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ABSTRACT

Pre-trained Artificial Neural Networks (ANNs) demonstrate robust pattern recogni-
tion abilities, closely mirroring the functionality of Biological Neural Networks
(BNNs). We are particularly intrigued by these models’ capacity for acquiring new
knowledge through fine-tuning, such as Parameter-efficient Fine-tuning (PEFT).
Given that both ANNs and BNNs propagate information layer-by-layer, a useful
analogy can be drawn: ANN weights correspond to synapses in BNNs, while
features (latent variables or activations) parallel the neurotransmitters released
by neurons. Building upon this clue, we delve deeper into exploring the connec-
tions between feature adjustment and weight adjustment, resulting in our proposed
method Synapses & Neurons (SAN) that learns scaling matrices for features and
propagates their effects towards posterior weight matrices. Our approach draws
strong inspiration from well-known neuroscience phenomena - Long-term Potenti-
ation (LTP) and Long-term Depression (LTD), revealing the relationship between
synapse development and neurotransmitter release levels. We conducted extensive
comparisons of PEFT on 26 datasets using attention-based networks as well as
convolution-based networks, leading to significant improvements compared to
other tuning methods, +8.5% over fully-finetune, +7% over Visual Prompt Tuning,
and +3.2% over Low-Rank Adapter.

1 INTRODUCTION

The use of large pre-trained models demonstrates their robust adaptability to various downstream
datasets and tasks through fine-tuning techniques. However, performing full fine-tuning by adjusting
all parameters imposes significant computation and data costs. In this context, the concept of
parameter-efficient fine-tuning (PEFT) aims to reduce the number of adjustable parameters during
fine-tuning, resulting in fewer parameters, faster training speed, and a lower risk of overfitting Ding
et al. (2023). Adhering to this rule-of-thumb strategy can simultaneously alleviate the cost burdens.

Compared to full fine-tuning, in the early stage of PEFT history, most methods were referred to as
”partial fine-tuning” and focused on releasing a subset of parameters for adjustment. For example,
linear probing was the simplest method that only released the head parameters of the model for
fine-tuning. More advanced approaches like Bitfit (i.e., bias tuning) (Zaken et al., 2021) chose to
release biases and achieved better global adjustment capabilities. Recent concepts such as ”sparse
training” introduced more sophisticated selection mechanisms by utilizing gradients or parameter
magnitudes (He et al., 2023). However, these methods still faced challenges where the subset of
parameters lacked representative abilities of the entire model. Consequently, researchers shifted their
focus towards directly adjusting the output features of each layer. The most popular approach in
this regard is the Low-rank Adapter (LoRA) family (Hu et al., 2021), which employs two low-rank
sequential learnable matrices (down and up) alongside each layer to simulate additional parameter
activities while handling input with original parameters; thus resulting in final features being a
summation of LoRA’s output and original output. The success of LoRA indicated that adjusting
features would be more efficient and implementation-friendly. Other notable works in feature
adjustment include Visual Prompt Tuning (VPT) (Liu et al., 2021a; Jia et al., 2022), where extra
learnable tokens are concatenated with each layer’s feature, and Scale and Shift Features (SSF) (Lian
et al., 2022), which applies a linear transformation to features using learnable shift and scale factors.
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From a mathematical perspective, we can consider feature transformations as approximation of
parameters tuning. Operations such as addition, concatenation, and linear transformation on features
essentially perform unified transformations on the weighted sum results of each channel in the
parameter matrices. This viewpoint provides a more generalized framework for understanding PEFT
methods. For instance, let W be the original parameter matrix of a layer, and x be the input feature.
The output feature y is typically computed as y = Wx. In PEFT methods that transform features:

• Addition (as in LoRA):

– y′ = Wx+Ax, where A is a low-rank matrix and can be viewed as a transformation
on W : W ′ = W +A.

• Concatenation (as in VPT):

– y′ = W [x; p], where p is the prompt vector and effectively extends W to W ′ =
[W,Wp], where Wp is the weight for the prompt.

