
Task-oriented Time Series Imputation Evaluation via
Generalized Representers

Zhixian Wang1,2, Linxiao Yang2, Liang Sun2, Qingsong Wen2, Yi Wang1∗
1The University of Hong Kong, 2DAMO Academy, Alibaba Group

zxwang@eee.hku.hk, linxiao.ylx@alibaba-inc.com, liang.sun@alibaba-inc.com,
qingsongedu@gmail.com, yiwang@eee.hku.hk

Abstract

Time series analysis is widely used in many fields such as power energy, economics,
and transportation, including different tasks such as forecasting, anomaly detec-
tion, classification, etc. Missing values are widely observed in these tasks, and
often leading to unpredictable negative effects on existing methods, hindering their
further application. In response to this situation, existing time series imputation
methods mainly focus on restoring sequences based on their data characteristics,
while ignoring the performance of the restored sequences in downstream tasks.
Considering different requirements of downstream tasks (e.g., forecasting), this
paper proposes an efficient downstream task-oriented time series imputation evalu-
ation approach. By combining time series imputation with neural network models
used for downstream tasks, the gain of different imputation strategies on down-
stream tasks is estimated without retraining, and the most favorable imputation
value for downstream tasks is given by combining different imputation strategies
according to the estimated gain. The corresponding code can be found in the
repository https://github.com/hkuedl/Task-Oriented-Imputation.

1 Introduction

Time series analysis plays a crucial role in many real-world applications, such as energy, finance,
healthcare, and other fields [1, 2, 3]. For example, forecasting load series forms the basis for further
decision-making in power dispatch in the power grid system, thereby generating a significant amount
of economic benefits [4, 5, 6]. However, collecting time series data, especially high-quality ones, is
challenging. Due to the instability of the external environment, sensor failures, and even ethical and
legal privacy issues, missing values are prevalent in time series data [7]. For instance, in the BDG2
load series dataset [8], widely used in building energy analysis, the ratio of complete time series data
is less than 10%.

To handle missing values in time series data, numerous methods have been proposed for time series
imputation in the literature. Based on the features of the imputation methods, these approaches can
be divided into statistical and machine learning methods, such as ARIMA and KNN [9, 10], as well
as deep learning-based methods [11, 12, 13, 14]. Both types of methods generally use reconstruction
errors of missing values to guide learning and perform evaluation. Recently, some researchers have
turned their attention to evaluation strategies based on downstream task performance [15]. However,
in most cases, downstream tasks are classification tasks [13], while forecasting tasks, as another
important branch of time series-related tasks, have not been fully considered. The main challenge for
time series forecasting is that the time series serves as both input and label (output) for the model
during training, whereas in classification tasks, it only serves as input for the model.

∗Corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/hkuedl/Task-Oriented-Imputation

In supervised learning, training labels influence the calculation of the loss function, which in turn
affects the optimization of model parameters and, ultimately, the performance of the model on the
test set. [16] indicates that noise in input data (missing data can be considered a type of noise) often
has a limited impact on forecasting results. In contrast, label noise can significantly affect the model
and, consequently, the final test results from the beginning to the end of the time series. Therefore,
when evaluating the impact of different time imputation methods on downstream forecasting tasks, it
is essential to focus on assessing the quality of training labels constructed through various imputation
methods.

To evaluate how the quality of the imputation labels affects downstream forecasting tasks, it is
important to clarify that an excellent imputation strategy does not necessarily mean that the imputed
value at each time step is superior to any other method. [15] provides a benchmark for various
methods in time series imputation tasks. Although SAITS [13], as one of the latest SOTA methods,
has achieved remarkable results, there are still methods that surpass SAITS in some cases. This
demonstrates that time series imputation is a complex task, making it difficult to find a universal
method capable of handling all situations, let alone considering the performance of downstream
forecasting tasks. A more realistic scenario is that while one method may perform better overall, it
may not outperform other methods locally. In time series, this means that one method may excel in
some time steps, while others do better in different time steps. However, to examine the impact of
each time step on forecasting, retraining the forecasting model multiple times is necessary, which is
impractical due to time and computational costs. Therefore, an efficient estimation method is needed
to examine the impact of each time step with different imputation methods. Additionally, since
finding a universal method is difficult, it is natural to shift focus toward combining the advantages of
current methods to obtain a better imputation strategy. Consequently, determining how to combine
different strategies becomes a challenge.

Based on the above situation, we have developed a task-oriented time series imputation evaluation
strategy. Specifically, we summarize our contributions into the following points.

1. We propose a strategy that evaluates each time series imputation method by estimating the
impact of missing (imputed) labels at each time step on downstream tasks without requiring
multiple retraining, which significantly reduces time and computational consumption. To
the best of our knowledge, we are the first to consider the impact of missing values in time
series as labels on downstream forecasting tasks.

2. We introduce a simple and effective similarity calculation method based on the characteristics
of long time series to estimate the impact of imputed values more quickly, striking a balance
between performance and computational cost.

3. We develop a time series imputation framework guided by maximizing the gains of down-
stream tasks, enabling the combination of advantages from different time series imputation
strategies to achieve a better one. This results in improved performance in the downstream
forecasting task.

1.1 Related Work

Time Series Imputation Time series imputation can be primarily classified into two categories:
traditional techniques and neural network-based techniques. Traditional methods replace missing
values with statistics, such as the mean value or the last observed value [17]. They include simple
statistical models like ARIMA [18], ARFIMA, SARIMA [19], and machine learning techniques such
as KNNI [20], TIDER [21], MICE [22], BayOTIDE [23]. In recent years, deep learning imputation
methods have demonstrated remarkable capabilities in capturing intricate temporal relationships and
complex variation patterns inherent in time series data. These methods employ deep learning models
like Transformers [24, 13], generative neural networks such as VAEs [12, 25], GANs [26, 27], and
diffusion models [28] to capture complex dynamic relationships within time series data. Although
different methods exhibit various advantages, no universal method currently outperforms others in
all scenarios and datasets. This observation inspires us to consider combining existing advanced
methods in this work to achieve better time series imputation strategies.

Sample-based Explaination Sample-based explainable methods can be divided into two cate-
gories [29]. One is based on retraining, which evaluates the importance of corresponding data by
comparing the impact of removing data points on the model and even the final test results [30, 31, 32].

2

Among them, the introduction of shapley value by [30] naturally ensures the fairness of data attribu-
tion. The other type is based on gradient methods, which directly estimate the influence of data points
without the need for retraining. This type of method can be subdivided into three main categories,
which are based on representative theories, Influence Function, and training loss trajectory. [33] is
a representative of the method of the first type, whose core idea is to fix the other layers and only
focus on the last layer of the neural network, so that the influence of each sample can be explicitly
calculated. On the other hand, the Influence Function [34] is based on the assumption of convergence
and uses the Hessian matrix to estimate the influence of samples. The last type of method takes into
account the entire training process of the neural network, continuously tracking the impact of samples
on each parameter update [35]. In addition, [36] summarizes the gradient-based method and unifies
them as generalized representers.

2 Methodology

2.1 Problem Statement

Consider a multivariate time series dataset represented by {(Xi,yi)}ni=1, incorporating n samples.
In this dataset, Xi ∈ RD×L1 corresponds to a feature matrix containing D distinctive features
over L1 temporal intervals, whereas yi ∈ RL2 signifies the target time series, which spans L2

temporal intervals. It is crucial to recognize that yi may include several missing entries, a common
complication within real-world datasets. For example, in the context of electrical load forecasting,
Xi encompasses daily weather-related time series data, comprising variables such as temperature,
humidity, and wind speed, while yi represents the electrical load time series of a given day, possibly
containing missing entries due to issues in data collection or transmission.

Addressing missing values in {yi} through imputation is a fundamental preprocessing step for
machine learning tasks involving this data, underscoring the necessity to assess the effectiveness
of various imputation methods. Consider {y(1)

i } and {y(2)
i } as two time series resulting from the

imputation of {y} via two different methods. The goal is to ascertain whether the imputation
performed on {y(2)

i } is superior to that on {y(1)
i }. Moreover, we seek to evaluate the quality of

imputation at each temporal interval, determining if the imputation of the l-th interval in y
(2)
i is more

accurate than that in y
(1)
i .

Conventionally, the quality of imputation is quantified by measuring the discrepancy between the
imputed values and the actual data, favoring methods that minimize this deviation. In this study,
however, we propose to assess imputation quality based on the performance of subsequent tasks.

One step further, we evaluate the quality of imputation on a timestep basis, examining if the imputation
for the l-th interval in y

(2)
i exhibits improved efficacy over y(1)

i , thereby offering a more nuanced
and comprehensive evaluation of imputation methodologies.

Let us define the loss function for the downstream task as L(f(X,θ),y), where f(·,θ) denotes
the model used in the downstream task parametered by θ. And let {(Xv

i ,y
v
i)}mi=1 constitute a test

dataset that will be used to gauge model performance. We denote y
(1)
i,l and y

(2)
i,l as the l-th entries of

y
(1)
i and y

(2)
i , respectively. According to our intuition, if y(2)i,l is superior to y

(1)
i,l , swapping y

(1)
i,l for

y
(2)
i,l should result in a decrease in the test set’s loss. Guided by this rationale, we define the indicator

function I(i, l), which discerns whether y(2)i,l is preferable over y(1)i,l as follows:

I(i, l) =

m∑
k=1

I(i, l,Xv
k) =

m∑
k=1

(L(f(Xv
k,θ1),y

v
k)− L(f(Xv

k,θ2),y
v
k))

s.t. θ1 = argmin
θ

n∑
k=1

L(f(Xk,θ),y
(1)
k)

θ2 = argmin
θ

L(f(Xi,θ),yi
(2,l)) +

n∑
k ̸=i

L(f(Xk,θ),y
(1)
k). (1)

3

Here, yi
(2,l) denotes a vector identical to y

(1)
i , except at the l-th entry, which matches that of y(2)

i .
Clearly, I(i, l) ≥ 0 implies that the substitution of y(1)i,l with y

(2)
i,l leads to a decreased test set loss,

suggesting that y(2)i,l is superior. Conversely, if I(i, l) < 0, it suggests that y(1)i,l is preferable to y
(2)
i,l .

