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Abstract
We study the problem of pairing interacting pairs
of protein sequences within protein families that
are known to interact. We propose to fine-tune
the MSA Transformer to predict interaction part-
ners by applying contrastive learning to embed-
dings of pairs of interacting domains in scram-
bled single-chain multiple sequence alignments
(MSAs). We demonstrate the effectiveness of our
model across a set of bacterial interactions for
which ground-truth pairings are known, finding
that it is possible to achieve high pairing accu-
racy even within small sets of pairable sequences,
unlike previous methods based on models of co-
evolutionary statistics. Across a large dataset of
prokaryotic interactions with experimentally de-
termined complexes, paired cross-chain MSAs
generated by our model contain co-evolutionary
signal that more strongly encodes interface con-
tacts than MSAs paired by widely-used heuristic
methods. We believe that our approach offers a
potential direction for further extending the suc-
cesses of co-evolutionary analysis beyond individ-
ual proteins to protein-protein interactions.

1. Introduction
The maintenance of interaction specificity within protein-
protein interactions conserved across species constrains se-
quence variation at sets of interacting residues. In principle,
analysis of this evolutionary co-variation across interface
residues promises to help resolve interaction specificity,
improving the ability to reconstruct protein interaction net-
works and transfer understanding of protein interactions
across species. A particular challenge in the latter case is as-
sociated with the potential presence of multiple homologues
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of each interaction partner in a given species, leading to
ambiguity in which pairs of homologues are involved in a
specific interaction. A variant of this problem arises notably
in the context of structure prediction of multi-chain com-
plexes (Ovchinnikov et al., 2014; Hopf et al., 2014; Bryant
et al., 2022; Evans et al., 2022), where it is desirable to pro-
duce ‘paired’ cross-chain MSAs in which each row contains
a set of concatenated homologues which themselves inter-
act, thereby maximising the available co-evolutionary signal.
Previous approaches to this ‘MSA pairing’ problem have
shown that simple statistical models of the co-evolutionary
variation between interaction partners can successfully iden-
tify interacting pairs of sequences, and proposed iterative
algorithms allowing the learning of these models to be boot-
strapped from very small sets of known pairs (Gueudré
et al., 2016; Bitbol et al., 2016; Bitbol, 2018; Lupo et al.,
2024). More recently, it has been demonstrated that protein
language models trained on MSAs or on entire genomes
learn the hallmarks of interaction specificity, avoiding the
need to build new statistical models for each interaction of
interest, and allowing for accurate pairing within smaller
families (Lupo et al., 2023; Hwang et al., 2024; Malbranke
& Bitbol, 2024). These approaches, however, rely on the
pre-training tasks used to train the protein language model
being aligned with the interaction partner prediction prob-
lem, so that meaningful signal for solving the latter can be
extracted after pre-training.

In this paper, we propose to instead directly fine-tune protein
language models to solve the MSA pairing problem. A cen-
tral challenge is the absence of high-quality labelled datasets
characterising protein interaction specificity across species.
In order to circumvent this problem, we suggest leverag-
ing the similarity between domain-domain interactions and
chain-chain interactions. We propose the task of correctly
distinguishing between interacting and non-interacting do-
main pairs within sets of homologous multi-domain proteins
as a fine-tuning strategy designed to extract the knowledge
of protein interaction partner specificity from pre-trained
MSA-based language models. To solve this task, we use
contrastive learning to fine-tune the MSA Transformer (Rao
et al., 2021) to correctly re-pair interacting domains within
multi-domain MSAs whose rows have been scrambled. We
additionally exploit the MSA Transformer’s ability for in-
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MSA Pairing Transformer

context learning, by allowing the model to condition its
predictions for the scrambled rows on a set of rows in which
the domain sequences are correctly paired. We demonstrate
the effectiveness of this strategy in producing accurately
paired MSAs across a previously studied set of bacterial pro-
teins for which ground-truth interaction partners are known.
Furthermore, we show that paired MSAs produced by our
model more strongly encode interface contacts than those
paired with widely used sequence identity heuristics across
a diverse set of prokaryotic complexes.

