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ABSTRACT

The quality of embeddings produced by pretrained language models is critical
to downstream performance. Prior work has shown that repeating input text can
improve sentence-level representations, but such repetition may adversely affect
word-level embeddings. To address this, we propose ReBA (Retrieval Backward
Attention), a method combining input repetition with a novel backward attention
mechanism that enables tokens to incorporate future context. Across multiple zero-
shot tasks, ReBA significantly improves word-level embeddings while preserving
sentence-level gains, offering new insights into enhancing representation quality in
decoder-only language models. 1

1 INTRODUCTION

ReBA-!

Repetition

Backward Attention

!

Repetition

…

Classical

Figure 1: Illustration of ReBA embedding:
The classical embedding method captures
only the contextual information preceding the
token. In contrast, ReBA enhances the qual-
ity of target token embeddings by repeating
the text k − 1 times, computing a weighted
sum of the target token’s original embedding
and subsequent token embeddings using back-
ward attention weights. When the sentence
appears k times, the resulting embeddings are
referred to as ReBA-k embedding.

Text embedding learning is a key task in Natural
Language Processing (NLP) that transforms text into
vector representations, making them computation-
ally tractable. Formally, given a text x in a corpus
space X , embedding learning aims to train a model
f : X ×Θ → Rd to generate vector representations
v = fθ(x) that capture semantic information and
enhance performance in downstream tasks such as
information retrieval (IR), semantic similarity esti-
mation, classification, and clustering (Ni et al., 2021;
Muennighoff et al., 2022).

Advanced large language models (LLMs) have re-
cently demonstrated exceptional generalization and
transfer capabilities across downstream tasks. How-
ever, Transformer-based models like GPT (Rad-
ford, 2018) (unidirectional) and BERT (Kenton &
Toutanova, 2019) (bidirectional) are often specialized
in different tasks due to the influence of pretrain-
ing tasks, with BERT excelling in Natural Language
Understanding (NLU) and GPT excelling in Natu-
ral Language Generation (NLG). As a result, mul-
tiple task-specific models are required (Dong et al.,
2019). Research shows that decoder-only models,
pre-trained with next-token prediction, achieve superior zero-shot generalization performance across
various tasks (Wang et al., 2022), while their performance on NLU is still not good as that of bidi-
rectional models, the performance is highly related to embedding quality, and different approaches
to enhance embedding quality have been investigated (Lee et al., 2024; Li et al., 2023; Chen et al.,
2024), specifically, some prompting methods have been proposed to improve embedding quality
(Jiang et al., 2023; Liu et al., 2024), in this paper, we also focus on improving the embedding quality

1Our GitHub repository will be made publicly available after the review process. Currently, the code is
submitted as anonymized supplementary material.
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of decoder-only models from the perspective of the input text by repetition and backward attention
and we call it ReBA embedding (Figure 1).

Repetition: We focus on improving the performance of decoder-only models in a zero-shot setting.
Research shows that repeating input sentences can provide additional contextual information, sig-
nificantly boosting model performance. For instance, (Jelassi et al., 2024) found that text repetition
allows Transformer models to outperform state-space models like S4 (Gu et al., 2021) and Mamba
(Gu & Dao, 2023). Similarly, (Arora et al., 2024; Springer et al., 2025) demonstrate quality im-
provements in language models through repeated contexts. While repetition boosts decoder-only
models, their performance still trails bidirectional models (Table 2, Figure 3). To narrow this gap, we
introduce a simple backward attention mechanism that significantly improves context encoding over
plain repetition and classical embedding method in zero-shot settings, offering insights for future
research.

w1

v1

w2

v2

w3

v3

w4

v4

BERT (Bidirectional Attention)

symmetric

w1

v1

w2

v2

w3

v3

w4

v4

GPT (Unidirectional Attention)

lower triangle

Figure 2: Illustration of Attention Relationships in BERT and GPT with Corresponding Attention
Matrix Representations

Backward Attention: In decoder-only architectures, forward attention is typically used, where the
attention matrix is a lower triangular matrix. This design lacks associations to subsequent context.
Backward attention, on the other hand, represents the relationship between a token and its subsequent
context, as reflected in the attention matrix. To enhance the encoding quality of the original text,
we propose leveraging repeated text. By concatenating x with itself, represented as x + x′ , i.e.,
concatenating x with a copy of itself, the embedding of x′ is leveraged to enhance the embeddings
of x. Since x′ appears after x, it is natural to consider using backward attention to strengthen x’s
encoding quality.

Bidirectional models like BERT (Kenton & Toutanova, 2019), RoBERTa (Liu, 2019), XLNet (Yang,
2019), and others (Jiao et al., 2019; Clark, 2020) use symmetric attention matrices (Figure 2).
Encoder-decoder models such as T5 (Raffel et al., 2020) permit attention over both past and future
tokens, though not in a strictly symmetric manner. However, in such models, the addition of new
tokens alters all previous embeddings, thereby increasing computational cost.

In contrast, decoder-only models like GPT (Radford, 2018; Radford et al., 2019; Brown et al., 2020),
LLaMA (Touvron et al., 2023a;b), Qwen (Bai et al., 2023), and Baichuan (Baichuan, 2023) use lower
triangular attention (Figure 2), where each token attends only to previous ones. This structure avoids
recomputation when appending tokens, enabling efficient enhancement of specific token embeddings
via backward attention. Our contributions are summarized as follows:

• We propose a novel algorithm that significantly enhances the embedding quality of pretrained
models, leading to improved performance in downstream tasks and stronger natural language
understanding capabilities.

• The method achieves these improvements without requiring additional training of the model,
training new models, or introducing extra parameters, ensuring simplicity and efficiency.

• Our algorithm maintains the advantages of unidirectional LLMs while also capturing subse-
quent context, enabling targeted enhancement of specific token embeddings.

2 PRELIMINARIES

Our goal is to obtain a sentence embedding vector LLM(C) ∈ Rd for a sentence C and a word
embedding vector LLM(w|C) ∈ Rd for word w in context C. These vectors serve as semantic
representations, and our aim is to improve them to more effectively capture sentence and word-level
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semantics. These vectors can measure the similarity between sentences or words, and can be used in
downstream tasks such as text classification and word sense disambiguation.