• Linear transformation (as in SSF):

– y′ = α ⊙ (Wx) + β, where α and β are learnable scale and shift factors and can be
seen as transforming W to W ′ = αW , with an additional bias term.

These feature-level operations can be interpreted as implicit transformations of the entire parameter
space, offering a more flexible and efficient way to adapt the model Zhang et al. (2024). By operating
on features, we’re essentially performing a form of meta-learning, where the model learns how to
model its original parameters indirectly through the additional parameters created for feature
modifications.

The success of feature-based PEFT methods raises an intriguing question: Should those additional
parameters created for feature modifications in one layer affect the parameters of subsequent layers?
We found these aforementioned methods overlooked this and focused only on the bandwidth of the
current layer, yet it finds significant resonance in neuroscience, particularly in the phenomena of
Long-Term Depression (LTD) and Long-Term Potentiation (LTP). In neuroscience, LTD and LTP are
well-established mechanisms of synaptic plasticity that play crucial roles in learning and memory
formation Bliss & Collingridge (1993); Malenka & Bear (2004). LTP refers to the strengthening
of synaptic connections, while LTD refers to their weakening. Specific patterns of short-term
neural activity typically induce these processes and can persist for extended periods, hence the term
”long-term” Citri & Malenka (2008).

A key aspect of LTD and LTP is their ability to induce changes in the immediate synaptic connection
and subsequent neurons along the pathway, as shown in Figure 1. For instance, studies have shown
that by modulating the neurotransmitter release levels of presynaptic neurons (often through pharma-
cological or optogenetic methods), researchers can observe changes in the synaptic development of
downstream neurons Takeuchi et al. (2014); Nabavi et al. (2014). This trans-synaptic effect, known
as Heterosynaptic Plasticity, suggests that local changes can propagate and influence broader neural
networks Chistiakova et al. (2014).

Drawing an analogy between neural networks and biological neural systems, we can consider
features analogous to neurotransmitters and parameter matrices as synapses. Following this, a natural
extension of current PEFT methods would be to allow feature adjustments in one layer to propagate
and influence the parameters of subsequent layers explicitly. As a brief introduction to our proposed
Synapses & Neurons (SAN) method, for each layer, we first conduct trainable scaling for each
feature to mimic the rapid change in pre-synaptic neuron’s neurotransmitter level when exposed
to a stimulant. Further on, we propagate those scaling factors to the next layer’s parameters. This
simulates the further effect of post-synaptic neuron development i.e. Heterosynaptic Plasticity. Notice
the trainable parameters for SAN are the scaling factors with the exact shape as the feature size, this
is very efficient and can be considered as a degraded LoRA with a bottleneck i.e. rank size equal to
one. However, we conducted extensive experiments on various datasets and outperformed LoRA, as
well as many other methods including the existing state-of-the-art method, by a large margin.

In a nutshell, our contributions to this paper are as follows:

• Discover deficiencies from PEFT’s line of research: We dive deep into the progress of
PEFT research from adjusting parameter weights to transforming layer output features.
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Figure 1: The mechanisms and effects of Long-Term Potentiation (LTP) and Long-Term
Depression (LTD) on synaptic transmission and behavioral conditioning: Top Panel: LTP is
depicted as the strengthening of the post-synaptic neuron in response to stimulation of the pre-synaptic
neuron. This is represented by an increase in synaptic efficacy and enhanced signal transmission
along the synapse and vice versa for LTD. Bottom Panel: Illustrates an experiment of LTP and LTD
in a controlled fear conditioning paradigm using rodents, where they are utilized to either enhance or
diminish the conditioned fear response.

However, most existing PEFT methods focus solely on the impact of additional parameters
on the current layer, without fully addressing their influence on subsequent layers.

• Proposed SAN method inspired by BNNs: Inspired by the human brain and the phenomena
of LTD and LTP in BNNs. We formulate the Synapses & Neurons, the first PEFT method
that allows feature adjustments in one layer to propagate and influence the parameters of
subsequent layers explicitly.

