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ABSTRACT

In this paper, we consider a block coordinate descent (BCD) algorithm for train-
ing deep neural networks and provide a new global convergence guarantee un-
der strictly monotonically increasing activation functions. While existing works
demonstrate convergence to stationary points for BCD in neural networks, our
contribution is the first to prove convergence to global minima, ensuring arbitrarily
small loss. We show that the loss with respect to the output layer decreases expo-
nentially while the loss with respect to the hidden layers remains well-controlled.
Additionally, we derive generalization bounds using the Rademacher complex-
ity framework, demonstrating that BCD not only achieves strong optimization
guarantees but also provides favorable generalization performance. Moreover, we
propose a modified BCD algorithm with skip connections and non-negative pro-
jection, extending our convergence guarantees to ReLU activation, which are not
strictly monotonic. Empirical experiments confirm our theoretical findings, show-
ing that the BCD algorithm achieves a small loss for strictly monotonic and ReLU
activations.

1 INTRODUCTION

Deep learning has led to significant advances across various domains, such as computer vision,
natural language processing, and reinforcement learning, achieving unprecedented performance in
numerous tasks. However, understanding the training dynamics and optimization behavior of deep
neural networks remains an ongoing challenge due to the highly non-convex nature of their loss
functions (Li et al., 2018). Proving convergence to global minima of gradient descent via backprop-
agation, particularly for deep networks with multiple layers, remains an open problem in the field.
While the neural tangent kernel (NTK) regime (Jacot et al., 2018) addresses this problem by reduc-
ing the non-convex loss to the convex one in RKHS, it fails to fully explain the empirical success of
deep learning because it often outperforms kernel methods, even if we employ NTK as the kernel.

Contrary to the backpropagation-based training, the block coordinate descent (BCD), which origi-
nated from the mathematical optimization field (see Tseng (2001), for example), is an optimization
framework where we divide a variable into several blocks and optimize them alternately. BCD of-
fers computational advantages by updating subsets of parameters iteratively, allowing for tractable
optimization of complex systems. The objective function appearing in the neural network training is
also highly non-convex, and to overcome this issue, BCD-based neural network optimization meth-
ods have been proposed (Carreira-Perpinan & Wang, 2014; Askari et al., 2018; Lau et al., 2018;
Zhang & Brand, 2017; Patel et al., 2020; Zeng et al., 2019; Nakamura et al., 2021; Qiao et al., 2021;
Zhang et al., 2022; Xu et al., 2024). When we apply BCD to neural network training, the most
natural way is that we regard the weights of each layer as a block, and existing works adopt this
way. By the formulation of BCD, the loss function of the neural network can be divided into several
components, one of which coincides with a loss with respect to a layer. Compared to the original
loss, these divided ones have more accessible landscapes to optimize.

Based on such an advantage of BCD for neural networks, its theoretical perspective, mainly about
its convergence guarantee, has been explored in recent years. However, existing theoretical works
on BCD for neural networks (Zhang & Brand, 2017; Zeng et al., 2019; Zhang et al., 2022; Xu
et al., 2024) have only focused on the convergence to stationary points, points with zero gradients.
Convergence to stationary points does not imply convergence to global minima, especially when
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the objective function is highly non-convex, such as the loss that appears in the training of neural
networks (Li et al., 2018; Safran & Shamir, 2018).

How neural network training finds global minima has been one of the most significant topics in deep
learning theory literature. However, existing guarantees on BCD remain in convergence to the sta-
tionary points. To bridge this gap, we aim to provide the convergence guarantee to the global minima
of BCD for neural networks. To this end, we consider multi-layer neural networks and employ a
BCD-type algorithm, updating the parameters using vanilla gradient descent. Our contribution can
be summarized as follows:

• We prove the global convergence of a block coordinate descent (BCD) algorithm, where
we train deep neural network models with strictly monotonically increasing activation. We
ensure that the parameters attain arbitrarily small loss by proving that (i) the loss with
respect to the output layer will decrease exponentially to zero and (ii) the loss with respect
to the hidden layers remains small in every iteration. Through the analysis, we carefully
evaluate the difference propagated from the output layer to the input layer. To the best of
our knowledge, this is the first result that guarantees convergence to the global minima of
neural networks with any number of layers beyond the NTK regime.

