
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BLOCK COORDINATE DESCENT FOR NEURAL NET-
WORKS PROVABLY FINDS GLOBAL MINIMA

Anonymous authors

Paper under double-blind review

ABSTRACT

In this paper, we consider a block coordinate descent (BCD) algorithm for train-
ing deep neural networks and provide a new global convergence guarantee un-
der strictly monotonically increasing activation functions. While existing works
demonstrate convergence to stationary points for BCD in neural networks, our
contribution is the first to prove convergence to global minima, ensuring arbitrarily
small loss. We show that the loss with respect to the output layer decreases expo-
nentially while the loss with respect to the hidden layers remains well-controlled.
Additionally, we derive generalization bounds using the Rademacher complex-
ity framework, demonstrating that BCD not only achieves strong optimization
guarantees but also provides favorable generalization performance. Moreover, we
propose a modified BCD algorithm with skip connections and non-negative pro-
jection, extending our convergence guarantees to ReLU activation, which are not
strictly monotonic. Empirical experiments confirm our theoretical findings, show-
ing that the BCD algorithm achieves a small loss for strictly monotonic and ReLU
activations.

1 INTRODUCTION

Deep learning has led to significant advances across various domains, such as computer vision,
natural language processing, and reinforcement learning, achieving unprecedented performance in
numerous tasks. However, understanding the training dynamics and optimization behavior of deep
neural networks remains an ongoing challenge due to the highly non-convex nature of their loss
functions (Li et al., 2018). Proving convergence to global minima of gradient descent via backprop-
agation, particularly for deep networks with multiple layers, remains an open problem in the field.
While the neural tangent kernel (NTK) regime (Jacot et al., 2018) addresses this problem by reduc-
ing the non-convex loss to the convex one in RKHS, it fails to fully explain the empirical success of
deep learning because it often outperforms kernel methods, even if we employ NTK as the kernel.

Contrary to the backpropagation-based training, the block coordinate descent (BCD), which origi-
nated from the mathematical optimization field (see Tseng (2001), for example), is an optimization
framework where we divide a variable into several blocks and optimize them alternately. BCD of-
fers computational advantages by updating subsets of parameters iteratively, allowing for tractable
optimization of complex systems. The objective function appearing in the neural network training is
also highly non-convex, and to overcome this issue, BCD-based neural network optimization meth-
ods have been proposed (Carreira-Perpinan & Wang, 2014; Askari et al., 2018; Lau et al., 2018;
Zhang & Brand, 2017; Patel et al., 2020; Zeng et al., 2019; Nakamura et al., 2021; Qiao et al., 2021;
Zhang et al., 2022; Xu et al., 2024). When we apply BCD to neural network training, the most
natural way is that we regard the weights of each layer as a block, and existing works adopt this
way. By the formulation of BCD, the loss function of the neural network can be divided into several
components, one of which coincides with a loss with respect to a layer. Compared to the original
loss, these divided ones have more accessible landscapes to optimize.

Based on such an advantage of BCD for neural networks, its theoretical perspective, mainly about
its convergence guarantee, has been explored in recent years. However, existing theoretical works
on BCD for neural networks (Zhang & Brand, 2017; Zeng et al., 2019; Zhang et al., 2022; Xu
et al., 2024) have only focused on the convergence to stationary points, points with zero gradients.
Convergence to stationary points does not imply convergence to global minima, especially when

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

the objective function is highly non-convex, such as the loss that appears in the training of neural
networks (Li et al., 2018; Safran & Shamir, 2018).

How neural network training finds global minima has been one of the most significant topics in deep
learning theory literature. However, existing guarantees on BCD remain in convergence to the sta-
tionary points. To bridge this gap, we aim to provide the convergence guarantee to the global minima
of BCD for neural networks. To this end, we consider multi-layer neural networks and employ a
BCD-type algorithm, updating the parameters using vanilla gradient descent. Our contribution can
be summarized as follows:

• We prove the global convergence of a block coordinate descent (BCD) algorithm, where
we train deep neural network models with strictly monotonically increasing activation. We
ensure that the parameters attain arbitrarily small loss by proving that (i) the loss with
respect to the output layer will decrease exponentially to zero and (ii) the loss with respect
to the hidden layers remains small in every iteration. Through the analysis, we carefully
evaluate the difference propagated from the output layer to the input layer. To the best of
our knowledge, this is the first result that guarantees convergence to the global minima of
neural networks with any number of layers beyond the NTK regime.

• We derive a generalization error bound of deep neural networks trained by BCD under
settings with i.i.d. data. In the convergence analysis, we show that the norm of weight
matrices of each layer can be bounded by a constant. Combining this and the Rademacher
complexity argument from Bartlett et al. (2017) gives a upper bound on generalization
error. Compared to the existing works on gradient descent, BCD enables us to provide the
generalization gap bound for multi-layer neural networks with an optimization guarantee.

• A notable challenge in applying our approach to commonly used activation functions like
ReLU is their non-monotonic nature. Since ReLU is not strictly monotonically increasing,
our initial convergence result does not directly apply. To address this issue, we propose a
modified BCD algorithm incorporating skip connections (He et al., 2016) and non-negative
projection updates. This modification ensures that convergence guarantees extend to ReLU
networks, thereby broadening the applicability of our method to real-world architectures
that predominantly use ReLU activations.