• Theoretical proofs and extensive experiments verified our method to outperform SOTA:
We demonstrate the effectiveness of our approach through theoretical proofs and extensive
experiments on multiple benchmarks, including FGVC, VTAB-1k, and General Image
Classification. Our method consistently surpasses the current state-of-the-art by 1% ∼ 4%.

2 RELATED WORKS

Parameter-efficient fine-tuning The most straightforward method for PEFT is linear probing Alain
& Bengio (2016). By simply adding or modifying a trainable new head, the pre-trained model can
adapt to new tasks. However, the expressiveness of the linear probing method is limited. An intuitive
improvement proposed in Bitfit Zaken et al. (2021) involves unfreezing the bias. A more efficient
approach is prompt tuning Jia et al. (2022); Liu et al. (2021a), which adjusts the inputs. Recent work,
such as sensitivity-aware PEFT, analyzes weight magnitudes or accumulated gradients on specific
datasets to discover model sparsity and focuses only on tuning those areas. In addition to focusing on
adjustment locations, there are also differences in how adjustments are made. The adapter Zhang et al.
(2020) is a commonly used approach that adds an extra layer along or inserts it into the pre-trained
model; features pass through this adapter and output an adjustment value for different adjustment
operations (etc. addition, production, and concatenation). Another efficient adapter style is Low-Rank
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Figure 2: Synapses & Neurons (SAN) pipeline: Top left: Analogy between ANNs and BNNs,
illustrating the concept of Synapse & Neuron (SAN) tuning. The figure compares different fine-
tuning approaches: Top middle: Traditional parameter tuning methods like fully fine-tuning and
linear probing. Top right: Feature tuning methods such as LoRA, VPT, and SSF. Bottom: Our
proposed SAN method demonstrates how SAN incorporates both synapse (parameter) and neuron
(feature) tuning by modeling backward parameters and propagating to forward parameters, inspired
by Heterosynaptic Plasticity, to achieve more effective and efficient transfer learning.

Adapter (LoRA) Hu et al. (2021), which uses two low-rank matrices to equalize a dense layer. This
adapter style can be further quantized into Q-LoRA Dettmers et al. (2024) and other types of matrix
decompositions. Reparameterization offers a completely different style of adjustment by directly
shifting and scaling features; this remapping technique is known as Shift and Scale PEFT Lian et al.
(2022).

Long-Term Depression/Potentiation and Heterosynaptic Plasticity Long-Term Depression
(LTD) and Long-Term Potentiation (LTP) are fundamental mechanisms of synaptic plasticity in
biological neural networks, playing crucial roles in learning and memory formation Malenka & Bear
(2004). LTP refers to the strengthening of synaptic connections, while LTD involves their weakening,
both persisting for extended periods Bear et al. (2007). These processes are primarily triggered
by specific patterns of neuronal activity and are often considered Hebbian in nature, following the
principle that ”neurons that fire together, wire together” Hebb (1949). However, the discovery of
heterosynaptic plasticity has expanded our understanding of synaptic modulation beyond this simple
associative rule Chistiakova et al. (2014). Heterosynaptic plasticity refers to changes in synaptic
strength that occur at synapses that are not directly involved in the inducing activity Bailey et al.
(2000). This form of plasticity allows for more complex and distributed forms of information storage
and processing in neural networks Lynch (2004). For instance, when LTP is induced at one set
of synapses, heterosynaptic LTD may occur at nearby inactive synapses, potentially serving as a
homeostatic mechanism to maintain overall network stability Royer & Paré (2003). The molecular
mechanisms underlying these forms of plasticity involve complex cascades of intracellular signaling.
Heterosynaptic plasticity, involves unique signaling pathways, including the spread of intracellular
messengers and the release of diffusible factors that can affect nearby synapses Oh et al. (2015).
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3 METHODS

3.1 PRELIMINARIES

Transformers: For vision transformers (VIT), RGB input image with shape I ∈ R3×H×W is
divided into N ×N patches. A convolution layer is used to convert patches to embeddings, with an
extra class token appended to the end. The input for transformer blocks is x ∈ R(N2+1)×d , where d
is the dimension for each embedding. These embeddings use self-attention algorithms to calculate
the dependencies.

