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Abstract
We study the problem of pairing interacting pro-
tein sequences across protein families that are
known to interact, in cases where multiple par-
alogs of each interaction partner can occur in
a given species. We fine-tune the MSA Trans-
former to predict interaction partners by applying
contrastive learning to embeddings of pairs of in-
teracting domain sequences in scrambled single-
chain multiple sequence alignments (MSAs). We
demonstrate the effectiveness of our model across
a set of bacterial interactions for which ground-
truth pairings are known, finding that it is possi-
ble to achieve high pairing accuracy even within
small sets of pairable sequences, unlike previ-
ous methods based on co-evolutionary statistics.
Across a large dataset of prokaryotic interac-
tions with experimentally determined complexes,
paired MSAs generated by our model contain co-
evolutionary signal that more strongly encodes
interface contacts than MSAs paired by widely-
used heuristic methods, suggesting the potential
of our approach to improve the co-evolutionary
analysis of protein-protein interactions.

1. Introduction
The maintenance of interaction specificity within protein-
protein interactions conserved across species constrains se-
quence variation at sets of interacting residues. In principle,
analysis of this evolutionary co-variation promises to help
resolve interaction specificity, improving the ability to re-
construct protein interaction networks and transfer under-
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standing of protein interactions across species. A particular
challenge in the latter case is associated with the potential
presence of multiple paralogs of each interaction partner
in a given species, leading to ambiguity in which pairs of
sequences are involved in a specific interaction. A variant
of this problem arises notably in the context of structure pre-
diction of multi-chain complexes (Ovchinnikov et al., 2014;
Hopf et al., 2014; Bryant et al., 2022; Evans et al., 2022),
where, in order to maximise the available co-evolutionary
signal, it is desirable to produce ‘paired’ cross-chain MSAs
in which each row consists of concatenated sequences which
themselves interact. Previous approaches to this ‘MSA pair-
ing’ problem have shown that simple statistical models of
the co-evolutionary variation between interaction partners
can successfully identify interacting pairs of sequences in
the presence of multiple in-species paralogs, and have pro-
posed iterative algorithms allowing the learning of these
models to be bootstrapped from very small sets of known
pairs (Gueudré et al., 2016; Bitbol et al., 2016; Bitbol, 2018;
Lupo et al., 2024b). Recently, it has also been demonstrated
that protein language models trained on MSAs or on en-
tire genomes learn the hallmarks of interaction specificity,
avoiding the need to build new statistical models for each
interaction of interest, and allowing for accurate pairing
within smaller families (Lupo et al., 2024a; Hwang et al.,
2024; Malbranke & Bitbol, 2024). These approaches, how-
ever, rely on the pre-training tasks used to train the protein
language model being aligned with the interaction partner
prediction problem, so that meaningful signal for solving
the latter can be extracted after pre-training.

In this paper, we propose to instead directly fine-tune protein
language models to solve the MSA pairing problem. A cen-
tral challenge is the absence of high-quality labelled datasets
characterising protein interaction specificity across species.
In order to circumvent this problem, we suggest leverag-
ing the similarity between domain-domain interactions and
chain-chain interactions. We propose the task of correctly
distinguishing between interacting and non-interacting do-
main pairs within sets of homologous multi-domain proteins
as a fine-tuning strategy designed to extract the knowledge
of protein interaction partner specificity from pre-trained
MSA-based language models. To solve this task, we use
contrastive learning to fine-tune the MSA Transformer (Rao
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et al., 2021) to correctly re-pair interacting domains within
multi-domain MSAs whose rows have been scrambled. In
contrast to prior work using the MSA Transformer without
fine-tuning to resolve interaction specificity (Lupo et al.,
2024b), fine-tuning in this way allows pairing to be per-
formed efficiently in a single forward pass. We additionally
exploit the MSA Transformer’s ability for in-context learn-
ing, by allowing the model to condition its predictions for
the scrambled rows on a set of correctly paired interacting
sequences. We demonstrate the effectiveness of this strategy
in producing accurately paired MSAs across a previously
studied set of bacterial proteins for which ground-truth in-
teraction partners are known. Furthermore, we show that
paired MSAs produced by our model more strongly encode
interface contacts than those paired with widely used se-
quence identity heuristics across a diverse set of prokaryotic
complexes.