Despite the effectiveness of the definition provided by Equation (1), computing I(i, l) for every
missing value in the dataset is impractical due to the extensive model retraining required, which can
be prohibitive in terms of time. To overcome this challenge, in the next section, we put forth an
efficient methodology for estimating I(i, l) without retraining the model.

2.2 Approximation Model Construction

To compute I(i, l) efficiently, we propose a retrain-free method in this subsection. As both y(1) and
y(2) are imputation of y, then we assume that y(1)i,l is close to y

(2)
i,l , with which we approximate I(i, l)

using the first order Tolyer expansion as

I(i, l) ≈
m∑

k=1

∂L(f(Xv
k,θ),y

v
k)

∂yi,l

∣∣∣∣
yi,l=y

(1)
i,l

(y
(1)
i,l − y

(2)
i,l)

=

m∑
k=1

∂L(f(Xv
k,θ),y

v
k)

∂f(Xv
k,θ)

T
∂f(Xv

k,θ)

∂yi,l

∣∣∣∣
yi,l=y

(1)
i,l

(y
(1)
i,l − y

(2)
i,l). (2)

Equation (2) provides an approximation for computing I(i, l), where ∂f(Xv
k,θ)

∂yi,l
measures how the

training target yi,l affect the prediction of the test data, and ∂L(f(Xv
k,θ),y

v
k)

∂f(Xv
k,θ)

computes how the

changing of the prediction of Xv
k affect the final loss. Note that the symbolic expression ∂f(Xv

k,θ)
∂yi,l

can be conceptually broken down into ∂f(Xv
k,θ)

∂θ · ∂θ
∂yi,l

, elucidating the role of the label yi,l in shaping
the model parameters θ throughout the training process. This, in turn, has repercussions on the
model’s prediction when evaluated on unseen data from the test set, i.e. f (Xv

k, θ). By focusing on
the derivative ∂f(Xv

k,θ)
∂yi,l

, our goal is to assess the extent to which changes in label values yi,l influence
the model’s predictions on the test set, thereby affecting overall model efficacy.

When it comes back to the estimation, dispite ∂L(f(Xv
k,θ),y

v
k)

∂f(Xv
k,θ)

and y
(1)
i,l − y

(2)
i,l are easy to compute,

estimating ∂f(Xv
k,θ)

∂yi,l
is difficult. The difficulty comes from two aspects. Firstly, for the complex

f(·,θ), the final parameter is not only affected by the training data, some other factors, such as the
structure of the network and learning rate during the learning process. Secondly, all of the n training
samples affect the parameters of the model, leading to the mixture of the effect of data points on the
final model. Thus isolating the effect of a single data point is difficult.

To overcome these two difficulties, we propose to approximate ∂f(Xv
k,θ)

∂yi,l
using a white-box model,

where how each training datapoint affects the final prediction is clear from the design of the model.
To this end, we propose to approximate ∂f(Xv

k,θ)
∂yi,l

using a kernel machine, i.e. αT
i,lK (Xi,X

v
k),

where K (Xi, ·) is a kenerl between the training sample Xi and test samples measuring the similarity
between the Xi and Xv

k, and α is a learnerable hyperparameter. It can be proven that the indicator
function based on this definition satisfies many desirable properties (please see Appendix for details)
to construct an axiomatic attribution. Formally, the coefficient αi,l ∈ RL2 can be computed by
solving the following optimization problem:

α̂ = argmin
α∈Rn×RL2×RL2

n∑

i=1

L2∑
l=1

n∑
j=1

L
(
αT

i,lK (Xi,Xj) ,
∂f(Xj ,θ)

∂yi,l

) . (3)

To solve this problem, f(Xj ,θ1)−f(Xj ,θ2)

y
(1)
i,l −y

(2)
i,l

can act as a substitute of ∂f(Xj ,θ)
∂yi,l

since there is no ground

truth. However, the problem is still not practical to solve because we can not obtain f(Xj ,θ2)
without retraining the model. Even though it isn’t necessary to traverse all i, j, and l to obtain the

4

complete data, it still goes against our original intention to calculate I(i, l) efficiently. Furthermore,
it is also difficult for us to determine how much data is sufficient to ensure the accuracy of the
solution. Fortunately, with the help of Remark 1, we can bypass the process of finding enough
f(Xj ,θ1)−f(Xj ,θ2)

y
(1)
i,l −y

(2)
i,l

and directly approximate ∂f(Xj ,θ)
∂yi,l

.

Remark 1. Given two infinitely differentiable functions f(x) and g(x) in a bounded domain D ∈ Rn,
||f(x) − g(x)|| is always less than ϵ. For any given δ and ϵ2, there exists an ϵ such that, in the
domain D, the measure of the region I that satisfying ||∂f(x)∂x − ∂g(x)

∂x || > δ is not greater than ϵ2,
i.e, m(I) ≤ ϵ2.

Remark 1 gives us the intuition that we can avoid retraining our downstream models by first-order
approximation. However, some issues still need to be clarified. First, we consider neural networks
used in the downstream task as infinitely differentiable functions since in practical applications, it is
unlikely for computed floating-point numbers to precisely equal non-differentiable points. Second,
Remark 1 limits the definition domain to a bounded region D. Time series data is usually bounded (for
example, the renewable generation sequence cannot be greater than the installed capacity), making
this assumption reasonable. Finally, Remark 1 can be rephrased as the better the approximation of
the original function, the better the approximation of its derivative, that is, we can have a m(D)−ϵ2

m(D)

probability of fitting the derivative well. Therefore, the optimization problem (3) can be transformed
into an easier one. (Note that we indicate the existence of ϵ that meets the conditions in this remark,
but make no restrictions on ϵ, while it is often difficult for us to make the approximation error of the
original function sufficiently small. If the ϵ in the remark is infinitely close to 0, practical applications
will encounter difficulties. However, in gradient descent-based neural network training, such situations
often do not hinder our practical applications. Due to the space limit, the full theoretical discussion is
provided in the Appendix.)

α̂′ = argmin
α′∈Rn×RL2

n∑

i=1

L

 n∑
j=1

α′T
j K (Xi,Xj) , f(Xi,θ)

 , (4)

α̂i,l =
∂α̂′

i

∂yi,l
. (5)

Now the problem is converted to solving the problem (4). Intuitively, we solve it by projecting it onto
the RKHS subspace spanned by the kernels,

α̂′ = argmin
α′∈Rn×RL2

n∑

i=1

L

n∑

j=1

α′T
j K (Xi,Xj)︸ ︷︷ ︸
fK(Xi)

, f(Xi,θ)

+
1

2

L2∑
l=1

α′⊤
·,lKlα

′
·,l︸ ︷︷ ︸

∥fK∥2
HK

, (6)

where Kl is the kernel gram matrix defined as Kl,ij = K (Xi,Xj)l. Considering the first-order

optimality condition, α̂′
i,l = − 1

n

∂L(f̂K(Xi),f(Xi,θ))
∂f̂K(Xi)l

[36, 37]. Recalling our goal of estimating the

relationship between α̂′ and yi,l in (5), their relationship is still unclear. This is because the objective
of the optimization problem is to construct an approximation model without considering the role
of label value yi,l. To clarify the effect of yi,l, we introduce an approximation by trigonometric
inequality that L (fK (Xi) , f (Xi,θ)) ≤ L (yi, f (Xi,θ)) + L (fK (Xi) ,yi). The second term
on the right side is the loss function corresponding to the downstream model, and in the case of
training convergence, this should be close to a constant. Therefore, the optimization problem (6) can
be rewritten as

α̂′ = argmin
α′∈Rn×RL2

n∑

i=1

(L (yi, f (Xi,θ)) + L (fK (Xi) ,yi)) +
1

2

L2∑
l=1

α′⊤
·,lKlα

′
·,l︸ ︷︷ ︸

∥fK∥2
HK

. (7)

5

Formally, the solution are α̂′
i = − 1

n

∂L(f̂K(Xi),yi)
∂f̂K(Xi)

and α̂i,l = − 1
n

∂2L(f̂K(Xi),yi)
∂f̂K(Xi)∂yi,l

. Furthermore,

since fK(·) is used to approximate f(·,θ), we use f(·,θ) to replace fK(·) to simplify the calculation.
With the above preparation, the I(i, l) can be represented as follow with NTK kernel [38],

m∑
k=1

− 1

n

∂L(f(Xv
k,θ),y

v
k)

∂f(Xv
k,θ)

∂2L (f (Xi,θ) ,yi)

∂f (Xi,θt) ∂yi,l

T

︸ ︷︷ ︸
ˆai,l

∂f (Xi,θ)

∂θ

∂f(Xv
k,θ)

∂θ

T

︸ ︷︷ ︸
NTKkernel

. (8)