• We validate our theoretical findings through numerical experiments, showing that BCD for
both strictly monotonic and ReLU activations achieves arbitrarily small loss values. These
empirical results confirm the practical viability of our proposed methods, demonstrating
their effectiveness in optimizing deep neural networks beyond theoretical guarantees.

1.1 OTHER RELATED WORKS

Convergence guarantee of GD/SGD for neural networks In recent years, theoretical works on
the convergence guarantee of (stochastic) gradient descent for neural networks have been inten-
sively investigated. In the neural tangent kernel (NTK) regime (Jacot et al., 2018; Allen-Zhu et al.,
2019b; Arora et al., 2019; Du et al., 2019; Zou et al., 2020), to name a few, the training dynamics of
deep neural networks can be approximated by the gradient descent in RKHS. While we can ensure
its global convergence by exploiting the convexity, the feature learning ability of neural networks,
which is considered one of the critical ingredients of the practical success of deep learning, is not
reflected since the training dynamics are reduced to the kernel method. For example, the parameters
of networks trained by The NTK regime hardly move from their initial points as the number of pa-
rameters increases. On the other hand, our analysis does not fall into such a situation. Moreover, our
analysis does not require any overparameterization on hidden layers to ensure global convergence.

The mean-field (MF) regime (Nitanda & Suzuki, 2017; Chizat & Bach, 2018; Mei et al., 2019; Tzen
& Raginsky, 2020; Pham & Nguyen, 2021; Nguyen & Pham, 2023) is another promising approach
of investigating neural network training. It regards the training of parameters as that of (probability)
measure over the parameters, by which we can convert the non-convex optimization with respect
to the parameters to the convex one where the distribution of parameters itself is a variable to be
optimized. While several studies ensure its global convergence by employing this convexity without
loss of feature learning ability, most of their models only focus on two or three-layer networks, our
analysis admits the any number of hidden layers.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

More recently, Banerjee et al. (2023) proposed restricted strong convexity (RSC) to analyze neural
network training, which derives the global convergence guarantee by assuming that the gradient and
output of neural networks correlate with each other during the training. However, Banerjee et al.
(2023) still requires an analysis of this correlation assumption and does not fully explain the nature
of global convergence in the training.

Generalization error bound of multi-layer neural networks Investigation of generalization er-
ror analysis for multi-layer neural networks has been explored in recent years (Neyshabur et al.,
2015; Wei & Ma, 2019; Bartlett et al., 2017; Neyshabur et al., 2017; Golowich et al., 2018; Bartlett
et al., 2019; Arora et al., 2018; Suzuki et al., 2020). These works give a generalization error by
evaluating the complexity of neural networks from various perspective, such as the VC-dimension,
the norm of parameters of networks, and so on. On the other hand, most of these results do not
consider the optimization, but we also demonstrate the global convergence guarantee. Moreover,
several works on generalization error analysis go beyond two-layer networks. However, most focus
only on three-layer networks (Allen-Zhu & Li, 2019; Allen-Zhu et al., 2019a).

2 PRELIMINARIES

2.1 NOTATIONS

For an integer n, we define [n] := {1, . . . , n}. For x 2 Rd, kxk denotes its Euclidean norm. We
denote the d-dimensional identity matrix by Id. For A 2 Rn⇥m, kAkF :=

qP
i,j A

2
ij denotes its

Frobenius norm, and kAkop := max
kxk1

kAxk denotes its operator norm. For two symmetric matrices

A and B, we denote A � B (A � B) if and only if the matrix B � A is positive (non-negative)
definite. For x = (x1, . . . , xd)> 2 Rd, diag(x) 2 Rd⇥d denotes a diagonal matrix whose j-th
diagonal component is xj .

2.2 PROBLEM SETTINGS

Here, we introduce problem settings we consider in this paper. We observe n training examples
D = {(xi, yi)}

n
i=1, where xi 2 Rdin is a feature vector and yi 2 Rdout is a label. Let X =

(x1 . . . xn)> 2 Rn⇥din . Throughout the analysis, we consider high-dimensional settings n  din.
Moreover, we make an assumption about the matrix X as follows:
Assumption 1 (Data matrix is full row rank). rank(X) = n.

This assumption is required to show the global convergence. As we will see in the proof of the main
result, we cannot ensure the existence of global minima without Assumption 1.

A multi-layer neural network is defined by

fNN (x) := WL�(WL�1�(. . .W2�(W1x)) . . .),

where � is element-wise activation and W1 2 Rr⇥din , Wj 2 Rr⇥r for j 2 {2, . . . , L � 1}, and
WL 2 Rdout⇥r. We consider that all the hidden layers have the same width r.

Then, we make the following assumption on the activation function.
Assumption 2 (Activation). � : R ! R is monotonically increasing and satisfies �(0) = 0.
Especially, there exists a constant 0 < ↵ < 2 such that inf

x2R
�
0(x) � ↵ holds1. Moreover, � is

`-Lipschitz, i.e., for any u1, u2 2 R, |�(u1)� �(u2)|  `|u1 � u2| holds.

A typical example of activation function satisfying Assumption 2 is LeakyReLU activation x 7!

max{x, ax} (a < 1): which satisfies Assumption 2 with ↵ = a and ` = 1. We note that other
activation, such as ReLU x 7! max{x, 0}, does not satisfy Assumption 2. We also provide the
global convergence algorithm when we use the ReLU activation in Section 5.