We are particularly interested in extracting these vectors using an autoregressive language model. An
autoregressive language model predicts the next token in a sequence based on the preceding tokens.
This mechanism inherently limits the model to capturing information only from earlier tokens, as
reflected in the attention matrix—a lower triangular matrix where each token attends only to its
preceding tokens. To enhance the embedding quality, we aim to reutilize the information in the
attention matrix to also capture insights from subsequent tokens.

2.1 SELF-ATTENTION AS GLOBAL CONTEXT INTEGRATOR

The attention mechanism (Vaswani, 2017) can be understood mathematically as a mapping from a
query vector qj ∈ Rd to a weighted sum of a set of key-value pairs (ki,vi), where ki,vi ∈ Rd, i
indexes over the tokens in the input sequence. Formally, given an input sequence of embeddings
{x1, · · · ,xn}, the attention mechanism computes the output embedding vj for each token as follows:

vj =

j∑
i=1

αi,jvi, where αi,j =
exp(qj · ki/

√
d)∑n

m=1 exp(qj · km/
√
d)

(1)

Here, qj = Wqxj ,ki = Wkxi, and vi = Wvxi are the query, key, and value vectors, obtained
by trainable linear transformations Wq,Wk,Wv ∈ Rd×d of the input embeddings, and d is the
dimensionality of the query/key space.

In Transformer-based models, each token in the sequence simultaneously acts as a query, key, and
value, resulting in contextualized embeddings for all tokens. This mechanism enables the model to
integrate information across the entire sequence. For example, given an input sequence {w1, · · · , wn},
the output embedding vn for the last token wn is computed as:

vn = Attention(qn, {k1, · · · ,kn}, {v1, · · · ,vn}), (2)

where qn is derived from wn and {ki,vi} are derived from all preceding tokens {w1, · · · , wn}.

This computation illustrates how attention integrates global context. Notably, in autoregressive
models, the attention mechanism is constrained such that vi only depend on w1, · · · , wi, ensuring
that information flows unidirectionally. Such a framework blurs the traditional boundary between
word and sentence embeddings. The embedding vn for the final token incorporates contextual
information from the entire sequence, making it a natural representation for the full sentence. This
marks a fundamental departure from traditional word embedding models like Word2Vec (Mikolov,
2013), which lack explicit mechanisms for modeling token interactions. We will discuss this further
in the following section.

2.2 WORD EMBEDDING AND SENTENCE EMBEDDING

Traditional models like Word2Vec (Mikolov, 2013) and Glove (Pennington et al., 2014) treat words
in isolation, requiring extra processing (e.g., average pooling or Sent2Vec (Moghadasi & Zhuang,
2020)) to construct meaningful sentence embeddings, as individual word vectors lack contextual
information.

Unlike traditional word embedding models, Transformer-based LLMs derive each token’s embedding
through interactions with other tokens. In autoregressive models, given input w1, · · · , wn, the output
embeddings v1, · · · , vn are generated. While vn represents wn, it also captures the entire sentence
via attention. However, due to unidirectionality, v1, · · · , vn−1 do not incorporate information from
wn. Thus, Transformer-based models blur the traditional distinction between word and sentence
embeddings. In particular, the embedding of the last token can serve as an effective representation of
the entire sentence.

In this paper, we evaluate the performance of our method on word and sentence embeddings. To
assess the quality of word embeddings, we examine the algorithm’s performance on word sense
disambiguation datasets. To evaluate the quality of sentence embeddings, we consider the algorithm’s
performance on the C-MTEB.

3
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2.3 LANGUAGE MODEL EMBEDDING

We first extract embeddings from the activations of the final hidden layer of the language model.
Given a sentence C = {w1, · · · , wn}, we extract token embeddings LLM(wi|C), which we regard
as word embeddings.

In practice, we consider two main methods for sentence embedding (Wang et al., 2023; Reimers,
2019), one approach called last token pooling is to use the embedding of the last token as the
sentence embedding: LLM(w−1|C), while the other called mean token pooling involves averaging
the embeddings of all tokens to obtain the sentence embedding: 1

|C|
∑

w∈C LLM(w|C). In this
paper, we adopt these methods to obtain sentence embeddings.

2.4 NEW EMBEDDING VIA REPETITION AND BACKWARD ATTENTION

To enhance the natural language understanding capabilities of autoregressive models while avoiding
the costly recomputation of all token embeddings that occurs in bidirectional models when new
tokens are added, we propose a novel method called ReBA (Retrieval Backward Attention) embedding.
This approach leverages the model’s inherent capabilities to more effectively capture bidirectional
information and enhance model performance.

3 MAIN METHOD

The core concept of ReBA is to repeat the input text twice and extract the attention matrix from the
model. This attention matrix is then applied for backward attention, updating the embeddings of
specific tokens based on the repeated text. Finally, the updated and original embeddings are combined
to yield the final embedding vectors.

3.1 CLASSICAL EMBEDDING IGNORES BIDIRECTIONAL CONTEXT

As discussed in Sec 2.1, classical sentence embeddings fail to effectively capture bidirectional
information. In autoregressive language models, the contextualized embedding at position k encodes
information only from tokens preceding k, without considering subsequent tokens. As a result,
tokens at the beginning of a sentence may not fully capture their intended meaning, lacking semantic
information from subsequent context.

3.2 REPETITION CAPTURES BIDIRECTIONAL CONTEXT

Research shows that text repetition can significantly enhance the bidirectional information captured
by sentence embeddings in autoregressive models (Springer et al., 2025; Jelassi et al., 2024). By
repeating text, the model’s embeddings become more contextually enriched. Rather than using
prompts such as “Rewrite the sentence: x, rewritten sentence: x” as in Springer et al. (2025), we
directly repeat the sentence to eliminate prompt effects. For example, given the sentence “I love
NLP.”, the repeated versions are:

• Repeated once: ‘I love NLP. I love NLP.’
• Repeated twice: ‘I love NLP. I love NLP. I love NLP.’

For the word ‘love’, we observe that the second and third occurrences carry more contextual informa-
tion than the first, as they capture the broader context. Following Springer et al. (2025), we refer to
these enhanced embeddings as Echo embeddings.

3.3 REBA EMBEDDING

Inspired by the benefits of text repetition, we propose a new method that does not require the use
of prompts in Springer et al. (2025). Instead of using the embeddings from the repeated text, we
introduce backward attention to enhance the original embeddings.

