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Abstract

Test log-likelihood is commonly used to compare different models of the same data or
different approximate inference algorithms for fitting the same probabilistic model. We
present simple examples demonstrating how comparisons based on test log-likelihood can
contradict comparisons according to other objectives. Specifically, our examples show that
(i) approximate Bayesian inference algorithms that attain higher test log-likelihoods need
not also yield more accurate posterior approximations and (ii) conclusions about forecast
accuracy based on test log-likelihood comparisons may not agree with conclusions based on
root mean squared error.

1 Introduction

Test log-likelihood, also known as predictive log-likelihood or test log-predictive, is computed as the log-
predictive density averaged over a set of held-out data. It is often used to compare different models of the
same data or to compare different algorithms used to fit the same probabilistic model. Although there are
compelling reasons for this practice (Section 2.1), we provide examples that falsify the following, usually
implicit, claims:

• Claim: The higher the test log-likelihood, the more accurately an approximate inference algorithm
recovers the Bayesian posterior distribution of latent model parameters (Section 3).

• Claim: The higher the test log-likelihood, the better the predictive performance on held-out data
according to other measurements, like root mean squared error (Section 4).

Our examples demonstrate that test log-likelihood is not always a good proxy for posterior approximation
error. They further demonstrate that forecast evaluations based on test log-likelihood may not agree with
forecast evaluations based on root mean squared error.

We are not the first to highlight discrepancies between test log-likelihood and other analysis objectives. For
instance, Quiñonero-Candela et al. (2005) and Kohonen & Suomela (2005) showed that when predicting
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discrete data with continuous distributions, test log-likelihood can be made arbitrarily large by concentrating
probability into vanishingly small intervals. Chang et al. (2009) observed that topic models with larger test
log-predictive densities can be less interpretable. Yao et al. (2019) highlighted the disconnect between test
log-likelihood and posterior approximation error in the context of Bayesian neural networks. Our examples,
however, reveal more fundamental discrepancies between test log-likelihood and other evaluation metrics. In
particular, we show how comparisons based on test log-likelihood can contradict comparisons based on other
objectives even in simple models like linear regression.

After introducing our notation, we precisely define test log-likelihood and review arguments for its use
in Section 2. In Sections 3.1–3.3, we present several examples showing that across a range of posterior
approximations, those with higher test log-likelihoods may nevertheless provide worse approximation quality.
Then, in Section 3.4, we provide some intuition about why this phenomenon can occur when the model is
severely misspecified (Section 3.1); when using sophisticated posterior approximation methods (Section 3.2);
and even when there is little or no model misspecification (Section 3.3). In Section 4, we show examples in
both complex and simple models where test log-likelihood is higher but root mean squared error on held-out
data is worse. Our examples in Section 4 do depend on model misspecification, but we note that model
misspecification is unavoidable in practice. We conclude in Section 5 with a reflection on when we should use
test log-likelihood in practice.

2 Background

We assume we have access to training and testing data such that all data points are independently and
identically distributed (i.i.d.) from an unknown probability distribution P. Let D = {yn}Nn=1 denote the
training data. In many standard analyses, practitioners will have access to a predictive density of a future
data point y? given the observed D: π(y?|D). For instance, consider the following three cases.

• Case A: Practitioners often model the observed data by introducing a parameter θ and specifying
that the data are i.i.d. from a conditional distribution Π(Y |θ) with density π(y|θ). In a non-Bayesian
analysis, one usually computes a point estimate θ̂ of the unknown parameter (e.g. by maximum
likelihood). Given a point estimate θ̂, the predictive density π(y?|D) is just π(y?|θ̂).

• Case B: A Bayesian analysis elaborates the conditional model from Case A by specifying a prior
distribution Π(θ) and formally computes the density π(θ|D) of the posterior distribution Π(θ|D)
from the assumed joint distribution Π(D, θ). The Bayesian posterior predictive density is given by

π(y?|D) =
∫
π(y?|θ)π(θ|D)dθ. (1)

• Case C: An approximate Bayesian analysis proceeds as in Case B but uses an approximation in
place of the exact posterior. If we let Π(θ|D) represent an approximation to the exact posterior,
Equation (1) yields the approximate Bayesian posterior predictive density π(y?|D). Sometimes,
due the difficulty of the integral in Equation (1), a further approximation may be used to yield a
predictive density π(y?|D).

In all of these cases, we will refer to the practitioner as having access to a model Π that determines the
predictive distribution Π(y?|D); in particular, we allow “model” henceforth to encompass fitted models and
posterior approximations. One can ask how well the resulting Π(y?|D) predicts new data generated from P.
Practitioners commonly assess how well their model predicts out-of-sample using a held-out set of testing
data D? = {y?n}N

?

n=1, which was not used to train the model. To compute test log-likelihood, they average
evaluations of the log-predictive density function over the testing set:

TLL(D?; Π) := 1
N?

N?∑
n=1

log π(y?n|D), (2)

where our notation makes explicit the dependence of the test log-likelihood (TLL) on testing data D? and the
chosen model Π. In particular, researchers commonly use test log-likelihood to select between two models of
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the data, say Π and Π̃; that is, they select model Π over Π̃ whenever TLL(D?; Π) is higher than TLL(D?; Π̃).
Note that the abbreviation NLPD (negative log predictive density) is also commonly used in the literature for
the negative TLL (Quiñonero-Candela et al., 2005; Kohonen & Suomela, 2005). In Appendix C, we briefly
discuss some alternative metrics for model comparison.

2.1 The case for test log-likelihood

In what follows, we first observe that, if we wanted to choose a model whose predictive distribution is closer to
the true data distribution in a certain KL sense, then it is equivalent to choose a model with higher expected
log-predictive density (elpd). Second, we observe that TLL is a natural estimator of elpd when we have access
to a finite dataset.

The unrealistic case where the true data-generating distribution is known. The expected log-
predictive density is defined as

elpd(Π) :=
∫

log π(y?|D)dP(y?).