• We derive a generalization error bound of deep neural networks trained by BCD under
settings with i.i.d. data. In the convergence analysis, we show that the norm of weight
matrices of each layer can be bounded by a constant. Combining this and the Rademacher
complexity argument from Bartlett et al. (2017) gives a upper bound on generalization
error. Compared to the existing works on gradient descent, BCD enables us to provide the
generalization gap bound for multi-layer neural networks with an optimization guarantee.

• A notable challenge in applying our approach to commonly used activation functions like
ReLU is their non-monotonic nature. Since ReLU is not strictly monotonically increasing,
our initial convergence result does not directly apply. To address this issue, we propose a
modified BCD algorithm incorporating skip connections (He et al., 2016) and non-negative
projection updates. This modification ensures that convergence guarantees extend to ReLU
networks, thereby broadening the applicability of our method to real-world architectures
that predominantly use ReLU activations.

• We validate our theoretical findings through numerical experiments, showing that BCD for
both strictly monotonic and ReLU activations achieves arbitrarily small loss values. These
empirical results confirm the practical viability of our proposed methods, demonstrating
their effectiveness in optimizing deep neural networks beyond theoretical guarantees.

1.1 OTHER RELATED WORKS

Convergence guarantee of GD/SGD for neural networks In recent years, theoretical works on
the convergence guarantee of (stochastic) gradient descent for neural networks have been inten-
sively investigated. In the neural tangent kernel (NTK) regime (Jacot et al., 2018; Allen-Zhu et al.,
2019b; Arora et al., 2019; Du et al., 2019; Zou et al., 2020), to name a few, the training dynamics of
deep neural networks can be approximated by the gradient descent in RKHS. While we can ensure
its global convergence by exploiting the convexity, the feature learning ability of neural networks,
which is considered one of the critical ingredients of the practical success of deep learning, is not
reflected since the training dynamics are reduced to the kernel method. For example, the parameters
of networks trained by The NTK regime hardly move from their initial points as the number of pa-
rameters increases. On the other hand, our analysis does not fall into such a situation. Moreover, our
analysis does not require any overparameterization on hidden layers to ensure global convergence.

The mean-field (MF) regime (Nitanda & Suzuki, 2017; Chizat & Bach, 2018; Mei et al., 2019; Tzen
& Raginsky, 2020; Pham & Nguyen, 2021; Nguyen & Pham, 2023) is another promising approach
of investigating neural network training. It regards the training of parameters as that of (probability)
measure over the parameters, by which we can convert the non-convex optimization with respect
to the parameters to the convex one where the distribution of parameters itself is a variable to be
optimized. While several studies ensure its global convergence by employing this convexity without
loss of feature learning ability, most of their models only focus on two or three-layer networks, our
analysis admits the any number of hidden layers.
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More recently, Banerjee et al. (2023) proposed restricted strong convexity (RSC) to analyze neural
network training, which derives the global convergence guarantee by assuming that the gradient and
output of neural networks correlate with each other during the training. However, Banerjee et al.
(2023) still requires an analysis of this correlation assumption and does not fully explain the nature
of global convergence in the training.

Generalization error bound of multi-layer neural networks Investigation of generalization er-
ror analysis for multi-layer neural networks has been explored in recent years (Neyshabur et al.,
2015; Wei & Ma, 2019; Bartlett et al., 2017; Neyshabur et al., 2017; Golowich et al., 2018; Bartlett
et al., 2019; Arora et al., 2018; Suzuki et al., 2020). These works give a generalization error by
evaluating the complexity of neural networks from various perspective, such as the VC-dimension,
the norm of parameters of networks, and so on. On the other hand, most of these results do not
consider the optimization, but we also demonstrate the global convergence guarantee. Moreover,
several works on generalization error analysis go beyond two-layer networks. However, most focus
only on three-layer networks (Allen-Zhu & Li, 2019; Allen-Zhu et al., 2019a).

2 PRELIMINARIES

2.1 NOTATIONS

For an integer n, we define [n] := {1, . . . , n}. For x 2 Rd, kxk denotes its Euclidean norm. We
denote the d-dimensional identity matrix by Id. For A 2 Rn⇥m, kAkF :=

qP
i,j A

2
ij denotes its

Frobenius norm, and kAkop := max
kxk1

kAxk denotes its operator norm. For two symmetric matrices

A and B, we denote A � B (A � B) if and only if the matrix B � A is positive (non-negative)
definite. For x = (x1, . . . , xd)> 2 Rd, diag(x) 2 Rd⇥d denotes a diagonal matrix whose j-th
diagonal component is xj .