The attention mechanism is defined as:

Attention(Q,K, V ) = Softmax
(
QKT

√
d

)
V (1)

where queries, keys, and values Q,K, V ∈ R(N2+1)×d.

LoRA & Adapter: These PEFT methods use two low-rank learnable matrices (Down and Up) to
simulate the full rank dense layers.

out = [Wupϕ(W downxT )]T , (2)

where W down ∈ Rd′×d(d′ ≪ d), ϕ , and Wup ∈ Rd′×d represent the down-projection matrix,
non-linear function, and up-projection matrix, respectively.

Visual Prompt Tuning: This PEFT method concatenates a learnable prompt p ∈ Rn×d to each
input x, resulting in x′ = [x; p] ∈ R(N2+n+1)×d.

Scale & Shift Features: This PEFT method applies a learnable linear transformation to each
layer’s output y′ = γ ⊙ y + β ∈ R(N2+1)×d , where γ, β ∈ Rd are the scaling and shifting factors,
respectively, and ⊙ is the element-wise product. The reparameterize formula is:

y′ = γ ⊙ y + β = γ ⊙ (w ∗ x+ b) + β = (γ ⊙ w) ∗ x+ γ ⊙ b+ β, (3)

where b, w, and x are bias, weight, and input for this layer. ∗ is convolution or multiplication
operation in convolution or MLP layer. SSF is indeed highly efficient, however, this method, which
we considered, ignores the effect of pre-synaptic stimulus and causes post-synaptic development, so
our major modification would be conducted on it.

3.2 SAN: SYNAPSES AND NEURONS

3.2.1 BASIC FORMULA:

Similar to SSF, the scaled output y′l of layer l can be described as y′l = γl ⊙ yl, where γl is the
scaling factor (we initialize it to one) of our SAN adapter and yl is the original output of the linear
transformation. Then, the output goes through a set of operations such as activation function or
normalization, denoted σ(·). We consider the scaling of output in this layer, i.e., γl would pose a
further effect towards the next layer’s parameters (similar to the LTD/P effect found in BNNs), so
we further apply it to scale the parameters in the next layer wl+1. The parameters for the next layer
would be scaled to w′l+1 = γl ⊙ wl+1; therefore the output for the next layer is:

y′l+1 = γl+1 ⊙
(
w′l+1 ∗ σ(y′l) + bl+1

)
, (4)

where bl+1 is the bias of the next layer. Our SAN pipeline is depicted in Figure 2.

3.2.2 REPARAMETERIZATION:

As introduced in Eq. 3, the reparameterization of SSF implies a strong assumption: for each row
of the current layer’s weight matrix, the scaling & shifting factors would be the same. In contrast,
our SAN method introduces a critical re-application process of the scaling factor to the next layer’s
weight matrix. This approach allows us to achieve a unique adjustment value for every individual
parameter without incurring any extra training burden.

5
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By propagating the scaling factor γl−1 from the previous layer to the current layer’s weight, we
can overcome the strong assumption of SSF and achieve a more fine-grained adjustment. The
reparameterization formula of SAN can be expressed as:

y′l = γl ⊙ (γl−1 ⊙ wl ∗ x+ bl) + βl

= (γl ⊙ γl−1 ⊙ wl) ∗ x+ γl ⊙ bl + βl, (5)

where γl−1 is the scaling factor from the previous layer, γl and βl are the scaling and shifting factors
for the current layer, wl and bl are the weight and bias of the current layer, and x is the input.