Our use of the abbreviation elpd follows the example of Gelman et al. (2014, Equation 1). If we ignore an
additive constant not depending on Π, elpd(Π) is equal to the negative Kullback–Leibler divergence from the
predictive distribution Π(y?|D) to the true data distribution P(y?). Specifically, if we assume P has density
p(y?), we have

KL (P(y?) ‖Π(y?|D)) =
∫
p(y?) log p(y?)dy? − elpd(Π).

Thus, elpd(Π) > elpd(Π̃) if and only if the predictive distribution Π(y?|D) is closer, in a specific KL sense, to
the true data distribution than the predictive distribution Π̃(y?|D) is.

Test log-likelihood as an estimator. Since we generally do not know the true generating distribution P,
computing elpd(Π) exactly is not possible. By assumption, though, the test data are i.i.d. draws from P.
So TLL(D?; Π) is a computable Monte Carlo estimate of elpd(Π). If we assume elpd(Π) is finite, it follows
that a Strong Law of Large Numbers applies: as N? →∞, TLL(D?; Π) converges almost surely to elpd(Π).
Therefore, with a sufficiently high amount of testing data, we might compare the estimates TLL(D?; Π) and
TLL(D?; Π̃) in place of the desired comparison of elpd(Π) and elpd(Π̃). Note that the Strong Law follows
from the assumption that the y?n values are i.i.d. under P; it does not require any assumption on the model
Π and holds even when the model Π is misspecified.

2.2 Practical concerns

Since TLL(D?; Π) is an estimate of elpd(Π), it is subject to sampling variability, and a careful comparison
would ideally take this sampling variability into account. We first elaborate on the problem and then
describe one option for estimating and using the sampling variability in practice; we take this approach in
our experiments below.

To start, suppose we had another set ofN? testing data points, D̃?. Then generally TLL(D?; Π) 6= TLL(D̃?; Π).
So it is possible, in principle, to draw different conclusions using the TLL based on different testing datasets.
We can more reasonably express confidence that elpd(Π) is larger than elpd(Π̃) if the lower bound of a
confidence interval for elpd(Π) exceeds the upper bound of a confidence interval for elpd(Π̃).

We next describe one way to estimate useful confidence intervals. To do so, we make the additional (mild)
assumption that

σ2
TLL(Π) :=

∫
[log π(y?|D)− elpd(Π)]2 dP(y?) <∞.

Then, since the y?n are i.i.d. draws from P, a Central Limit Theorem applies: as N? →∞,
√
N? (TLL(D?; Π)− elpd(Π)) d→ N (0, σ2

TLL(Π)).

Although we cannot generally compute σTLL(Π), we can estimate it with the sample standard deviation
σ̂TLL(Π) of the evaluations {log π(y?n|D)}N?

n=1. The resulting approximate 95% confidence interval for elpd(Π)
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is TLL(D?; Π)± 2σ̂TLL/
√
N?. In what follows, then, we will conclude elpd(Π) > elpd(Π̃) if

TLL(D?; Π)− 2σ̂TLL(Π)/
√
N? > TLL(D?; Π̃) + 2σ̂TLL(Π̃)/

√
N?. (3)

For the sake of brevity, we will still write TLL(D?; Π) > TLL(D?; Π̃) in place of Equation (3) below.

To summarize: for a sufficiently large test dataset D?, we expect predictions made from a model with
larger TLL to be closer (in the KL sense above) to realizations from the true data-generating process. In
our experiments below, we choose large test datasets so that we expect TLL comparisons to reflect elpd
comparisons. Our experiments instead illustrate that closeness between Π(y?|D) and P (in the KL sense
above) often does not align with a different stated objective.

3 Claim: higher test log-likelihood corresponds to better posterior approximation

In this section, we give examples where test log-likelihood is higher though the (approximation) quality of
an approximate posterior mean, variance, or other common summary is lower. We start with examples in
misspecified models and then give a correctly specified example. We conclude with a discussion of the source
of the discrepancy: even in the well-specified case, the Bayesian posterior predictive need not be close to the
true data-generating distribution.

Practitioners often use posterior expectations to summarize the relationship between a covariate and a
response. For instance, the posterior mean serves as a point estimate, and the posterior standard deviation
quantifies uncertainty. However, as the posterior density π(θ|D) is analytically intractable, practitioners must
instead rely on approximate posterior computations. There are myriad approximate inference algorithms –
e.g. Laplace approximation, Hamiltonian Monte Carlo (HMC), mean-field variational inference, to name just
a few. All these algorithms aim to approximate the same posterior Π(θ|D). Test log-likelihood is often used
to compare the quality of different approximations, with higher TLL values assumed to reflect more accurate
approximations, e.g. in the context of variational inference (see, e.g., Hoffman et al., 2013; Ranganath et al.,
2014; Hernández-Lobato et al., 2016; Liu & Wang, 2016; Shi et al., 2018) or Bayesian deep learning (see, e.g.,
Hernández-Lobato & Adams, 2015; Gan et al., 2016; Li et al., 2016; Louizos & Welling, 2016; Sun et al., 2017;
Ghosh et al., 2018; Mishkin et al., 2018; Wu et al., 2019; Izmailov et al., 2020; 2021; Ober & Aitchison, 2021).

Formally, suppose that our exact posterior is Π(θ|D) and that we have two approximate inference algorithms
that produce two approximate posteriors, respectively Π̂1(θ|D) and Π̂2(θ|D). The exact posterior and its
approximations respectively induce predictive distributions Π(y?|D), Π̂1(y?|D), and Π̂2(y?|D). For instance,
Π̂1(θ|D) could be the empirical distribution of samples drawn using HMC and Π̂2(θ|D) could be a mean-field
variational approximation. Our first example demonstrates that it is possible that (i) TLL(D?; Π̂1) >
TLL(D?; Π) but (ii) using Π̂1 could lead to different inference about model parameters than using the exact
posterior Π. Our second example demonstrates that it is possible that (i) TLL(D?; Π̂1) > TLL(D?; Π̂2) but
(ii) Π̂1(θ|D) is a worse approximation to the exact posterior Π(θ|D) than Π̂2(θ|D).