2.2 PROBLEM SETTINGS

Here, we introduce problem settings we consider in this paper. We observe n training examples
D = {(xi, yi)}

n
i=1, where xi 2 Rdin is a feature vector and yi 2 Rdout is a label. Let X =

(x1 . . . xn)> 2 Rn⇥din . Throughout the analysis, we consider high-dimensional settings n  din.
Moreover, we make an assumption about the matrix X as follows:
Assumption 1 (Data matrix is full row rank). rank(X) = n.

This assumption is required to show the global convergence. As we will see in the proof of the main
result, we cannot ensure the existence of global minima without Assumption 1.

A multi-layer neural network is defined by

fNN (x) := WL�(WL�1�(. . .W2�(W1x)) . . .),

where � is element-wise activation and W1 2 Rr⇥din , Wj 2 Rr⇥r for j 2 {2, . . . , L � 1}, and
WL 2 Rdout⇥r. We consider that all the hidden layers have the same width r.

Then, we make the following assumption on the activation function.
Assumption 2 (Activation). � : R ! R is monotonically increasing and satisfies �(0) = 0.
Especially, there exists a constant 0 < ↵ < 2 such that inf

x2R
�
0(x) � ↵ holds1. Moreover, � is

`-Lipschitz, i.e., for any u1, u2 2 R, |�(u1)� �(u2)|  `|u1 � u2| holds.

A typical example of activation function satisfying Assumption 2 is LeakyReLU activation x 7!

max{x, ax} (a < 1): which satisfies Assumption 2 with ↵ = a and ` = 1. We note that other
activation, such as ReLU x 7! max{x, 0}, does not satisfy Assumption 2. We also provide the
global convergence algorithm when we use the ReLU activation in Section 5.

Under this formulation of neural networks, we formalize the regression problem

min
W

Pn
i=1(fNN (xi)� yi)

2
, (1)

1If � is not differentiable, we assume that �(x1)� �(x2) � ↵(x1 � x2) for any x1, x2 2 R.
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where W = (W1, . . . ,WL). One of the most straightforward approaches to solve(1) is (stochas-
tic) gradient method, in which the parameters are updated using the loss gradient. Conversely, we
employ a layer-wise optimization method called block coordinate descent, as we introduce in the
following section.

3 BLOCK COORDINATE DESCENT

In this section, after we introduce the basic notion of the block coordinate descent (BCD), we provide
the algorithm we consider in this paper. BCD, which originated from the mathematical optimization
field (see Tseng (2001), for example), is an optimization framework where we divide a variable into
several blocks and optimize them alternately.

In BCD, instead of directly utilizing the loss (1), we introduce auxiliary parameters V1,i . . . VL,i.
Vj,i aims to approximate the output of j-th layer for the i-th sample xi. By construction, we have
Vj,i 2 Rr for j = 1, . . . , L� 1. By using these auxiliary parameters, we reformulate (1) as follows:

min
W,V

F (W,V) :=
Pn

i=1

h
kWLVL�1,i � yik

2 + �
PL�1

j=1 k�(WjVj�1,i)� Vj,ik
2
i
, (2)

where � > 0 is a hyperparameter and we denote V0,i := xi, W = (W1, . . . ,WL), and V =
(V1,1, . . . , VL�1,n). In the reformulated problem (2), the second term represents the loss at the
j-th layer, indicating how Vj,i approximates the output of the layer given the input xi. The first
term represents the loss at the output layer, showing how close the outputs of the network with the
approximated (hidden layer) output Vj,i are to the training labels y1, . . . , yn. By the construction, if
(W⇤

,V⇤) satisfies F = 0 in (2), W⇤ is the optimal solution of (1).

One of the benefits of the reformulation (2) is that we can treat the objective function with respect
to the weights of each layer (W1, . . . ,WL) separately. Such a simplification results not only in a
faster implementation (e.g., parallelization) but also a favorable loss landscape, including theoretical
tractability. While various methods for optimizing (2) have been explored, we consider a relatively
simple one, updating weights Wj and auxiliary variables Vj,i sequentially from the output layer.
Specifically, we update the variables in order WL ! VL�1,i ! WL�1 ! . . . V1,i ! W1 by using
the objective function (2). We summarize the algorithm considered in this paper in Algorithm 1.
From now on, we explain its detailed procedure.

Algorithm 1: Block coordinate descent

input : (W1)ab
i.i.d.
⇠ N (0, 1/din), (Wj)ab

i.i.d.
⇠ N (0, 1/r) for all j = 2, . . . , L ,V0,i = xi.