3.2.3 REGULARIZATION:

The re-application of scaling factors in SAN not only provides fine-grained parameter adjustment but
also introduces an implicit regularization effect to prevent overfitting. This regularization emerges
from the approximate quadratic nature of the scaling factor’s influence when propagated through
layers. To illustrate this, let’s consider a simplified two-layer linear network scenario without any
activation and normalization:

y′l+1 = γl+1 ⊙ ((γl ⊙ wl+1) ∗ (γl ⊙ xl+1) + bl+1) (6)

Rearranging this equation, we get:

y′l+1 = (γl+1 ⊙ γl ⊙ γl ⊙ wl+1) ∗ xl+1 + γl+1 ⊙ bl+1 (7)

The presence of (γl)2 in this formulation reveals a crucial property: the effect of the scaling factor is
essentially squared when propagated through layers. This quadratic influence acts as a soft constraint
on the magnitude of γl, discouraging extreme values and promoting stability. To formalize this
regularization effect, we can express it as an implicit regularization term R(γ) added to the loss
function:

R(γ) = λ
∑
l

∥γl − 1∥2 (8)

where λ is a hyperparameter controlling the strength of regularization, this regularization term
penalizes large deviations of γl from its initial value of 1, effectively limiting the model’s capacity to
make extreme adaptations.

3.2.4 EXPLICIT PROPAGATION:

The key innovation of our SAN method lies in explicitly propagating the scaling factor of the current
layer to the parameters of the subsequent layer. This approach is motivated by a fundamental
insight into the nature of linear transformations in neural networks: any linear transformation applied
to features for Parameter-Efficient Fine-Tuning (PEFT) implicitly affects the subsequent layer’s
parameters.

To elaborate, consider a linear transformation T applied to the features f of layer l, f ′ = T (f). The
output of the subsequent layer l+1 with weight W and bias b can be expressed as, y = W ·T (f)+ b.
Due to the linearity of the operations, this is equivalent to:

y = (W · T ) · f + b = W ′ · f + b (9)

where W ′ = W · T is an adjusted weight matrix.

This equivalence reveals that any linear transformation of features in layer l can be equalized as an
adjustment to the weights of layer l+1, assuming no non-linear activations are applied between these
operations. In essence, methods that apply linear transformations to features are implicitly learning
an adjustment matrix for the subsequent layer’s weights.

6
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While this principle is straightforward in purely linear scenarios, real-world neural networks incorpo-
rate non-linear activations and normalization layers. However, we argue that our approach remains
approximately valid even in these more complex settings. This approximation is based on two key
observations:

1. Near-linear behavior of modern activation functions: Many popular activation functions, such
as ReLU and its variants, exhibit approximately linear behavior in certain regions. This near-linearity
allows our linear transformation principle to hold to a good approximation over significant portions
of the input space.

2. Adaptive re-calibration of scaling factors: To account for the effects of non-linearities and
normalization, SAN introduces an additional learnable linear transformation before re-applying the
scaling factor to the next layer’s weights. This can be expressed as:

γ′l = Alγl + bl (10)

where γ′l is the recalibrated scaling factor, and Al and bl are learnable parameters. The weight
adjustment for the next layer then becomes:

W ′l+1 = W l+1 ⊙ γ′l (11)

This adaptive re-calibration allows SAN to:

• Compensate for the non-linear effects introduced by activation functions and normalization
layers.

• Fine-tune the propagation of scaling factors to better suit the specific characteristics of each
layer and the task.

• Maintain the benefits of weight adjustment while adapting to the complexities of modern
neural architectures.

4 EXPERIMENTAL EVALUATION

To assess the efficacy of our proposed SAN, we conducted extensive experiments across a diverse
range of visual datasets. This section outlines our experimental framework, including the datasets
utilized, the backbone architectures employed, and the baseline methods we compared against. We
then present our findings, demonstrating SAN’s performance and versatility. Additionally, we provide
an in-depth analysis of various scaling strategies and their impacts through comprehensive ablation
studies.

4.1 EXPERIMENTAL FRAMEWORK

Dataset Selection Our evaluation leverages a variety of datasets, categorized into three distinct
groups:

• Fine-Grained Visual Classification (FGVC): This category comprises five specialized
tasks, utilizing datasets such as CUB-200-2011 Wah et al. (2011), NABirds Van Horn et al.
(2015), Oxford Flowers Nilsback & Zisserman (2008), Stanford Dogs Khosla et al. (2011),
and Stanford Cars Krause et al. (2013).