2. MSA Pairing Transformer
2.1. Contrastive learning on interacting domains

To generate a set of ground-truth paired MSAs for train-
ing an interaction partner predictor, we collect protein
monomers containing one or more pairs of interacting do-
mains according to the CATH database (Sillitoe et al., 2021).
For each protein, we construct domain-level MSAs, MA and
MB , corresponding to interacting domains A and B in the
original protein, then simulate a pairing task by permuting
the rows of MB , so that the domain-A homologue in a given
row in MA no longer necessarily corresponds to (i.e. inter-
acts with) the domain-B homologue in the same row in the
permuted M̃B . We train a single model, across many such
pairs of scrambled domain-level MSAs, to correctly re-pair
the interacting domain sequences.

To solve this simulated pairing task, we introduce the MSA
Pairing Transformer (MPT), a variant of the MSA Trans-
former (Rao et al., 2021) fine-tuned with contrastive learn-
ing. We apply the InfoNCE loss (Radford et al., 2021; Oord
et al., 2019) to sequence-level representations hA and hB

produced by the model for each sequence xA ∈ MA and
each sequence xB ∈ M̃B (respectively). This loss encour-
ages hA and hB to be close if the two domain sequences
belong to the same protein chain, and are therefore interac-
tion partners, and pushes them apart otherwise:

LB|A(MA, M̃B) = −
∑
ij

zij log
exp(g(h(i)

A , h
(j)
B ))∑

k exp(g(h(i)
A , h

(k)
B ))

,

(1)
where i and j are row indices in the two MSAs, zij is equal
to one if x(i)

A and x
(j)
B interact and zero otherwise, and g(·, ·)

is the cosine similarity.

To allow the MSA Pairing Transformer to condition on

known sets of pairs, where available, we jointly embed the
two MSAs MA and M̃B by concatenating the sequences
in each row, and feeding the concatenated MSA through
the model. During training, we randomly sample a number
of correctly paired rows to pass to the model alongside the
unpaired rows that result from concatenating MA and the
scrambled MB .

2.2. Architecture modifications

The MSA Transformer applies a variant of axial attention
over MSAs, in which the row attention matrices are shared
across all rows (i.e. sequences) (Rao et al., 2021). To accom-
modate the use of concatenated MSAs, we modify this row
attention operation to prevent attention between unpaired
concatenated sequences in the same row, by ensuring the
corresponding attention weights are masked to zero. Row
attention between paired concatenated sequences and at-
tention within sequences is still shared. Paired rows are
additionally indicated to the model via the addition of a
learned ‘paired row’ input embedding. Finally, to allow
the extraction of sequence-level representations for each se-
quence in the two concatenated MSAs, we add start tokens
to the start of all sequences in M̃B and all sequences in
MA before concatenation. The final layer representations of
these start tokens are used as domain-level representations
hA and hB in the loss.

2.3. Dataset and training details

We constructed a dataset of monomers containing at least
two interacting domains from the CATH database (Sillitoe
et al., 2021), based on the topology-based splits of CATH
4.3 proteins created by Hsu et al. (2022). In total, we used
17,263 chains for training and 183 chains for validation,
ensuring there was no overlap in topology code between
domains in training and validation chains. For each of these
monomers we downloaded a precomputed full chain MSA
from OpenProteinSet (Ahdritz et al., 2023), from which
domain-level MSAs were extracted by using CATH domain
annotations to identify residue slices corresponding to indi-
vidual domains. We further excluded from the training set
chains whose MSAs had significant homology (hhsearch
e-value < 0.01) with the MSAs for either interaction partner
in the 6 bacterial interactions studied in Section 4.1.