Under this formulation of neural networks, we formalize the regression problem

min
W

Pn
i=1(fNN (xi)� yi)

2
, (1)

1If � is not differentiable, we assume that �(x1)� �(x2) � ↵(x1 � x2) for any x1, x2 2 R.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where W = (W1, . . . ,WL). One of the most straightforward approaches to solve(1) is (stochas-
tic) gradient method, in which the parameters are updated using the loss gradient. Conversely, we
employ a layer-wise optimization method called block coordinate descent, as we introduce in the
following section.

3 BLOCK COORDINATE DESCENT

In this section, after we introduce the basic notion of the block coordinate descent (BCD), we provide
the algorithm we consider in this paper. BCD, which originated from the mathematical optimization
field (see Tseng (2001), for example), is an optimization framework where we divide a variable into
several blocks and optimize them alternately.

In BCD, instead of directly utilizing the loss (1), we introduce auxiliary parameters V1,i . . . VL,i.
Vj,i aims to approximate the output of j-th layer for the i-th sample xi. By construction, we have
Vj,i 2 Rr for j = 1, . . . , L� 1. By using these auxiliary parameters, we reformulate (1) as follows:

min
W,V

F (W,V) :=
Pn

i=1

h
kWLVL�1,i � yik

2 + �
PL�1

j=1 k�(WjVj�1,i)� Vj,ik
2
i
, (2)

where � > 0 is a hyperparameter and we denote V0,i := xi, W = (W1, . . . ,WL), and V =
(V1,1, . . . , VL�1,n). In the reformulated problem (2), the second term represents the loss at the
j-th layer, indicating how Vj,i approximates the output of the layer given the input xi. The first
term represents the loss at the output layer, showing how close the outputs of the network with the
approximated (hidden layer) output Vj,i are to the training labels y1, . . . , yn. By the construction, if
(W⇤

,V⇤) satisfies F = 0 in (2), W⇤ is the optimal solution of (1).

One of the benefits of the reformulation (2) is that we can treat the objective function with respect
to the weights of each layer (W1, . . . ,WL) separately. Such a simplification results not only in a
faster implementation (e.g., parallelization) but also a favorable loss landscape, including theoretical
tractability. While various methods for optimizing (2) have been explored, we consider a relatively
simple one, updating weights Wj and auxiliary variables Vj,i sequentially from the output layer.
Specifically, we update the variables in order WL ! VL�1,i ! WL�1 ! . . . V1,i ! W1 by using
the objective function (2). We summarize the algorithm considered in this paper in Algorithm 1.
From now on, we explain its detailed procedure.

Algorithm 1: Block coordinate descent

input : (W1)ab
i.i.d.
⇠ N (0, 1/din), (Wj)ab

i.i.d.
⇠ N (0, 1/r) for all j = 2, . . . , L ,V0,i = xi.

1 K: max outer iteration, KV , KW : max inner iteration, ⌘V , ⌘(1)W , ⌘(2)W : step size;
2 Wj output of Algorithm 2 with inputs s1, s2, and Wj for j = 2, . . . , L;
3 Vj,i �(WjVj�1,i) for all j = 1, . . . , L� 1 and i = 1, . . . , n.;
4 for k 1 to K do

5 WL WL � ⌘
(1)
W rWL

Pn
i=1kWLVL�1,i � yik

2;
6 for i 1 to n do

7 VL�1,i VL�1,i � ⌘VrVL�1,ikWLVL�1,i � yik
2;

8 for j L� 1 to 2 do

9 Wj Wj � �⌘
(1)
W

Pn
i=1rWjk�(WjVj,i)� Vj+1,ik

2;
10 for i 1 to n do

11 for kinner 1 to KV do

12 Vj�1,i Vj�1,i � �⌘VrVj�1,ik�(WjVj�1,i)� Vj,ik
2 ;

13 for kinner 1 to KW do

14 W1 W1 � �⌘
(2)
W

Pn
i=1rW1k�(W1V0,i)� V1,ik

2 ;

Initialization We consider Gaussian initialization for Wj ; that is, each element of W1 is sampled
from N (0, d�1

in), and each element of Wj (j = 2, . . . , L) is sampled from N
�
0, r�1

�
. After that,

we apply singular value bounding (SVB) (Jia et al., 2017) to Wj (j = 2, . . . , L). In SVB, we

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 2: Singular Value Bounding
input : Wj : matrix, (s1, s2): lower and upper bounds on the singular values

1 (U,⌃, V) : Singular value decomposition of Wj = U⌃V ;
2 for s diagonal components of ⌃ do

3 s max{s1,min{s2, s}};
output: U⌃V

conduct the singular value decomposition of Wj as Wj = U⌃V >, where U and V are orthogonal
matrices, and ⌃ is a non-negative diagonal matrix. Since Wj is full-rank with probability 1 over
the initialization, we also have ⌃ 2 Rr⇥r with probability 1. After SVB, we adjust each diagonal
component of ⌃ to be within the interval [s1, s2]. Then, we utilize Wj = U⌃0

V
> as the initial

parameter of Wj , where ⌃0 be the matrix obtained by the adjustment. We summarize this procedure
in Algorithm 2.

