALID = 0
OUT_OF_BOUNDS = 1
GRASS = 2
WATER = 3
STONE = 4
TREE = 5
WOOD = 6
PATH = 7
COAL = 8
IRON = 9
DIAMOND = 10
CRAFTING_TABLE = 11
FURNACE = 12
SAND = 13
LAVA = 14
PLANT = 15
RIPE_PLANT = 16

# Enum f o r p o s s i b l e a c t i o n s t h e p l a y e r can t a k e
c l a s s Ac t io n ( Enum ) :

NOOP = 0
LEFT = 1
RIGHT = 2
UP = 3
DOWN = 4
DO = 5
SLEEP = 6
PLACE_STONE = 7
PLACE_TABLE = 8
PLACE_FURNACE = 9
PLACE_PLANT = 10
MAKE_WOOD_PICKAXE = 11
MAKE_STONE_PICKAXE = 12
MAKE_IRON_PICKAXE = 13
MAKE_WOOD_SWORD = 14
MAKE_STONE_SWORD = 15
MAKE_IRON_SWORD = 16

# Blocks t h a t t h e p l a y e r c a n n o t walk t h r o u g h
SOLID_BLOCKS = j n p . a r r a y (

[
BlockType .WATER. va lue ,
BlockType . STONE . va lue ,
BlockType . TREE . va lue ,
BlockType .COAL. va lue ,
BlockType . IRON . va lue ,
BlockType .DIAMOND. va lue ,
BlockType . CRAFTING_TABLE . va lue ,
BlockType .FURNACE. va lue ,
BlockType . PLANT . va lue ,
BlockType . RIPE_PLANT . va lue ,

] ,
d t y p e = j n p . i n t 3 2 ,

)

# D i r e c t i o n s f o r movement and i n t e r a c t i o n
DIRECTIONS = j n p . c o n c a t e n a t e (
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(
j n p . a r r a y ( [ [ 0 , 0 ] , [ 0 , −1] , [ 0 , 1 ] , [ −1 , 0 ] , [ 1 , 0 ] ] ,

d t y p e = j n p . i n t 3 2 ) ,
j n p . z e r o s ( ( 1 1 , 2 ) , d t y p e = j n p . i n t 3 2 ) ,

) ,
a x i s =0 ,

)

# A d j a c e n t b l o c k s f o r i n t e r a c t i o n
CLOSE_BLOCKS = j n p . a r r a y (

[
[ 0 , −1] ,
[ 0 , 1 ] ,
[ −1 , 0 ] ,
[ 1 , 0 ] ,
[ −1 , −1] ,
[ −1 , 1 ] ,
[ 1 , −1] ,
[ 1 , 1 ] ,

] ,
d t y p e = j n p . i n t 3 2 ,

)

# Example usage
view = e x t r a c t _ a g e n t _ v i e w ( s t a t e ) .

The code you c r e a t e needs t o be c o m p a t i b l e wi th j a x and j i t . To
c r e a t e a new t a s k you s h o u l d w r i t e a f u n c t i o n wi th t h e same
i n p u t and o u t p u t a s t h e p r e v i o u s examples . Also add a reward
c l a s s l i k e t h e p r e v i o u s example . The reward c l a s s i s a way t o
s t o r e i n f o r m a t i o n a c r o s s d i f f e r e n t s t e p u p d a t e s and g e n e r a t e
reward based on i n f o r m a t i o n c o n t a i n e d i n a s e q u e n c e o f s t a t e s
o f t h e wor ld . Also add a l i s t o f b r i e f d e s c r i p t i o n o f t h e
s e q u e n t i a l s u b t a s k s ( l e s s t h a n 10 words p e r s u b t a s k s and l e s s
t h a n 10 s u b t a s k s ) t o g u i d e t h e AI a g e n t i n t h e l e a r n i n g p r o c e s s
. C r e a t e one new t a s k by w r i t i n g t h e code f o r i t s r eward
f u n c t i o n wi th i t s a s s o c i a t e d reward s t a t e and prompt s e q u e n c e .