3.1 TLL and downstream posterior inference

Relying on TLL for model selection can lead to different inferences than we would find by using the exact
posterior. To illustrate, suppose we observe D100 = {(xn, yn)}100

n=1 drawn from the following heteroscedastic
model:

xn ∼ N (0, 1), yn | xn ∼ N (xn, 1 + log(1 + exp(xn))). (4)

Further suppose we model these data with a misspecified homoscedastic model:

θ ∼ N ([0, 0]>, [1, 0; 0, 1]), yn | θ, φn ∼ N (θTφn, 1), (5)

where φn = [xn, 1]>, and θ = [θ1, θ2]. Figure 1 shows the posterior mean and the 95% predictive interval of
the misspecified regression line θ>φ from (A) the exact Bayesian posterior; (B) the mean field variational
approximation restricted to isotropic Gaussians; and (C)–(F) variational approximations with re-scaled
marginal variances. Each panel includes a scatter plot of the observed data, D100. We also report the
2-Wasserstein distance between the exact posterior and each approximation and the TLL averaged over
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Figure 1: (Left). Predictive distributions under the Bayesian posterior and mean field variational approx-
imations. The two numbers in the title of each plot are the 2-Wasserstein distance to the exact posterior
and test log-likelihood computed on 104 test set observations. Two standard errors in the test log-likelihood
estimate are (A) 0.03, (B) 0.03, (C) 0.02, (D) 0.02, (E) 0.02, (F) 0.02. (Right). The relationship between
2-Wasserstein distance to the posterior and test log-likelihood.

N∗ = 104 test data points drawn from Equation (4); note that the 2-Wasserstein distance can be used to
bound differences in means and variances (Huggins et al., 2020). The variational approximation (panel (B) of
Figure 1) is quite accurate: the 2-Wasserstein distance between the approximation and the exact posterior is
∼10−4. See also Figure 2, which shows the contours of the exact and approximate posterior distributions. As
we scale up the variance of this approximation, we move away from the exact posterior over the parameters
but the posterior predictive distribution covers more data, yielding higher TLL. The left panel of Figure 11
in Appendix B.3 shows the same pattern using the KL divergence instead of the 2-Wasserstein distance.

TLL and a discrepancy in inferences. Researchers are often interested in understanding whether there
is a relationship between a covariate and response; a Bayesian analysis will often conclude that there is
no relationship if the posterior on the corresponding effect-size parameter places substantial probability on
an interval not containing zero. In our example, we wish to check whether θ1 = 0. Notice that the exact
posterior distribution (panel (A) in Figures 1 and 2) is concentrated on positive θ1 values. The 95% credible
interval of the exact posterior1 is [0.63, 1.07]. Since the interval does not contain zero, we would infer that
θ1 6= 0. On the other hand, as the approximations become more diffuse (panels (B)–(F)), TLL increases,
and the approximations begin to place non-negligible probability mass on negative θ1 values. In fact, the
approximation with highest TLL (panel (F) in Figures 1 and 2) yields an approximate 95% credible interval
of [-0.29,1.99], which covers zero. Had we used this approximate interval, we would have failed to conclude
θ1 6= 0. That is, in this case, we would reach a different substantive conclusion about the effect θ1 if we (i)
use the exact posterior or (ii) use the approximation selected by highest TLL.

3.2 TLL in the wild

Next, we examine a more realistic scenario in which the difference between the quality of the posterior
approximation and the exact posterior distribution TLL arises naturally, without the need to artificially
increase the marginal variance of the variational approximations. To explore this situation, we will first
introduce another example of misspecification and repeat the type of analysis described in Section 3.1.

1Throughout we used symmetric credible intervals formed by computing quantiles: the 95% interval is equal to the 2.5%–97.5%
interquantile range.
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Figure 2: Contours of (A) the exact posterior, (B) the mean field variational approximation restricted to
isotropic Gaussians, and (C)–(F) re-scaled mean field approximations. The line θ1 = 0 is highlighted in red.

Figure 3: (Left). Predictive distributions under the Bayesian posterior (A) and the SWAG posterior with
SWAG learning rate of (B) 10−3, (C) 10−2, (D) 10−1, (E) 1, and (F) 10. The two numbers in the title of
each plot are the 2-Wasserstein distance to the exact posterior and test log-likelihood computed on 104 test
set observations. Two standard errors in the test log-likelihood estimates are (A) 0.16, (B) 0.15, (C) 0.14, (D)
0.13, (E) 0.05, (F) 0.01. (Right). Contours of the (A) exact posterior, and (B)–(F) SWAG approximations
with different learning rates. The line θ1 = 0 is highlighted in red.

Consider the following case: we observe 500 observations D500 = {(xn, yn)}500
n=1 drawn from a non-linear

model:

θ∗ = [−2,−1]>, xn ∼ N (0, 1), yn | θ∗, φn ∼ N (θ>∗ φn + x2
n, 0.5), (6)

where φn = [xn, 1]>. Further suppose we modeled these data with a misspecified linear model

θ ∼ N ([0, 0]>[1, 0; 0, 1]), yn | θ, φn ∼ N (θ>φn, 0.5). (7)