1 K: max outer iteration, KV , KW : max inner iteration, ⌘V , ⌘(1)W , ⌘(2)W : step size;
2 Wj  output of Algorithm 2 with inputs s1, s2, and Wj for j = 2, . . . , L;
3 Vj,i  �(WjVj�1,i) for all j = 1, . . . , L� 1 and i = 1, . . . , n.;
4 for k  1 to K do

5 WL  WL � ⌘
(1)
W rWL

Pn
i=1kWLVL�1,i � yik

2;
6 for i 1 to n do

7 VL�1,i  VL�1,i � ⌘VrVL�1,ikWLVL�1,i � yik
2;

8 for j  L� 1 to 2 do

9 Wj  Wj � �⌘
(1)
W

Pn
i=1rWjk�(WjVj,i)� Vj+1,ik

2;
10 for i 1 to n do

11 for kinner  1 to KV do

12 Vj�1,i  Vj�1,i � �⌘VrVj�1,ik�(WjVj�1,i)� Vj,ik
2 ;

13 for kinner  1 to KW do

14 W1  W1 � �⌘
(2)
W

Pn
i=1rW1k�(W1V0,i)� V1,ik

2 ;

Initialization We consider Gaussian initialization for Wj ; that is, each element of W1 is sampled
from N (0, d�1

in ), and each element of Wj (j = 2, . . . , L) is sampled from N
�
0, r�1

�
. After that,

we apply singular value bounding (SVB) (Jia et al., 2017) to Wj (j = 2, . . . , L). In SVB, we
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Algorithm 2: Singular Value Bounding
input : Wj : matrix, (s1, s2): lower and upper bounds on the singular values

1 (U,⌃, V ) : Singular value decomposition of Wj = U⌃V ;
2 for s diagonal components of ⌃ do

3 s max{s1,min{s2, s}};
output: U⌃V

conduct the singular value decomposition of Wj as Wj = U⌃V >, where U and V are orthogonal
matrices, and ⌃ is a non-negative diagonal matrix. Since Wj is full-rank with probability 1 over
the initialization, we also have ⌃ 2 Rr⇥r with probability 1. After SVB, we adjust each diagonal
component of ⌃ to be within the interval [s1, s2]. Then, we utilize Wj = U⌃0

V
> as the initial

parameter of Wj , where ⌃0 be the matrix obtained by the adjustment. We summarize this procedure
in Algorithm 2.

In Jia et al. (2017), SVB is conducted at every epoch to enhance the stability of the training and pre-
diction performance of stochastic gradient descent. The upper and lower bounding of the singular
value prevents the amplifying or vanishing of a gradient in the backpropagation. Applying SVB also
has several advantages in BCD, not only for practical reasons but also from a theoretical perspec-
tive. First, the regularity of Wj results in a preferable condition number of the objective function
k�(WjVj�1,i) � Vj,ik

2 in F , the loss at the j-th layer. Moreover, the upper bound on the singular
value prevents Vj from becoming extremely large at the initialization.
Remark 3.1. While Jia et al. (2017) applies SVB at every epoch, we use it only at the initialization.
By setting the step size not too large, we can ensure that all the singular values of Wj remain in
a bounded interval, as we show in the proof, with which we enjoy the same benefit throughout the
training.

After initializing Wj , we initialize Vj in an exact manner, i.e., Vj,i = �(WjVj�1,i) for all j =
1, . . . , L � 1 and i = 1, . . . , n. While we can employ any initialization scheme for Vj , the exact
manner results in k�(WjVj�1,i)� Vj,ik

2 = 0 at the initialization, leading to faster convergence.

Update of V For optimizing W and V , we utilize vanilla gradient descent. We employ a common
step size ⌘V for each Vj,i and perform multiple updates using the loss k�(WjVj�1,i)� Vj,ik

2 (line 6,
12), given by

VL�1,i  VL�1,i � ⌘VrVL�1,ikWLVL�1,i � yik
2 (3)

and
Vj�1,i  Vj�1,i � �⌘VrVj�1,ik�(WjVj�1,i)� Vj,ik

2
.

The first update (3) can be interpreted as solving the linear equation WLVL�1,i = yi, which has a
solution if the matrix WL is full row rank. We assume that the activation satisfies Assumption 2. In
this case, since the mapping � : R ! R is a bijection, there exists an inverse map �

�1, and training
Vj can be viewed as equivalent to solving the linear equation Wj+1Vj,i = �

�1(Vj+1,i). Therefore,
it is expected that Vj,i converges to the solution via gradient descent with a suitable choice of ⌘V as
long as the matrix Wj 2 Rr⇥r is regular.

