
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Ethereum AI Agent Coordinator (EAAC):
A Framework for AI Agent Activity Coordination

Abstract
The Ethereum AI Agent Coordinator (EAAC)
is a framework designed to generate a publicly
accessible knowledge database that provides an
overview of global AI agent activity. EAAC
utilises decentralised technologies to establish a
transparent infrastructure for AI agent coordina-
tion. By integrating on-chain transactions and the
InterPlanetary File System (IPFS), EAAC ensures
secure logging of the activity and data dissemina-
tion. The framework includes several key compo-
nents: the EAAC wrapper for reporting AI agent
activities on-chain, the EAAC smart contract that
enables the on-chain reporting, an event listener
for retrieving the reported AI agent activity, a con-
tent parser for extracting knowledge graph triplets
from the retrieved activity, and finally a public
knowledge graph to store and share AI agent ac-
tivities. Despite being in its early conception,
EAAC aims to lay the foundations for a collabo-
rative environment where AI agents and operators
can share information and strategies. Such shar-
ing of information can mitigate risks associated
with uncoordinated AI activities, particularly in
complex environments like the financial sector.
We expect EAAC-like approaches to be crucial as
managing AI-powered applications and services
becomes a significant social challenge.

1. Introduction
The rapid development of advanced large language models
(LLMs) like ChatGPT has led to a transformation in artificial
intelligence (AI) systems into autonomous agents capable of
executing complex, multi-step tasks. These agents, capable
of actions ranging from drafting articles to simulating busi-
ness processes, exemplify a new class of AI applications
known as “agentic workflows”. (Zhou et al., 2023b; Wang
et al., 2023; Liu et al., 2023b; Zhou et al., 2023a; Liu et al.,
2023a; Händler, 2023)

This paradigm shift from simple prompt-response interac-
tions to dynamic, iterative processes represents a significant
expansion in AI capabilities. Agentic workflows are char-

acterized by several fundamental design patterns, including
Reflection, Tool Use, Planning, and Multi-Agent Collabo-
ration. (Zhang et al., 2023; Liu et al., 2023a; Ding et al.,
2023; Agashe et al., 2023) The Reflection design pattern
allows AI agents to assess and adapt their actions based
on outcomes, enhancing their decision-making capabilities
over time. Tool Use involves the employment of web-based
services and software tools to achieve specific goals, broad-
ening the scope of tasks that AI applications can perform.
Planning enables AI agents to devise comprehensive strate-
gies for task execution, ensuring a systematic approach to
complex problems. Perhaps most transformative is Multi-
Agent Collaboration, which facilitates cooperative interac-
tions among multiple AI agents. This collaboration builds
shared knowledge and strategies, fostering a collective intel-
ligence capable of tackling more complex challenges than
individual agents could handle alone. By integrating these
design patterns into AI workflows, developers can create
more robust, adaptable, and capable AI systems, paving the
way for broader applications in various fields.

As the adoption of Multi-Agent Collaboration continues, the
need for coordination frameworks becomes critical. Already
frameworks like GenWorlds1 strive to provide a solution by
creating interactive environments where multiple AI agents
can collaborate seamlessly. GenWorlds employs implicit
behaviour prediction to manage coordination without direct
communication among agents. This approach reduces cog-
nitive load and enhances overall system efficiency, allowing
AI agents to operate in a more synchronized manner. Such
coordination frameworks are essential for managing com-
plexity and ensuring the optimal performance of systems
with multiple AI agents.

However, there is a growing concern that the continual ex-
pansion of AI agentic workflows may approach a critical
tipping point, where we lose visibility and control of the
AI agent activities. (Han et al., 2023; Maple et al., 2023)
Especially for financial applications, which already consider
AI agentic workflows, problems might arise in the form of
market failures. These failures could occur due to a lack of
awareness among AI agents about each other’s activities,
leading to misaligned incentives, over-optimization of spe-
cific metrics, or unforeseen interactions among autonomous

1https://github.com/yeagerai/genworlds

https://github.com/yeagerai/genworlds


055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Ethereum AI Agent Coordinator (EAAC): A Framework for AI Agent Activity Coordination

systems. Such a lack of coordination and awareness can
result in systemic risks and instabilities, posing threats to
financial markets.