• Visual Task Adaptation Benchmark (VTAB-1k): Zhai et al. (2019) This benchmark
encompasses 19 diverse visual classification tasks, organized into Natural, Specialized, and
Structured subsets.

• General Image Classification: We include CIFAR-100 Krizhevsky et al. (2009) and
ImageNet-1k Deng et al. (2009), two representive benchmarks in the field.

Model Architectures To ensure a fair comparison with existing methods, our primary experi-
ments employ ViT-B/16 Dosovitskiy et al. (2020), pre-trained on ImageNet-21K Deng et al. (2009).

7
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To further demonstrate SAN’s adaptability, we extend our experiments to include Swin Trans-
former (Swin-B) Liu et al. (2021b) and ConvNeXt-B Liu et al. (2022), representing state-of-the-art
Transformer-based and CNN-based architectures, respectively.

Comparative Methods We evaluate SAN against a spectrum of fine-tuning approaches, broadly
classified into three categories:

• Full Model Tuning: This conventional approach involves updating all model parameters
during the fine-tuning process.

• Parameter Tuning Methods: These techniques fine-tune a subset of the original model’s
parameters. Examples include linear probing and Bias tuning Zaken et al. (2021). While
computationally efficient, these methods have historically shown limited effectiveness. Our
proposed SAN falls within this category, aiming to overcome previous limitations while
maintaining efficiency and broad applicability.

• Feature Tuning Methods: These methods introduce additional trainable parameters to
the model, such as Adapter Zhang et al. (2020) and Visual Prompt Tuning (VPT) Jia et al.
(2022). While effective, they often incur extra computational costs during both training and
inference. Some variants, like LoRA Hu et al. (2021) and SSF Lian et al. (2022), allow for
parameter reparameterization, potentially mitigating inference-time overhead.

Implementation Specifics Our image processing pipeline follows the protocol established by SSF
for the FGVC, VTAB-1k, and CIFAR-100 datasets. We optimize our models using Adam/AdamW
Kingma & Ba (2014) with a cosine learning rate decay schedule over 100 epochs, incorporating a
linear warm-up phase for the initial 10 epochs. All experiments were conducted using a distributed
setup across four NVIDIA RTX 3090 GPUs to ensure the timely completion of our comprehensive
study.

4.2 PERFORMANCE WITH VISION TRANSFORMER AS BACKBONE

Tab 1 presents a comprehensive comparison of our proposed SAN method against other state-of-the-
art fine-tuning approaches using Vision Transformer (ViT-B) as the backbone. The results clearly
demonstrate the effectiveness and efficiency of SAN across a wide range of tasks and datasets.

One of the striking aspects of SAN’s performance is its parameter efficiency. While LoRA, we
maximum its bottleneck dimension around the 1% constraint and serves as a strong baseline, SAN
achieves superior performance using only 0.20% of the parameters. This parameter efficiency is
comparable with SSF since re-apply operations do not introduce extra burdens. Nevertheless, SAN
shows remarkable improvements over its competitors, even in challenging subsets of the VTAB
dataset such as Specialized and Structure.

SAN also shows consistent performance across diverse datasets - from FGVC which focuses on
fine-grained classification tasks with moderate training images to VTAB-1k which focuses on
challenging varieties of subset and limited training images and more general image classification
tasks like CIFAR100 and ImageNet-1k with sufficient training images - underscores its versatility
and robustness. Notably, SAN outperforms full fine-tuning in many cases, despite using only a
fraction of the parameters, we believe the key is SAN have a great balance between expressiveness
and preventing overfitting.

4.3 PERFORMANCE WITH DIFFERENT BACKBONES

To demonstrate the versatility of our SAN method, we conducted experiments using three different
backbone architectures: Vision Transformer (ViT-B), Swin Transformer (SWIN-B), and ConvNeXt
(ConvNeXt-B). Figure 3a illustrates the performance of various fine-tuning methods across these
backbone architectures.