Take i n t o a c c o u n t t h e a g e n t a c h i e v e m e n t s t o make a n o v e l
i n t e r e s t i n g t a s k t h a t i s n o t t o o easy and n o t t o o ha rd f o r t h e
AI a g e n t . Answer based on t h e s y n t a x o f t h e f o l l o w i n g f o r m a t :

My p r o p o s e d t a s k i s :
Reason ing f o r what t h e n e x t reward s h o u l d be :
< b r i e f r e a s o n i n g >

Next The code f o r t h e reward f u n c t i o n and i t s reward s t a t e and
prompt s e q u e n c e i s :

‘ ‘ ‘ py thon
‘ ‘ ‘
< reward f u n c t i o n >

< reward s t a t e >

< prompt_sequence = [ < d e s c r i p t i o n o f t h e t a s k > , < d e s c r i p t i o n o f
s u b t a s k 1 > , < d e s c r i p t i o n o f s u b t a s k 2 > , . . . ] >

‘ ‘ ‘
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P l e a s e c r e a t e a new reward f u n c t i o n . Don ’ t re − use t h e same name of
f u n c t i o n . You s h o u l d t a k e i n s p i r a t i o n from t h e reward

f u n c t i o n s below t o c r e a t e a new reward f u n c t i o n t h a t i s
i n t e r e s t i n g , n o v e l and a c h i e v a b l e . For each reward f u n c t i o n s a
s c o r e between 0 and 100 i s g i v e n t o d e s c r i b e t h e d i f f i c u l y and

l e a r n a b i l i t y based on t h e AI− a g e n t e x p e r i e n c e i n c r a f t a x .

Below a r e some r e w a r d s t h a t a r e l e a r n a b l e :

The l e a r n a b i l i t y o f t h e f o l l o w i n g g o a l i s : < s c o r e l e a r n a b i l i t y >
The d i f f i c u l t y o f t h e f o l l o w i n g g o a l s i s : < s c o r e d i f f i c u l t y >
<g , main g o a l sampled u n i f o r m l y among t h e l e a r n a b l e ones >

The l e a r n a b i l i t y o f t h e f o l l o w i n g g o a l i s : < s c o r e l e a r n a b i l i t y >
The d i f f i c u l t y o f t h e f o l l o w i n g g o a l s i s : < s c o r e d i f f i c u l t y >
< r_ {L1 } , c l o s e s t l e a r n a b l e g o a l i n embedding s p a c e >

The l e a r n a b i l i t y o f t h e f o l l o w i n g g o a l i s : < s c o r e l e a r n a b i l i t y >
The d i f f i c u l t y o f t h e f o l l o w i n g g o a l s i s : < s c o r e d i f f i c u l t y >
< r_ {L2 } , second c l o s e s t l e a r n a b l e g o a l i n embedding s p a c e >

The l e a r n a b i l i t y o f t h e f o l l o w i n g g o a l i s : < s c o r e l e a r n a b i l i t y >
The d i f f i c u l t y o f t h e f o l l o w i n g g o a l s i s : < s c o r e d i f f i c u l t y >
<g_1 ’ , c r e a t i v e g o a l sampled u n i f o r m l y among t h e l e a r n a b l e ones >

The l e a r n a b i l i t y o f t h e f o l l o w i n g g o a l i s : < s c o r e l e a r n a b i l i t y >
The d i f f i c u l t y o f t h e f o l l o w i n g g o a l s i s : < s c o r e d i f f i c u l t y >
<g_2 ’ , c r e a t i v e g o a l sampled u n i f o r m l y among t h e l e a r n a b l e ones >

Below a r e some r e w a r d s t h a t a r e n o t l e a r n a b l e :

The l e a r n a b i l i t y o f t h e f o l l o w i n g g o a l i s : < s c o r e l e a r n a b i l i t y >
The d i f f i c u l t y o f t h e f o l l o w i n g g o a l s i s : < s c o r e d i f f i c u l t y >
< r_ {N1} , c l o s e s t non − l e a r n a b l e g o a l i n embedding s p a c e >

The l e a r n a b i l i t y o f t h e f o l l o w i n g g o a l i s : < s c o r e l e a r n a b i l i t y >
The d i f f i c u l t y o f t h e f o l l o w i n g g o a l s i s : < s c o r e d i f f i c u l t y >
< r_ {N2} , second c l o s e s t non − l e a r n a b l e g o a l i n embedding s p a c e >

My p r o p o s e d t a s k i s :
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