3. Pairing interaction partners with the MSA
Pairing Transformer

We apply the MSA Pairing Transformer to the MSA pairing
problem. In this setting, given chain-level MSAs MA and
MB containing homologues of two interacting chains A
and B, the goal is to return a list of pairs of proteins from
the two MSAs that interact with each other. The task is
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simplified by the fact that species annotations are typically
available for all the sequences in each MSA, and it can
be assumed that sequences only interact if they belong to
the same species. The remaining problem is that there can
be multiple homologues of each chain in a single species,
leading to ambiguity in the within-species pairings.

To apply the MPT to this task, we need a way to convert the
chain-level embeddings returned by the model into pairing
predictions. We assume that each sequence can interact with
at most one other sequence within the same species and use
this assumption to formulate an optimal matching problem,
following previous work (Bitbol, 2018). For each pair of
sequences x

(i)
A and x

(j)
B in a species S, we introduce an

interaction score I(S)
ij computed from the corresponding em-

beddings, representing the log of the product of probabilities
that the sequences interact:

I
(S)
ij = log(p(y(i)B = j|x(i)

A )p(y
(j)
A = i|x(j)

B )) , (2)

where y
(i)
B denotes the index of the interaction partner of

x
(i)
A among the set of sequences xB , and

p(y
(i)
B = j|x(i)

A ) =
exp(g(h(i)

A , h
(j)
B ))∑

{k:x(k)
B ∈S} exp(g(h(i)

A , h
(k)
B ))

. (3)

We then use the Hungarian algorithm to find the pairing that
maximises the sum of the interaction scores across the set of
paired sequences within each species. Interaction scores are
computed for multiple species at a time, by passing unpaired
MSAs comprising all sequences from the corresponding
species through the model.

3.1. Iterative self-improvement via in-context learning

Previous work on pairing has made extensive use of iterative
algorithms, in which the highest confidence predicted pairs
in a given pairing round are treated as ground-truth pairs
and used to update the pairing model for the next round
(Bitbol et al., 2016; Gueudré et al., 2016). Inspired by the
success of these approaches, we propose an iterative pairing
algorithm (IPA) for the MSA Pairing Transformer which
exploits its capacity for in-context learning.

To accommodate MSAs where the maximum number of
pairable sequences N exceeds the maximum context size
M = 512 encountered by the model during training, we
partition unpaired sequences into N

M partitions, in such a
way that all unpaired sequences within a given species occur
in the same partition. For each partition, we maintain a set
of input pairs, initialised with a single pair of seed sequences
known to interact, and iterate:

1. Score candidate pairs within each species by I(S), and
predict within-species pairs given these scores.

2. Rank predicted pairs by decreasing value of
m(S) exp(I(S)), where the factor m(S) re-scales
species-levels scores to make them more comparable
across species.

3. Append the top K predicted pairs to the current set of
input pairs, and return to step 1.

Iteration is terminated once all sequences in the partition
are paired. The pairs predicted in each partition are con-
catenated to form the final set of predicted pairs. All
results presented below are obtained with K = 8 and

m(S) =

√
n
(S)
A n

(S)
B , where n

(S)
A is the number of paralogs

in MSA A for species S. We explore the effect of normalisa-
tion in Appendix D.

4. Results
4.1. Predicting interaction specificity for bacterial

interactions with known partners

To investigate whether our model could successfully transfer
an understanding of interaction specificity from interacting
domains within protein chains to interacting chains within
complexes, we studied a set of bacterial interactions used in
prior works on interaction partner prediction (Bitbol, 2018),
for which ground-truth pairs are known due to the corre-
sponding genes being co-located within operons. We first
evaluate the accuracy of predictions in a ‘one-shot’ set-
ting, in which the model is allowed to use a single known
pair as input to guide its predictions for the remaining se-
quences. The accuracy of the model’s predicted pairings far
surpassed that of a null baseline which predicted random
pairings within each species, as well as the performance of
a sequence-identity based ‘best hit’ heuristic similar to that
employed in state-of-the-art structure prediction pipelines
(Evans et al., 2022) (Figure 3). We additionally report re-
sults for different numbers of ground truth input pairs in
Figure 5, demonstrating the ability of the model to condition
on known pairs to improve its predictions.

