
Under review as submission to TMLR

Counterfactual Variable Control for Robust and Interpretable
Question Answering

Anonymous authors
Paper under double-blind review

Abstract

Deep learning based question answering (QA) models are neither robust nor interpretable in
many cases. For example, a multiple-choice QA model, tested without any input of question,
is surprisingly “capable” to predict most of correct answers. In this paper, we inspect such
“shortcut capability” of the QA model using causal inference. We find the crux behind is the
shortcut correlation (learned in the model), e.g., simply word alignment between passage and
options. To address the issue, we propose a novel approach called Counterfactual Variable
Control (CVC) including both training and inference stages that explicitly mitigates any
shortcut correlations and preserves only comprehensive reasoning to do robust QA. To enable
CVC inference, we first leverage a multi-branch network architecture Cadene et al. (2019)
based on which we disentangle shortcut correlations and comprehensive reasoning in the
trained model in CVC training. Then, we introduce two variants of CVC inference approach
to capture only the causal effect of comprehensive reasoning as the model prediction. To
evaluate CVC, we conduct extensive experiments using three neural network backbones
(BERT-base, BERT-large and RoBERTa-large) on both multi-choice and extractive QA
benchmarks (MCTest, DREAM, RACE and SQuAD). Our results show that CVC can
achieve consistently high robustness against various adversarial attacks in QA tasks, and its
results are easy to interpret.

1 Introduction

Question answering (QA) is an important task in natural language processing that has been attracting much
attention in recent years Seo et al. (2016); Chen et al. (2017); Yu et al. (2018); Kwiatkowski et al. (2019);
Karpukhin et al. (2020); Yasunaga et al. (2021). Although tremendous progress has been made with QA
models, especially with the help of pre-trained language models such as BERT Devlin et al. (2019) and
RoBERTa Liu et al. (2019), top-performing models often lack interpretability Feng et al. (2018); Kaushik &
Lipton (2018), nor are they robust to adversarial attacks Ribeiro et al. (2018); Szegedy et al. (2013); Wallace
et al. (2019); Niu & Zhang (2021); Kiela et al. (2021). For example, adding one more question mark at
the end of the input question, which is a simple adversarial attack, may decrease the performance of QA
models Ribeiro et al. (2018). This vulnerability will raise security concerns when the model is deployed in
real-world applications, e.g., intelligent shopping assistants and web search engines. It is thus desirable to
figure out why this happens and how to improve the robustness of QA models.

Existing methods for robust QA models mainly resort to robust training. One straightforward way is
to generate adversarial examples for training Jia & Liang (2017); Ribeiro et al. (2018); Si et al. (2021).
However, sometimes it is expensive and time-consuming to manually generate adversarial examples, and QA
models are still not robust to unseen attacks. On the other hand, recent works focus on regularizing QA
models via additional losses to prevent the model from learning the superficial correlation. For example,
QAInformax Yeh & Chen (2019) maximizes the mutual information between the passage and the question to
achieve regularization. However, so far, robust QA against adversarial samples has not been fully exploited.

In this paper, we carefully inspect both the training and the test processes for QA models. We find the
aforementioned vulnerability is caused by the fact that the model tends to exploit the shortcut correlations in

1

Under review as submission to TMLR

Man:	What's	your	job?
Woman:	I	am	an	accountant.

Question: What	is	the	woman's	job?
A. An	accountant
B.	A	shop	assistant
C.	An	applicant

Ha!	I	can	get	the	
answer	without
the	Question.

conventional
multi-choice QA model

Passage Question Options

Prediction

Test	Accuracy:	61.5%	

Passage Options

Prediction

Test	Accuracy:	57.1%
(Expected:	33.3%)	

Passage Options

Prediction

Test	Accuracy:	58.2%
(Expected:	33.3%)	

conventional
multi-choice QA model

question-muted
multi-choice QA model

(a)	conventional	training	and	test (b)	conventional	training	but
question-muted	test