2.3 Similarity Calculation Acceleration

In the previous section, to gauge the effects of substituting y
(1)
i,l with y

(2)
i,l on the downstream

task, we utilized the Neural Tangent Kernel to assess the similarity between the model outputs for
inputs Xi and Xv

k. Given that the model’s output length is L2, the computational complexity of
calculating I(i, l) for all time steps in y scales as O(mL2P), where P denotes the total number of
parameters in the model f(·,θ), i.e., |θ|. In numerous time series applications, such as forecasting,
L2 can be substantially large (e.g., 128), rendering the evaluation process for all imputations time-
consuming. To mitigate this challenge, we propose a method to compress the size of ∂f(Xi,θ)

∂θ .
Our approach is inspired by the observation that in time series forecasting, the output of f(·,θ)
typically exhibits smooth variability across different l values. Therefore, we posit that the model
output f(Xi,θ) resides in a low-dimensional space spanned by a limited number of smooth basis
functions. In mathematical terms, f(Xi,θ) ≈ A†Af(Xi,θ) where A ∈ Rr×L2 consists of rows
each representing a predefined smooth vector, A† ∈ RL2×r is the pseudo-inverse of A, and r, which
is significantly smaller than L2, denotes the number of basis functions employed to approximate
f(Xi,θ). Consequently, we can approximate ∂f(Xi,θ)

∂θ as:

∂f (Xi,θ)

∂θ
≈ A† ∂Af (Xi,θ)

∂θ
. (9)

This approximation allows for the compression of the model output, thereby reducing the number of
gradients that require computation. Through this simplification, the computational complexity for
calculating I(i, l) decreases to O(mrP), substantially less than the original complexity.

In our experiments, we further simplify by assuming A to be a block diagonal matrix, defined as
blkdiag(11,12, . . . ,1c), where 11 = · · · = 1c−1 are vectors of length ⌊L2/c⌋ with all elements
equal to 1, and 1c ∈ RL2−(c−1)⌊L2/c⌋ is a vector with all elements equal to 1.

2.4 Task-oriented Imputation Evaluation

We have introduced a method for computing the indicator I(i, l), which assesses if replacing y
(1)
i,l

with y
(2)
i,l results in a reduced loss for the downstream task. Given two sets of imputation results,

{y(1)
i }ni=1 and {y(2)

i }ni=1, derived from distinct imputation techniques, we can evaluate I(i, l) across
all samples and time steps, and identify that y(2)

i outperforms y(1)
i at time step l if I(i, l) greater

than zero and vice versa if the value is lesser. In contrast to conventional evaluation strategies, our
proposed method does not necessitate the availability of the ground truth y, thereby enhancing its
practical utility in myriad real-world scenarios where actual values remain unobtainable. This feature
renders our approach significantly more adaptable to situations where empirical truths are elusive.

2.5 Task-oriented Imputation Emsemble

Given that our proposed method can evaluate the quality of two imputations at the time step level, a
natural extension is to combine these two sets of imputations to derive an improved result. Specifically,
we can generate a new set of imputations y′

i for the i-th sample, where the l-th entry is y
(2)
i,l if

I(i, l) > 0, and y
(1)
i,l otherwise. Based on the definition of I(i, l), we anticipate that a model

trained using y′
i will incur a lower loss compared to one trained with y

(1)
i , thereby yielding better

imputation results. It is important to note, however, that the calculation of I(i, l) is predicated

6

on the scenario where only the lth timestep in the ith sample from {y(1)}ni=1 is substituted with
y
(2)
i,l . This consideration omits the potential interactions among samples. Consequently, in practical

implementations, we opt to substitute only the timesteps that rank within the top c% of I(i, l) values.
Our experiments, detailed in 3.3.2, confirm the efficacy of our proposed task-oriented imputation
ensemble method. Our proposed ensemble process is summarized in Algorithm 1.

Algorithm 1: Task-oriented Imputation Emsemble.

Data: Training data {(Xi,y
(1)
i)}n and {(Xi,y

(2)
i)}n; Estimated gain on Validation data

{I(i, l)}i=1:n,l=1:L2 ; Downstream task model f(·,θ); Replacing percentage c%
1 Calculate threshold = P1−c({I(i, l)|I(i, l) > 0})
2 for i = 1 to n, l = 1 to L2 do
3 if I(i, l) > threshold then
4 Let y′i,l = y

(2)
i,l

5 else
6 Let y′i,l = y

(1)
i,l

7 end
8 end
9 Train f(·,θ) on {(Xi,y

′
i)}n

Result: f(·,θ)

3 Experiment

3.1 Datasets and Experiment Setup

To validate our method, we conduct experiments on six datasets: the GEF load forecasting competition
dataset with the corresponding temperature [39], the UCI dataset (electricity load and air quality) [40],
the Traffic dataset containing road occupancy rates2, and two transformer datasets, ETTH1 and
ETTH2 [41]. Note that we use the hourly resolution version of the UCI electricity dataset from [42]
in the main experiment. In our main experiment, we set the downstream task as univariate time series
forecasting, with both input sequence and prediction lengths set to 24. In addition to the GEF dataset,
we implement our method on the ’OT’ time series in ETH1 and ETH2, the mean value of the road
occupancy rate in Traffic, the temperature in the UCI air quality dataset, and the total electricity
consumption of 321 users in the UCI electricity dataset. It is important to note that there are no
original missing values in these datasets. To simulate the missing values situation, we randomly set
masks with lengths in [2, 4, 6, 12, 24, 48, 96, 120], and replace the original values with the average
value at the corresponding positions as the baseline. For the missing rate setting, if the missing rate is
too low, the difference between different imputation methods may be small, while if the missing rate
is too high, the even best imputation method will also be difficult to obtain reasonable results. Based
on the above considerations, we mainly consider 40% missing rates as our main experimental setup.
Meanwhile, we will provide experimental results under other missing rate settings in [30%, 50%,
60%] in the Appendix.

3.2 Time Series Imputation Methods

To verify the performance of our strategy in evaluating different time imputation methods, we
introduce multiple advanced time imputation methods. Firstly, as mentioned in the last subsection,
we use the basic mean value imputation as the baseline. Secondly, we consider several time series
imputation methods based on deep neural networks. They are GPVAE [25] and USGAN [27] based
on generative neural network, mRNN [43] and BRITS [11] based on RNN structure, SAITS [13],
and ImputeFormer [44] based on attention mechanism. All the implementations of the above models
are with the help of the toolkit called PyPOTS [45]. In addition, we also implement the network
structure of a spatiotemporal graphs-assisted method called SPIN [46] for time series imputation. All
the details of the neural network setting will be described in the Appendix.

2https://pems.dot.ca.gov

7

https://pems.dot.ca.gov

3.3 Experimental Results

3.3.1 Application 1: Estimate the Gain

0.2

0.4

0.6

0.8

Co
rr

MLP

Seq-sim
INF
Seg-4
Seg-2
Seg-1 0.2

0.4

0.6

0.8
DLinear

1% 5% 10% 15% 20%
Percentage

75%

80%

85%

90%

95%

Ac
cu

ra
cy

1% 5% 10% 15% 20%
Percentage

50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

Figure 1: The correlation and accuracy comparison between the estimation of imputation value
gain and actual gain (MSE↓), where INF (section D.5) represents our modified Influence Function,
Seq-sim represents our original method, and Seg-N represents the acceleration method divided by N
segments. The horizontal axis here represents selecting the sample with the highest x% influence
based on the absolute value of the estimation.

In this section, we examine the estimated gains of imputation for each time step. We divide the GEF
dataset into a training set and a test set, where the training set includes load data from 2011 and the
test set includes load data from 2012. We replace 40% of the load data in the training set with the
average value at the corresponding position as the baseline, apply the linear interpolation method to
replace the corresponding baseline, and use them as training labels separately. In the training set, we
have obtained a total of 8760 training samples. Therefore, we replace the labels of each sample one
by one to construct new 8760 sets of samples, retrain 8760 forecasting models, test their performance
on the test set, and compare the performance of the new model with the model trained on the mean
value-based samples. Note that although our estimation is done at each time step of each sample, the
time consumption of replacing each time step and retraining is too high. Therefore, we replace all the
time steps in each sample and sum up the benefit estimates for each time step as the benefit estimate
for the entire sample after replacement. We adopt the 3-layer MLP structure used in [35] and extend
it to be used for time series. In addition, we have also added a simple and widely used forecasting
model, DLinear [47], as our forecasting backbone model.

Table 1: Time comparison between different methods.
Time Seq-sim Seg-4 Seg-2 Seg-1 Retraining

MLP 46s 18s 17s 11s >48h
DLinear 10s 8s 8s 7s >48h

As shown in Figure 1, we use two metrics to compare the performance of different methods, where
Corr represents the correlation between estimated gain and actual gain, and accuracy represents
the percentage of the same sign between actual gain and estimated gain. In the MLP model, the
Influence Function achieves a good correlation. However, in terms of accuracy, the accuracy of
the Influence Function rapidly decreases as the percentage of estimated data to total data increases.
On the contrary, our method exhibits good characteristics at different percentages. In addition, the

8

segmented acceleration method generally shows that the more segments there are, the better the
performance. Although it performs poorly in small percentages, it exhibits good performance in a
wide range of data. In the DLiner model, both our method and the segmented acceleration method
present similar situations to those in the MLP model. However, the Influence Function exhibits
poor performance, with estimation accuracy and correlation significantly lagging behind our method.
In addition, Table 1 reports the total time required for different methods to run on the GTX4090,
indicating that retraining requires a significant amount of time while our method achieves a good
balance between performance and time consumption. It is worth mentioning that when we focus
not only on the small portion of time steps with the greatest impact but also examine the impact of
relatively large time steps on the forecasting results, our segmented acceleration method achieves
very good performance while reducing the required time.