While the misspecification here might appear egregious, linear models are widely used in practice for modeling
non-linear phenomena when one is primarily interested in inferring whether the covariates are positively
correlated, negatively correlated, or are uncorrelated with the responses (Berk et al., 2014; 2018; Blanca
et al., 2018; Vowels, 2023). Next, we use SWAG (Maddox et al., 2019), an off-the-shelf approximate inference
algorithm, to approximate the posterior Π(θ|D500). We also repeat the re-scaled variational inference
experiment from Section 3.1 with this set of data and models (Equations (6) and (7)); see Appendix B.2.
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SWAG uses a gradient-based optimizer with a learning rate schedule that encourages the optimizer to oscillate
around the optimal solution instead of converging to it. Then, a Gaussian distribution is fit to the set of
solutions explored by the optimizer around the optimum using moment matching. In general, one must select
the learning rate schedule in a heuristic fashion. One might be tempted to use TLL to tune the learning rate
schedule. We use this heuristic and run SWAG for a thousand epochs, annealing the learning rate down to a
different constant value after 750 epochs. Although used pedagogically here, similar heuristics have been
used in practice (di Langosco et al., 2022), where the learning rate is tuned based on the accuracy achieved
on held-out data. We vary this constant value over the set {10−3, 10−2, 10−1, 1, 10}. In Figure 3, we show
the resulting posterior mean and the 95% predictive interval of the misspecified regression line θ>φ from (A)
the Bayesian posterior; (B)–(F) the SWAG posteriors using different learning rate schedules. In each plot, we
overlay the observed data D500 (black dots) with the true data generating function in dashed black. We also
report the 2-Wasserstein distance between the exact posterior and each approximation and the TLL averaged
over N∗ = 104 test data points drawn from Equation (6). In all cases, SWAG overestimates the posterior
variance, with predictive distributions that better cover the data and consequently lead to a higher TLL.
However, these SWAG posterior approximations are farther from the exact posterior. In fact, we found that
a learning rate of 10 (Figure 3, Left, panel (F)) maximized TLL but led to the worst approximation of the
exact posterior.

As in the previous section, next suppose we fit this misspecified linear model to understand whether there is
a relationship between the covariates and the responses, i.e., whether θ1 = 0. Notice that the exact posterior
distribution (Figure 3, Right, panel (A)) is concentrated on negative θ1 values, with the 95% posterior credible
interval being [−1.96,−1.79]. Since the interval is to the left of zero, we would infer that θ1 < 0 and that
the covariate and the response are negatively correlated. In contrast, if we select the SWAG approximation
with the highest TLL, we select the posterior approximation in panel (F) on the right side of Figure 3. The
corresponding 95% posterior credible interval is [−4.46, 0.74], which places non-negligible probability mass on
θ1 > 0. In this case, we would not conclude that the response and the covariate are negatively correlated –
by contrast to the conclusion using the exact posterior.

Figure 4: (Left). Contours of (A) the exact posterior, (B) the mean field variational approximation restricted
to isotropic Gaussians, and (C)–(F) re-scaled mean field approximations. The two numbers in the title of
each plot are the 2-Wasserstein distance to the exact posterior and test log-likelihoods computed on 104 test
set observations. Two standard errors in the test log-likelihood estimates are (A) 0.019, (B) 0.020, (C) 0.014,
(D) 0.013, (E) 0.011, (F) 0.009. (Right). The non-monotonic relationship between distance to posterior and
test log-likelihood. Observe that the exact posterior does not achieve highest test log-likelihood.

3.3 TLL and well-specified models

The examples above demonstrated that TLL is not a reliable proxy to posterior approximation quality when
the model is misspecified. Though misspecified models are the norm in practice, we now demonstrate that a
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distribution with higher TLL may not provide a more accurate posterior approximation even when the model
is correctly specified.

To this end, consider the following Bayesian linear model:

θ ∼ N ([0, 0]>, [1, 0.9; 0.9, 1]), yn | θ, φn ∼ N (θ>φn, 0.252), (8)

where φn = [xn, 1]>. Now, suppose we observe ten data points D10 = {(xn, yn)}10
n=1 sampled as

θ∗ = [−2,−1]>, xn ∼ N (0, 1), yn | θ∗, φn ∼ N (θ>∗ φn, 0.252). (9)

The left panel of Figure 4 plots the contours of (A) the exact posterior distribution Π(φ|D10); (B) the
mean field variational approximation constrained to the isotropic Gaussian family; and (C)–(F) variational
approximations with re-scaled marginal variances. In each panel, we report the 2-Wasserstein distance
between the approximate and exact posterior and the test log-predictive averaged over N? = 104 test data
points drawn from Equation (9).

Although we have correctly specified the conditional model of y|(θ, φ), the exact posterior has a lower TLL
than some of the approximate posteriors; in particular, the 95% confidence intervals for (C) and (D) are
disjoint from the 95% confidence interval for the exact posterior, shown in (A). The left panel of Figure 4
suggests that the more probability mass an approximate posterior places around the true data-generating
parameter, the higher the TLL. Eventually, as the approximation becomes more diffuse, TLL begins to
decrease (Figure 4 (right)). The non-monotonicity demonstrates that an approximate posterior with larger
implied TLL can in fact be further away from the exact posterior in a 2-Wasserstein sense than an approximate
posterior with smaller implied TLL. The right panel of Figure 11 in Appendix B.3 demonstrates the same
pattern using the KL divergence instead of the 2-Wasserstein distance. And Figure 9 in Appendix B.3 shows
that, in the well-specified case, a distribution with larger TLL can provide a worse approximation of the
posterior standard deviation than a distribution with smaller TLL.

3.4 What is going on?

We next discuss why we should not expect TLL to closely track posterior approximation quality, or posterior-
predictive approximation quality. Essentially the issue is that, even in the well-specified case, the Bayesian
posterior predictive distribution need not be close to the true data-generating distribution.

We illustrate these distinctions in Figure 5. The lower surface represents the space of distributions over a
latent parameter θ. The upper surface represents the space of distributions over an observable data point y?.
Each dot in the figure represents a distribution. The two dots in the lower surface are the exact posterior
Π(θ|D) (left, green dot) and an approximate posterior Π̂(θ|D) (right, red dot). The three dots in the upper
surface are the posterior predictive distribution Π(y?|D) (left, green dot), the approximate posterior predictive
Π̂(y?|D) (lower right, red dot), and the true data-generating distribution P(y?) (upper right, black dot). The
gray lines on the left and right indicate that the distribution in the upper surface can be obtained from the
corresponding (connected) distribution in the lower surface via Equation (1).