(c)	question-muted	training	
and	test

(d)	a	case	study	of	training
sample

Figure 1: We observe multi-choice QA models are “capable” to answer a question without any question data
in input (question-muted) during test (b), or during both training and test (c). We conduct these experiments
using the BERT-base model Devlin et al. (2019) on the multi-choice QA benchmark DREAM Sun et al.
(2019). (a) shows the normal case for reference. (d) show a training sample on DREAM.

the training data. To illustrate this, we show some example results of the BERT-Base MCQA model Devlin
et al. (2019) in Figure 1. Supposedly, the model should predict the answer based on the passage, the question,
and the options. Surprisingly, the absence of the question during only the test stage (Figure 1 (b)) or during
both the training and the test stages (Figure 1 (c)) leads to a limited performance drop. Our hypothesis
is that the BERT-Base MCQA model uses a huge amount of network parameters to learn the shortcut
correlation between the no-question inputs (i.e., passage and options) and the ground-truth answer in a
brute-force manner. Figure 1(d) shows an example where this shortcut could be realized by simply aligning
the words appearing in both the passage and options. Can we just conclude from this example that questions
have little effect on answers? We must say no, as this violates our common sense about the causality in QA —
the question causes the answer.

P

Q

O

R A

P

Q

O

R A

(a)	
SCM	

(b)	
shortcut

Figure 2: The SCM of MCQA. P is for
passage, Q for question, O for options and
A for answer. Particularly, R denotes the
comprehensive reasoning.

With the observation above in mind, we take a step further
towards robust and interpretable QA systems by figuring out
the causality in QA based on causal inference Pearl et al. (2009);
Pearl & Mackenzie (2018). We begin by analyzing the causal
relationships in QA, i.e., associating any two variables based
on the causal effect. Inspired by the recent success of causal
inference in applications Qi et al. (2020); Tang et al. (2020);
Niu et al. (2021), we represent the causal relationships in QA
using the Structural Causal Model (SCM) Pearl et al. (2009).
Figure 2(a) shows the SCM for MCQA as an example, where
each node denotes a variable (e.g., Q for question and A for
answer) and the directed edge from one node to another repre-
sents their causal relation (e.g., Q→A denotes question causes
answer). Besides the input and output variables, we introduce
an intermediate variable R to reflect the expected comprehen-
sive reasoning among all the inputs. SCM illustrates that not only comprehensive reasoning but also shortcut
correlations have effects on the output answer. As highlighted in Figure 2(b), P and O can directly reach A,
leading to a success rate 24% higher than the random guess shown in Figure 1(b). These shortcut correlations
are “distractors” against our goal of robust QA, i.e., the prediction should be caused by the comprehensive
reasoning.

According to the above causality-based analysis, we expect the robust QA systems to conduct comprehensive
reasoning and exclude the shortcut effects for unbiased inference. To alleviate the effects of shortcuts, we
propose a novel approach called Counterfactual Variable Control (CVC) based on the causality theory. CVC
in essence includes counterfactual analysis Pearl et al. (2009); Pearl & Mackenzie (2018); Pearl (2001) and
variable control. The former allows us to evaluate the effect of an event by modifying it in a counterfactual
scenario. The latter, motivated by controlling for variables, aims to explicitly separate the effects of different