2. MSA Pairing Transformer
2.1. Contrastive learning on interacting domains

To generate a set of ground-truth paired MSAs for train-
ing an interaction partner predictor, we collect protein
monomers containing one or more pairs of interacting do-
mains according to the CATH database (Sillitoe et al., 2021).
For each protein, we construct domain-level MSAs, MA and
MB , corresponding to interacting domains A and B in the
original protein, then simulate a pairing task by permuting
the rows of MB , so that the domain-A homologue in a given
row in MA no longer necessarily corresponds to (i.e. inter-
acts with) the domain-B homologue in the same row in the
permuted M̃B . We train a single model, across many such
pairs of scrambled domain-level MSAs, to correctly re-pair
the interacting domain sequences.

To solve this simulated pairing task, we introduce the MSA
Pairing Transformer (MPT), a variant of the MSA Trans-
former (Rao et al., 2021) fine-tuned with contrastive learn-
ing. We apply the InfoNCE loss (Radford et al., 2021;
Oord et al., 2019) to sequence-level representations hA and
hB produced by the model for each sequence xA ∈ MA

and each sequence xB ∈ M̃B (respectively). This loss
encourages hA and hB to be close if the two domain se-
quences belong to the same protein chain, and are therefore
interaction partners, and pushes apart the representations of
non-interacting domains from different chains:

L(MA, M̃B) = −
∑
ij

zij log
exp(g(h(i)

A , h
(j)
B ))∑

k exp(g(h(i)
A , h

(k)
B ))

, (1)

where i and j are row indices in the two MSAs, zij is
equal to one if x(i)

A and x
(j)
B interact and zero otherwise, and

g(x, y) is the cosine similarity between vectors x and y.

To allow the MSA Pairing Transformer to condition on
known sets of pairs, where available, we jointly embed the
two MSAs MA and M̃B by concatenating the sequences
in each row, and feeding the concatenated MSA through
the model. During training, we randomly sample a number
of correctly paired rows to pass to the model alongside the
unpaired rows that result from scrambling MB . Since the

output embeddings for each unpaired domain sequence are
then a function of the set of correctly paired rows, we in
effect perform a form of ‘few-shot’ contrastive learning
that allows the model to exploit a set of exemplar pairs to
improve its predictions for unpaired sequences.

2.2. Architecture modifications

The MSA Transformer applies a variant of axial attention
over MSAs, in which the row attention matrices are shared
across all rows (i.e. sequences) (Rao et al., 2021). In our
case, the use of unpaired concatenated MSAs means that
row attention across the boundary between MSAs for two
interaction partners is significantly less meaningful than row-
attention within MSAs for individual interaction partners.
For unpaired rows, we therefore use attention masking to
prevent cross-domain row attention. We preserve unmasked
shared row attention in paired rows, which are indicated to
the model via a learned input embedding.

To allow the extraction of domain-level representations for
each domain sequence in the two concatenated domain-level
MSAs, we add start tokens to the start of all sequences in
M̃B and all sequences in MA before concatenation. The
final layer representations of these start tokens are used as
domain-level representations hA and hB in the loss.

2.3. Dataset and training details

We constructed a dataset of monomers containing at least
two interacting domains from the CATH database (Sillitoe
et al., 2021), based on the topology-based splits of CATH
4.3 proteins created by Hsu et al. (2022). In total, we used
17,263 chains for training and 183 chains for validation,
ensuring there was no overlap in topology code between
domains in training and validation chains. For each of these
monomers we downloaded a precomputed full chain MSA
from OpenProteinSet (Ahdritz et al., 2023), from which
domain-level MSAs were extracted by using CATH domain
annotations to identify residue slices corresponding to indi-
vidual domains. We further excluded from the training set
chains whose MSAs had significant homology (hhsearch e-
value < 0.001) with the MSAs for either interaction partner
in the 6 bacterial interactions studied in Section 4.1.

3. Pairing interaction partners with the MSA
Pairing Transformer

We apply the MSA Pairing Transformer to the MSA pairing
problem. In this setting, given chain-level MSAs MA and
MB containing homologues of two interacting chains A
and B, the goal is to return a list of pairs of proteins from
the two MSAs that interact with each other. The task is
simplified by the fact that species annotations are typically
available for all the sequences in each MSA, and it can
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be assumed that sequences only interact if they belong to
the same species. The remaining problem is that there can
be multiple homologues of each chain in a single species,
leading to ambiguity in the within-species pairings.