The remaining three (non-gray) lines represent three different discrepancies. Recall from Section 2 that
TLL(D?; Π̂) captures how close the approximate posterior predictive Π̂(y?|D) is to the true data-generating
process P(y?) in a particular KL sense:

TLL(D?, Π̂) ≈ −KL
(
P(y?) ‖ Π̂(y?|D)

)
+ constant.

To illustrate this notion of closeness, or equivalently discrepancy, in Figure 5, we draw a pink line between
P(y?) and Π̂(y?|D). We observe that the TLL importantly does not approximate (even up to a constant) the
analogous discrepancy from the approximate posterior predictive Π̂(y?|D) to the exact posterior predictive
Π(y?|D) (blue line in the upper surface); that is, it does not capture how close the posterior predictive
approximation is to the exact posterior predictive. The TLL likewise does not approximate (even up to
a constant) the corresponding discrepancy from the approximate posterior Π̂(θ|D) to the exact posterior
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P(y?)

Π(y?|D)

Π̂(y?|D)

TLL

Data space

Π(θ|D)

Π̂(θ|D)

Parameter space

Figure 5: Cartoon illustration highlighting the difference between three different discrepancies explored in
Section 3.4. The surfaces are spaces of distributions over a latent parameter (lower surface) or an observable
data point y? (upper surface). The pink line indicates that TLL(D?; Π̂) estimates a discrepancy between the
approximate posterior predictive Π̂(y?|D) (upper surface, lower right, red dot) and the true data-generating
distribution P(y?) (upper surface, upper right, black dot). The blue line represents a different discrepancy
between the exact posterior predictive (upper surface, left, green dot) and the approximate posterior predictive
(upper surface, lower right, red dot). The yellow line represents another different discrepancy between the
exact posterior (lower surface, left, green dot) and the approximate posterior (lower surface, right, red dot).
Gray lines connect distributions over parameters with their corresponding predictive distributions.

Π(θ|D) (yellow line in the lower surface); that is, it does not capture how close the posterior approximation
is to the exact posterior.

The pink and blue lines would (nearly) align if the posterior predictive were very close to the true data-
generating distribution. For a misspecified model, the posterior predictive need not be close to the true
data-generating distribution. For a well-specified model, the posterior predictive and true data-generating
distribution may still be far for a finite dataset. On that view, as suggested by an anonymous referee, we
might expect the observed phenomenon to disappear asymptotically in the well-specified setting if sufficient
regularity conditions hold. The argument, essentially, is that (i) the actual posterior Π(θ|D) converges to
a point-mass at the true data generating parameter; this convergence implies (ii) that the actual posterior
predictive Π(y?|D) converges to the true data distribution P(y?), from which it follows that for large enough
training datasets (iii) KL

(
Π(y?|D) ‖ Π̂(y?|D)

)
≈ KL

(
P(y?) ‖ Π̂(y?|D)

)
. However, we emphasize first that

essentially every real data analysis is misspecified. And second, if a practitioner is in a setting where they
are confident there is no uncertainty in the unknown parameter value, there may be little reason to take a
Bayesian approach or go to the sometimes-considerable computational burden of approximating the Bayesian
posterior.

4 Claim: higher test log-likelihood corresponds to lower predictive error

As noted in Sections 2.1 and 3.4, TLL estimates how close a predictive distribution is from the true data-
generating process in a specific KL sense. On that view and analogous to Section 3, we would not expect
conclusions made by TLL to match conclusions made by comparing other predictive losses. Rather than
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focus on more esoteric losses in our experiments, we note that TLL and RMSE are often reported as default
measures of model fit quality in papers. If conclusions made between TLL and RMSE do not always agree
(as we expect and reinforce experimentally next), we should not expect TLL to always reflect performance
according to other predictive losses beyond RMSE. If the TLL is of fundamental interest, this observation is
of little consequence; if TLL is a convenient stand-in for a potential future loss of interest, this observation
may be meaningful.

Misspecified Gaussian process regression. We next construct two models Π and Π̃ such that
TLL(D?; Π) < TLL(D?; Π̃) but Π̃ yields larger predictive RMSE. Suppose we observe D100 = {(xn, yn)}100

n=1
from the following data generating process:

xn ∼ U(−5,+5) yn|xn ∼ N (sin(2xn), 0.1). (10)

Further suppose we model this data using a zero-mean Gaussian process (GP) with Gaussian noise,

f ∼ GP(0, k(x, x′)), yn|fn ∼ N (fn, σ2), (11)

where fn is shorthand for f(xn). First consider the case where we employ a periodic kernel,2 constrain
the noise nugget σ2 to 1.6, and fit all other hyper-parameters by maximizing the marginal likelihood. The
resulting fit is shown in Figure 6 (A). Next, consider an alternate model where we use a squared-exponential
kernel and fit all hyper-parameters including the noise nugget via maximum marginal likelihood. The resulting
fit is displayed in Figure 6 (B). The squared exponential model fails to recover the predictive mean and
reverts back to the prior mean (RMSE = 0.737, 95% confidence interval [0.729, 0.745]), while the periodic
model recovers the predictive mean accurately, as measured by RMSE = 0.355 (95% confidence interval
[0.351, 0.360]). Despite the poor mean estimate provided by the squared exponential model, it scores a
substantially higher TLL.

Figure 6: The plots display two Gaussian processes trained on the same set of data (represented by black plus
symbols). The dashed red line shows the mean of the posterior Gaussian process, while the red highlighted
region represents the 95% predictive interval. The subplot titles display the TLL (±2 standard error) attained
by each Gaussian process. Although the Gaussian process in panel (A) achieves a better mean fit compared
to panel (B), it has a worse TLL when evaluated on 104 test instances (represented by black dots).