As evident from the radar chart, SAN consistently outperforms other fine-tuning methods across
all three backbone architectures. This performance consistency demonstrates the robustness and
adaptability of our proposed method. The chart also reveals interesting patterns in the performance of
different methods. For instance, while LoRA shows competitive performance with transformer-based

8
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Table 1: Comprehensive performance comparison using Imagenet-21k pretrained ViT-B as backbone.
Results show accuracy (%) for various fine-tuning methods across different datasets. Best results are
highlighted in red (1st) and blue (2nd).

Dataset Linear Probing Bitfit LoRA Adapter VPT-S VPT-D Fully FT SSF SAN (Ours)

Overall Mean Performance

Mean Param.% ↓ 0.11% 0.17% 0.89% 0.38% 0.22% 0.81% 100.00% 0.34% 0.34%

Mean Acc.% ↑ 60.55% 68.60% 76.12% 63.86% 70.31% 74.62% 71.76% 77.68% 79.26%

FGVC

Mean Param.% ↓ 0.21% 0.33% 0.90% 0.48% 0.29% 0.99% 100.00% 0.45% 0.45%

Mean Acc.% ↑ 79.32% 85.66% 84.66% 84.78% 84.66% 89.10% 88.54% 90.72% 91.62%

CUB-2011 85.30% 87.10% 86.70% 85.60% 86.70% 88.50% 87.30% 89.50% 90.60%

NA-Brids 75.90% 84.30% 78.80% 79.80% 78.80% 84.20% 82.70% 85.70% 86.30%

Oxford Flowers 97.90% 98.50% 98.40% 98.90% 98.40% 99.00% 98.80% 99.60% 99.70%

Stanford Dogs 86.20% 89.80% 90.70% 87.60% 90.70% 90.20% 89.40% 89.60% 91.10%

Stanford Cars 51.30% 68.60% 68.70% 72.00% 68.70% 83.60% 84.50% 89.20% 90.40%

VTAB-1k

Mean Param.% ↓ 0.05% 0.16% 0.90% 0.31% 0.13% 0.70% 100.00% 0.28% 0.28%

Mean Acc.% ↑ 53.30% 62.06% 72.63% 55.82% 64.85% 69.43% 65.56% 73.10% 75.00%

Natural

Mean Acc.% ↑ 69.09% 73.31% 79.76% 70.50% 76.81% 78.49% 75.99% 81.57% 83.19%

CIFAR100 63.40% 72.80% 68.10% 74.10% 77.70% 78.80% 68.90% 69.00% 74.30%

Caltech101 85.00% 87.00% 91.40% 86.10% 86.90% 90.80% 87.70% 92.60% 93.75%

DTD 64.10% 59.20% 69.80% 63.20% 62.60% 65.80% 64.30% 75.10% 76.40%

Flowers102 97.20% 97.50% 99.00% 97.70% 97.50% 98.00% 97.90% 99.40% 99.70%

Pets 86.30% 85.30% 90.50% 87.00% 87.30% 88.30% 86.90% 91.80% 93.00%

SVHN 36.60% 60.00% 86.40% 34.60% 74.50% 78.10% 87.40% 90.20% 91.80%

Sun397 51.00% 51.40% 53.10% 50.80% 51.20% 49.60% 38.80% 52.90% 53.40%

Specialized

Mean Acc.% ↑ 26.85% 44.10% 60.23% 32.39% 46.98% 55.00% 47.64% 58.96% 61.00%

Patch Camelyon 78.50% 78.70% 85.10% 76.30% 78.20% 81.80% 78.90% 87.40% 88.10%

EuroSAT 87.50% 91.60% 95.80% 88.00% 92.00% 96.10% 95.70% 95.90% 97.70%

Resisc45 68.60% 73.00% 84.70% 73.10% 75.60% 83.40% 84.20% 87.40% 90.60%

Retinopathy 74.00% 69.80% 74.20% 70.50% 72.90% 68.40% 73.90% 75.50% 78.10%

Structure

Mean Acc.% ↑ 77.15% 78.28% 84.95% 76.98% 79.68% 82.43% 83.18% 86.55% 88.63%

Clevr/count 34.30% 61.50% 83.00% 45.70% 50.50% 68.50% 56.30% 75.90% 82.40%

Clevr/distance 30.60% 55.60% 66.90% 37.40% 58.60% 60.00% 58.60% 62.30% 61.40%

DMLab 33.20% 32.40% 50.40% 31.20% 40.50% 46.50% 41.70% 53.30% 54.50%

KITTI/distance 55.40% 55.90% 81.40% 53.20% 67.10% 72.80% 65.50% 80.60% 82.10%

dSprites/loc 12.50% 66.60% 80.20% 30.30% 68.70% 73.60% 57.50% 77.30% 81.70%

dSprites/ori 20.00% 40.00% 46.60% 25.40% 36.10% 47.90% 46.70% 54.90% 55.21%