In Jia et al. (2017), SVB is conducted at every epoch to enhance the stability of the training and pre-
diction performance of stochastic gradient descent. The upper and lower bounding of the singular
value prevents the amplifying or vanishing of a gradient in the backpropagation. Applying SVB also
has several advantages in BCD, not only for practical reasons but also from a theoretical perspec-
tive. First, the regularity of Wj results in a preferable condition number of the objective function
k�(WjVj�1,i) � Vj,ik

2 in F , the loss at the j-th layer. Moreover, the upper bound on the singular
value prevents Vj from becoming extremely large at the initialization.
Remark 3.1. While Jia et al. (2017) applies SVB at every epoch, we use it only at the initialization.
By setting the step size not too large, we can ensure that all the singular values of Wj remain in
a bounded interval, as we show in the proof, with which we enjoy the same benefit throughout the
training.

After initializing Wj , we initialize Vj in an exact manner, i.e., Vj,i = �(WjVj�1,i) for all j =
1, . . . , L � 1 and i = 1, . . . , n. While we can employ any initialization scheme for Vj , the exact
manner results in k�(WjVj�1,i)� Vj,ik

2 = 0 at the initialization, leading to faster convergence.

Update of V For optimizing W and V , we utilize vanilla gradient descent. We employ a common
step size ⌘V for each Vj,i and perform multiple updates using the loss k�(WjVj�1,i)� Vj,ik

2 (line 6,
12), given by

VL�1,i VL�1,i � ⌘VrVL�1,ikWLVL�1,i � yik
2 (3)

and
Vj�1,i Vj�1,i � �⌘VrVj�1,ik�(WjVj�1,i)� Vj,ik

2
.

The first update (3) can be interpreted as solving the linear equation WLVL�1,i = yi, which has a
solution if the matrix WL is full row rank. We assume that the activation satisfies Assumption 2. In
this case, since the mapping � : R ! R is a bijection, there exists an inverse map �

�1, and training
Vj can be viewed as equivalent to solving the linear equation Wj+1Vj,i = �

�1(Vj+1,i). Therefore,
it is expected that Vj,i converges to the solution via gradient descent with a suitable choice of ⌘V as
long as the matrix Wj 2 Rr⇥r is regular.

Update of W For the update of Wj (j = 1, . . . , L), we use the loss function at j-th layer, that is,Pn
i=1kWLVL�1,i � yik

2 for WL and
Pn

i=1k�(WjVj�1,i)� Vj,ik
2 for Wj (j = 1, . . . , L� 1).

For W2, . . . ,WL, we use a common step size ⌘
(1)
W and conduct the gradient descent update:

WL WL � ⌘
(1)
W rWL

Pn
i=1kWLVL�1,i � yik

2
,

and
Wj Wj � �⌘

(1)
W

Pn
i=1rWjk�(WjVj,i)� Vj+1,ik

2

for each iteration (line 5, 9). For W1, we employ a different step size ⌘
(2)
W and apply

W1 W1 � �⌘
(2)
W

Pn
i=1rW1k�(W1V0,i)� V1,ik

2
,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

multiple (KW) times for each iteration (line 14). These update manners are required to attain
the global convergence. With respect to the loss of the second to L-th layer, we update both
Wj and Vj�1,i. In particular, by applying multiple updates to Vj�1,i, we can ensure linear con-
vergence of the loss

Pn
i=1k�(WjVj�1,i)� Vj,ik

2 for each iteration while the singular values of
matrix Wj are upper and lower bounded. On the other hand, the existence of W

⇤ satisfyingPn
i=1k�(W

⇤
Vj�1,i)� Vj,ik

2 = 0 is not ensured, particularly in the case where n > r. Hence, it is
not necessary to update Wj for multiple times. Furthermore, as the number of iterations increases, it
becomes less likely to maintain the regularity of the matrix Wj . This is why we only apply gradient
descent once to Wj (j = 2, . . . , L). On the other hand, in the first layer, the input V0,i = xi is fixed,
and we need to demonstrate linear convergence of the loss

Pn
i=1k�(W1V0,i)� V1,ik

2 through the
update of W1. In the overparameterized setting din � n, if the data matrix satisfies rank(U) = n,
we can ensure the existence of a global minima W ⇤ satisfying

Pn
i=1k�(W

⇤
V0,i)� V1,ik

2 = 0, and
hence linear convergence under a suitable choice of ⌘(2)W .
Remark 3.2. Concerning the recent progress of the block coordinate descent algorithms applied
to deep learning, as represented by (Jia et al., 2017; Zhang & Brand, 2017; Lau et al., 2018;
Patel et al., 2020), among others, we employ a relatively simple approach using vanilla gradient
descent without any regularization, focusing on devising the loss function and the order in which the
parameters are updated. While our convergence proof is based on this specific setup, our analysis
can be extended to encompass more complex scenarios. Our algorithm is adaptable to different
settings, including potential applications to other loss functions and problems, such as classification
problems, and the inclusion of regularization terms. We discuss possible extensions in Appendix A.

4 GLOBAL CONVERGENCE OF BLOCK COORDINATE DESCENT

In this section, we show that BCD for neural networks with an activation satisfying Assumption 2
finds global minima, in other words, the objective value F converges to an arbitrarily small value.
In this section, we consider the case with single output (dout = 1). We discuss its extension to the
multi-output case in Appendix B. Moreover, for the single output case, we provide a bound on the
generalization error under the i.i.d. setting by utilizing the Rademacher complexity argument.