2PeriodicMatern32 in https://github.com/SheffieldML/GPy
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In this example, we see that, even with an accurate point estimate, TLL can be reduced by, for instance,
inflating the predictive uncertainty. And this discrepancy between TLL and RMSE is not necessarily removed
by optimizing the parameters of a model.

Misspecified linear regression. Our next example illustrates that even when all parameters in a model
are fit with maximum likelihood, a comparison based on TLL may still disagree with a comparison based on
RMSE. It also illustrates that the discrepancy between TLL and RMSE can arise even in very simple and
low-dimensional models and even when the training dataset is very large.

Specifically, suppose that we observe D = {(xn, yn)}100,000
n=1 generated according to

xn ∼ U(0, 25), yn|xn ∼ Laplace(xn, 1/
√

2), (12)

which we model using one of the following misspecified conditional linear models:

Π : yn|xn ∼ N (θxn, σ2)
or

Π̃ : yn|xn ∼ Laplace(0.45 + θxn, λ).
(13)

Both Π and Π̃ depend on two unknown parameters. Π depends on a slope θ and a residual variance σ2 and
Π̃ depends on a slope θ and a residual scale λ. The kind of misspecification is different across models; while
Π has the correct mean specification but incorrect noise specification, Π̃ has incorrect mean specification but
correct noise specification.

We computed the maximum likelihood estimates (MLEs) (θ̂Π, σ̂Π) and (θ̂Π̃, λ̂Π̃) for both models. The two
fitted models induce the following predictive distributions of y?|x?:

Π(y?|x?,D) : y?|x? ∼ N (θ̂Πx
?, σ̂2

Π)
and

Π̃(y?|x?,D) : y?|x? ∼ Laplace(0.45 + θ̂Π̃x
?, λ̂Π̃).

(14)

The means of these predictive distributions are natural point estimates of the output y? at input x?.

Using a test set of size N? = 395,000, we observed TLL(D?; Π) = −1.420 < −1.389 = TLL(D?; Π̃). The
standard error of either TLL estimate is only 0.002. Hence, based on sample mean and standard error, we
conclude that Π̃ has better elpd than Π. These values suggest that on average over inputs x?, Π̃(y?|x?,D)
is closer to P(y?|x?) than Π(y?|x?,D) in a KL sense. However, using the same test set, we found that Π
yielded more accurate point forecasts, as measured by root mean square error (RMSE):(

1
N?

N?∑
n=1

(y?n − θ̂Πx
?
n)2

)1/2

= 1.000 < 1.025 =
(

1
N?

N?∑
n=1

(y?n − 0.45− θ̂Π̃x
?
n)2

)1/2

. (15)

In addition, the 95% confidence intervals for the RMSE do not overlap: the interval for Π’s RMSE is
[0.997, 1.005] and that for Π̃’s RMSE is [1.022, 1.029]. The comparison of RMSEs suggests that on average
over inputs x?, the predictive mean of Π(y?|x?,D) is closer to the mean of P(y?|x?) than the predictive mean
of Π̃(y?|x?,D). In other words, the model with larger TLL – whose predictive distribution is ostensibly closer
to P – makes worse point predictions than the model with smaller TLL.

5 Discussion

Our paper is neither a blanket indictment nor recommendation of test log-likelihood. Rather, we hope
to encourage researchers to explicitly state and commit to a particular data-analysis goal – and recognize
that different methods may perform better under different goals. For instance, when the stated goal is to
approximate (summary statistics of) a Bayesian posterior, we argue that it is inappropriate to rely on test
log-likelihood to compare different approximation methods. We have produced examples where a model
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can provide a better test log-likelihood but yield a (much) poorer approximation to the Bayesian posterior
– in particular, leading to fundamentally different inferences and decisions. We have described why this
phenomenon occurs: test log-likelihood tracks closeness of approximate posterior predictive distributions to
the data-generating process and not to the posterior (or posterior predictive) distribution. At the same time,
we recognize that evaluating posterior approximation quality is a fundamentally difficult problem and will
generally necessitate the use of a proxy. It may be useful to consider multiple of the available options; a full
accounting is beyond the scope of this paper, but they include using conjugate models where exact posterior
summary statistics are available; comparing to established MCMC methods on models where a sufficiently
large compute budget might be expected to yield a reliable approximation; simulation-based calibration
(Talts et al., 2018); sample-quality diagnostics (Gorham & Mackey, 2015; Chwialkowski et al., 2016; Liu et al.,
2016); and a host of visual diagnostics (Gabry et al., 2019). A careful investigation to understand how a
particular method struggles or succeeds may be especially illuminating.

On the other hand, in many data analyses, the goal is to make accurate predictions about future observables
or identify whether a treatment will help people who receive it. In these cases and many others, using a
Bayesian approach is just one possible means to an end. And many of the arguments for using the exact
Bayesian posterior in decision making assume correct model specification, which we cannot rely upon in
practice. In predictive settings in particular, test log-likelihood may provide a compelling way to assess
performance. In addition to being essentially the only strictly proper local scoring rule (Bernardo & Smith,
2000, Proposition 3.13), TLL is sometimes advertised as a “non-informative” choice of loss function (Robert,
1996). Importantly, however, non-informative does not mean all-encompassing: as our examples in Section 4
show, test log-likelihood does not necessarily track with other notions of predictive loss. As we discuss
in Section 2.1, test log-likelihood quantifies a predictive discrepancy only in a particular Kullback–Leibler
sense. It is important to note, however, that just because two distributions are close in KL, their means
and variances need not be close; in fact, Propositions 3.1 & 3.2 of Huggins et al. (2020) show that the
means and variances of distributions that are close in KL can be arbitrarily far apart. So even in settings
where prediction is of interest, we recommend users clearly specify their analytic goals and use evaluation
metrics tailored to those goals. If there is a quantity of particular interest in the data-generating process,
such as a moment or a quantile, a good choice of evaluation metric may be an appropriate scoring rule.
Namely, one might choose a scoring rule whose associated divergence function is known to quantify the
distance between the forecast’s quantity of interest and that of the data-generating process. For instance,
when comparing the quality of mean estimates, one option is using the squared-error scoring rule, whose
divergence function is the integrated squared difference between the forecast’s mean estimate and the mean
of the data-generating process. Another option is the Dawid–Sebastiani score (Dawid & Sebastiani, 1999),
which prioritizes accurately estimating predictive means and variances. See Gneiting & Raftery (2007) for a
list of commonly used scoring rules and their associated divergences.
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A Variational Approximations