3.3.2 Application 2: Combine Different Time Series Imputation

Similar to the previous section, we use mean value as a baseline to estimate the benefits on the
validation set (not test set) obtained by imputation at each time step and replace the 10% time step
with the highest benefits to train the forecasting model. In addition, the missing values in the time
series damage the original characteristic of the time series. Although imputation values can repair it
to some extent, they may still have adverse effects on downstream tasks. Therefore, we also introduce
the Influence Function as a comparison, using it to estimate the 10% points with the worst impact on
the forecasting results after imputation and remove them, which is often the case in the application of
Influence Function [34].

Table 2 reports the comparison of MSE for downstream forecasting tasks (here we use the DLinear as
the backbone model), and we will analyze from two aspects.

I. Comparison between Original and Gain Estimation. Part I and II in Table 2 demonstrate that
combining different imputations can enhance the performance of downstream tasks on all datasets.
The improvements in the GEF dataset, Electricity dataset, and Traffic dataset are significant, while
the enhancement in others is relatively less noticeable. The primary reason is that, in those datasets,
the performance of other imputation methods considerably lags behind the original one, making the
replacement of the original label with a newly imputed label seem less impactful. However, after
incorporating our estimation, there is still a slight improvement in forecasting performance. On the
other hand, when considering combining two imputation methods with similar original performance,
incorporating our method will bring significant gains (as seen in the GEF datasets). It’s worth noting
that the mean value used as a baseline outperforms other imputation methods in most cases, primarily
because the training data input is also based on mean value imputation, facilitating unified and
convenient comparisons. In practical applications, we can also apply other advanced imputation
methods to the input data and modify the labels based on the estimated benefits.

II. Comparison between Gain Estimation and Influence Function. Part I, II, and III Table 2 in-
dicate that discarding a certain number of samples according to the Influence Function can indeed
improve the performance of forecasting; however, such improvement is not universal. In the AIR
dataset, discarding some data can negatively impact the performance of most methods. This may be
due to the small amount of data contained in the AIR dataset, resulting in a greater adverse effect
when discarding data. The operation of discarding data can only consider one imputation method,
while our method can combine any two imputation methods to achieve better results. Furthermore,
the results of repeated experiments show that the strategy of modifying values at specific time steps
can make performance more stable, as its variance is significantly smaller than that of discarding
data.

In addition to the univariate input results displayed in Table 2, we also include the results of
multivariate inputs, which are common in practical applications. For instance, when predicting
power loads, temperature is a crucial external variable. A large amount of research has focused on
studying the relationship between load and temperature [48, 49]. In this experimental setting, unlike
multivariate forecasting, temperature plays an auxiliary role in load forecasting while there is no need
to forecast temperature itself. Consequently, we conduct experiments on the GEF dataset, inputting
temperature as an external variable into the model to forecast loads. Table 3 presents the performance
of our model under multivariate input, which is consistent with the univariate input scenario, and
incorporating our method proves to be beneficial.

9

Table 2: MSE↓ in the downstream forecasting task with univariate input, every experiment is done 3
times.

Method Datasets
GEF ETTH1 ETTH2 ELECTRICITY TRAFFIC AIR

I.Original

Mean 0.1750 0.0523 0.1797 0.1123 0.4359 0.1508
SAITS 0.1980(0.0092) 0.1027(0.0021) 0.2098(0.0125) 0.1176(0.0110) 0.4311(0.0151) 0.5006(0.0251)
BRITS 0.2021(0.0007) 0.1692(0.0105) 0.2384(0.0018) 0.1503(0.0003) 0.4535(0.0001) 0.6979(0.0086)
MRNN 0.2052(0.0001) 0.2184(0.0016) 0.2317(0.0001) - 0.4540(0.0000) 0.7965(0.0018)
GPVAE 0.2087(0.0019) 0.1591(0.0072) 0.2365(0.0022) 0.1471(0.0001) 0.4465(0.0001) 0.6968(0.0044)
USGAN 0.2048(0.0023) 0.1549(0.0179) 0.2238(0.0085) 0.1447(0.0011) 0.4742(0.0048) 0.6840(0.0306)

SPIN 0.2120(0.0029) 0.2000(0.0509) 0.2414(0.0327) 0.1588(0.0113) 0.4609(0.0148) 0.6604(0.0802)
ImputeFormer 0.1820(0.0016) 0.1558(0.0033) 0.2125(0.0022) 0.1076(0.0012) 0.4249(0.0060) 0.6300(0.0119)

II.With Gain estimation

Mean+SAITS 0.1653(0.0008) 0.0522(0.0000) 0.1797(0.0000) 0.0957(0.0006) 0.4147(0.0023) 0.1491(0.0001)
Mean+BRITS 0.1694(0.0000) 0.0522(0.0000) 0.1795(0.0000) 0.1068(0.0000) 0.4318(0.0000) 0.1507(0.0000)
Mean+MRNN 0.1696(0.0000) 0.0523(0.0000) 0.1794(0.0000) - 0.4319(0.0000) 0.1508(0.0000)
Mean+GPVAE 0.1696(0.0000) 0.0522(0.0000) 0.1795(0.0000) 0.1058(0.0001) 0.4290(0.0005) 0.1507(0.0000)
Mean+USGAN 0.1698(0.0001) 0.0522(0.0000) 0.1795(0.0000) 0.1069(0.0003) 0.4215(0.0004) 0.1506(0.0000)

Mean+SPIN 0.1679(0.0016) 0.0523(0.0001) 0.1784(0.0000) 0.1038(0.0007) 0.4276(0.0013) 0.1502(0.0005)
Mean+ImputeFormer 0.1657(0.0003) 0.0522(0.0000) 0.1795(0.0000) 0.0977(0.0002) 0.4178(0.0015) 0.1498(0.0000)

III.With Influence Function

SATIS+INF 0.1953(0.0008) 0.1026(0.0021) 0.2074(0.0115) 0.1170(0.0169) 0.4294(0.0153) 0.5207(0.0213)
BRITS+INF 0.1952(0.0009) 0.1637(0.0091) 0.2326(0.0005) 0.1302(0.0022) 0.4419(0.0008) 0.7110(0.0069)
MRNN+INF 0.1972(0.0002) 0.1905(0.0017) 0.2251(0.0003) - 0.4431(0.0002) 0.7758(0.0020)
GPVAE+INF 0.2013(0.0018) 0.1543(0.0073) 0.2314(0.0031) 0.1275(0.0027) 0.4347(0.0005) 0.7096(0.0021)
USGAN+INF 0.1984(0.0024) 0.1486(0.0120) 0.2191(0.0060) 0.1263(0.0013) 0.4597(0.0045) 0.6961(0.0194)

SPIN+INF 0.2195(0.0046) 0.2106(0.0422) 0.2551(0.0428) 0.1531(0.0224) 0.4728(0.0194) 0.7629(0.1007)
ImputeFormer+INF 0.1776(0.0009) 0.1461(0.0013) 0.2085(0.0020) 0.1033(0.0070) 0.4197(0.0058) 0.6498(0.0046)

Table 3: MSE↓ in the downstream forecasting task with multivariate input, every experiment is done
3 times.

Method Mean SAITS BRITS MRNN GPVAE USGAN ImputeFormer

Original 0.1845 0.1848(0.0022) 0.2153(0.0136) 0.2392(0.0321) 0.2038(0.0006) 0.1895(0.0004) 0.1822(0.0012)
+Ours - 0.1748(0.0002) 0.1788(0.0000) 0.1797(0.0005) 0.1800(0.0000) 0.1780(0.0004) 0.1747(0.0011)

4 Conclusion and Future Work

In this work, we propose to evaluate the imputation values at each time step for the impact on
downstream forecasting tasks. On the one hand, our method can accurately estimate the gain of
each imputation value without retraining. On the other hand, our method can also combine different
time series imputation strategies based on the estimation of gain to obtain better imputation for
downstream tasks. To ensure the applicability of this method in practical scenarios, we also provide
an accelerated calculation method. In the future, we will focus on further downstream tasks, such as
optimization tasks based on prediction values, and build an end-to-end evaluation strategy.

5 Acknowledgement

The work was supported in part by the National Key R&D Program of China (2022YFE0141200), in
part by the Research Grants Council of the Hong Kong SAR (HKU 27203723), and in part by the
Alibaba Group through Alibaba Research Intern Program.

References
[1] M. Jin, H. Y. Koh, Q. Wen, D. Zambon, C. Alippi, G. I. Webb, I. King, and S. Pan, “A survey

on graph neural networks for time series: Forecasting, classification, imputation, and anomaly
detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.

[2] Y. Liang, H. Wen, Y. Nie, Y. Jiang, M. Jin, D. Song, S. Pan, and Q. Wen, “Foundation models
for time series analysis: A tutorial and survey,” in Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, 2024, pp. 6555–6565.

10

[3] J. D. Hamilton, Time series analysis. Princeton university press, 2020.

[4] D. Qin, C. Wang, Q. Wen, W. Chen, L. Sun, and Y. Wang, “Personalized federated darts for
electricity load forecasting of individual buildings,” IEEE Transactions on Smart Grid, vol. 14,
no. 6, pp. 4888–4901, 2023.