2

Under review as submission to TMLR

variables. In this way, we can avoid any interference from controlled variables. To implement CVC in deep
models, we realize the SCM as a multi-branch architecture Cadene et al. (2019); Clark et al. (2019) that
is composed of a robust branch reflecting the comprehensive reasoning and several shortcut branches. We
highlight that CVC training exactly follows the multi-branch training Cadene et al. (2019), while CVC
is based on counterfactual analysis to capture the indirect effects of only the comprehensive reasoning.
Furthermore, according to our causality-based analysis, we point out that existing ensemble-based debiasing
methods Clark et al. (2019) can be regarded as special cases of CVC, which serves as a theoretical explanation
from a perspective of causality. This is because these methods also involve multi-branch training, with
robust and bias branches, and use only the robust branch during inference. To evaluate the robustness
of CVC comprehensively, we propose four adversarial attacks for Multiple-Choice QA (MCQA) and one
human-annotated adversarial set for Extractive QA (EQA). For example, we propose to add one sentence in
passage as additional option to fool the MCQA model. Experiments are conducted on four QA benchmarks
with different backbone networks, e.g., BERT Devlin et al. (2019) and RoBERTa Liu et al. (2019). The
experimental results validate the effectiveness and generalizability of our proposed CVC approach. As shown
in the case studies, our CVC can not only achieve robust performance, but also conduct interpretable and
reasonable inference processes due to the theoretical foundation of causal inference. Our main contributions
are summarized as follows: (i) We analyze the vulnerability of QA model from a novel causal perspective and
point out that the the robust prediction actually equals to the indirect effects of the input variables on answers.
(ii) Based on the theory of causal inference, we propose counterfactual variable control (CVC) to measure
the indirect effects, i.e., mitigating the shortcut correlations while preserving the robust comprehensive
reasoning in QA, and implement it in the deep models. Interestingly, our CVC method also cover the popular
ensemble-based debiasing methods and provide interpretability for them. (iii) For a comprehensive evaluation,
we propose several adversarial attacks for MCQA and EQA. The experimental results with different backbones
on these adversarial sets for four QA benchmarks show the effectiveness and generality of CVC.

2 Related Work

Question Answering. Question answering (QA) is an important application in natural language under-
standing. QA aims to evaluate machines’ reading comprehension abilities. Basically, the QA task requires
machines to answer a question based on a given passage. Several QA settings have been proposed to inspect
various aspects of language understanding. For example, CoQA Reddy et al. (2019) and DREAM Sun
et al. (2019) are based on conversations, HotpotQA Yang et al. (2018) focuses on multi-hop reasoning,
and RACE Lai et al. (2017) looks at the challenges with the multiple-choice QA setting. Meanwhile, the
development of QA models has been rapid. Early QA models only relied on word embedding techniques such
as Word2vec Mikolov et al. (2013) or GloVe Pennington et al. (2014). Inspired by the success of attention
mechanism in machine translation Bahdanau et al. (2014), recent works further adopted this mechanism as
core component, e.g., BiDAF Seo et al. (2016) and Match-LSTM Wang & Jiang (2016). Nowadays, large-scale
pre-training becomes indispensable in QA models, such as BERT Devlin et al. (2019) and RoBERTa Liu et al.
(2019). However, robustness and interpretability of QA models are still challenging problems for practical
applications Ribeiro et al. (2018); Wallace et al. (2019). In this paper, we focus on how to improve the
robustness and interpretability of QA models. We take two types of QA datasets, multiple-choice question
answering and span-extraction question answering, as study cases.

Robustness in NLP. Large-scale pre-trained language models have shown their strength in language
understanding, however, it has been shown that many of them can be easily fooled by simple adversarial
attacks, e.g., using distractor sentences Zhang et al. (2020b). Recent works used generated adversarial
examples to augment training data explicitly, such as to train more robust models against adversarial
attacks Ribeiro et al. (2018); Liu et al. (2020a); Jia & Liang (2017); Wang & Bansal (2018). They achieved
fairly good performance but they have their limitations. First, they need the prior knowledge of the specific
adversarial attack, i.e., “in what way to generate adversarial examples”, which is often not available in real
applications. Second, their model performance strongly relies on the quality of adversarial examples and is
sensitive to training hyperparameters, e.g., augmentation ratios. Alternative methods include using advanced
regularizer Yeh & Chen (2019); Liu et al. (2020b); Ye et al. (2020), training loss Jia et al. (2019); Huang
et al. (2019); Jiang et al. (2020), sample filtering Yaghoobzadeh et al. (2019); Le Bras et al. (2020) and

3

Under review as submission to TMLR

model ensembling Clark et al. (2019); Cadene et al. (2019); He et al. (2019); Utama et al. (2020a); Ghaddar
et al. (2021). However, it remains unexplained why and how these methods are capable to achieve robust QA
models.