Update of W For the update of Wj (j = 1, . . . , L), we use the loss function at j-th layer, that is,Pn
i=1kWLVL�1,i � yik

2 for WL and
Pn

i=1k�(WjVj�1,i)� Vj,ik
2 for Wj (j = 1, . . . , L� 1).

For W2, . . . ,WL, we use a common step size ⌘
(1)
W and conduct the gradient descent update:

WL  WL � ⌘
(1)
W rWL

Pn
i=1kWLVL�1,i � yik

2
,

and
Wj  Wj � �⌘

(1)
W

Pn
i=1rWjk�(WjVj,i)� Vj+1,ik

2

for each iteration (line 5, 9). For W1, we employ a different step size ⌘
(2)
W and apply

W1  W1 � �⌘
(2)
W

Pn
i=1rW1k�(W1V0,i)� V1,ik

2
,
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multiple (KW ) times for each iteration (line 14). These update manners are required to attain
the global convergence. With respect to the loss of the second to L-th layer, we update both
Wj and Vj�1,i. In particular, by applying multiple updates to Vj�1,i, we can ensure linear con-
vergence of the loss

Pn
i=1k�(WjVj�1,i)� Vj,ik

2 for each iteration while the singular values of
matrix Wj are upper and lower bounded. On the other hand, the existence of W

⇤ satisfyingPn
i=1k�(W

⇤
Vj�1,i)� Vj,ik

2 = 0 is not ensured, particularly in the case where n > r. Hence, it is
not necessary to update Wj for multiple times. Furthermore, as the number of iterations increases, it
becomes less likely to maintain the regularity of the matrix Wj . This is why we only apply gradient
descent once to Wj (j = 2, . . . , L). On the other hand, in the first layer, the input V0,i = xi is fixed,
and we need to demonstrate linear convergence of the loss

Pn
i=1k�(W1V0,i)� V1,ik

2 through the
update of W1. In the overparameterized setting din � n, if the data matrix satisfies rank(U) = n,
we can ensure the existence of a global minima W ⇤ satisfying

Pn
i=1k�(W

⇤
V0,i)� V1,ik

2 = 0, and
hence linear convergence under a suitable choice of ⌘(2)W .
Remark 3.2. Concerning the recent progress of the block coordinate descent algorithms applied
to deep learning, as represented by (Jia et al., 2017; Zhang & Brand, 2017; Lau et al., 2018;
Patel et al., 2020), among others, we employ a relatively simple approach using vanilla gradient
descent without any regularization, focusing on devising the loss function and the order in which the
parameters are updated. While our convergence proof is based on this specific setup, our analysis
can be extended to encompass more complex scenarios. Our algorithm is adaptable to different
settings, including potential applications to other loss functions and problems, such as classification
problems, and the inclusion of regularization terms. We discuss possible extensions in Appendix A.

4 GLOBAL CONVERGENCE OF BLOCK COORDINATE DESCENT

In this section, we show that BCD for neural networks with an activation satisfying Assumption 2
finds global minima, in other words, the objective value F converges to an arbitrarily small value.
In this section, we consider the case with single output (dout = 1). We discuss its extension to the
multi-output case in Appendix B. Moreover, for the single output case, we provide a bound on the
generalization error under the i.i.d. setting by utilizing the Rademacher complexity argument.

4.1 GLOBAL CONVERGENCE WITH MONOTONICALLY INCREASING ACTIVATION

Here, we consider the case of single outputs dout = 1. In this case, the objective function is
described by

min
W,V

F (W,V) :=
Pn

i=1

h
(WLVL�1,i � yi)

2 + �
PL�1

j=1 k�(WjVj�1,i)� Vj,ik
2
i
. (4)

We now state the first main result, the global convergence of BCD with activation satisfying As-
sumption 2.
Theorem 4.1 (BCD finds global minima of neural networks). We assume that activation � satisfies
Assumption 2 and there exists a constant CV > 0 such that �max

�
VjV

>
j

�
 CV for j = 1, . . . , L�1

during training. We denote s := �min(X) > 0. Let Ri = |WLVL�1,i � yi| at the initial value of
the objective function with respect to the output layer, and define R :=

Pn
i=1 R

2
i , Rmax := max

i
Ri,

and CK :=
�
2
↵

�L ⇣
4Rmax⌘V + 2

2�↵

p
✏

⌘
.