4.1 GLOBAL CONVERGENCE WITH MONOTONICALLY INCREASING ACTIVATION

Here, we consider the case of single outputs dout = 1. In this case, the objective function is
described by

min
W,V

F (W,V) :=
Pn

i=1

h
(WLVL�1,i � yi)

2 + �
PL�1

j=1 k�(WjVj�1,i)� Vj,ik
2
i
. (4)

We now state the first main result, the global convergence of BCD with activation satisfying As-
sumption 2.
Theorem 4.1 (BCD finds global minima of neural networks). We assume that activation � satisfies
Assumption 2 and there exists a constant CV > 0 such that �max

�
VjV

>
j

�
 CV for j = 1, . . . , L�1

during training. We denote s := �min(X) > 0. Let Ri = |WLVL�1,i � yi| at the initial value of
the objective function with respect to the output layer, and define R :=

Pn
i=1 R

2
i , Rmax := max

i
Ri,

and CK :=
�
2
↵

�L ⇣
4Rmax⌘V + 2

2�↵

p
✏

⌘
.

Then, under (s1, s2) = (34 ,
5
4), ⌘V 

1
8↵`2 , ⌘(1)W 

⌘�1
V

8
p
rCV K

�
↵
2

�L, ⌘(2)W 
1

2`2·max
i

kxik , and

K =
l

2
⌘V

log
�
3R
✏

�m
,KV =

l
1

�↵`⌘V
log

⇣
3�(L�2)rnC2

K
✏

⌘m
,KW =

⇠
1

4�s↵2⌘(2)
W

log
⇣

3rnC2
K

✏

⌘⇡
,

it holds F (W,V)  ✏, where W = (W1, . . . ,WL) and V = (V1,1, . . . , VL�1,n) are the parame-
ters obtained by the output of Algorithm 1.

The proof can be see in Appendix C. Theorem 4.1 exhibits that BCD provably finds a global min-
imum under a suitable choice of hyperparameters. While the definitions of K, KV and KW are

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

somewhat complex, the total number of gradient computation to achieve ✏ error is bounded by
Õ(K(LKV +KW)) = Õ

�
log2

�
1
✏

��
.

The proof consists of two parts: (i) the loss with respect to the output layer is monotonically de-
creasing in the outer loop, and (ii) the loss with respect to the hidden layer remains sufficiently small
at the end of each iteration. We provide more detail to Appendix C due to page limitations.

We should note that the claims presented in Theorem 4.1 lie outside the framework of the so-called
NTK regime (Jacot et al., 2018), among others. Specifically, while the NTK regime assumes that
the parameters of neural networks remain almost unchanged during training, our analysis allows for
scenarios where the parameters undergo changes of ⌦(1).
Remark 4.2. The assumption in Theorem 4.1, �max

�
VjV

>
j

�
 CV , ensures that the auxiliary

parameters Vj,i are bounded during training. While we assume the existence of CV in Theorem 4.1,
we can provide a quantitative bound on the CV as CV = O((�⌘V `nKKV)

2) (note that this bound
may not be tight). We provide a detailed derivation of this bound in Appendix D.

4.2 GENERALIZATION ERROR BOUND

The objective of this subsection is to show that BCD Algorithm 1 does not only have a strong
convergence guarantee, but also attains favorable generalization performance. To this end, we need
to make an assumption about the data distribution.
Assumption 3. The training sample {(xi, yi)}ni=1 is independently sampled from a distribution
(x, y) ⇠ P . Under the distribution P , it holds that kxk  BX and |y|  BY almost surely.

The first statement defines the data distribution, which is essential and standard requirement for
describing the generalization error. The one requires that inputs and labels should be bounded with
probability one, which is also standard.

We then provide the following result on the generalization error bound.

Theorem 4.3 (Generalization error bound). Let f̂NN be the output of Algorithm 1 under the same
condition as Theorem 4.1. Then, if Assumption 3 holds,

E
(x,y)⇠P

⇣
f̂NN (x)� y

⌘2
�


1
n

Pn
i=1

⇣
f̂NN (xi)� yi

⌘2

+ Õ

✓
kXk
n (BY + 2L`L�1

BX)d
1
2
inL

3
2 (2r)

L
2 log r + (BY + 2L`L�1

BX)2
q

log(1/�)
n

◆
.

with probability at least 1� � over the training sample {(xi, yi)}ni=1.

The proof can be seen in Appendix E. Notably, Theorem 4.3 provides a bound on the generalization
error for multi-layer neural networks with optimization guarantees, beyond the NTK regime. To
obtain Theorem 4.3, we utilize a result from Bartlett et al. (2017), which evaluates the generalization
gap using the spectral norms of the weight matrix of each layer. As mentioned in the previous
section, we can show that the spectral norm (equal to the maximum singular value) of Wj is upper
bounded. Combining this with the result from Bartlett et al. (2017), we can derive the generalization
gap of BCD (see Appendix E for details).