When considering Echo embeddings as word embeddings, they may introduce information im-
balance. For example, given an original text C = {w1, w2, w3} and its repeated version

4
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Cnew = {w1, w2, w3, w4, w5, w6}, the Echo approach replaces the embedding of the first w2 with
that of the second occurrence w5. However, due to causal masking, w5 cannot access information
from the subsequent token w6 and only incorporates context from the preceding w4. This creates an
asymmetric and biased representation, potentially degrading the quality of word embeddings.

In contrast, ReBA enhances the embedding of the first w2 by aggregating information from all tokens
that follow it in Cnew—namely w3, w4, w5, w6. This ensures contextual symmetry and significantly
improves representation quality. Our method proceeds in three steps:

1) First Step: Construct Attention Matrix Extraction

Vig & Belinkov (2019) found that the performance of GPT2’s multi-head attention matrices varies
across different attention heads and hidden layers, and some of the attention heads in the deeper
layers contribute less to the model’s performance (He et al., 2024). Inspired by this observation, we
aim to leverage all attention matrices in a new way to enhance the quality of embedding vectors in
the following way:

We record an interaction between tokens whenever it is captured by any attention head in any layer,
and retain the maximum observed attention weight.

Formally, for any token pair (i, j), the fused attention weight Anew
i,j is computed as the maximum

value observed across all heads and layers:

Anew
i,j = max

p,q
Ãp,q

i,j , where Ãp,q =
Ap,q + (Ap,q)T

2

where Ãp,q is the symmetrized attention matrix Ap,q from the p-th head in the q-th layer. This
approach is grounded in the following rationale:

Salience Preservation: If any attention head, in any layer, assigns a high weight to the token pair
(i, j), it indicates a strong and potentially meaningful relationship. The max operator ensures that
such salient connections are retained.

Robustness to Redundancy: Many attention heads may learn redundant or noisy patterns (He et al.,
2024). By taking the maximum, we effectively filter out spurious or weak attentions, prioritizing only
the most confident signals.

Interpretability: The resulting matrix Anew highlights the most influential token-wise interactions,
providing a clear and interpretable summary of the model’s collective attention behavior.

While alternative aggregation schemes (e.g., mean or top-k) are possible, the maximum rule offers a
simple yet effective mechanism for identifying and preserving the most salient semantic relationships,
which is particularly beneficial for downstream embedding enhancement.

Algorithm 1 Attention Matrix Extraction
Input: Text with length n, pretrained language model LLM and its number of hidden layers I ,
number of attention heads J .
Output: New Attention Matrix Anew.
1. Extract all attention matrices Ap,q ∈ Rn×n{p = 1, · · · , I; q = 1, · · · , J} from the pretrained
model, initialize Anew = 0.
2. for p = 1, 2, · · · , I:

for q = 1, 2, · · · , J :
Ãp,q = Ap,q+(Ap,q)T

2

Anew = Anew+Ãp,q

2 + |Anew−Ãp,q|
2

3. Return Anew.

2) Second Step: Backward Attention and Text Repetition

5
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Algorithm 2 Word Embedding with ReBA Mechanism
Input: Text sequence C = {w1, w2, . . . , wn}, pretrained language model LLM , target word wi.
Output: Word embedding ei.
1. Duplicate the input: Cnew = {w1, w2, . . . , w2n} as new input.
2. Input the text Cnew and compute the attention matrix Anew using Algorithm 1.
3. Extract the embedding ei of wi {i ≤ n} based on Anew: ei =

∑2n
k=i α

′
i,kvk where α′

i,k = Anew
i,k

is the i-th value of k-th column of Anew and vk = LLM(wk|C).
5. Return ei.

Algorithm 3 Sentence Embedding with ReBA Mechanism
Input: Text sequence C = {w1, w2, . . . , wn}, pretrained language model LLM .
Output: Sentence embedding E.
1. Extract word embeddings ei for each token wi in C using Algorithm 2.
2. If last token pool: E = en.
Else if mean token pool: E = 1

n

∑n
i=1 ei.

3. Return E.

To compute text embeddings effectively, we integrate text repetition and a backward attention mecha-
nism as outlined in Algorithm 2 (for word embedding) and Algorithm 3 (for sentence embedding).
Given a text sequence C = {w1, w2, . . . , wn}, we first apply text repetition by duplicating the
sequence to form a new input:

Cnew = {w1, w2, . . . , wn, wn+1, . . . , w2n}

where wi with i > n represents the repeated token.

Next, we compute the attention matrix Anew ∈ R2n×2n with Algorithm 1 to capture the contextual
dependencies across both the original and repeated sequences.

The backward attention mechanism is applied to strengthen semantic propagation by iteratively tracing
the connections from the repeated tokens {wn+1, wn+2, . . . , w2n} back to the original sequence
{w1, w2, . . . , wn}. For a target token wi ∈ C, the embedding ei is computed as:

ei =

2n∑
k=i

α′
i,kvk, (backward attention) (3)

where α′
i,k = Anew

i,k is the attention weight from token wk to wi, and vk = LLM(wk, C
new)

represents the contextualized embedding of the token wk.

This approach propagates semantic relationships—especially from later tokens—into the final repre-
sentation.

3) Final Step: Embedding Vector Construction

Under different pooling strategies, the resulting sentence vectors vary. For the case of last token
pooling, we directly use en as the sentence encoding. In contrast, for mean token pooling, we
take the average of all ei, defined as 1

n

∑n
i=1 ei, as the sentence embedding. Notably, the order of

summation can be exchanged for efficient computation:

1

n

n∑
i=1

ei =
1

n

n∑
i=1

2n∑
k=i

α′
i,kvk =

1

n

2n∑
k=1

min (n,k)∑
i=1

α′
i,kvk =

1

n

2n∑
k=1

α′
kvk,

where α′
k =

∑min (n,k)
i=1 α′

i,k is the sum of the k-th column of Anew. By exchanging the order of
summation, we can first sum over each column of Anew and then perform the remaining calculations.
This reduces the original computational complexity from O(n2) to O(n).