[5] J. Wang, L. Han, X. Zhang, Y. Wang, and S. Zhang, “Electrical load forecasting based on
variable t-distribution and dual attention mechanism,” Energy, vol. 283, p. 128569, 2023.

[6] M. Grabner, Y. Wang, Q. Wen, B. Blažič, and V. Štruc, “A global modeling framework for
load forecasting in distribution networks,” IEEE Transactions on Smart Grid, vol. 14, no. 6, pp.
4927–4941, 2023.

[7] W. Du, J. Wang, L. Qian, Y. Yang, F. Liu, Z. Wang, Z. Ibrahim, H. Liu, Z. Zhao, Y. Zhou et al.,
“Tsi-bench: Benchmarking time series imputation,” arXiv preprint arXiv:2406.12747, 2024.

[8] C. Miller, A. Kathirgamanathan, B. Picchetti, P. Arjunan, J. Y. Park, Z. Nagy, P. Raftery, B. W.
Hobson, Z. Shi, and F. Meggers, “The building data genome project 2, energy meter data from
the ASHRAE great energy predictor III competition,” Scientific Data, vol. 7, p. 368, Oct. 2020.

[9] M. Steinbach and P.-N. Tan, “knn: k-nearest neighbors,” in The top ten algorithms in data
mining. Chapman and Hall/CRC, 2009, pp. 165–176.

[10] R. H. Shumway, D. S. Stoffer, R. H. Shumway, and D. S. Stoffer, “Arima models,” Time series
analysis and its applications: with R examples, pp. 75–163, 2017.

[11] W. Cao, D. Wang, J. Li, H. Zhou, L. Li, and Y. Li, “Brits: Bidirectional recurrent imputation for
time series,” Advances in neural information processing systems, vol. 31, 2018.

[12] L. Pinheiro Cinelli, M. Araújo Marins, E. A. Barros da Silva, and S. Lima Netto, “Variational
autoencoder,” in Variational Methods for Machine Learning with Applications to Deep Networks.
Springer, 2021, pp. 111–149.

[13] W. Du, D. Côté, and Y. Liu, “Saits: Self-attention-based imputation for time series,” Expert
Systems with Applications, vol. 219, p. 119619, 2023.

[14] J. Cheng, C. Yang, W. Cai, Y. Liang, Q. Wen, and Y. Wu, “NuwaTS: Mending every incomplete
time series,” arXiv preprint arXiv:2405.15317, 2024.

[15] J. Wang, W. Du, W. Cao, K. Zhang, W. Wang, Y. Liang, and Q. Wen, “Deep learning for
multivariate time series imputation: A survey,” arXiv preprint arXiv:2402.04059, 2024.

[16] H. Cheng, Q. Wen, Y. Liu, and L. Sun, “RobustTSF: Towards theory and design of robust
time series forecasting with anomalies,” in The Twelfth International Conference on Learning
Representations (ICLR), 2024.

[17] M. Amiri and R. Jensen, “Missing data imputation using fuzzy-rough methods,” Neurocomput-
ing, vol. 205, pp. 152–164, 2016.

[18] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series analysis: forecasting
and control. John Wiley & Sons, 2015.

[19] C. Hamzaçebi, “Improving artificial neural networks’ performance in seasonal time series
forecasting,” Information Sciences, vol. 178, no. 23, pp. 4550–4559, 2008.

[20] N. S. Altman, “An introduction to kernel and nearest-neighbor nonparametric regression,” The
American Statistician, vol. 46, no. 3, pp. 175–185, 1992.

[21] S. Liu, X. Li, G. Cong, Y. Chen, and Y. Jiang, “Multivariate time-series imputation with
disentangled temporal representations,” in The Eleventh International Conference on Learning
Representations, 2022.

[22] S. Van Buuren and K. Groothuis-Oudshoorn, “mice: Multivariate imputation by chained
equations in r,” Journal of statistical software, vol. 45, pp. 1–67, 2011.

11

[23] S. Fang, Q. Wen, Y. Luo, S. Zhe, and L. Sun, “Bayotide: Bayesian online multivariate time
series imputation with functional decomposition,” in Forty-first International Conference on
Machine Learning (ICML), 2024.

[24] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems,
vol. 30, 2017.

[25] V. Fortuin, D. Baranchuk, G. Rätsch, and S. Mandt, “Gp-vae: Deep probabilistic time series
imputation,” in International conference on artificial intelligence and statistics. PMLR, 2020,
pp. 1651–1661.

[26] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio, “Generative adversarial networks,” Communications of the ACM, vol. 63, no. 11, pp.
139–144, 2020.

[27] X. Miao, Y. Wu, J. Wang, Y. Gao, X. Mao, and J. Yin, “Generative semi-supervised learning
for multivariate time series imputation,” in Proceedings of the AAAI conference on artificial
intelligence, vol. 35, no. 10, 2021, pp. 8983–8991.

[28] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in Neural
Information Processing Systems, vol. 33, pp. 6840–6851, 2020.

[29] Z. Hammoudeh and D. Lowd, “Training data influence analysis and estimation: A survey,”
Machine Learning, pp. 1–53, 2024.

[30] A. Ghorbani and J. Zou, “Data shapley: Equitable valuation of data for machine learning,” in
International conference on machine learning. PMLR, 2019, pp. 2242–2251.

[31] T. Wang and R. Jia, “Data banzhaf: A data valuation framework with maximal robustness to
learning stochasticity,” arXiv preprint arXiv:2205.15466, 2022.

[32] Y. Kwon and J. Zou, “Beta shapley: a unified and noise-reduced data valuation framework for
machine learning,” arXiv preprint arXiv:2110.14049, 2021.

[33] C.-K. Yeh, J. Kim, I. E.-H. Yen, and P. K. Ravikumar, “Representer point selection for explaining
deep neural networks,” Advances in neural information processing systems, vol. 31, 2018.

[34] P. W. Koh and P. Liang, “Understanding black-box predictions via influence functions,” in
International conference on machine learning. PMLR, 2017, pp. 1885–1894.

[35] G. Pruthi, F. Liu, S. Kale, and M. Sundararajan, “Estimating training data influence by tracing
gradient descent,” Advances in Neural Information Processing Systems, vol. 33, pp. 19 920–
19 930, 2020.

[36] C.-P. Tsai, C.-K. Yeh, and P. Ravikumar, “Sample based explanations via generalized represen-
ters,” Advances in Neural Information Processing Systems, vol. 36, 2024.

[37] B. Schölkopf, R. Herbrich, and A. J. Smola, “A generalized representer theorem,” in Interna-
tional conference on computational learning theory. Springer, 2001, pp. 416–426.

[38] A. Jacot, F. Gabriel, and C. Hongler, “Neural tangent kernel: Convergence and generalization in
neural networks,” Advances in neural information processing systems, vol. 31, 2018.

[39] T. Hong, P. Pinson, and S. Fan, “Global energy forecasting competition 2012,” pp. 357–363,
2014.

[40] D. Dua, C. Graff et al., “Uci machine learning repository,” 2017.

[41] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang, “Informer: Beyond
efficient transformer for long sequence time-series forecasting,” in The Thirty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2021, Virtual Conference, vol. 35, no. 12. AAAI
Press, 2021, pp. 11 106–11 115.

12

[42] G. Lai, W.-C. Chang, Y. Yang, and H. Liu, “Modeling long-and short-term temporal patterns
with deep neural networks,” in The 41st international ACM SIGIR conference on research &
development in information retrieval, 2018, pp. 95–104.

[43] J. Yoon, W. R. Zame, and M. van der Schaar, “Estimating missing data in temporal data
streams using multi-directional recurrent neural networks,” IEEE Transactions on Biomedical
Engineering, vol. 66, no. 5, pp. 1477–1490, 2018.

[44] T. Nie, G. Qin, W. Ma, Y. Mei, and J. Sun, “Imputeformer: Low rankness-induced transform-
ers for generalizable spatiotemporal imputation,” in Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, 2024, pp. 2260–2271.

[45] W. Du, “PyPOTS: a Python toolbox for data mining on Partially-Observed Time Series,” 2023.
[Online]. Available: https://arxiv.org/abs/2305.18811

[46] I. Marisca, A. Cini, and C. Alippi, “Learning to reconstruct missing data from spatiotemporal
graphs with sparse observations,” Advances in Neural Information Processing Systems, vol. 35,
pp. 32 069–32 082, 2022.

[47] A. Zeng, M. Chen, L. Zhang, and Q. Xu, “Are transformers effective for time series forecasting?”
in Proceedings of the AAAI conference on artificial intelligence, vol. 37, no. 9, 2023, pp.
11 121–11 128.

[48] L. Yang, R. Ren, X. Gu, and L. Sun, “Interactive generalized additive model and its applica-
tions in electric load forecasting,” in Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2023, pp. 5393–5403.

[49] J. Xie and T. Hong, “Temperature scenario generation for probabilistic load forecasting,” IEEE
Transactions on Smart Grid, vol. 9, no. 3, pp. 1680–1687, 2016.

[50] E. Winter, “The shapley value,” Handbook of game theory with economic applications, vol. 3,
pp. 2025–2054, 2002.

[51] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in Proceedings of
COMPSTAT’2010: 19th International Conference on Computational StatisticsParis France,
August 22-27, 2010 Keynote, Invited and Contributed Papers. Springer, 2010, pp. 177–186.

[52] D. Kingma, “Adam: a method for stochastic optimization,” in Int Conf Learn Represent, 2014.

[53] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-performance deep learning
library,” Advances in neural information processing systems, vol. 32, 2019.