We next explored whether the proposed iterative pairing
strategy could achieve pairing accuracy competitive with
previously proposed iterative pairing algorithms based on
co-evolutionary signal. For each interaction, we evaluated
performance given varying numbers N of total pairable se-
quences. For each N ∈ {64, 128, 256, 512, 1024}, we ran-
domly subsampled species until the total number of pairable
sequences was approximately equal to N , repeating the
process 5 times. We compare the pairing accuracy of the
iterative MPT algorithm with MI-IPA (Bitbol, 2018), a lead-
ing iterative pairing method, as well as the non-iterative
‘one-shot’ MPT. Iterating leads to a substantial increase in
performance, indicating that the model is able to harness
high-confidence predictions as in-context exemplars that can
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Figure 1. Pairing recall averaged across 6 bacterial interactions
as a function of total number of pairable sequences. Since all
sequences are paired, recall and precision values are the same.

guide the pairing of more challenging sequences (Figure 1).
The performance of the iterative MPT is almost independent
of the total number of ground-truth pairs in the input MSAs
to be paired by the model, in stark constrast to MI-IPA,
which is only able to bootstrap its way to an accurate statis-
tical model of the paired alignment when sufficiently large
sets of pairable sequences are available, due to its inability
to perform any kind of transfer learning across interactions.

4.2. Contact prediction on paired MSAs

As a further test of the success of pairing with the MSA
Pairing Transformer, we studied the extent to which paired
MSAs produced for prokaryotic complexes with known
structures aided the prediction of interface contacts with co-
evolutionary methods. We investigated a set of complexes
studied in previous work (Green et al., 2021; Bryant et al.,
2022), selecting for further study cases for which pure co-
evolutionary analysis was able to correctly identify at least
one correct interface contact within the top 10 predicted con-
tacts (Green et al., 2021), despite the presence of paralogs
making pairing non-trivial. For each complex, we generate
chain-level MSAs with hhblits, then pair the MSAs using a
modified version of the iterative MSA Pairing Transformer
algorithm, as well as the best hit heuristic. For fair com-
parison we return only a single pair per species with both
methods (Appendix C). Given paired MSAs, we run the
co-evolution based contact prediction algorithm GaussDCA
(Baldassi et al., 2014). Similar to Bryant et al. (2022), we
evaluate the precision of the top interface contacts predicted
by GaussDCA (Figure 2). In many cases, the paired MSAs
returned by MPT lead to significant improvements in con-
tact prediction performance, suggesting that they contain
more correctly paired sequences from which accurate co-
evolutionary inferences of interface structure can be made.
We also evaluated performance for a set of eukaryotic com-
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Figure 2. Precision of the top 0.2N interface contacts predicted by
running GaussDCA on paired MSAs across a set of prokaryotic
complexes with experimentally determined structures. N is the
total number of interface contacts.

plexes, for which we did not find evidence of improved con-
tact prediction accuracy over the baseline method, although
both methods perform substantially worse in the eukaryotic
case, possibly due to overall weaker co-evolutionary signal
or higher numbers of paralogs (Figure 4).