For word embeddings, we compute the embedding ei of wi directly using Eq. 3, without requiring
additional operations. The detailed computation process of all methods we use is shown in Table 1.
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Table 1: Introduction of our experimental settings. (1) In both ReBA and Echo method we need
to repeat the original sentence, We use w1, · · · , wn to denote the original input tokens, and the
repeated tokens are wk = wk%n when k > n, ei is the new embeddings. (2) vi is the original
output of wi which is denoted as vi := LLM(wi|C) where C is the context , and α′

i,j is the i-th
value of j-th column of the attention weight extracted by Algorithm 1. (3) ReBA-1 is equivalent to
classical sentence embedding evaluation with last pooling strategy so we only test ReBA-1 for word
embedding evaluation.

Method Input Tokens Embedding for Evaluation

Word Embed-
ding for wi

Sentence Embedding
(Mean Pooling)

Sentence Embedding
(Last Pooling)

ReBA-k (Ours) {w1, · · · , wkn} ei =
kn∑
j=i

α′
i,jvj

1
n

n∑
j=1

ej en

Echo-k {w1, · · · , wkn} v(k−1)n+i
1

(k−1)n

kn∑
j=n

vj vkn

Classical {w1, · · · , wn} vi
1
n

n∑
j=1

vj vn

Table 2: Sentence Embeddings: Zero-shot average scores on C-MTEB to evaluate the performance of
Sentence Embeddings. The top two rows are the main results, testing the scores of ReBA, simple
repetition and traditional encoding on GPT-2-Chinese and LLaMA-2-Chinese-7B. The third row is an
ablation experiment, testing different pooling strategies. The fourth row is an ablation experiment with
more repetitions, testing the effect of repeating twice. The fifth row is a comparison experiment with
bidirectional model using mean pooling or the first token ’CLS’, BERT refers to bert-base-chinese
model with 102M params here.

Strategy Model Pool Clas. P. Cls. Clus. Retr. STS Rera. Total Average
Main results:
ReBA-2 (Ours) GPT-2 Last 0.5414 0.5422 0.3243 0.2173 0.2118 0.2979 0.3634
Echo-2 GPT-2 Last 0.5010 0.5456 0.2255 0.1757 0.1756 0.2460 0.2907
Classical GPT-2 Last 0.4990 0.5413 0.2305 0.1474 0.1446 0.2101 0.2590
ReBA-2 (Ours) LLaMA-2 Last 0.6889 0.5225 0.3918 0.6640 0.1949 0.3653 0.4801
Echo-2 LLaMA-2 Last 0.6759 0.5503 0.4136 0.5629 0.2636 0.3784 0.4733
Classical LLaMA-2 Last 0.6574 0.5228 0.3354 0.4667 0.1506 0.2816 0.3951
Ablations: Different Pool Strategy
ReBA-2 (Ours) GPT-2 Mean 0.5538 0.5554 0.3275 0.4484 0.2567 0.3000 0.3977
Echo-2 GPT-2 Mean 0.5480 0.5588 0.3275 0.3691 0.2360 0.2964 0.3734
Classical GPT-2 Mean 0.5465 0.5452 0.3166 0.2959 0.2515 0.2959 0.3499
Ablations: More Repetitions
Echo-3 GPT-2 Last 0.4973 0.5473 0.1969 0.1845 0.1845 0.2488 0.2924
ReBA-3 (Ours) GPT-2 Last 0.5422 0.5446 0.3246 0.2119 0.2284 0.3010 0.3699
Comparison: Bidirectional model
Classical BERT Mean 0.6734 0.5435 0.4225 0.5537 0.2594 0.3445 0.4658
Classical BERT CLS 0.6628 0.5604 0.3598 0.3003 0.2070 0.2546 0.3679

3.4 TIME EFFICIENCY OF REBA

Assuming the model has I hidden layers, each with J attention heads, and an input sequence of
length n, the traditional method has a time complexity of O(IJn2). This arises from extracting I×J
attention matrices, each of size n× n, and performing operations like symmetry computation and
maximum attention update, both of which take O(n2) for a single matrix.

4 EXPERIMENTS

4.1 DATASETS

We will test our method on several datasets, including text classification, text clustering, text pair
classification, text reranking, text retrieval, sentence similarity, etc. In particular, we will also test its
performance on Chinese polysemous word understanding task.

7
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Figure 3: Word Embeddings: Performance on SLPWC and WSD tasks using Euclidean distances
to evaluate Word Embeddings. The results show that ReBA encoding significantly enhances model
performance on polysemous word understanding tasks. While performance fluctuates with the number
of repetitions, increasing the repetition count does not necessarily lead to significant improvements.
Based on this experiment, we observe that simple sentence repetition is not effective for improving
word-level embeddings and only contributes to sentence-level understanding. Furthermore, the
backward attention mechanism remains crucial for achieving further performance enhancements.

1) Chinese Massive Text Embedding Benchmark (For Sentence Embedding)

To evaluate sentence embedding, we use the Chinese Massive Text Embedding Benchmark (C-
MTEB). It is a collection of datasets from six categories: classification, clustering, pair classification,
reranking, retrieval, sentence similarity, containing 31 datasets in total. Due to the scale of this
dataset, we will only test two unidirectional language models: the fine-tuned versions of GPT-2 and
LLaMA-2-7B’s Chinese pre-trained models.

2) Chinese Polysemous Word Disambiguation Dataset (For Word Embedding)

These datasets evaluate a model’s ability to understand polysemous words and assess word embedding
performance. The first dataset, the Sentence Level Polysemous Words Classification (SLPWC) subset
of the Chinese Semantic Evaluation Dataset 2 (C-SEM) benchmark, contains 300 questions where
the task is to identify which option represents a different meaning of a polysemous word. We
extract embeddings of the target word in different contexts using an LLM, and the correct answer is
determined by summing the embedding distances (Cosine or Euclidean). The second dataset, Word
Sense Disambiguation (WSD, (Yan et al., 2023)), is a Chinese semantic dataset used for word sense
disambiguation tasks. We evaluate performance based on accuracy and adapt it into a 4-choice format
to suit our algorithm.

4.2 RESULTS

In our experiments, we use pretrained autoregressive models based on the Transformers architecture.
These include fine-tuned versions of GPT-2 and LLaMA-2’s Chinese pretrained models (GPT-2-
Chinese, LLaMA-2-Chinese-7B), as well as models like Qwen-7B, BaiChuan-7B, and Falcon-7B,
which are suitable for evaluation on Chinese datasets. All model details are presented in Appendix
A.3.