13

https://arxiv.org/abs/2305.18811

A Why We Need Task-oriented Imputation

Here we use a toy example to illustrate that, in some cases, we can not directly use the accuracy of
imputation instead of downstream tasks to evaluate the imputation method. We want to point out that
better imputation accuracy does not always mean better forecasting performance, and we simulate a
dataset based on the GEF dataset to illustrate this viewpoint, experimenting with a predicted length
of 24. Suppose that we only observed the value at the time step nk (k≥0) and nk+1 (k≥1), just
for the convenience of linear interpolation. In the first case(represented by I), we set n = 4, fill the
missing value with linear interpolation, and uniformly add Gaussian noise N (0.05,0.3). In the second
case(represented by II), we set n = 6 and only do the linear interpolation (shown in Figure 2). We put
two data sets into MLP and calculated the forecasting error as shown in the following Table 4.

0 5 10 15 20
Time step

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Va
lu

e

Simulated data visualization
true
Case I
Case II

Figure 2: Visualization of simulated data

Table 4: Imputation and Forecasting accuracy on simulated dataset
MSE↓ Imputation Forecasting

I 0.1039 0.1140
II 0.0576 0.1395

B Axioms

In [36], there are several axioms desirable for a fair attribution. In this section, we modify them to a
version suitable for our task and demonstrate that our method satisfies such properties. Here we use
I(i, l,Xk) to represent the impact of the perturbation of the l-th step of the i-th sample on sample
Xk.

Definition 1 (Efficiency Axiom). For any model f(·,θ), and test point Xv
k, an indication function

I(·, ·, ·) satisfies the efficiency axiom iff:

n∑
i

L2∑
l

I(i, l) =

m∑
k=1

(L (f (Xv
k,θ1) ,y

v
k)− L (f (Xv

k,θ2) ,y
v
k))

s.t. θ1 = argmin
θ

n∑
k=1

L
(
f (Xk,θ) ,y

(1)
k

)
θ2 = argmin

θ

n∑
k=1

L
(
f (Xk,θ) ,y

(2)
k

)

14

This is a counterpart of the efficiency axioms in Shapley values [50], and our method is naturally
satisfying.

Definition 2 (Self-Explanation Axiom). An indication function I(·, ·, ·) satisfies the self-explanation
axiom iff there exists any training point Xi having no effect on itself, i.e. I(i, l,Xi) = 0, the training
point should not impact any other points, i.e. I(i, l,X) = 0 for all X .

Similar to the dummy axiom in the Shapley values, our method naturally satisfies.

Definition 3 (Symmetric Zero Axiom). An indication function I(·, ·, ·) satisfies the symmetric zero
axiom iff any two training points Xi,Xj such that if I(i, ·,Xi) ̸= 0 and I(j, ·,Xj) ̸= 0, then

I(j, ·,Xi) = 0 =⇒ I(i, ·,Xj) = 0. (10)

This situation holds if and only if K(Xi,Xj) = 0, therefore, our method satisfies.

Definition 4 (Symmetric Cycle Axiom). An indication function I(·, ·, ·) satisfies the symmetric cycle
axiom iff for any set of training points Xt1 , . . .Xtk , with possible duplicates, and Xtk+1

= Xt1 , it
holds that:

k∏
i=1

I
(
ti, ·,Xti+1

)
=

k∏
i=1

I (ti+1, ·,Xti) (11)

The original definition of I(·, ·, ·) does not satisfy the above properties, as our goal is to estimate
the impact of label perturbations on the loss. However, when removing ∂L(f(Xk,θ),yk)

∂f(Xk,θ)
from the

definition, our method satisfies this property.

Definition 5 (Continuity Axiom). An indication function I(·, ·, ·) satisfies the continuity axiom iff it
is continuous wrt the test data point X , for any fixed training point Xi :

lim
X′→X

I(j, ·,X ′) = I(j, ·,X) (12)

Definition 6 (Irreducibility Axiom). An indication function I(·, ·, ·) satisfies the irreducibility axiom
iff for any number of training points X1, . . . ,Xk,

det

 I(1, ·,X1) I(1, ·,X2) . . . I(1, ·,Xk)
I(2, ·,X1) I(2, ·,X2) . . . I(2, ·,Xk)

.
I(k, ·,X1) I(k, ·,X2) . . . I(k, ·,Xk)

 ≥ 0. (13)

A sufficient condition for an attribution A(·) to satisfy the irreducibility axiom is for

|I(i, ·,Xi)| >
∑
j ̸=i

|I(i, ·,Xj)| (14)

When selecting the NTK kernel, this property naturally satisfies.

C Discussion on Remark 1

Remark 1. Given two infinitely differentiable functions f(x) and g(x) in a bounded domain D ∈ Rn,
||f(x) − g(x)|| is always less than ϵ. For any given δ and ϵ2, there exists an ϵ such that, in the
domain D, the measure of the region I that satisfying ||∂f(x)∂x − ∂g(x)

∂x || > δ is not greater than ϵ2,
i.e, m(I) ≤ ϵ2.

Correctness. Firstly, we can relax the restrictions on the function by requiring that each dimension
of the function on Rn be continuous. Then, we can simplify the problem into a one-dimensional case
on R. Secondly, we can let h(x) = f(x)− g(x) (note that |h(x)| < ϵ), and then our problem can be
transformed into proving that for any given δ and ϵ2, there exists an ϵ such that, in the interval [a, b],
the measure of the region satisfying |h′(x)| > δ is less than ϵ2.

Let the domain I represent the set of all x that satisfy |h′(x)| > δ. We first need to prove that I can
be rewritten as the union of several disjoint intervals Ii that satisfy

15

∀Ii,∀x ∈ Ii, h(x) > δ or h(x) < −δ.

Since h′(x) itself is a continuous function, the division is obvious. The problem is that we need to
prove the number of Ii is countable.

Assuming Ii is uncountable, we perform n bisection on [a, b] to obtain numbers of smaller intervals
like [a+ (12)

n, a+ (12)
n+1]. If Ii is not countable, then no matter how large n is, we can always find

two points x and y in the interval that satisfy h′(x) > δ, h′(y) > δ (here we mainly consider greater
cases, the smaller case is the same), then

|x− y|δ ≤ |h(x)− h(y)| ≤ |h(x)|+ |h(y)| ≤ 2ϵ,

and this equation does not hold as ϵ → 0, which makes contradiction. Therefore, we can rewrite
I as

⋃∞
i=1 Ii. To simplify, assume that I can be written in the form of a finite number of unions

I =
⋃N

i=1 Ii. If the remark does not hold, we have max
i

m(Ii) = k, then Nk ≥ ϵ2. Obviously,

|δk| ≤ 2ϵ, then k ≤ | 2ϵδ |. Finally, we have

N |2ϵ
δ
| ≥ Nk ≥ ϵ2,

which makes contradiction as ϵ → 0. If the number of Ii is infinite, we can always find N that is big
enough to satisfy Nk ≥ ϵ2 and the rest is the same.

Discussion on Application. As shown in the analysis above, for some given δ and ϵ2, we only require
that |ϵ| < |x− y|δ and |ϵ| <

∣∣ ϵ2δ
2N

∣∣. Even though the real boundary is highly related to the specific
scenarios and is difficult to tell in real applications, we can have a look at some widely used examples.
Here, we mainly discuss two kinds of optimizers that are widely used in neural network training and
they are SGD [51] and Adam [52].

For the loss function L to be set as MSE. Note that we use X and Xtest to represent the input
data in the training set and test set, separately. y is the training label and yi,l is the value of a time
step in it. We use t to represent the training epoch and there will be T epochs total. Our goal is to
use g(Xtest, yi,l) to approximate f(Xtest, θT , yi,l) first and then use ∂g(Xtest,yi,l)

∂yi,l
to approximate

∂f(Xtest,θT ,yi,l)
∂yi,l

.

During the training process of a forecasting model, we let ht(yi,l) represent ∂L(f(X,θt,yi,l),y)
∂θt

and
∂2ht(yi,l)

∂y2
i,l

will be zero. Recalling that our goal is to approximate the gradient ∂f(Xtest,θT ,yi,l)
∂yi,l

by

approximating f(Xtest, θT , yi,l) first and then take the gradient. However, the function that we really
want to approximate is ∂θT

∂yi,l
since ∂f(Xtest,θT ,yi,l)

∂yi,l
=

∂f(Xtest,θT ,yi,l)
∂θT

∂θT
∂yi,l

and ∂f(Xtest,θT ,yi,l)
∂θT

is a
constant for given Xtest.

For SGD (as well as its variants SGD with momentum), θT = θ0 −
∑T

t=1 ηht (yi,l). Therefore, the
∂2θT
∂y2

i,l
= 0, which means that the gradient of the function we want to approximate is constant. In this

case, our approximation will be pretty good.

For Adam, on the one hand, [35] has claimed that the first-order approximation in the SGD situation
remains valid, as long as a small step-size η is used in the update. On the other hand, let θT =

θ0 −
∑T

t=1 ηvt(ht (yi,l)), where vt represent the terms in Adam. In this situation, ∂θT
∂yi,l

will be an
algebraic function with only a finite number of monotonic intervals. Therefore, for any given δ and
ϵ, the ϵ2 will not be really high since the yi,l that makes ||∂f(Xtest,θT ,yi,l)

∂yi,l
− ∂g(Xtest,yi,l)

∂yi,l
|| > δ can

only appear near the local extreme point, whose number is finite.