Then, under (s1, s2) = ( 34 ,
5
4 ), ⌘V 

1
8↵`2 , ⌘(1)W 

⌘�1
V

8
p
rCV K

�
↵
2

�L, ⌘(2)W 
1

2`2·max
i

kxik , and

K =
l

2
⌘V

log
�
3R
✏

�m
,KV =

l
1

�↵`⌘V
log

⇣
3�(L�2)rnC2

K
✏

⌘m
,KW =

⇠
1

4�s↵2⌘(2)
W

log
⇣

3rnC2
K

✏

⌘⇡
,

it holds F (W,V)  ✏, where W = (W1, . . . ,WL) and V = (V1,1, . . . , VL�1,n) are the parame-
ters obtained by the output of Algorithm 1.

The proof can be see in Appendix C. Theorem 4.1 exhibits that BCD provably finds a global min-
imum under a suitable choice of hyperparameters. While the definitions of K, KV and KW are
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somewhat complex, the total number of gradient computation to achieve ✏ error is bounded by
Õ(K(LKV +KW )) = Õ

�
log2

�
1
✏

��
.

The proof consists of two parts: (i) the loss with respect to the output layer is monotonically de-
creasing in the outer loop, and (ii) the loss with respect to the hidden layer remains sufficiently small
at the end of each iteration. We provide more detail to Appendix C due to page limitations.

We should note that the claims presented in Theorem 4.1 lie outside the framework of the so-called
NTK regime (Jacot et al., 2018), among others. Specifically, while the NTK regime assumes that
the parameters of neural networks remain almost unchanged during training, our analysis allows for
scenarios where the parameters undergo changes of ⌦(1).
Remark 4.2. The assumption in Theorem 4.1, �max

�
VjV

>
j

�
 CV , ensures that the auxiliary

parameters Vj,i are bounded during training. While we assume the existence of CV in Theorem 4.1,
we can provide a quantitative bound on the CV as CV = O((�⌘V `nKKV )

2) (note that this bound
may not be tight). We provide a detailed derivation of this bound in Appendix D.

4.2 GENERALIZATION ERROR BOUND

The objective of this subsection is to show that BCD Algorithm 1 does not only have a strong
convergence guarantee, but also attains favorable generalization performance. To this end, we need
to make an assumption about the data distribution.
Assumption 3. The training sample {(xi, yi)}ni=1 is independently sampled from a distribution
(x, y) ⇠ P . Under the distribution P , it holds that kxk  BX and |y|  BY almost surely.

The first statement defines the data distribution, which is essential and standard requirement for
describing the generalization error. The one requires that inputs and labels should be bounded with
probability one, which is also standard.

We then provide the following result on the generalization error bound.

Theorem 4.3 (Generalization error bound). Let f̂NN be the output of Algorithm 1 under the same
condition as Theorem 4.1. Then, if Assumption 3 holds,

E
(x,y)⇠P

⇣
f̂NN (x)� y

⌘2
�


1
n

Pn
i=1

⇣
f̂NN (xi)� yi

⌘2

+ Õ

✓
kXk
n (BY + 2L`L�1

BX)d
1
2
inL

3
2 (2r)

L
2 log r + (BY + 2L`L�1

BX)2
q

log(1/�)
n

◆
.

with probability at least 1� � over the training sample {(xi, yi)}ni=1.

The proof can be seen in Appendix E. Notably, Theorem 4.3 provides a bound on the generalization
error for multi-layer neural networks with optimization guarantees, beyond the NTK regime. To
obtain Theorem 4.3, we utilize a result from Bartlett et al. (2017), which evaluates the generalization
gap using the spectral norms of the weight matrix of each layer. As mentioned in the previous
section, we can show that the spectral norm (equal to the maximum singular value) of Wj is upper
bounded. Combining this with the result from Bartlett et al. (2017), we can derive the generalization
gap of BCD (see Appendix E for details).

5 RELU ACTIVATION

In this section, we propose a BCD algorithm specifically for the ReLU activation �(x) :=
max{x, 0}, which has been excluded in Theorem 4.1 due to Assumption 2. The difficulty in han-
dling the ReLU activation is that it only takes non-negative values. For attaining zero loss for a
hidden layer k�(WjVj�1)� Vjk

2, we need to prevent Vj from taking negative value due to this
non-negativity. Therefore, we must exclude such situations by modifying Algorithm 1.