To address the challenges of transparency and coordination
among AI agent activities, we propose a new framework
named Ethereum AI Agent Coordinator (EAAC). EAAC
utilises decentralised technologies to create a transparent
and publicly accessible knowledge graph. This graph facili-
tates the open sharing of information and strategies among
AI agents, thereby enhancing mutual awareness and reduc-
ing the risks associated with misaligned incentives and un-
expected interactions.

Furthermore, the EAAC framework incorporates a labelling
method that identifies the contributions of AI agent oper-
ators using their on-chain identities. Each node and re-
lationship within the knowledge graph is tagged with the
corresponding AI agent operator’s public address (hash).
This labelling provides a quantitative basis for designing
incentive structures aimed at promoting coordination and
accountability, which are essential for maintaining the in-
tegrity and stability of AI operations, particularly in com-
plex sectors like finance, where precision and reliability are
paramount.

As a differentiating factor, EAAC employs blockchain tech-
nology, specifically Ethereum, for on-chain logging, and
the InterPlanetary File System (IPFS) for data dissemina-
tion. This combination creates a secure, transparent, and
scalable infrastructure for coordinating AI agent activities.
The decentralised nature of blockchain and IPFS ensures
that records are immutable and universally accessible, effec-
tively addressing the significant vulnerabilities that plague
traditional centralised systems.

In subsequent sections of this paper, we provide a walk-
through of the implementation of the EAAC and discuss
potential avenues for improvement.

2. Implementation
The EAAC comprises five main components (see Fig. 1):
1) the EAAC wrapper, 2) the EAAC smart contract, 3) the
EAAC event listener, 4) the EAAC content parser, and 5)
the EAAC public knowledge graph.

2.1. EAAC wrapper for AI agent building libraries

The EAAC workflow is initiated when AI agent operators
use the EAAC wrapper, a Python library, to log their ac-
tivities. This wrapper is specifically designed to integrate
seamlessly with widely-used AI agent-building libraries like

Figure 1. Overview of EAAC: The EAAC process begins when an
AI agent operator utilises the EAAC wrapper to log their activities
both on IPFS (for data storage) and on the blockchain (for the
IPFS hash). EAAC requires a server that monitors on-chain events
to retrieve and interpret the IPFS hash. The retrieved content is
then transformed into Resource Description Framework (RDF)
compatible triplets (i.e., subject-[predicate]-object). These triplets
are subsequently integrated into a public knowledge graph, with
each entity distinctly tagged with the unique alias of the AI agent
operator (i.e., the public address hash + optional identifier)

Langchain2 and CrewAI3, ensuring it does not disrupt the
operators’ existing workflows (see Fig. 2). Its main function
is to facilitate the voluntary reporting of AI agent activities
by managing interactions with the blockchain in the back-
ground. During this process, operators can assign aliases
to their AI agent workflows, allowing for unique identifi-
cation through a combination of the public address and the
assigned alias (i.e., concatenation).

In this context, ’AI agent activity’ encompasses all text-
based interactions, including input prompts and any inter-
mediate steps generated by the agent, such as those recorded
in scratchpads. To maintain compatibility with different AI
agent-building libraries, all activities are collected and struc-
tured in the struct variable (’EAAC content’) as follows:

from pydantic import BaseModel
class EAAC_content(BaseModel):

agent_prog:str
agent_type: list[str]
role: list[str]
task: list[str]
background: list[str]
content: dict
urls: list[str]

In this structure, ’agent prog’ refers to the variable name
of the AI agent executor from the selected AI agent builder
library (e.g., Langchain, CrewAI). ’agent type’ is a list that
gathers specific names of agents when the workflow in-

2https://github.com/langchain-ai/
langchain

3https://github.com/joaomdmoura/crewAI

https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://github.com/joaomdmoura/crewAI


110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Ethereum AI Agent Coordinator (EAAC): A Framework for AI Agent Activity Coordination

volves multiple agents, as defined in the AI agent builder
libraries. The fields ’role’, ’task’, and ’background’ describe
the respective aspects of the AI agentic workflow created.
’content’ stores all agent activities, and ’urls’ collects all
web endpoints referenced in the agent’s activity. This me-
thodical approach ensures that all relevant information is
systematically captured and formatted for analysis.