In terms of model implementation, our CVC training process is close to ensemble-based methods. Our key
difference is that we introduce a systematic and explainable causal formulation of QA that potentially
opens principled directions to understanding the critical challenges of QA. Specifically, our first step was
to formulate the QA task from a causal perspective using the Structural Causal Model (SCM) in order
to understand the reasons behind the vulnerability of deep models. Building upon this analysis, we then
proposed CVC to develop robust and interpretable QA models. CVC leverages the insights gained from the
SCM analysis and offers an intuitive inference process for human interpretation. Our technical contribution
lies in the new CVC methods (after the QA model is trained).

Causal Inference in Deep Learning. Causal inference Pearl et al. (2009); Pearl & Mackenzie (2018);
Neuberg (2003) is based on the causal assumption made in each specific task, e.g., QA task in this paper. It
has been widely applied to epidemiology Rothman & Greenland (2005), computer science Van der Laan &
Rose (2011), and social science Steel (2004). Recently, it has been incorporated in a variety of deep learning
applications such as image classification Goyal et al. (2019), image parsing Zhang et al. (2020a), representation
learning Wang et al. (2020), scene graph generation Tang et al. (2020), and vision-language tasks Qi et al.
(2020); Chen et al. (2020); Niu et al. (2021); Abbasnejad et al. (2020). In NLP, counterfactual methods are
also emerging recently in natural language inference Kaushik et al. (2020), semantic parsing Lawrence &
Riezler (2018), story generation Qin et al. (2019), dialog systems Zhu et al. (2020), gender bias Vig et al.
(2020); Shin et al. (2020), and sentiment bias Huang et al. (2020). In this paper, we take the first step towards
improving the robustness of QA models based on causality.

3 Counterfactual Variable Control (CVC)

CVC aims to conduct unbiased inference by excluding the shortcut effects, e.g., aligning words in passage
and options. In this section, we continually use multi-choice question answering (MCQA) (and its SCM in
Figure 2) as a case study of QA tasks and introduce our proposed Counterfactual Variable Control (CVC) on
the level of SCM. In the next section, we turn to the implementation that how to model SCM and conduct
the CVC using the deep model. Given a natural language paragraph as passage p, the models for MCQA
are expected to answer the related question q by selecting the correct answer a from the candidate options o.
In the following, we use uppercase letters to denote the variables (e.g., Q for question) and lowercase letters
for the specific value of a variable (e.g., q for a specific question).

3.1 Normal Prediction and Counterfactual Prediction

We introduce counterfactual notations, i.e., the imagined values of variables as if their ancestors had existed
(i.e., uncontrolled) in a counterfactual world Pearl et al. (2009); Tang et al. (2020); Pearl (2001); Roese
(1997). For example, input variables (P, Q and O) are set to the be available for A while R would attain the
value when the input variables had been unavailable. We call this “counterfactual” as the variables cannot be
simultaneously set as different statuses in the factual world.

Normal Prediction (NP) means that the model makes predictions when the variables are all controlled or
uncontrolled. We use the function format Y (X =x), abbreviated as Yx, to represent the effect of X =x on Y .
We use this notation to formulate any path on the SCM, and further derive the prediction as:

Ap,q,o,r =A(P=p, Q=q, O=o, R=r), (1)

where r =R(P=p, Q=q, O=o) denotes the normal value of comprehensive reasoning, and Ap,q,o,r denotes
the inference logits of the model with realistic inputs values. If all the inputs are controlled (e.g., muting
their values as null), the value that A would obtain can be represented as:

Ap∗,q∗,o∗,r∗ =A(P=p∗, Q=q∗, O=o∗, R=r∗), (2)

where r∗ =R(P=p∗, Q=q∗, O=o∗), and Ap∗,q∗,o∗,r∗ is the inference logits of the model with null values of
input variables, which are denoted as p∗, q∗, and o∗.