5 RELU ACTIVATION

In this section, we propose a BCD algorithm specifically for the ReLU activation �(x) :=
max{x, 0}, which has been excluded in Theorem 4.1 due to Assumption 2. The difficulty in han-
dling the ReLU activation is that it only takes non-negative values. For attaining zero loss for a
hidden layer k�(WjVj�1)� Vjk

2, we need to prevent Vj from taking negative value due to this
non-negativity. Therefore, we must exclude such situations by modifying Algorithm 1.

5.1 BCD FOR NEURAL NETWORKS WITH SKIP CONNECTION

As a solution to overcome the difficulty of ReLU activation, we consider ResNet (He et al., 2016)
type networks, where the neural networks includes skip connection. With skip connection, the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

objective function treated in BCD is given by

min
W,V

F (W,V) :=
Pn

i=1

h
(WLVL�1,i � yi)

2 + �
PL�1

j=1 k�(WjVj�1,i) + Vj�1,i � Vj,ik
2
i
,

where the loss of the hidden layer, �
PL�1

j=1 k�(WjVj�1,i) + Vj�1,i � Vj,ik
2 differs from (4). We

describe the modified algorithm in Algorithm 3. We use the notation V
+
j,i = max{Vj,i, 0}.

Algorithm 3: Block coordinate descent: ReLU

Input: (W1)ab
i.i.d.
⇠ N (0, 1/din), (Wj)ab

i.i.d.
⇠ N (0, 1/r) for all j = 2, . . . , L, V0,i = xi

1 K: max iteration, Kin: max inner iteration, ⌘V , ⌘(1)W , ⌘(2)W : step size;
2 Wj SVB(Wj) with inputs s1, s2, and Wj for j = 2, . . . , L� 1;
3 Vj,i = �(WjVj�1,i) + Vj�1,i for all j = 1, . . . , L� 1 and i = 1, . . . , n;
4 for k 1 to K do

5 for i 1 to n do

6 VL�1,i
�
VL�1,i � ⌘VrVL�1,ikWLVL�1,i � yik

2
�+;

7 WL�1 WL�1 � �⌘
(1)
W

Pn
i=1rWL�1k�(WL�1VL�2,i) + VL�2,i � VL�1,ik

2;
8 for j L� 1 to 2 do

9 Wj Wj � �⌘
(1)
W

Pn
i=1rWjk�(WjVj�1,i) + Vj�1,i � Vj,ik

2;
10 for i 1 to n do

11 for kinner 1 to KV do

12 Vj�1,i Vj�1,i � �⌘VrVj�1,ik�(WjVj�1,i) + Vj�1,i � Vj,ik
2;

13 Vj�1,i (Vj�1,i)+ ;
14 for kinner 1 to KW do

15 W1 W1 � �⌘
(2)
W

Pn
i=1rW1kW1V0,i � V1,ik

2;

The initialization and update of W1, . . . ,WL�1 are common in Algorithm 1 and Algorithm 3. How-
ever, there are several differences between the two algorithms in their update procedures. First,
in Algorithm 3, we apply the non-negative projection V 7! V

+ for each Vj,i after the inner loop
finishes. This is required for the non-negativity of ReLU: to ensure the solvability of the equation
k�(WjVj�1)� Vjk

2 = 0. Next, we do not update WL in Algorithm 3. This is required to ensure
the existence of VL�1,i satisfying WLVL�1,i = yi under the condition VL�1,i � 0. To verify this,
we first provide the following lemma.
Lemma 5.1. Suppose that the vector WL has both positive and negative entries. Then, for any yi,
there exists a non-negative vector VL�1,i satisfying WLVL�1,i = yi.

This lemma implies that, to ensure the global convergence for arbitrary training label yi, it is suf-
ficient to check that WL has both positive and negative components. Clearly, such a situation will
occur frequently as the with of the hidden layer r increases. Indeed, by the symmetry of the Gaus-
sian distribution, this probability is calculated as 1�2 ·

�
1
2

�r
= 1�2�r+1. Additionally, we provide

a high probability bound on the norm of the positive and negative components of WL, which deter-
mines the convergence speed of the gradient descent.
Lemma 5.2. Let W>

L ⇠ N (0, r�1
Ir), w+ := max{WL,0>

}, and w� := min{WL,0>
}. Then,

for any � > 0, with probability at least 1� 2�, min
n
kw+k

2
, kw�k

2
o
�

1
2 �

q
8 log(2/�)

r holds.

Since it is not trivial that the similar inequality holds for each iteration when considering the update
of WL, we assume that WL is fixed during training for simplicity.

Similarly to the problem (4) considered in the previous section, we consider 1-dimensional outputs
here. We then formally state the convergence result of Algorithm 3 applied to networks with ReLU
activation and skip connections.
Theorem 5.3 (Global convergence of BCD with ReLU activation). We assume that there exists
a constant CV > 0 such that �max

�
VjV

>
j

�
 CV for j = 1, . . . , L � 1 during training. We

denote s := �min(X). Let Ri = |WLVL�1,i � yi| at the initial value of the objective function with

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

respect to the output layer, and define R :=
Pn

i=1 R
2
i , Rmax := max

i
Ri, and CK := (4Rmax⌘V +

5
p
✏)
�
3
2

�L. Then, under (s1, s2) = (0, 1
4), ⌘V 

1
2min{kw+k2,kw�k2}

, ⌘(1)W 
⌘�1
V

24
p
rCV K

�
2
3

�L,

⌘
(2)
W 

1
2·max

i
kxik , and

K =

⇠
1

4⌘V min{kw+k2,kw�k2}
log

�
3R
✏

�⇡
,KV =

l
3

4�⌘V
log

⇣
49(L�2)rnC2

K
3✏

⌘m
,KW =

⇠
1

4�s⌘(2)
W

log
⇣

C2
K
✏

⌘⇡
,

it holds F (W,V)  ✏, where W = (W1, . . . ,WL) and V = (V1,1, . . . , VL�1,n) are the parame-
ters obtained by the output of Algorithm 3.