To apply the MPT to this task, we need a way to convert the
chain-level embeddings returned by the model into pairing
predictions. We assume that each sequence can interact
with at most one other sequence within the same species
and use this assumption to formulate an optimal matching
problem, following previous work (Bitbol, 2018). For each
pair of sequences x(i)

A and x
(j)
B in a species S, we introduce

an interaction score I
(S)
ij computed from the correspond-

ing embeddings, representing the log probability that the
sequences interact:

I
(S)
ij = log

exp(g(h(i)
A , h

(j)
B ))∑

{k:x(k)∈S} exp(g(h(i)
A , h

(k)
B ))

(2)

We then use the Hungarian algorithm to find the pairing
that maximises the sum of the interaction scores across
the set of paired sequences within each species, combining
the predicted pairs across species. Interaction scores are
computed for multiple species at a time, by passing unpaired
MSAs comprising all sequences from the corresponding
species through the model.

3.1. Iterative self-improvement via in-context learning

Previous work on pairing has made extensive use of iterative
algorithms, in which the highest confidence predicted pairs
in a given pairing round are treated as ground-truth pairs
and used to update the pairing model for the next round
(Bitbol et al., 2016; Gueudré et al., 2016). Inspired by the
success of these approaches, we propose an iterative pairing
algorithm (IPA) for the MSA Pairing Transformer which
exploits its capacity for in-context learning.

3.1.1. AN ITERATIVE PAIRING ALGORITHM FOR THE
MSA PAIRING TRANSFORMER

To accommodate MSAs where the maximum number of
pairable sequences N exceed the maximum context size
M = 512 encountered by the model during training, we
partition unpaired sequences into N

M partitions, in such a
way that all unpaired sequences within a given species occur
in the same partition. For each partition, we maintain a set
of input pairs, initialised with a single pair of seed sequences
known to interact, and iterate:

1. Score candidate pairs within each species by I(S), and
predict within-species pairs given these scores.

2. Rank predicted pairs by decreasing value of pI(S),
where the factor p re-scales species-levels scores to
make them more comparable across species.

3. Append the top K predicted pairs to the current set of
input pairs, and return to step 1.

Iteration is terminated once all sequences in the partition
are paired. The pairs predicted in each partition are con-
catenated to form the final set of predicted pairs. All results
presented below are obtained with K = 8.

4. Results
4.1. Predicting interaction specificity for bacterial

interactions with known partners

We investigated a set of bacterial interactions studied in prior
works on interaction partner prediction (Bitbol, 2018), for
which ground-truth pairs are known due to the correspond-
ing genes being co-located within operons. We first evaluate
the accuracy of predictions in a ‘one-shot’ setting, in which
the model is allowed to use a single known pair as input to
guide its predictions for the remaining sequences. The accu-
racy of the model’s predicted pairings far surpassed that of a
null baseline which predicted random pairings within each
species, as well as the performance of a sequence-identity
based ‘best hit’ heuristic similar to that employed in state-
of-the-art structure prediction pipelines (Evans et al., 2022)
(Figure 3). In our implementation, the ‘best hit’ heuristic
sorts all sequences in each species in the MSA for each
chain by their sequence identity to the seed sequence, then
pairs the ‘best hit’ within a species in MA to the ‘best hit’
within the same species in MB .

We next explored whether the proposed iterative pairing
strategy could achieve pairing accuracy competitive with
previously proposed iterative pairing algorithms based on
co-evolutionary signal. For each interaction, we evaluated
performance given varying numbers N of total pairable se-
quences. For each N ∈ {64, 128, 256, 512, 1024}, we ran-
domly subsampled species until the total number of pairable
sequences was approximately equal to N , repeating the
process 5 times. We compare the pairing accuracy of the
iterative MPT algorithm with MI-IPA (Bitbol, 2018), a lead-
ing iterative pairing method, as well as the non-iterative
‘one-shot’ MPT. Iterating leads to a substantial increase in
performance, indicating that the model is able to harness
high-confidence predictions as in-context exemplars that
can guide the pairing of more challenging sequences (Fig-
ure 1). The performance of the iterative MPT is almost
independent of the total number of ground-truth pairs in
the input MSAs to be paired by the model. This is in stark
constrast to MI-IPA, which is only able to bootstrap its way
to an accurate statistical model of the paired alignment when
sufficiently large sets of pairable sequences are available,
due to its inability to perform any kind of transfer learning
across interactions. On the other hand, when large sets of
pairable sequences are available, MI-IPA is able to lever-
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Figure 1. Pairing recall averaged across 6 bacterial landscapes as a
function of total number of pairable sequences. Since all sequences
are paired, recall and precision values are the same.

age them to achieve very high accuracy pairing, while the
MPT’s performance plateaus.