5. Discussion
Co-evolutionary signal is an important factor in the suc-
cess of state-of-the-art methods in structure prediction and
protein language modelling (Jumper et al., 2021; Lin et al.,
2023; Abramson et al., 2024). The absence of large-scale
datasets of known pairs of interacting sequences may there-
fore make it challenging to fully realise the potential of
similar approaches for the study of protein-protein interac-
tions. In this work, we investigate a strategy for exploiting
known domain-domain interactions to allow the prediction
of interaction partners within interacting protein families by
fine-tuning the MSA Transformer. Interpretation of the ex-
tent to which our results indicate that the model has success-
fully learned to recognise generalisable sequence patterns
encoding interaction specificity is made challenging by the
fact that in many cases, the pretrained MSA Transformer
may have seen examples of ‘fused’ proteins containing both
partners in a given interaction in a single chain. Even in
such cases, successfully transferring these patterns to un-
seen interaction partners is far from a trivial task, and an
ability to do this accurately may be useful in structure pre-
diction pipelines relying on paired MSAs. We have so far
largely focussed on studying prokaryotic interactions, for
which the possibility of producing ground-truth pairings
based on genomic distance makes it easier to assess perfor-
mance. In future work we will seek to better understand
reasons for differences in performance of pairing algorithms
across prokaryotic and eukaryotic interactions, and tailor
our method to better handle the latter.
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Figure 3. Precision (left) and recall (right) of prediction of interaction partners on a set of 6 bacterial interactions with known ground truth
from Bitbol (2018). Precision and recall numbers are identical for methods which produce a complete pairing (MPT and Random).
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Figure 4. Precision of the top 0.2N interface contacts predicted by running GaussDCA on paired MSAs across a set of eukaryotic
complexes with experimentally determined structures. N is the total number of interface contacts.

A. Model
Our model is based on the MSA Transformer, a masked language model trained to reconstruct masked tokens within
(single-chain) MSAs. To adapt the MSA Transformer for the problem of interaction partner prediction, we propose a number
of modifications which allow the model to more naturally handle multi-chain MSAs, and to be fine-tuned as an interaction
partner predictor. In particular, we use attention masking and row embeddings to allow the model to distinguish between
paired and unpaired rows, thereby endowing the model with the ability to condition its pairing predictions on known or
previously predicted sets of pairs. These modifications are described in detail in the following sections.

A.1. MSA Transformer

The MSA Transformer is a protein language model which operates directly on multiple sequence alignments rather than
individual sequences. An input multiple sequence alignment is represented as a one-hot tensor M ∈ RN×L×K , where N is
the number of rows in the MSA, L the number of columns, and K the size of the amino acid alphabet. The model stacks
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Figure 5. Few-shot pairing using the MSA Pairing Transformer. Where available, a set of ground-truth exemplars can be passed as
in-context exemplars to guide the pairing of remaining sequences. To demonstrate the effectiveness of few-shot pairing, we report the
precision of predicted pairs as a function of the number n of (randomly sampled) correctly paired sequences passed as input to the model.
A complete pairing of the remaining sequences is predicted by using the Hungarian algorithm to assign pairs given interaction scores
returned by the model. Evaluation performed on the 6 bacterial interactions from Bitbol (2018).

multiple layers, each performing axial attention over rows and columns, to produce an updated set of hidden representations
of each amino acid in the MSA H ∈ RN×L×D. Importantly, the row attention within each layer is shared across all rows,
motivated by the the fact that each sequence in an MSA satisfies a closely related set of constraints reflecting a common
underlying structural graph. The pre-softmax shared row attention weights within each attention head are thus calculated by
aggregating interaction scores between each pair of columns over all rows:

aij =

∑N
r=1(Qhri)

T (Khrj)√
Nd

=
zij√
Nd

(4)

Here r indexes a row, and i and j represent the columns between whose embeddings attention is to be computed, and d is the
head dimension. The denominator multiplies the standard scaled dot product attention normalization factor by an additional
factor of

√
N to account for differences across MSAs in the number of rows N over which interaction scores are summed.

A.1.1. CHAIN-BASED ATTENTION MASKING

In our multi-chain setting, the one-hot input MSA M is formed by concatenating the rows of multiple sub-MSAs MA,MB , ...
corresponding to the chains A,B, ... of a protein complex. In the remainder we will focus on the case of a pair of MSAs
representing a dimeric complex for simplicity. To preserve the semantics of row attention, we choose to prevent row attention
across chain boundaries for rows containing unpaired (non-interacting) sequences.