In Section 3 we formed isotropic Gaussian approximations to the exact posterior. In our illustrative examples,
the exact posterior itself is a Gaussian distribution, N (µ,Σ). In Sections 3.1 and 3.3 we use variational
approximations that share the same mean as the exact posterior and are isotropic, N (µ, ρI), where I is a
two-dimensional identity matrix and ρ > 0 is a scalar. In this family of distributions, the optimal variational
approximation is N (µ, ρ∗I), where,

ρ∗ = argmin
ρ∈R+

KL (N (µ, ρI) ‖ N (µ,Σ)) ,

= 2
tr(Σ−1) .

(16)

The result follows from setting the gradient ∇ρKL (N (µ, ρI) ‖ N (µ,Σ))) to zero and rearranging terms,

∇ρKL (N (µ, ρI) ‖ N (µ,Σ))) = 0, =⇒ ∇ρ
tr(ρΣ−1)

2 −∇ρ ln ρ = 0,

=⇒ 1
ρ

= tr(Σ−1)
2 , =⇒ ρ = 2

tr(Σ−1) .
(17)

Note that ρ∗ is guaranteed to be positive since Σ−1 is positive definite and thus tr(Σ−1) > 0. This optimal
variational approximation, N (µ, ρ∗I) is used in Panel (B) of Figure 1, Figure 2, and Figure 4. The other
panels use N (µ, λρ∗I), with λ ∈ [1, 5, 10, 15, 30] for Figure 1 and Figure 2. For Figure 4 (Left), λ takes values
in [4, 5, 7, 9], and in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] for Figure 4 (Right).

B Experimental details and additional experiments

B.1 Confidence Intervals

An additional note on confidence intervals for TLL. Suppose we are comparing two models Π and
Π̃. Although TLL(D?; Π) (respectively, σ̂TLL(Π)) will generally be correlated with TLL(D?; Π̃) (respectively,
σ̂TLL(Π̃)), we do not expect a more careful treatment of that correlation to change our substantive conclusions.

Confidence intervals for RMSE. To compute the RMSE confidence interval, we first compute the mean of
the squared errors (MSE, m) and its associated standard error of the mean (s). Since we have a large number
of data points and the MSE takes the form of a mean, we assume the sampling distribution of the MSE is
well-approximated by a normal distribution. We use [m− 2s,m+ 2s] as the 95% confidence interval for the
MSE. We use [

√
m− 2s,

√
m+ 2s] as the 95% confidence interval for the RMSE. Note that the resulting

RMSE confidence interval will generally not be symmetric.

B.2 Additional TLL in the wild experiments

SWAG with higher learning rates. In Figure 7 we continue the experiment described in Section 3.2
but using higher learning rates of 12, 15, and 20. Despite moving further from the exact posterior the test
log-likelihood remains higher than those achieved by SWAG approximations with lower learning rates (panels
(B) through (E) of Figure 3).

Mean field variational inference. Next, we reproduce the experimental setup described in Section 3.2,
but instead of using SWAG to approximate the posterior, we use mean field variational inference and examine
the relationship between TLL and posterior approximation quality under different re-scalings of the marginal
variance of the optimal variational approximation. Figure 8 shows the posterior mean and the 95% predictive
interval of the misspecified regression line θ>φ from (A) the Bayesian posterior; (B) the mean field variational
approximation restricted to isotropic Gaussians; and (C)–(F) several re-scaled variational approximations.
In each plot, we overlaid the observed data D500, the true data generating function in dashed black, and
also report the 2-Wasserstein distance between the true posterior and each approximation and the TLL
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Figure 7: (Left). Predictive distributions under the SWAG posterior with SWAG learning rate of (G) 12, (H)
15, (I) 20. The two numbers in the title of each plot are the 2-Wasserstein distance to the exact posterior
and test log-likelihood computed on 104 test set observations. Two standard errors in the test log-likelihood
estimates are (G) 0.01, (H) 0.009, (I) 0.08. (Right). Contours of the SWAG approximations with different
learning rates. The line θ1 = 0 is highlighted in red.

Figure 8: (Left). Predictive distributions under the Bayesian posterior and mean field variational approxima-
tions. The two numbers in the title of each plot are the 2-Wasserstein distance to the true posterior and test
log-likelihoods computed on 104 test set observations. Two standard errors in the test log-likelihood estimates
are (A) 0.16, (B) 0.16, (C) 0.03, (D) 0.02, (E) 0.02, (F) 0.01. (Right). The relationship between distance to
posterior and test log-predictive density. Observe the log scale of the horizontal axis and the non-monotonic
relationship between test log-predictive density and 2-Wasserstein distance to the Bayesian posterior.

averaged over N∗ = 104 test data points drawn from Equation (4) Like in our previous example, the mean
field approximation (panel (B) of Figure 8) is very close to the exact posterior. Further, as we scale up
the marginal variance of the approximate posteriors, the posterior predictive distributions cover more data,
yielding higher TLL, while simultaneously moving away from the exact posterior over the model parameters
in a 2-Wasserstein sense. Interestingly, when the approximation is diffuse enough, TLL decreases, again
highlighting its non-monotonic relationship with posterior approximation quality. In this example of a
misspecified model, the non-monotonic relationship between TLL and 2-Wasserstein distance means that
TLL is, at best, a poor proxy of posterior approximation quality.