The overall results (see Table 2 and Figure 3) show that the ReBA encoding method significantly
outperforms traditional encoding methods for both sentence and word embeddings. In particular, our
method demonstrates a significant improvement in accuracy on semantic understanding tasks. This
indicates that our algorithm effectively enhances language models’ understanding of natural language
in zero-shot setting.

2Accessible at: https://github.com/FlagOpen/FlagEval/tree/master/csem
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4.2.1 SENTENCE EMBEDDING EVALUATION

We primarily evaluate GPT-2-Chinese (we call it GPT-2 for simplicity) and LLaMA-2-Chinese-
7B (LLaMA-2, for simplicity) on C-MTEB, and compare the performance of our method with
traditional encoding approaches under different pooling strategies. Across nearly all tasks, our
method demonstrates significant improvements over traditional methods. Results are concluded as
follows:

(1) ReBA consistently enhances unidirectional language models. ReBA achieves greater improve-
ments on GPT-2 compared to simple repetition. For LLaMA-2, while our method outperforms
traditional encoding, the gains on certain tasks (e.g., STS) are less pronounced compared to simple
repetition;

(2) Increasing the repetition count does not yield additional benefits. We compare the effects of
repeating once and twice (ReBA-2 and ReBA-3), finding that while repeating twice achieves better
results, the improvement is marginal. This conclusion holds for both ReBA and simple repetition;

(3) Our method remains effective across different pooling strategies. With last-pooling, the algorithm
achieves substantial improvements, while the gains with mean-pooling are comparatively smaller.

4.2.2 WORD EMBEDDING EVALUATION

We evaluate the performance of LLaMA-2-Chinese-7B, Qwen-7B, BaiChuan-7B, and Chinese-
Falcon-7B and Bert-base-chinese (102M) on the Chinese polysemous word understanding task using
the Chinese SEMantic evaluation dataset (C-SEM) and the Word Sense Disambiguation dataset
(WSD). Results are presented in Figure 3:

(1) ReBA encoding performs exceptionally well as a word embedding method. ReBA significantly
surpasses classical embeddings;

(2) Backward attention is the essential operation. We test Echo embeddings as word embeddings
by using the embedding of the target word’s last occurrence. Surprisingly, repetition alone degrades
performance, but adding backward attention significantly improves it. ReBA embeddings outperform
both Echo and classical embeddings;

(3) Increasing the repetition count does not yield additional benefits. Also, in the word embedding
task, we find that repeating twice does not bring more benefits than repeating once. This conclusion
is consistent with the sentence embedding task.

5 CONCLUSION AND DISCUSSION

We propose a context-enhanced encoding method using backward attention and repetition, achieving
notable improvements on LLMs across tasks. On sentence embedding evaluation datasets, we observe
that the backward attention mechanism was not a decisive factor—simply repeating sentences was
sufficient to improve sentence vector quality. This effect was particularly pronounced in larger models
like LLaMA-2, where the gains from backward attention are minimal.

However, on word embedding evaluation datasets, the backward attention mechanism plays a crucial
role. In these cases, simply repeating sentences leads to performance degradation, whereas incorpo-
rating backward attention results in substantial improvements. Consequently, ReBA is a more general
method for improving language model encoding quality.

Now we discuss a possible improvement measure, repeating the entire text doubles the sequence
length, introducing an additional computational overhead of O(L2). We propose a potential alternative
for future study: First encode the original sequence S of length L using an LLM to obtain the initial
embeddings. Next, we divide S into subsequences S0, S1, . . . , Sn, each of length L0. For each
subsequence Si, we repeat it to form 2Si and then extract the attention weights between the original
and repeated embeddings of Si, we apply backward attention to enhance the initial embeddings of
Si, then we can extract the embeddings of word appears in Si for word embedding or use mean
pooling to get the whole sentence embedding. This approach reduces the additional computational
overhead caused by repetition from O(L2) to O(L · L0). When L0 is small enough, the additional
cost becomes negligible.

9
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ETHICS STATEMENT

This work does not involve human subjects, personally identifiable information, or other sensitive
content. All datasets used are publicly available and used in accordance with their licenses. Our
method does not introduce any foreseeable ethical risks, harm, or bias beyond standard use of
pretrained language models.

REPRODUCIBILITY STATEMENT

In this work, we introduce ReBA, a method for enhancing word and sentence embeddings in
autoregressive language models via text repetition and backward attention. All details necessary to
reproduce the reported results are provided in the main text and appendix. Specifically, Algorithm 1–
3 describe the embedding extraction and backward attention procedure. Model configurations,
hyperparameters, and data preprocessing steps for GPT-2-Chinese, LLaMA-2-Chinese-7B, and other
evaluated models are provided in Appendix A.3. Experiments on C-MTEB and Chinese polysemous
word disambiguation datasets follow standard evaluation protocols. We have no random initialization,
and all experiments use publicly available datasets and pretrained models. Our code is currently
submitted as supplementary material. We plan to post the official GitHub link in the main text after
publication.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, we employed a large language model (GPT-4) exclusively for language polishing
and proofreading. The model assisted in improving the fluency and clarity of certain passages,
particularly in the introduction and discussion sections. All scientific contributions, including core
ideas, methodologies, experiments, and conclusions, originate entirely from the authors. The LLM
was used solely as a writing aid, with all outputs carefully verified to ensure technical accuracy.

A.2 DATASETS

A.2.1 SENTENCE EMBEDDING EVALUATION

To evaluate sentence embeddings, we use the Chinese Massive Text Embedding Benchmark (C-
MTEB), which is a collection of datasets across six categories: classification, clustering, pair
classification, reranking, retrieval, and sentence similarity. In total, there are 31 datasets. The
dataset is available at https://huggingface.co/datasets/C-MTEB, and the leaderboard can be found at
https://huggingface.co/spaces/mteb/leaderboard.

Data preprocessing: A brief overview of the C-MTEB datasets is provided below:

In our experiments, since GPT models have an input sequence limit of 512 tokens, we applied text
truncation accordingly. By analyzing the text length distribution in the C-MTEB dataset, we found
that most texts are under 512 tokens (Figure 4), and a substantial portion remains below 1024 tokens
even when repeated three times. Therefore, for our experiments with LLaMA-2, in order to avoid
potential memory overflow issues caused by a small number of long texts, we truncated the text to a
maximum length of 1024 tokens.