The proof can be seen in Appendix F. Thus, we obtain a global convergence guarantee of BCD for
networks with ReLU activation.

6 NUMERICAL EXPERIMENT

In this section, we conduct numerical experiments to verify our theoretical findings. Particularly,
we numerically confirm that BCD converges to a global minimum for monotonically increasing
activation (Algorithm 1) and ReLU (Algorithm 3) using an artificial dataset.

Figure 1: Loss of Algorithm 1 with LeakyReLU Figure 2: Loss of Algorithm 3 with ReLU

6.1 MONOTONICALLY INCREASING ACTIVATION

First, we conduct a numerical experiment for a monotonicall y increasing activation. We apply
Algorithm 1 to a neural network with four hidden layers, each with r = 30 nodes, and LeakyReLU
activation �(x) = max{x, 0.5x}, which satisfies Assumption 2 with ↵ = 0.5 and ` = 1. We prepare
n = 500 training samples from a teacher network with a single hidden layer and the same activation.
We set din = 600, sample xi from the normal distribution, and define yi as the output of the teacher
network. For hyperparameters, we employ KV = KV = 100 and ⌘V = ⌘

(1)
W = ⌘

(2)
W = 1.

Figure 1 shows the result. The black line means the training error, i.e., 1
n

Pn
i=1 (fNN (xi)� yi)2.

Other lines represent the loss of j-th layer, i.e,
Pn

i=1k�(WjVj�1,i)� Vj,ik
2 for j 2 {1, 2, 3, 4}. We

can observe that the training error monotonically decreases while the losses for each layer remain
small, which reflects our theoretical findings.

6.2 RELU ACTIVATION

Next, we experimentally examine BCD for ReLU activation using Algorithm 3. We apply Algo-
rithm 3 to a neural network with for hidden layers, r = 30, ReLU activation and skip connec-
tion. Similarly to the monotinically increasing activation, we prepare a dataset with n = 500 and
din = 600 using a teacher network. For hyperparameters, we employ KV = KV = 100 and
⌘V = ⌘

(1)
W = ⌘

(2)
W = 1.

Figure 2 shows the result. Like Figure 1, the black line means the training error. Other lines represent
the loss of j-th layer, i.e,

Pn
i=1k�(WjVj�1,i) + Vj�1,i � Vj,ik

2 for j 2 {1, 2, 3, 4}. We can observe
the same convergence procedure here: the training error monotonically decreases and the losses for
each layer remain small.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Additionally, we plot the training loss without using the skip connection as the dashed black line.
While the training loss for BCD without skip connections does not decrease due to the difficulty of
maintaining non-negativity, the skip connection drastically improves BCD training.

7 CONCLUSION

In this paper, we proposed a block coordinate descent (BCD) algorithm for training deep neural
networks and ensured the convergence to global minima for networks with strictly monotonically
increasing activation functions. We also derived a generalization bound using Rademacher complex-
ity, ensuring both strong optimization and generalization performance. For ReLU activations, we
introduced a modified BCD algorithm with skip connections and non-negative projection updates to
ensure convergence. Empirical validation demonstrated the practical effectiveness of our algorithms
for both monotonic and ReLU activations. Overall, this work advances the understanding of BCD
in neural networks, offering provable convergence and generalization guarantees.

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. What can resnet learn efficiently, going beyond kernels? Ad-
vances in Neural Information Processing Systems, 32, 2019.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparame-
terized neural networks, going beyond two layers. Advances in neural information processing
systems, 32, 2019a.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International conference on machine learning, pp. 242–252. PMLR, 2019b.

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds for
deep nets via a compression approach. In International conference on machine learning, pp.
254–263. PMLR, 2018.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of op-
timization and generalization for overparameterized two-layer neural networks. In International
Conference on Machine Learning, pp. 322–332. PMLR, 2019.

Armin Askari, Geoffrey Negiar, Rajiv Sambharya, and Laurent El Ghaoui. Lifted neural networks.
arXiv preprint arXiv:1805.01532, May 2018.

Arindam Banerjee, Pedro Cisneros-Velarde, Libin Zhu, and Misha Belkin. Restricted strong con-
vexity of deep learning models with smooth activations. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=

PINRbk7h01.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
neural networks. Advances in neural information processing systems, 30, 2017.

Peter L Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight vc-dimension
and pseudodimension bounds for piecewise linear neural networks. Journal of Machine Learning
Research, 20(63):1–17, 2019.

Miguel Carreira-Perpinan and Weiran Wang. Distributed optimization of deeply nested systems. In
Artificial Intelligence and Statistics, pp. 10–19. PMLR, 2014.