5.1 BCD FOR NEURAL NETWORKS WITH SKIP CONNECTION

As a solution to overcome the difficulty of ReLU activation, we consider ResNet (He et al., 2016)
type networks, where the neural networks includes skip connection. With skip connection, the

7
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objective function treated in BCD is given by

min
W,V

F (W,V) :=
Pn

i=1

h
(WLVL�1,i � yi)

2 + �
PL�1

j=1 k�(WjVj�1,i) + Vj�1,i � Vj,ik
2
i
,

where the loss of the hidden layer, �
PL�1

j=1 k�(WjVj�1,i) + Vj�1,i � Vj,ik
2 differs from (4). We

describe the modified algorithm in Algorithm 3. We use the notation V
+
j,i = max{Vj,i, 0}.

Algorithm 3: Block coordinate descent: ReLU

Input: (W1)ab
i.i.d.
⇠ N (0, 1/din), (Wj)ab

i.i.d.
⇠ N (0, 1/r) for all j = 2, . . . , L, V0,i = xi

1 K: max iteration, Kin: max inner iteration, ⌘V , ⌘(1)W , ⌘(2)W : step size;
2 Wj  SVB(Wj) with inputs s1, s2, and Wj for j = 2, . . . , L� 1;
3 Vj,i = �(WjVj�1,i) + Vj�1,i for all j = 1, . . . , L� 1 and i = 1, . . . , n;
4 for k  1 to K do

5 for i 1 to n do

6 VL�1,i  
�
VL�1,i � ⌘VrVL�1,ikWLVL�1,i � yik

2
�+;

7 WL�1  WL�1 � �⌘
(1)
W

Pn
i=1rWL�1k�(WL�1VL�2,i) + VL�2,i � VL�1,ik

2;
8 for j  L� 1 to 2 do

9 Wj  Wj � �⌘
(1)
W

Pn
i=1rWjk�(WjVj�1,i) + Vj�1,i � Vj,ik

2;
10 for i 1 to n do

11 for kinner  1 to KV do

12 Vj�1,i  Vj�1,i � �⌘VrVj�1,ik�(WjVj�1,i) + Vj�1,i � Vj,ik
2;

13 Vj�1,i  (Vj�1,i)+ ;
14 for kinner  1 to KW do

15 W1  W1 � �⌘
(2)
W

Pn
i=1rW1kW1V0,i � V1,ik

2;

The initialization and update of W1, . . . ,WL�1 are common in Algorithm 1 and Algorithm 3. How-
ever, there are several differences between the two algorithms in their update procedures. First,
in Algorithm 3, we apply the non-negative projection V 7! V

+ for each Vj,i after the inner loop
finishes. This is required for the non-negativity of ReLU: to ensure the solvability of the equation
k�(WjVj�1)� Vjk

2 = 0. Next, we do not update WL in Algorithm 3. This is required to ensure
the existence of VL�1,i satisfying WLVL�1,i = yi under the condition VL�1,i � 0. To verify this,
we first provide the following lemma.
Lemma 5.1. Suppose that the vector WL has both positive and negative entries. Then, for any yi,
there exists a non-negative vector VL�1,i satisfying WLVL�1,i = yi.

This lemma implies that, to ensure the global convergence for arbitrary training label yi, it is suf-
ficient to check that WL has both positive and negative components. Clearly, such a situation will
occur frequently as the with of the hidden layer r increases. Indeed, by the symmetry of the Gaus-
sian distribution, this probability is calculated as 1�2 ·

�
1
2

�r
= 1�2�r+1. Additionally, we provide

a high probability bound on the norm of the positive and negative components of WL, which deter-
mines the convergence speed of the gradient descent.
Lemma 5.2. Let W>

L ⇠ N (0, r�1
Ir), w+ := max{WL,0>

}, and w� := min{WL,0>
}. Then,

for any � > 0, with probability at least 1� 2�, min
n
kw+k

2
, kw�k

2
o
�

1
2 �

q
8 log(2/�)

r holds.

Since it is not trivial that the similar inequality holds for each iteration when considering the update
of WL, we assume that WL is fixed during training for simplicity.