The detailed results can be found in Table 2. Additionally, Table 3 presents the results for GPT-2 on
C-MTEB using the last pooling strategies.

A.2.2 WORD EMBEDDING EVALUATION

To evaluate word embeddings, we use the Chinese SEMantic evaluation dataset (C-SEM), a bench-
mark dataset for semantic evaluation. We use the Sentence Level Polysemous Words Classification
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Task Type Task Name Classical Echo-2 Echo-3 ReBA ReBA-3

Classification TNews 0.2775 0.2679 0.2766 0.3061 0.3055
Classification IFlyTek 0.2288 0.1915 0.2099 0.3094 0.3099
Classification MultilingualSentiment 0.4851 0.4838 0.4865 0.5044 0.5064
Classification JDReview 0.6989 0.7092 0.7069 0.7357 0.7342
Classification OnlineShopping 0.6637 0.6626 0.6681 0.6943 0.6948
Classification Waimai 0.6398 0.6687 0.6580 0.6991 0.7026

Clustering CLSClusteringS2S 0.1282 0.1505 0.1446 0.2289 0.2308
Clustering CLSClusteringP2P 0.2086 0.1077 0.1480 0.3081 0.3107
Clustering ThuNewsClusteringS2S 0.2419 0.2587 0.2678 0.3250 0.3246
Clustering ThuNewsClusteringP2P 0.3433 0.2708 0.3417 0.4352 0.4322

Pair Classification Ocnli 0.5338 0.5306 0.5349 0.5382 0.5382
Pair Classification Cmnli 0.5488 0.5639 0.5562 0.5462 0.5511

Reranking T2Reranking 0.5254 0.5539 0.5462 0.5570 0.5613
Reranking MMarcoReranking 0.0263 0.0574 0.0535 0.0709 0.0714
Reranking CMedQAv1 0.1399 0.1800 0.1852 0.2788 0.2811
Reranking CMedQAv2 0.1488 0.2037 0.1993 0.2852 0.2903

Retrieval T2Retrieval 0.0564 0.1018 0.0972 0.2079 0.2265
Retrieval MMarcoRetrieval 0.2201 0.3305 0.3316 0.4766 0.4925
Retrieval DuRetrieval 0.1076 0.1456 0.1512 0.3076 0.3417
Retrieval CovidRetrieval 0.0464 0.0105 0.0200 0.1628 0.1786
Retrieval CmedqaRetrieval 0.2199 0.3171 0.3105 0.4196 0.4188
Retrieval EcomRetrieval 0.2430 0.3880 0.3660 0.5330 0.5620
Retrieval MedicalRetrieval 0.0820 0.1700 0.1520 0.2860 0.2990
Retrieval VideoRetrieval 0.2040 0.4490 0.3710 0.5670 0.5810

STS ATEC 0.1321 0.1476 0.1453 0.1652 0.1769
STS BQ 0.1902 0.2239 0.2134 0.2532 0.2561
STS LCQMC 0.1116 0.2111 0.1830 0.3199 0.3329
STS PAWSX 0.1234 0.1185 0.1195 0.1331 0.1327
STS STSB 0.2563 0.3429 0.3268 0.3469 0.3660
STS AFQMC 0.0798 0.0780 0.0789 0.0997 0.1060
STS QBQTC 0.1189 0.1696 0.1628 0.1651 0.1512

Total average N/A 0.2591 0.2924 0.2907 0.3634 0.3699

Table 3: Main Results: Zero-shot scores of GPT-2 models on C-MTEB under last pooling strategy
with different methods. ’Classical’ refers to the traditional encoding method, ’Echo-2’ and ’Echo-3’
refer to the methods that only repeat the text without backward attention, and ’ReBA’ and ’ReBA-
3’ refer to our proposed method with one and two repetitions, respectively, the scores we choose
are ’accuracy’, ’v measure’ , ’map’, ’cos sim :accuracy’, ’cos sim :pearson’, ’recall at 1000’ for
Classification, Clustering, Reranking, Pair Classification, STS, Retrieval.
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Figure 4: Information about C-MTEB, with most text lengths within 1000 tokens.

(SLPWC) subset of C-SEM as our evaluation dataset. This subset is designed to test a model’s ability
to understand polysemy (i.e., words with multiple meanings). The evaluation involves presenting a
word in different contexts and expecting the model to identify semantic differences.

1. SLPWC:

The SLPWC dataset contains 300 polysemous words, each of which appears in four sentences. In
three of the sentences, the polysemous word has the same meaning, while in the remaining sentence,
the word has a different meaning. The task is to identify the sentence with the different meaning, the
data presents a question format: ‘Which of the following sentences uses ‘word’ differently from the
others? A. sentence1; B. sentence2; C. sentence3; D. sentence4.’ An example from the dataset is
presented in section A.2.2.

2. WSD:

The Word Sense Disambiguation (WSD) dataset contains 1,023 polysemous words, each associated
with multiple meanings, and each meaning linked to several example sentences. The dataset is
structured as: {word: {sense1: [sentence1, sentence2, sentence3]; sense2: [sentence4]}}. To ensure
consistent evaluation, we converted the WSD dataset into the SLPWC format. Specifically, three
sentences are randomly selected from one meaning and one from another. The transformed data
presents a question format: ‘Which of the following sentences uses ‘word’ differently from the
others? A. sentence1; B. sentence2; C. sentence3; D. sentence4.’ Below is an example of question in
these two dataset:
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Task Type Task Name Classical Echo-2 ReBA-2
Classification TNews 0.3048 0.3090 0.3102
Classification IFlyTek 0.3414 0.3179 0.3474
Classification MultilingualSentiment 0.4952 0.5062 0.5058
Classification JDReview 0.7272 0.7432 0.7373
Classification OnlineShopping 0.6957 0.7021 0.7028
Classification Waimai 0.7150 0.7095 0.7193

Clustering CLSClusteringS2S 0.2188 0.2473 0.2430
Clustering CLSClusteringP2P 0.3186 0.3189 0.3208
Clustering ThuNewsClusteringS2S 0.3065 0.3222 0.3217
Clustering ThuNewsClusteringP2P 0.4225 0.4214 0.4245