Lenaic Chizat and Francis Bach. On the global convergence of gradient descent for over-
parameterized models using optimal transport. Advances in neural information processing sys-
tems, 31, 2018.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International conference on machine learning, pp. 1675–
1685. PMLR, 2019.

10

https://openreview.net/forum?id=PINRbk7h01
https://openreview.net/forum?id=PINRbk7h01

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Spencer Frei, Yuan Cao, and Quanquan Gu. Agnostic learning of a single neuron with gradient
descent. Advances in Neural Information Processing Systems, 33:5417–5428, 2020.

Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sample complexity of
neural networks. In Conference On Learning Theory, pp. 297–299. PMLR, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.

Kui Jia, Dacheng Tao, Shenghua Gao, and Xiangmin Xu. Improving training of deep neural net-
works via singular value bounding. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 4344–4352, 2017.

Tim Tsz-Kit Lau, Jinshan Zeng, Baoyuan Wu, and Yuan Yao. A proximal block coordinate descent
algorithm for deep neural network training. arXiv preprint arXiv:1803.09082, 2018.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-
scape of neural nets. Advances in neural information processing systems, 31, 2018.

Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Mean-field theory of two-layers neural
networks: dimension-free bounds and kernel limit. In Conference on learning theory, pp. 2388–
2464. PMLR, 2019.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning.
MIT press, 2018.

Kensuke Nakamura, Stefano Soatto, and Byung-Woo Hong. Block-cyclic stochastic coordinate
descent for deep neural networks. Neural Networks, 139:348–357, 2021.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in neural
networks. In Conference on learning theory, pp. 1376–1401. PMLR, 2015.

Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A pac-bayesian approach to
spectrally-normalized margin bounds for neural networks. arXiv preprint arXiv:1707.09564,
2017.

Phan-Minh Nguyen and Huy Tuan Pham. A rigorous framework for the mean field limit of multi-
layer neural networks. Mathematical Statistics and Learning, 6(3):201–357, 2023.

Atsushi Nitanda and Taiji Suzuki. Stochastic particle gradient descent for infinite ensembles. arXiv
preprint arXiv:1712.05438, 2017.

Ravi G Patel, Nathaniel A Trask, Mamikon A Gulian, and Eric C Cyr. A block coordinate descent
optimizer for classification problems exploiting convexity. arXiv preprint arXiv:2006.10123,
2020.

Huy Tuan Pham and Phan-Minh Nguyen. Global convergence of three-layer neural networks in the
mean field regime. arXiv preprint arXiv:2105.05228, 2021.

Linbo Qiao, Tao Sun, Hengyue Pan, and Dongsheng Li. Inertial proximal deep learning alternating
minimization for efficient neutral network training. In ICASSP 2021-2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3895–3899. IEEE, 2021.

Itay Safran and Ohad Shamir. Spurious local minima are common in two-layer relu neural networks.
In International conference on machine learning, pp. 4433–4441. PMLR, 2018.

Taiji Suzuki, Hiroshi Abe, and Tomoaki Nishimura. Compression based bound for non-compressed
network: unified generalization error analysis of large compressible deep neural network. In
International Conference on Learning Representations, 2020. URL https://openreview.

net/forum?id=ByeGzlrKwH.

11

https://openreview.net/forum?id=ByeGzlrKwH
https://openreview.net/forum?id=ByeGzlrKwH

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Paul Tseng. Convergence of a block coordinate descent method for nondifferentiable minimization.
Journal of optimization theory and applications, 109:475–494, 2001.

Belinda Tzen and Maxim Raginsky. A mean-field theory of lazy training in two-layer neu-
ral nets: entropic regularization and controlled mckean-vlasov dynamics. arXiv preprint
arXiv:2002.01987, 2020.

Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cam-
bridge university press, 2019.

Colin Wei and Tengyu Ma. Data-dependent sample complexity of deep neural networks via lipschitz
augmentation. Advances in Neural Information Processing Systems, 32, 2019.

Jintao Xu, Chenglong Bao, and Wenxun Xing. Convergence rates of training deep neural networks
via alternating minimization methods. Optimization Letters, 18(4):909–923, 2024.

Tian Ye and Simon S Du. Global convergence of gradient descent for asymmetric low-rank matrix
factorization. Advances in Neural Information Processing Systems, 34:1429–1439, 2021.

Gilad Yehudai and Shamir Ohad. Learning a single neuron with gradient methods. In Jacob Aber-
nethy and Shivani Agarwal (eds.), Proceedings of Thirty Third Conference on Learning Theory,
volume 125 of Proceedings of Machine Learning Research, pp. 3756–3786. PMLR, 2020.

Jinshan Zeng, Tim Tsz-Kit Lau, Shaobo Lin, and Yuan Yao. Global convergence of block coordi-
nate descent in deep learning. In International conference on machine learning, pp. 7313–7323.
PMLR, 2019.

Hui Zhang, Shenglong Zhou, Geoffrey Ye Li, and Naihua Xiu. 0/1 deep neural networks via block
coordinate descent. arXiv preprint arXiv:2206.09379, 2022.

Ziming Zhang and Matthew Brand. Convergent block coordinate descent for training tikhonov
regularized deep neural networks. Advances in Neural Information Processing Systems, 30, 2017.

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Gradient descent optimizes over-
parameterized deep relu networks. Machine learning, 109:467–492, 2020.

12