SmallNORB/azi 9.60% 15.70% 32.20% 13.80% 20.20% 32.90% 25.70% 29.50% 30.30%

SmallNORB/ele 19.20% 25.10% 41.10% 22.10% 34.10% 37.80% 29.10% 37.90% 40.40%

General

Mean Param.% ↓ 0.48% 0.61% 1.18% 0.8% 0.91% 1.42% 100.00% 0.69% 0.69%

Mean Acc.% ↑ 85.37% 88.07% 87.95% 88.03% 86.23% 87.81% 88.70% 88.55% 88.90%

CIFAR100 88.70% 93.39% 93.53% 93.34% 90.38% 93.17% 93.82% 93.99% 94.11%

Imagenet-1k 82.04% 82.74% 82.36% 82.72% 82.08% 82.45% 83.58% 83.10% 83.69%
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(a) (b)

Figure 3: (a) Performance comparison of different fine-tuning methods (VPT here use the average
accuracy of VPT-shallow & deep) across various backbone architectures. The radar chart shows the
mean accuracy (%) for each method using ViT-B, SWIN-B, and ConvNeXt-B as backbones. (b)
Performance comparison of different fine-tuning methods, highlighting the contributions of modeling
and propagation in SAN. The y-axis shows the mean accuracy over the VTAB-1k dataset using
pre-trained VIT-B. Circle size represents the amount of trainable parameters.

models, its effectiveness slightly diminishes with the ConvNeXt-B architecture. In contrast, SAN
maintains its leading position across all backbones, suggesting a more generalized approach to
parameter-efficient fine-tuning.

4.4 ABLATION STUDIES

To investigate the effectiveness of our proposed SAN method, we conduct ablation studies focusing
on separating two key components: modeling of the current layer by a set of learnable scaling factors
and propagation of the learned scaling factors to the next layer. These studies aim to quantify the
contribution of each component and validate our design choices. Figure 3b illustrates the performance
of various methods, including the aforementioned settings and some other fine-tuning strategies.

It is clear that both modeling the current layer strategy and propagate to the next layer strategy can
work as a decent PEFT method alone, however, when used together, the improvement would be more
complete with a higher expressivity.

5 CONCLUSION AND FUTURE WORK

The primary contribution of our paper is the introduction of the concept of propagating the feature
adjustment value forward to the parameters of the next layer. This concept is motivated by Heterosy-
naptic Plasticity observed in BNN during LTP/D occurrences. We have conducted an analysis on
the properties of this propagation, demonstrating its regularization abilities and how it enhances
fine-grained expressivity through reparameterization perspectives. Moreover, we hypothesize that
current feature tuning methods implicitly propagate, but by making this propagation explicit, we
can simplify the learning process. Our experiments validate our concept, and we believe future
work should focus on discovering how to propagate and re-apply additional parameters created for
adjusting certain layer’s features to more layers. By doing so, we can achieve even lower training
costs and emphasize the interconnections between different layers.
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