2.2. EAAC Smart Contract

The role of the EAAC smart contract is to leave an on-chain
trace of AI agent activity using events utilized in Ethereum
Virtual Machine (EVM)-compatible blockchains. Events
in EVM chains are special logs created by smart contracts
to signal specific occurrences within the contract. These
events in the context of EAAC are useful as they can notify
important changes or actions that have occurred within the
contract without depending on on-chain state data storage.
These events can also be indexed to facilitate the efficient
retrieval of historical data from the blockchain’s transaction
logs.

Within the EAAC smart contract, there is a specific function
named ’report activity’ that, when executed, triggers the
emission of a ‘Report’ event. This event emits the AI agent
operator’s public address, an optional identifier, and the
IPFS hash of the file storing AI agent activity (Fig. 3). The
operator’s public address is indexed for efficient retrieval
of the associated reporting events. To optimise the costs
associated with on-chain transactions, the AI agent activity
is not stored on-chain but initially stored off-chain in IPFS.
Utilizing on-chain transactions in this manner is important
for establishing public trust in the EAAC system, offering
a more reliable solution than relying solely on off-chain
operations.

2.3. EAAC event listener

When the ‘Report’ event is triggered by the EAAC smart
contract, a listening service can be configured using log
filters on the node client of the EVM chains where the
EAAC smart contract operates. These log filters are set to
listen for the keccak-encoded function signature of the event
(‘Report(address,string,string)’). They capture all related
event logs, from which IPFS hashes are extracted. These
hashes are then used to retrieve the stored AI agent activities.

2.4. EAAC content parser

Once AI agent activity is retrieved, it is processed to gen-
erate knowledge graph triplets. In this process, we employ
open-source LLMs, such as the Llama3-70B model, to ex-
tract these triplets. The extracted triplets are then formatted
into an RDF-like structure (see Fig. 4). This structured
data forms the basis for constructing the knowledge graph,

facilitating further analysis and application.

2.5. EAAC public knowledge graph

Triplets extracted from the data are initially ingested into
a graph database, where each entity, i.e., both nodes and
relationships, is categorised according to its node group and
relationship group. These groups are associated with the
corresponding AI agent operator, as shown in Fig. 5. Over
time, this ingestion process gradually constructs a compre-
hensive knowledge graph that documents the activities of
various AI agent operators, culminating in a public database.
This database offers a consolidated view of the activities of
all participating AI agent operators. Considering the signifi-
cance of downstream applications like retrieval-augmented
generation (RAG), we use well-established graph database
software such as Neo4j.

3. Discussion
In this contribution, we propose EAAC as a framework to
generate a publicly accessible database that provides an
overview of global AI agent activity. As EAAC is in its
early stages, we have identified several potential areas for
improvement.

Incentive Structure Design: Currently, EAAC assumes
that the publicly accessible information obtained from the
knowledge graph will be sufficient to motivate AI agent
operators to share their activity information voluntarily. To
ensure wide adoption, additional dedicated measures should
be designed and considered.

Maintenance of the Knowledge Graph: A major chal-
lenge in maintaining a knowledge graph is ensuring that
it remains up-to-date and free from invalid data (Tang
et al., 2019; Wewer et al., 2021). To tackle this issue, both
community-based methods and computational strategies
could be employed to enhance the accuracy and reliability
of the knowledge graph.

Scalability of the Public Knowledge Graph: The current
design of the EAAC assumes a singular, indefinitely scalable
knowledge graph. Although modern software technologies
like sharding and cluster-based architectures are available
to manage large-scale operations (e.g., causal clustering in
Neo4j), there are foreseeable technical challenges if EAAC
is to be implemented in production environments. These
challenges must be addressed to ensure seamless scalability
and performance.

Despite these challenges, we believe EAAC is a pioneering
framework that combines decentralised technologies with
AI agent workflows to create a distinct solution: a shared
knowledge base. We expect approaches that are like EAAC
will become vital in the forthcoming era, where manag-



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Ethereum AI Agent Coordinator (EAAC): A Framework for AI Agent Activity Coordination

Figure 2. Code snippet of EAAC wrapper (Langchain). The EAAC wrapper is used with a Langchain-generated AI agent to maintain
consistency in syntax and user experience. It automates the reporting of AI agent activities and also offers an optional identifier argument.
This allows operators to assign an additional alias to the AI agent’s workflow beyond the standard public address if desired.