D Implementation Details

Table 5 summarizes the dataset partitioning we used. Except for the GEF data, the rest are multivariate
datasets. We forecast the ‘OT’ sequences in ETH1 and ETH2, as well as the combined electricity

16

consumption of all users in ELECTRITY, the average occupancy rate of all roads in TRAFFIC, and
the temperature series in the AIR dataset.

D.1 Datasets for forecasting

Table 5: Datasets used in the forecasting task.
Dataset Training Validation Test

GEF 2013-01-01 01:00∼2014-01-01 00:00 2014-01-01 00:00∼2014-09-01 01:00 2014-09-01 01:00∼2015-01-01 00:00

ETTH1 2016-07-01 00:00∼2017-07-01 00:00 2017-07-01 00:00∼2018-03-26 01:00 2018-03-26 01:00∼2018-06-26 19:00

ETTH2 2016-07-01 00:00∼2017-07-01 00:00 2017-07-01 00:00∼2018-03-26 01:00 2018-03-26 01:00∼2018-06-26 19:00

ELECTRICITY 2012-01-01 00:00∼2013-08-01 00:00 2013-08-01 00:00∼2014-06-26 01:00 2014-06-26 01:00∼2014-12-31 23:00

TRAFFIC 2016-07-01 02:00∼2017-12-31 23:00 2017-12-31 23:00∼2018-04-01 01:00 2018-04-01 01:00∼2018-07-02 01:00

AIR 2004-03-10 18:00∼2004-12-01 00:00 2004-12-01 00:00∼2005-02-01 00:00 2005-02-01 00:00∼2005-04-04 13:00

D.2 Implementation of time series forecasting model

We include two models in our experiment. The first one is a 3-layer MLP in which the input size
and output size are both 24 while the hidden size is 128. In addition, we mainly apply the simple
and high-performance DLiner with default setting in [47] as our forecasting model backbone. In
addition, to adapt to situations where the input and output dimensions are different, we constructed
an output layer at the end of the DLiner model, mapping the output of multiple variables to the output
of a specified dimension. We use the torch.SGD optimizer [53] to optimize the parameters of the
model, where the learning rate is set to 0.1. The maximum epochs for each training are 300, and the
patience is set to 10.

D.3 Implementation of time series imputation model

We have introduced a total of five imputation methods for comparison, and all experiments were
based on pyPOTS [45] except for SPIN. The hyperparameters for each method are set as shown in
Table 6. In addition, referring to [13], we set the total training epoch to 100 and the patience to 10,
while other hyperparameters are the default setting.

Table 6: Hyperparameters of the time series imputation.
Method Hyperparameters

SAITS n_layers=2, d_model=64, d_ffn=32, n_heads=4, d_k=16, d_v=16, dropout=0.1

BRITS rnn_hidden_size=64

MRNN rnn_hidden_size=64

GPVAE latent_size=64

USGAN rnn_hidden_size=64

SPIN hidden_size=64

ImputeFormer n_layers = 2,d_input_embed =64,d_learnable_embed = 64 ,d_proj = 32,d_ffn = 64 ,n_temporal_heads = 4

D.4 Implementation of our estimation

In section 2.2, we gives the estimation of I(i, l) as follows,

− 1

n

∂2L (f (Xi,θ) ,yi)

∂f (Xi,θt) ∂yi,l

T
∂L(f(Xv

k,θ),y
v
k)

∂f(Xv
k,θ)

∂f (Xi,θ)

∂θ

∂f(Xv
k,θ)

∂θ

T

︸ ︷︷ ︸
NTKkernel

. (15)

However, depending on the solution to the optimization problem (7), we may have different
forms of estimation for I(i, l). Referring to [36, 35], when we no longer only consider the
downstream model parameters θ at the moment of training convergence but also consider the
entire training process, we can obtain another form of solution to the optimization problem that

17

α̂i,l = −
∑

t∈[T]:i∈B(t)
η(t)

|B(t)|
∂2L(f(t−1)(Xi,θ),yi)
∂f(t−1)(Xi,θ)∂yi,l

, where t, B(t), and η(t) here represent the t th

epoch, the batch size, and the learning rate, respectively. And the I(i, l) in this situation will be

−
∑

t∈[T]:i∈B(t)

η(t)∣∣B(t)
∣∣ ∂2L

(
f (t−1) (Xi,θ) ,yi

)
∂f (t−1) (Xi,θt) ∂yi,l

T
∂L(f(Xv

k,θ),y
v
k)

∂f(Xv
k,θ)

∂f (t−1) (Xi,θ)
⊤

∂θ

∂f(Xv
k,θ)

∂θ

∣∣∣∣∣
θ=θ(t)

,

=−
∑

t∈[T]:i∈B(t)

η(t)∣∣B(t)
∣∣ ∂2L

(
f (t−1) (Xi,θ) ,yi

)
∂f (t−1) (Xi,θt) ∂yi,l

∂f (t−1) (Xi,θ)
⊤

∂θ

∂L(f(Xv
k,θ),y

v
k)

∂θ

∣∣∣∣∣
θ=θ(t)

.

(16)

Compared to the original estimation, repeated calculations will bring a significant computational
burden. However, based on our acceleration method, the time required for such multiple calculations
is still controlled within a reasonable range. In application, we calculate for each parameter updates
in each epoch.

D.5 Implementation of Influence Function

In section 3.3.1, we compared the performance of our method with the Influence Function that we
modified. Below, we will describe how to modify the Influence Function to fit our task.

For a training point (X,y), define yl,δ
def
= [y1, · · · , yl + δ, · · · , yL2

]. Consider the perturba-

tion y 7→ yl,δ and let θϵ,δ
def
= argminθ∈Θ

1
n

∑n
i=1 L (f(Xi,θ),yi) + ϵL

(
f(X,θ),yl,δ

)
−

ϵL
(
f(X,θ),yl,δ

)
. Then we have

dθ̂ϵ,δ

dϵ

∣∣∣∣∣
ϵ=0

= −H−1
θ (∇θL(f(X,θ),y))−∇θL(f(X,θ),y)) (17)

≈ −H−1
θ [∇yl

∇θL(f(X,θ),y)] δ. (18)

Therefore, I(l,Xtest) = −∇θL (f(Xtest,θ),ytest)
⊤
H−1

θ̂

[
∇yl

∇θL(f(X, θ̂),y)
]
δ. Note that

we applied the Conjugate gradients mentioned in [34] to accelerate its computation and compare it
with our methods.

D.6 Hareware usage

We use 1 NVIDIA GTX 4090 GPU with 24GB of memory for all our experiments.

E Potential Social Impact

Our estimation may not be 100% accurate compared to the actual situation, so it is possible to
introduce bias in the evaluation among different imputation strategies, which may further have
adverse effects on downstream tasks.

F Supplementary Experimental Results

F.1 Acceleration method

F.1.1 Performance of the acceleration method

In our practice, we mainly examine the benefits of modifying each time step on downstream tasks.
Therefore, we mainly focus on whether the gain estimation is positive or negative without providing
precise values. Based on this idea, we provide methods for accelerating calculations in Section 2.3.
Here, we present a comparison between the accelerated estimate and the original estimate. Note that
we conduct this experiment on three datasets and they are GEF, ELECTRICITY, and a generated time
series, denoted by Brown, based on the following Python code.

18

from fbm import FBM
f = FBM(n=2281, hurst=0.75, length=1, method=’daviesharte’)

The result is shown in the Figure 3. Note that here we also use correlation and accuracy mentioned in
the main text.

0.80

0.85

0.90

0.95

1.00
Co

rr
GEF

Seg-12
Seg-8
Seg-6
Seg-4

80%
82%
84%
86%
88%
90%
92%
94%
96%
98%

100%

Ac
cu

ra
cy

GEF

0.80

0.85

0.90

0.95

1.00

Co
rr

ELE

80%
82%
84%
86%
88%
90%
92%
94%
96%
98%

100%

Ac
cu

ra
cy

ELE

1% 5% 10%15%20% 50%
Percentage

0.80

0.85

0.90

0.95

1.00

Co
rr

Brown

1% 5% 10%15%20% 50%
Percentage

80%
82%
84%
86%
88%
90%
92%
94%
96%
98%

100%

Ac
cu

ra
cy

Brown

Figure 3: The correlation and accuracy comparison between the estimation of our original method
and the acceleration method.
F.1.2 MSE comparison on downstream forecasting task

Table 7: MSE↓ in the downstream forecasting task.
Method Datasets

GEF ETTH1 ETTH2 ELECTRICITY TRAFFIC AIR
I.Original

Mean 0.1750 0.0523 0.1797 0.1123 0.4359 0.1508
SAITS 0.1980(0.0092) 0.1027(0.0021) 0.2098(0.0125) 0.1176(0.0110) 0.4311(0.0151) 0.5006(0.0251)
BRITS 0.2021(0.0007) 0.1692(0.0105) 0.2384(0.0018) 0.1503(0.0003) 0.4535(0.0001) 0.6979(0.0086)
MRNN 0.2052(0.0001) 0.2184(0.0016) 0.2317(0.0001) - 0.4540(0.0000) 0.7965(0.0018)
GPVAE 0.2087(0.0019) 0.1591(0.0072) 0.2365(0.0022) 0.1471(0.0001) 0.4465(0.0001) 0.6968(0.0044)
USGAN 0.2048(0.0023) 0.1549(0.0179) 0.2238(0.0085) 0.1447(0.0011) 0.4742(0.0048) 0.6840(0.0306)