Pair Classification Ocnli 0.5452 0.5501 0.5485
Pair Classification Cmnli 0.5452 0.5675 0.5624

Reranking T2Reranking 0.5553 0.5518 0.6061
Reranking MMarcoReranking 0.0365 0.0629 0.0431
Reranking CMedQAv1 0.2326 0.2771 0.2680
Reranking CMedQAv2 0.2587 0.2941 0.2833

Retrieval T2Retrieval 0.1360 0.1992 0.3603
Retrieval MMarcoRetrieval 0.2843 0.4798 0.4190
Retrieval DuRetrieval 0.1698 0.2856 0.3261
Retrieval CovidRetrieval 0.3335 0.1581 0.7758
Retrieval CmedqaRetrieval 0.3590 0.4296 0.3962
Retrieval EcomRetrieval 0.3860 0.5550 0.4970
Retrieval MedicalRetrieval 0.1660 0.2680 0.2360
Retrieval VideoRetrieval 0.5330 0.5780 0.5770

STS ATEC 0.1678 0.1950 0.1886
STS BQ 0.2918 0.2761 0.2926
STS LCQMC 0.4296 0.3853 0.4352
STS PAWSX 0.1448 0.1036 0.1214
STS STSB 0.4450 0.5140 0.4917
STS AFQMC 0.1018 0.1117 0.1105
STS QBQTC 0.1799 0.1366 0.1571

Total average N/A 0.3499 0.3734 0.3977

Table 4: Ablations: Zero-shot scores of GPT-2 models on C-MTEB under mean pooling strategy
with different methods. ’Classical’ refers to the traditional encoding method, ’Echo-2’ refer to the
methods that only repeat the text without backward attention, and ’ReBA’ refer to our proposed
method with one repetition, respectively, the scores we choose are ’accuracy’, ’v measure’ , ’map’,
’cos sim’, ’pearson’, ’recall at 1000’.

A.2.3 ATTENTION MATRIX PROCESSING

We also conducted comparative experiments with symmetric attention matrices and last-layer-only
attention. The results are shown in Table 2. Both methods underperformed compared to our approach.
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Task Type Task Name Classical Echo-2 Echo-3 ReBA-2
Classification TNews 0.5194 0.5264 0.5203 0.5334
Classification IFlyTek 0.3663 0.4082 0.3552 0.4429
Classification MultilingualSentiment 0.6474 0.6554 0.6476 0.6645
Classification JDReview 0.7645 0.7717 0.7497 0.7976
Classification OnlineShopping 0.8521 0.8724 0.8674 0.8745
Classification Waimai 0.7951 0.8214 0.8226 0.8206

Clustering CLSClusteringS2S 0.2446 0.2836 0.3000 0.3021
Clustering CLSClusteringP2P 0.2858 0.3169 0.3049 0.2972
Clustering ThuNewsClusteringS2S 0.4841 0.5572 0.5522 0.5702
Clustering ThuNewsClusteringP2P 0.3272 0.4968 0.5216 0.3976

Pair Classification Ocnli 0.5181 0.5463 0.5355 0.5176
Pair Classification Cmnli 0.5276 0.5543 0.5498 0.5275

Reranking T2Reranking 0.5949 0.5806 0.5708 0.6185
Reranking MMarcoReranking 0.0437 0.0774 0.0867 0.0619
Reranking CMedQAv1 0.2390 0.3976 0.3948 0.3667
Reranking CMedQAv2 0.2489 0.4581 0.4713 0.4142

Retrieval T2Retrieval 0.4387 0.4699 0.3840 0.6334
Retrieval MMarcoRetrieval 0.6340 0.7425 0.7423 0.7923
Retrieval DuRetrieval 0.5701 0.7322 0.6740 0.7936
Retrieval CovidRetrieval 0.5896 0.2819 0.1923 0.6723
Retrieval CmedqaRetrieval 0.3713 0.6642 0.6775 0.5355
Retrieval EcomRetrieval 0.5990 0.7180 0.7700 0.8310
Retrieval MedicalRetrieval 0.2090 0.4760 0.5030 0.4170
Retrieval VideoRetrieval 0.3220 0.4190 0.5780 0.6370

STS ATEC 0.1328 0.1880 0.1793 0.1876
STS BQ 0.1852 0.3185 0.3199 0.2385
STS LCQMC 0.2397 0.4924 0.4886 0.3136
STS PAWSX 0.1113 0.1402 0.1399 0.1112
STS STSB 0.2656 0.4559 0.4187 0.3443
STS AFQMC 0.1095 0.1549 0.1373 0.1488
STS QBQTC 0.0105 0.0956 0.1907 0.0206

Total average N/A 0.3951 0.4733 0.4724 0.4801

Table 5: Ablations: Zero-shot scores of LLaMA-2 model on C-MTEB under last pooling strategy
with different methods. ’Classical’ refers to the traditional encoding method, ’Echo-2’ refer to the
methods that only repeat the text without backward attention, and ’ReBA-2’ refer to our proposed
method with one repetition, respectively, the scores we choose are ’accuracy’, ’v measure’ , ’map’,
’cos sim’, ’pearson’, ’recall at 1000’.

A.3 MODEL DETAIL

Here we provide some details of the models we use in our experiments: BERT-base-chinese3, GPT2-
base-chinese4 ,Chinese-llama-2-7b5 , Qwen-7B6, Chinese-Falcon-7b7 and BaiChuan-7B8 as our
models.

The BERT-base-chinese model, developed by Google, is a pre-trained language model tailored for
Chinese natural language processing tasks. Built on the BERT architecture, it comprises 12 layers, 768

3BERT-base-chinese:https://huggingface.co/google-bert/bert-base-chinese
4GPT2-base-chinese:https://huggingface.co/ckiplab/gpt2-base-chinese
5Chinese-llama-2-7b:https://huggingface.co/LinkSoul/Chinese-Llama-2-7b
6Qwen-7B:https://huggingface.co/Qwen/Qwen-7B
7Falcon-7B: https://huggingface.co/Linly-AI/Chinese-Falcon-7B
8BaiChuan-7B:https://huggingface.co/baichuan-inc/Baichuan-7B
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hidden units, and 12 attention heads, totaling approximately 110 million parameters. Pre-trained on
large Chinese corpora, including Chinese Wikipedia, using Masked Language Modeling (MLM) and
Next Sentence Prediction (NSP) objectives, it effectively captures word and sentence-level semantics.
This model serves as a robust baseline for tasks such as text classification, named entity recognition,
and question answering, offering strong performance across diverse Chinese NLP applications.