Similarly to the problem (4) considered in the previous section, we consider 1-dimensional outputs
here. We then formally state the convergence result of Algorithm 3 applied to networks with ReLU
activation and skip connections.
Theorem 5.3 (Global convergence of BCD with ReLU activation). We assume that there exists
a constant CV > 0 such that �max

�
VjV

>
j

�
 CV for j = 1, . . . , L � 1 during training. We

denote s := �min(X). Let Ri = |WLVL�1,i � yi| at the initial value of the objective function with

8
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respect to the output layer, and define R :=
Pn

i=1 R
2
i , Rmax := max

i
Ri, and CK := (4Rmax⌘V +

5
p
✏)
�
3
2

�L. Then, under (s1, s2) = (0, 1
4 ), ⌘V 

1
2min{kw+k2,kw�k2}

, ⌘(1)W 
⌘�1
V

24
p
rCV K

�
2
3

�L,

⌘
(2)
W 

1
2·max

i
kxik , and

K =

⇠
1

4⌘V min{kw+k2,kw�k2}
log

�
3R
✏

�⇡
,KV =

l
3

4�⌘V
log

⇣
49(L�2)rnC2

K
3✏

⌘m
,KW =

⇠
1

4�s⌘(2)
W

log
⇣

C2
K
✏

⌘⇡
,

it holds F (W,V)  ✏, where W = (W1, . . . ,WL) and V = (V1,1, . . . , VL�1,n) are the parame-
ters obtained by the output of Algorithm 3.

The proof can be seen in Appendix F. Thus, we obtain a global convergence guarantee of BCD for
networks with ReLU activation.

6 NUMERICAL EXPERIMENT

In this section, we conduct numerical experiments to verify our theoretical findings. Particularly,
we numerically confirm that BCD converges to a global minimum for monotonically increasing
activation (Algorithm 1) and ReLU (Algorithm 3) using an artificial dataset.

Figure 1: Loss of Algorithm 1 with LeakyReLU Figure 2: Loss of Algorithm 3 with ReLU

6.1 MONOTONICALLY INCREASING ACTIVATION

First, we conduct a numerical experiment for a monotonicall y increasing activation. We apply
Algorithm 1 to a neural network with four hidden layers, each with r = 30 nodes, and LeakyReLU
activation �(x) = max{x, 0.5x}, which satisfies Assumption 2 with ↵ = 0.5 and ` = 1. We prepare
n = 500 training samples from a teacher network with a single hidden layer and the same activation.
We set din = 600, sample xi from the normal distribution, and define yi as the output of the teacher
network. For hyperparameters, we employ KV = KV = 100 and ⌘V = ⌘

(1)
W = ⌘

(2)
W = 1.

Figure 1 shows the result. The black line means the training error, i.e., 1
n

Pn
i=1 (fNN (xi)� yi)2.

Other lines represent the loss of j-th layer, i.e,
Pn

i=1k�(WjVj�1,i)� Vj,ik
2 for j 2 {1, 2, 3, 4}. We

can observe that the training error monotonically decreases while the losses for each layer remain
small, which reflects our theoretical findings.

6.2 RELU ACTIVATION

Next, we experimentally examine BCD for ReLU activation using Algorithm 3. We apply Algo-
rithm 3 to a neural network with for hidden layers, r = 30, ReLU activation and skip connec-
tion. Similarly to the monotinically increasing activation, we prepare a dataset with n = 500 and
din = 600 using a teacher network. For hyperparameters, we employ KV = KV = 100 and
⌘V = ⌘

(1)
W = ⌘

(2)
W = 1.

Figure 2 shows the result. Like Figure 1, the black line means the training error. Other lines represent
the loss of j-th layer, i.e,

Pn
i=1k�(WjVj�1,i) + Vj�1,i � Vj,ik

2 for j 2 {1, 2, 3, 4}. We can observe
the same convergence procedure here: the training error monotonically decreases and the losses for
each layer remain small.

9
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Additionally, we plot the training loss without using the skip connection as the dashed black line.
While the training loss for BCD without skip connections does not decrease due to the difficulty of
maintaining non-negativity, the skip connection drastically improves BCD training.

7 CONCLUSION

In this paper, we proposed a block coordinate descent (BCD) algorithm for training deep neural
networks and ensured the convergence to global minima for networks with strictly monotonically
increasing activation functions. We also derived a generalization bound using Rademacher complex-
ity, ensuring both strong optimization and generalization performance. For ReLU activations, we
introduced a modified BCD algorithm with skip connections and non-negative projection updates to
ensure convergence. Empirical validation demonstrated the practical effectiveness of our algorithms
for both monotonic and ReLU activations. Overall, this work advances the understanding of BCD
in neural networks, offering provable convergence and generalization guarantees.
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