SPIN 0.2120(0.0029) 0.2000(0.0509) 0.2414(0.0327) 0.1588(0.0113) 0.4609(0.0148) 0.6604(0.0802)
ImputeFormer 0.1820(0.0016) 0.1558(0.0033) 0.2125(0.0022) 0.1076(0.0012) 0.4249(0.0060) 0.6300(0.0119)

II.With Seg-4 Gain estimation
Mean+SAITS 0.1666(0.0007) 0.0522(0.0000) 0.1796(0.0000) 0.0972(0.0006) 0.4182(0.0022) 0.1490(0.0001)
Mean+BRITS 0.1704(0.0000) 0.0522(0.0000) 0.1795(0.0000) 0.1078(0.0000) 0.4332(0.0000) 0.1507(0.0000)
Mean+MRNN 0.1707(0.0000) 0.0523(0.0000) 0.1795(0.0000) - 0.4333(0.0000) 0.1508(0.0000)
Mean+GPVAE 0.1708(0.0000) 0.0522(0.0000) 0.1795(0.0000) 0.1069(0.0001) 0.4308(0.0004) 0.1507(0.0000)
Mean+USGAN 0.1704(0.0001) 0.0522(0.0000) 0.1795(0.0000) 0.1076(0.0002) 0.4251(0.0002) 0.1506(0.0000)

Mean+SPIN 0.1693(0.0013) 0.0523(0.0001) 0.1800(0.0003) 0.1047(0.0001) 0.4302(0.0010) 0.1502(0.0005)
Mean+ImputeFormer 0.1666(0.0002) 0.0522(0.0000) 0.1794(0.0000) 0.0991(0.0002) 0.4203(0.0014) 0.1498(0.0000)

III.With Seg-2 Gain estimation
Mean+SAITS 0.1686(0.0005) 0.0522(0.0000) 0.1799(0.0001) 0.1003(0.0005) 0.4212(0.0017) 0.1491(0.0001)
Mean+BRITS 0.1724(0.0000) 0.0522(0.0000) 0.1795(0.0000) 0.1105(0.0000) 0.4355(0.0000) 0.1507(0.0000)
Mean+MRNN 0.1730(0.0000) 0.0523(0.0000) 0.1795(0.0000) - 0.4356(0.0000) 0.1508(0.0000)
Mean+GPVAE 0.1730(0.0000) 0.0522(0.0000) 0.1795(0.0000) 0.1097(0.0001) 0.4335(0.0003) 0.1507(0.0000)
Mean+USGAN 0.1724(0.0001) 0.0522(0.0000) 0.1795(0.0000) 0.1098(0.0003) 0.4290(0.0001) 0.1506(0.0000)

Mean+SPIN 0.1733(0.0008) 0.0523(0.0000) 0.1803(0.0004) 0.1093(0.0003) 0.4343(0.0001) 0.1503(0.0005)
Mean+ImputeFormer 0.1688(0.0004) 0.0523(0.0001) 0.1795(0.0000) 0.1021(0.0002) 0.4231(0.0008) 0.1498(0.0000)

Table 7 summarizes the performance of our acceleration methods Seg-4 and Seg-2 in downstream
forecasting tasks. Overall, performance gradually improves as the number of segmented segments

19

gradually increases. In addition, even if it is only divided into two segments, our method can still
bring some gain with minimal additional computational burden.

F.1.3 A larger dataset

For large-scale data, we applied our method to a 15-minute resolution UCI electricity dataset (with
approximately 100000 training points) and we adjusted our experimental setup to input 96 points and
output 96 points, and here is the result.

Table 8: MSE ↓ comparison on larger dataset.
ELETRICITY Mean SAITS +IF +ours +ours_seg_16 +ours_seg_8

MSE↓ 0.249 0.307 0.248 0.238 0.236 0.237
Time(s) - - 126.33 1053.28 264.27 118.53

F.2 Additional missing rate

In addition to the 40% missing rate in the main experiment, we also conduct several experiments in
the ELECTRICITY dataset with missing rates in [30%, 50%, 60%].

Table 9: MSE ↓ comparison on different missing rate.
ELETRICITY STRATEGY Mean SAITS BRITS GPVAE USGAN ImputeFormer

30% - 0.0878 0.0988(0.0107) 0.1083(0.0016) 0.1077(0.0002) 0.1045(0.0006) 0.0863(0.0005)
+ours - 0.0798(0.0008) 0.0855(0.0000) 0.0851(0.0002) 0.0853(0.0000) 0.0814(0.0001)

50% - 0.1410 0.1686(0.0320) 0.2082(0.0010) 0.2044(0.0021) 0.2071(0.0099) 0.1347(0.0010)
+ours - 0.1126(0.0026) 0.1313(0.0000) 0.1289(0.0005) 0.1319(0.0009) 0.1152(0.0002)

60% - 0.1938 0.2441(0.0350) 0.3094(0.0005) 0.3057(0.0056) 0.3032(0.0168) 0.1889(0.0011)
+ours - 0.1351(0.0020) 0.1724(0.0001) 0.1691(0.0015) 0.1741(0.0016) 0.1431(0.0011)

F.3 Combination with robust time series forecasting

In addition to our solution, some kinds of methods, such as robust time series forecasting, to deal with
missing (anomaly) values have been proposed these days. Here we combine our method with [16],
which is one of the SOTA of such kind of method to illustrate that this kind of method is not
contradictory to our approach but can be combined. Note that the hyperparameters are the same as
the original paper in [16] and we replace the dataset with ours.

Table 10: MSE ↓ comparison on the ELECTRICITY dataset combining our method and RobustTSF.
MSE↓ Mean SAITS BRITS USGAN GPVAE SPIN ImputeFormer

+RobustTSF 0.056 0.050 0.092 0.084 0.099 0.053 0.076
+RobustTSF+ours - 0.046 0.050 0.052 0.046 0.048 0.051

F.4 Illustration on multivariate forecasting

We conduct our method on multivariate forecasting tasks and give a small example of the ELEC-
TRICITY dataset. Note that we apply our method to the first three users (columns) in the dataset.

Table 11: MSE ↓ comparison on multivariate forecasting.
MSE↓ Mean SAITS BRITS GPVAE USGAN ImputeFormer

Original 0.1776 0.2252 0.3404 0.3404 0.3355 0.2231
+Ours - 0.1497 0.1704 0.1717 0.1704 0.1470

F.5 Forecasting results

Figures 4, 5, 6, 7, 8, and 9, show the visualization of the forecasting performance of the model. We
mainly compared the combination of the SAITS method and the baseline model with the original
SATIS method, and it can be seen that combining the two imputations will bring benefits to the
forecasting.

20

0 10 20 30 40 50 60 70
Time

2.5

2.0

1.5

1.0

0.5

Va
lu

e

true
saits
saits+mean

Figure 4: Visualization of forecasting result on AIR

0 10 20 30 40 50 60 70
Time

1.5

1.0

0.5

0.0

0.5

Va
lu

e

true
saits
saits+mean

Figure 5: Visualization of forecasting result on ELECTRICITY

0 10 20 30 40 50 60 70
Time

2

1

0

1

2

3

Va
lu

e

true
saits
saits+mean

Figure 6: Visualization of forecasting result on Traffic

21

0 10 20 30 40 50 60 70
Time

2.0

1.5

1.0

0.5

0.0

0.5

Va
lu

e

true
saits
saits+mean

Figure 7: Visualization of forecasting result on GEF

0 10 20 30 40 50 60 70
Time

1.6

1.4

1.2

1.0

0.8

0.6

Va
lu

e

true
saits
saits+mean

Figure 8: Visualization of forecasting result on ETTH1

0 10 20 30 40 50 60 70
Time

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Va
lu

e

true
saits
saits+mean

Figure 9: Visualization of forecasting result on ETTH2

22

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have summarized our contributions both in the abstract section and at
the end of the introduction. The claims made are supported by the results in the paper’s
experiment section.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We cover some limitations of this work in our conclusion section (the part left
for future work).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

23

Answer: [Yes]

Justification: See Section 2 and Appendix C.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide details about our experiment settings in the experiment section to
ensure reproducibility as well as the link of the code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

24

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provide the public accessible link to both the code and dataset we
used for experiment.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We cover all these information in our experiment section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes] ,

Justification: Every experiment is done 3 times.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes] ,

Justification: We cover these information in our appendix sections.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm that our research adheres to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The societal impacts of time series forecasting are provided in the Introduction
section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

26

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly cited all the models used for the experiment and ensured the
license and terms of use are explicitly mentioned and properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

27

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets..

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

28

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

29

	Introduction
	Related Work

	Methodology
	Problem Statement
	Approximation Model Construction
	Similarity Calculation Acceleration
	Task-oriented Imputation Evaluation
	Task-oriented Imputation Emsemble

	Experiment
	Datasets and Experiment Setup
	Time Series Imputation Methods
	Experimental Results
	Application 1: Estimate the Gain
	Application 2: Combine Different Time Series Imputation

	Conclusion and Future Work
	Acknowledgement
	Why We Need Task-oriented Imputation
	Axioms
	Discussion on Remark 1
	Implementation Details
	Datasets for forecasting
	Implementation of time series forecasting model
	Implementation of time series imputation model
	Implementation of our estimation
	Implementation of Influence Function
	Hareware usage

	Potential Social Impact
	Supplementary Experimental Results
	Acceleration method
	Performance of the acceleration method
	MSE comparison on downstream forecasting task
	A larger dataset

	Additional missing rate
	Combination with robust time series forecasting
	Illustration on multivariate forecasting
	Forecasting results