The GPT series is a family of pretrained models based on the Transformer architecture, with GPT-
2 (Radford et al., 2019) being the second-generation generative pretrained model released by OpenAI
in 2019. We used the Chinese version of GPT-2, GPT2-base-chinese, which is fine-tuned on
Traditional Chinese datasets to better adapt to Chinese contexts. It has 12 layers, 768 hidden units,
and 12 attention heads.

LLaMA-2 (Large Language Model Meta AI 2) (Touvron et al., 2023a) is the second-generation LLM
released by Meta (formerly Facebook), designed to handle various language tasks, including text
generation, comprehension, and question-answering. It is an enhanced version of the original LLaMA
model, featuring improved performance and adaptability. We used a Simplified Chinese fine-tuned
version of LLaMA-2 for our experiments. It has 32 layers, 4096 hidden units, and 32 attention heads.

Qwen-7B (Tongyi Qianwen) is a unidirectional language model developed by Alibaba Group. With 7
billion parameters, it is designed to handle a wide range of tasks, including text generation, content
summarization, and intelligent decision-making. The model excels in Chinese language processing
and supports multilingual tasks, making it suitable for diverse real-world applications.

Baichuan-7B is a unidirectional language model with 7 billion parameters, developed in China for
Chinese and multilingual NLP tasks. It demonstrates strong capabilities in machine translation, text
classification, and semantic understanding. The model is widely recognized for its adaptability and
practical application across various industries.

The Chinese-Falcon-7B, developed by Linly-AI, is an adaptation of the original Falcon architecture,
tailored specifically for Chinese natural language processing tasks. With 32 Transformer layers, 71
attention heads per layer, and a hidden size of 4544, it retains the efficient design of Falcon while
being pre-trained on a large-scale Chinese corpus. This specialization enables superior performance in
Chinese text understanding and generation, making it suitable for applications such as summarization,
sentiment analysis, and conversational AI.

Here are the basic statistics of the models used in our experiments:

Model Layers Hidden Units Heads
BERT 12 768 12
GPT-2 12 768 12
LLaMA-2 32 4096 32
Qwen 32 4096 32
BaiChuan 32 4096 32
Falcon 32 4544 71

Table 6: Basic Statistics of the Models

A.4 DETAILS OF THE SENTENCE EVALUATION: TASK DESCRIPTION AND METRICS

There are six types of tasks in the C-MTEB dataset: Classification, Clustering, Pair Classification,
Reranking, Retrieval, and STS. Each task has specific evaluation metrics and requirements, as detailed
below:

The Classification task involves assigning labels to text inputs from predefined categories. For
example, the TNews dataset requires predicting news categories based on headlines. The primary
evaluation metric for this task is accuracy, defined as:

Accuracy =
Nc

N

where Nc is the number of correct predictions, and N is the total number of samples.
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The Clustering task groups text samples based on their semantic similarity without predefined labels.
An example is the CLSClusteringS2S dataset, where similar sentences need to be grouped together.
The evaluation metric is V-measure, defined as:

V = 2× H × C

H + C

where H represents homogeneity, and C represents completeness.

The Reranking task focuses on reordering retrieved documents by their relevance to a query. For
instance, in the T2Reranking dataset, the task involves ranking candidate documents for search
queries. The main evaluation metric is Mean Average Precision (MAP). For a query q, the Average
Precision (AP) is defined as:

APq =
1

Rq

n∑
k=1

P (k) · δ(k)

where Rq is the number of relevant documents for query q, P (k) is the precision at position k, and
δ(k) is an indicator function that equals 1 if the document at position k is relevant, otherwise 0. MAP
is the mean of AP over all queries.

The Pair Classification task determines whether two sentences are semantically equivalent. An
example dataset is Ocnli, which focuses on classifying sentence pairs into categories such as entail-
ment, contradiction, or neutral. The evaluation metrics used are cosine similarity-based accuracy and
Pearson correlation. Cosine similarity between embedding vectors u and v is defined as:

cos(u,v) =
u · v

∥u∥∥v∥
Cosine similarity-based accuracy measures the alignment between predicted similarity and semantic
equivalence, while Pearson correlation evaluates the linear relationship between cosine similarity
scores and human-labeled ground truth.

The STS (Semantic Textual Similarity) task evaluates the degree of semantic similarity between
pairs of sentences by comparing their embeddings. For example, the ATEC dataset assesses sentence
similarity in financial question matching scenarios. The primary evaluation metric used is Pearson
correlation, which quantifies the linear relationship between the predicted similarities and the ground
truth labels. The Pearson correlation coefficient between predicted cosine similarities ŷ and true
similarities y is computed as:

r =

∑n
i=1(ŷi − ¯̂y)(yi − ȳ)√∑n

i=1(ŷi − ¯̂y)2
√∑n

i=1(yi − ȳ)2

The Retrieval task evaluates a model’s ability to identify relevant documents in a large collection.
For example, the MMarcoRetrieval dataset involves retrieving relevant documents for search queries.
The primary evaluation metric is Recall at 1000, defined as:

Recall@1000 =
Nr

Nt

where Nr is the number of relevant documents retrieved within the top 1000 results, and Nt is the
total number of relevant documents.

A.5 DETAILS OF THE WORD EVALUATION: TASK DESCRIPTION AND METRICS

We consider a four-choice question in the word evaluation, where each question has four options. For
each question, we extract the word embeddings corresponding to the target word wi using different
methods (ReBA, Echo, Classical) (see Table 1). After obtaining the four word embeddings, we
calculate the pairwise Euclidean distances between the four vectors and select the word with the
largest sum of distances to the other three vectors as the answer. The Euclidean distance between two
vectors u and v is:

d(u,v) = ∥u− v∥
In addition, we also consider the cosine distance, which measures the similarity between vectors as:
The results using cosine distance are shown in figure 5.
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Figure 5: Performance on SLPWC and WSD tasks using Euclidean and Cosine distances to evaluate
word embeddings, it shows that our results still hold under different distances,
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