To achieve this, we first partition the N rows of an input MSA into a set M (p) of Np = |M (p)| paired rows and a set M (u)

of Nu = |M (u)| unpaired rows. Thus each row in M (p) is a concatenated pair of sequences xA, xB , where xA and xB are
assumed paired. Rows in M (u) are still formed from concatenated sequences xA and xB , but crucially these sequences
are no longer assumed to be (correctly) paired. In typical settings we will often start with one paired row, corresponding
to a pair of ‘seed’ sequences known or hypothesised to interact in a particular species. Other sources of paired rows are
discussed below.

Given an MSA whose rows are partitioned in this way, we then use attention masking to control the row attention operation
in each attention head so that paired rows are allowed to perform both intra- and inter-chain attention, while unpaired rows
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can perform only intra-chain attention.

Thus, for unpaired rows:

a
(u)
ij =

{
aij , if i and j are in the same chain
−∞ otherwise

(5)

where aij is the standard MSA Transformer pre-softmax shared row attention weight between columns i and j computed
over the whole MSA (Equation 4). For paired rows,

a
(p)
ij =

 aij , if i and j are in the same chain∑
r∈X(p) (Qhri)

T (Khrj)√
Npd

otherwise
(6)

A.1.2. CHAIN BREAK AND ROW ENCODING

To make the additional structure introduced into the MSAs above explicitly available to the model we modify the input
encoding employed by the MSA Transformer in two ways. First, we add a special chain-start token at the start of each chain,
rather than just at the start of each row as in the original MSA Transformer. This allows the model to reason about positions
relative to chain breaks. Second, we add embeddings to paired rows to help the model distinguish them from unpaired rows.
Whereas in the original MSA Transformer each row’s index within the set of all rows in the MSA is embedded, we now
embed the index within the set of paired rows for paired rows only.

A.1.3. LOSS DETAILS

The output of the MSA Pairing Transformer is a set of embeddings H ∈ RN,LA+LB ,D. We supervise these embeddings
in two ways. First, we employ the masked language modelling objective used by the original MSA Transformer: within
each MSA a random set of amino acids are masked, and the model is tasked with predicting them. Second, we introduce
an explicit contrastive pairing los. The final loss is a weighted combination of a masked language modelling loss and a
symmetrised contrastive loss:

L(MA, M̃B) = 0.7LMLM (MA, M̃B) + 0.15(LB|A(MA, M̃B) + LA|B(MA, M̃B)) (7)

B. Best hit baseline
In our implementation, the ‘best hit’ heuristic sorts all sequences in each species in the MSA for each chain by their sequence
identity to the seed sequence, then pairs the ‘best hit’ within a species in MA to the ‘best hit’ within the same species in MB .
Variants of this procedure are used in state-of-the-art complex prediction pipelines (Abramson et al., 2024; Evans et al.,
2022; Mirdita et al., 2022).

C. MSA pairing for contact prediction
Given the large size of the unpaired MSAs used to evaluate complex contact prediction, we apply a more efficient version
of the iterative pairing algorithm to pair this set of MSAs. Instead of running iteration over each of N

M partitions, we run
iteration within a single species-based partition, then use the predicted pairs from this partition as input pairs to guide the
pairing of the remaining unpaired sequences. Given that co-evolution based contact prediction can be affected by the size of
the input MSA, we ensure that the size of the paired MSAs returned by the best hit baseline and the MPT are the same by
returning only the pair with the highest interaction score within each species.

D. Analysis of pairing confidence
The iterative pairing scheme proposed above relies on associating a confidence score to predicted pairs. To demonstrate
the effectiveness of the proposed confidence score, we sort all predicted pairs by confidence and calculate the precision
of predicted pairings within the top K ranked pairs for all values of K (Figure D). High confidence pairings are heavily
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enriched for true pairs, while normalising by number of paralogs (as described in Section 3.1) helps improve the ranking of
pairs across species.
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Figure 6. Precision of top K predicted pairs after sorting by interaction score, for all values of K. Results reported across the 6 bacterial
interactions from Bitbol (2018).
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