Figure 3. Code snippet of EAAC smart contract. This code snippet from the EAAC smart contract (in Solidity) illustrates the declaration
of the ’report activity’ function, which triggers the emission of the ‘Report’ event. The function is designed to index the public address of
the AI agent operator, optimizing the retrieval process for associated AI agent activities stored in IPFS (‘report hash’).

Figure 4. Example of extracted triplets (truncated): From the input
prompt, ‘Could you analyse the price trends of NVDA? Please
suggest an investment plan for me.’, triplets have been extracted
from the generated responses. The list below shows a truncated
version as an example.

ing AI-powered applications and services becomes a major
social challenge.

Figure 5. Example subgraph from a knowledge graph: This sub-
graph was generated in response to the input prompt, ‘Can you
tell me about the capital of France?’ AI agents produced answers
from which triplets were extracted. These triplets are then ingested
into the graph, with each node and relationship being categorised
into a node or relationship group corresponding to the AI agent
operator’s identifier. The light blue node represents the identifier
(i.e., public address) of the AI agent operator. The ‘CONTAINS’
relationship denotes ownership, while the ‘RELATES’ relationship
captures predicate information as its value type.



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Ethereum AI Agent Coordinator (EAAC): A Framework for AI Agent Activity Coordination

References
Agashe, S., Fan, Y., Reyna, A., and Wang, X. E. LLM-

Coordination: Evaluating and analyzing multi-agent co-
ordination abilities in large language models. October
2023.

Ding, S., Chen, X., Fang, Y., Liu, W., Qiu, Y., and Chai,
C. DesignGPT: Multi-Agent collaboration in design.
November 2023.

Han, Y., Chen, J., Dou, M., Wang, J., and Feng, K. The
impact of artificial intelligence on the financial services
industry. AJMSS, 2(3):83–85, May 2023.

Händler, T. Balancing autonomy and alignment: A Multi-
Dimensional taxonomy for autonomous LLM-powered
Multi-Agent architectures. October 2023.

Liu, X., Li, R., Ji, W., and Lin, T. Towards robust Multi-
Modal reasoning via model selection. October 2023a.

Liu, Z., Yao, W., Zhang, J., Xue, L., Heinecke, S., Murthy,
R., Feng, Y., Chen, Z., Niebles, J. C., Arpit, D., Xu, R.,
Mui, P., Wang, H., Xiong, C., and Savarese, S. BO-
LAA: Benchmarking and orchestrating LLM-augmented
autonomous agents. August 2023b.

Maple, C., Szpruch, L., Epiphaniou, G., Staykova, K., Singh,
S., Penwarden, W., Wen, Y., Wang, Z., Hariharan, J., and
Avramovic, P. The AI revolution: Opportunities and
challenges for the finance sector. August 2023.

Tang, J., Feng, Y., and Zhao, D. Learning to update knowl-
edge graphs by reading news. In Inui, K., Jiang, J., Ng, V.,
and Wan, X. (eds.), Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 2632–2641,
Hong Kong, China, November 2019. Association for
Computational Linguistics.

Wang, Y., Jiang, Z., Chen, Z., Yang, F., Zhou, Y., Cho, E.,
Fan, X., Huang, X., Lu, Y., and Yang, Y. RecMind: Large
language model powered agent for recommendation. Au-
gust 2023.

Wewer, C., Lemmerich, F., and Cochez, M. Updating
embeddings for dynamic knowledge graphs. arXiv.org,
2021.

Zhang, C., Yang, K., Hu, S., Wang, Z., Li, G., Sun, Y.,
Zhang, C., Zhang, Z., Liu, A., Zhu, S.-C., Chang, X.,
Zhang, J., Yin, F., Liang, Y., and Yang, Y. ProAgent:
Building proactive cooperative agents with large language
models. August 2023.

Zhou, S., Xu, F. F., Zhu, H., Zhou, X., Lo, R., Sridhar, A.,
Cheng, X., Ou, T., Bisk, Y., Fried, D., Alon, U., and
Neubig, G. WebArena: A realistic web environment for
building autonomous agents. July 2023a.

Zhou, W., Jiang, Y. E., Li, L., Wu, J., Wang, T., Qiu, S.,
Zhang, J., Chen, J., Wu, R., Wang, S., Zhu, S., Chen,
J., Zhang, W., Tang, X., Zhang, N., Chen, H., Cui, P.,
and Sachan, M. Agents: An open-source framework for
autonomous language agents. September 2023b.