B.3 The highest TLL does not match the best estimate of a posterior summary statistic or the lowest
KL

We first reproduce the experimental setup that produced Figure 4, but now in Figure 9, we plot TLL against
the error in estimating the posterior standard deviation. In particular, the horizontal axis shows the absolute
value of the difference between (a) the marginal standard deviation of the parameters of interest under the
approximation and (b) the marginal standard deviation under the exact posterior. As in the right panel of
Figure 4, we observe that the highest (best) TLL does not correspond to the lowest (best) error in estimating
the posterior standard deviation.
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Figure 9: The non-monotonic relationship between difference in marginal standard deviations and TLL in a
well-specified case. (Left) The horizontal axis reports the absolute difference in the standard deviation of
the weight θ1 between an approximation and the posterior. (Right) The horizontal axis reports the absolute
difference in the standard deviation of the bias θ2 between an approximation and the posterior.

To create Figure 10, we reproduce the experimental setup from Figure 8. Relative to the right panel of
Figure 8, we change only what is plotted on the horizontal axis; for Figure 10, we plot the log of the absolute
value of the difference between marginal standard deviations. Again, we see that the highest (best) TLL does
not correspond to the lowest (best) error in estimating the posterior standard deviation.

Figure 10: The non-monotonic relationship between difference in marginal standard deviations and TLL in a
misspecified case. The meaning of horizontal axis is similar to that of Figure 9.

Finally, Figure 11 reproduces analyses from the main text but uses KL divergence instead of 2-Wasserstein
distance to measure posterior approximation quality. In particular, the left panel of Figure 11 recreates the
right panel of Figure 1; as in Figure 1, we see that the highest (best) TLL does not correspond to the lowest
(best) divergence value. Likewise, the right panel of Figure 11 recreates the right panel of Figure 4; as in
Figure 4, we see the highest TLL again does not correspond to the lowest divergence value.
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Figure 11: The smallest KL divergence does not correspond to the largest TLL, in a misspecified case (left)
and a well-specified case (right). The left panel reproduces the experimental results presented in the right
panel of Figure 1, but uses the reverse KL divergence to measure discrepancy with the exact posterior instead
of the 2-Wasserstein distance. The right panel reproduces the results in the right panel of Figure 4.

C Alternative model comparison metrics

In this work, we focused on one model comparison metric, test log-likelihood. However, there are many other
model comparison metrics. In what follows, we consider marginal likelihood and the joint log predictive
density as potential model comparison metrics.

C.1 Marginal likelihood

Instead of choosing the model with higher test log-likelihood, one might instead choose the model with higher
marginal likelihood, where the marginal likelihood for model Π is π(D) =

∫
π(D|θ)π(θ)dθ. That is, given

models Π and Π̃, one might choose Π whenever π(D) > π̃(D);

As an anonymous referee pointed out, the marginal likelihood is a well-established Bayesian model selection
criterion; see, e.g., pg. 348 of MacKay (2003). However, the marginal likelihood criterion has several well-
known limitations. First, marginal likelihood comparisons can be unreliable when the models being compared
are misspecified; see §2 and references within Huggins & Miller (2023), and see also Berk (1966). Beyond
this concern, marginal likelihood quantifies only how well a model fits the available training data. It is
otherwise silent or “peripherally related” (Lofti et al., 2022) to the predictive quality of the model. And so,
just because a model Π yields a higher marginal likelihood than Π̃, it does not necessarily follow that Π
produces better predictions of future data than Π̃ – even when the training and testing data are i.i.d. from
the same distribution.

These limitations notwithstanding, one might still try to use marginal likelihood to assess posterior approxi-
mation. Though we have not explicitly constructed examples, we anticipate similar phenomena as reported
above; namely, we expect it is possible for one posterior approximation to achieve higher marginal likelihood
than another while providing a worse approximation to the exact posterior. And we would expect these
phenomena to occur for reasons analogous to the behavior we saw for TLL; what marginal likelihood measures
is not directly related to posterior approximation quality.
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C.2 The logarithm of the joint predictive density

Lofti et al. (2022) consider the logarithm of the joint predictive density, log π(y?1 , . . . , y?N? |D), as an alternative
metric for assessment of predictive quality. Analogous to Equation (1),

π(y?1 , . . . , y?N? |D) =
∫
π(y?1 , . . . , y?N? |θ)π(θ|D)dθ. (18)

If the training data are strictly independent from the test data under the specified model Π (not just
conditionally independent given a latent parameter), then the log joint predictive density will equal the TLL
– but such a case would generally be uninteresting in Bayesian modeling. In general, the log joint predictive
density need not equal the TLL.

We have already seen that the TLL is a Monte Carlo estimate of the elpd; that is, the TLL is an estimate of
“how well is a model expected to predict a single held-out observation, on average?” The number of samples
in that estimate (i.e., the number of test data points) will dictate the Monte Carlo noise of that estimate.
There are analogously (at least) two perspectives on the log joint predictive density. One is that the log joint
predictive measures “how well does a model predict a specific collection of held-out data?” A second is that
the log joint predictive is an estimate (from just a single noisy Monte Carlo draw and therefore very high
in variance) of “how well is a model expected to predict the next N? held-out observations, on average?”
The TLL and log joint predictive can be seen as two extremes of a spectrum, as we describe next. Suppose
one could divide a test set of size N? evenly into M mini-batches of test data. Then one could make a
Monte Carlo estimate with M samples of “how well is a model expected to predict the next N?/M held-out
observations, on average?” As M increases, the Monte Carlo noise decreases and the size of the held-out set
of interest decreases.

Depending on the application, any of these questions may be of interest to a practitioner. While the object
of study in this paper has been the TLL, the arguments in Section 3.4 suggest that the log joint predictive
density (or any other point on the spectrum above) would exhibit a similar issue to the one described in
this paper. After all, just like TLL, log joint predictive density does not directly track discrepancies between
distributions of latent model parameters.
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