4.2. Contact prediction on paired MSAs

As a further test of the success of pairing with the MSA
Pairing Transformer, we studied the extent to which paired
MSAs produced for prokaryotic complexes with known
structures aided the prediction of interface contacts with co-
evolutionary methods. We investigated a set of complexes
studied in previous work (Green et al., 2021; Bryant et al.,
2022), selecting for further study cases for which pure co-
evolutionary analysis was able to correctly identify at least
one correct interface contact within the top 10 predicted con-
tacts (Green et al., 2021). For each complex, we generate
chain-level MSAs with hhblits, then pair the MSAs using a
modified version of the iterative MSA Pairing Transformer
algorithm, as well as the best hit heuristic for comparison.
Given paired MSAs, we run the co-evolution based con-
tact prediction algorithm GaussDCA (Baldassi et al., 2014).
Similar to Bryant et al. (2022), we evaluate the precision of
the top interface contacts predicted by GaussDCA. This pre-
cision gives an indication of the strength of co-evolutionary
signal encoding the interface in the paired MSA. We com-
pare the performance of GaussDCA fit to MSAs paired using
the MPT and using the best hit heuristic in Figure 2. In many
cases, the paired MSAs returned by MPT lead to significant
improvements in contact prediction performance, suggest-
ing that they contain more correctly paired sequences from
which co-evolutionary inferences can be drawn. We also
evaluated performance for a set of eukaryotic complexes,
for which we did not find evidence of improved contact
prediction accuracy over the baseline method, although both
methods perform substantially worse in the eukaryotic case,
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0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pr
ec

isi
on

 o
n 

M
PT

 p
ai

re
d 

M
SA

s

Figure 2. Precision of the top 0.2N interface contacts predicted by
running GaussDCA on paired MSAs across a set of prokaryotic
complexes with experimentally determined structures. N is the
total number of interface contacts.

possibly due to overall weaker co-evolutionary signal or
higher numbers of paralogues (Figure 4).

5. Discussion
Co-evolutionary signal is an important factor in the suc-
cess of state-of-the-art methods in structure prediction and
protein language modelling (Jumper et al., 2021; Lin et al.,
2023; Abramson et al., 2024). The absence of large-scale
datasets of known pairs of interacting sequences may there-
fore make it challenging to fully realise the potential of
similar approaches for the study of protein-protein interac-
tions. In this work, we investigate a strategy for exploiting
known domain-domain interactions to allow the prediction
of interaction partners within interacting protein families by
fine-tuning the MSA Transformer. Interpretation of the ex-
tent to which our results indicate that the model has success-
fully learned to recognise generalisable sequence patterns
encoding interaction specificity is made challenging by the
fact that in many cases, the pretrained MSA Transformer
may have seen examples of ‘fused’ proteins containing both
partners in a given interaction in a single chain. Even in
such cases, successfully transferring these patterns to un-
seen interaction partners is far from a trivial task, and an
ability to do this accurately may be useful in structure pre-
diction pipelines relying on paired MSAs. We have so far
largely focussed on studying prokaryotic interactions, for
which the possibility of producing ground-truth pairings
based on genomic distance makes it easier to assess perfor-
mance. In future work we will seek to better understand
reasons for differences in performance of pairing algorithms
across prokaryotic and eukaryotic interactions, and tailor
our method to better handle the latter.
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Figure 3. Precision (left) and recall (right) of prediction of interaction partners on a set of 6 bacterial interactions with known ground truth.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Precision on best hit paired MSAs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pr
ec

isi
on

 o
n 

M
PT

 p
ai

re
d 

M
SA

s

Figure 4. Precision of the top 0.2N interface contacts predicted by running GaussDCA on paired MSAs across a set of prokaryotic
complexes with experimentally determined structures. N is the total number of interface contacts.
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