4

Under review as submission to TMLR

Counterfactual Prediction (CP) means that the model predicts the answer when some variables are
controlled, but the others are assigned counterfactual values obtained when these variables are uncontrolled.
This is a key operation in the counterfactual analysis Pearl et al. (2009); Pearl & Mackenzie (2018); Pearl
(2001). For example, we can control the input variables P, Q, and O with their values to null (denoted as p∗,
q∗, and o∗), and assign their child node R with a counterfactual value r = R(P=p, Q= q, O=o) obtained
when the inputs P, Q, and O were valid. Similarly, we can control R as r∗ while assigning its parent nodes P,
Q, and O with counterfactual values p, q, and o.

To conduct CVC inference, we propose two variants of counterfactual control: (i) controlling only input
variables; and (ii) controlling only the mediator variable. For (i), we formulate the value of A as:

Ap∗,q∗,o∗,r =A(P=p∗, Q=q∗, O=o∗, R=r), (3)

For (ii), we have:
Ap,q,o,r∗ =A(P=p, Q=q, O=o, R=r∗). (4)

3.2 CVC

As previously stated, our objective is to preserve only the robust prediction derived from comprehensive
reasoning and exclude shortcut correlations. Consequently, the goal is to measure the effect of comprehensive
reasoning R1. Motivated by the theory of causality Morgan & Winship (2015), CVC can be realized by
comparing the fact and its counterpart, i.e., estimating the difference between the normal prediction (NP)
and the counterfactual prediction (CP). Intuitively, the importance of the effect of a variable on the resulting
variable can be revealed by controlled experiments. If the difference between the experimental group and
the control group is large, this variable may have a significant effect on the output. We utilize this conclusion
from another view. If we have the prior that a variable is essential, we expect the difference to be large
corresponding to this variable. In our case, we expect the difference corresponding to the comprehensive
reasoning R is large , i.e., the model should rely on R for inference. Following the definition in Section 3.1, the
idea can be realized by controlling on either inputs (e.g., Q) or mediator variables (e.g., R). Therefore, CVC
can be realized in two ways corresponding to the controlled variables: CVC on Input Variables (CVC-IV)
and CVC on Mediator Variables (CVC-MV).

CVC on Input Variables (CVC-IV) is derived as:

CVC-IV = Ap∗,q∗,o∗,r − Ap∗,q∗,o∗,r∗ , (5)

where in Ap∗,q∗,o∗,r the input variables are controlled to be null (e.g., p∗) while the mediator variable is set as
its counterfactual value, which is obtained by imaging a counterfactual world where the inputs had not been
controlled (i.e., r = R(p, q, o)). In this case, the first term is CP and the second term is NP. We measure the
effect of R by comparing the two scenarios where the states of R are different.

CVC on Mediator Variable (CVC-MV) is derived as:

CVC-MV = Ap,q,o,r − Ap,q,o,r∗ , (6)

where in Ap,q,o,r∗ the input variables are set as their observed values (e.g., p) while the mediator variable is
controlled by imagining a counterfactual world where all inputs had been set to null (i.e., r∗ = R(p∗, q∗, o∗)).
In this case, the first term is NP and the second term is CP. We measure the effect of R by comparing the
two scenarios where the states of R are different.

Note that both CVC-IV and CVC-MV aim to capture the causal effect of comprehensive reasoning in QA.
The main difference lies in on which variables to apply the control. The surgery is on the input variables in
CVC-IV and the mediator variable in CVC-MV. The former aims to remove all the shortcut correlations,
while the latter preserves only the effect of comprehensive reasoning on answer after the subtraction.

1Noted that R variable is a virtual variable compared to other variables and denotes the robust and comprehensive reasoning.

5

Under review as submission to TMLR

bottom
shared
layers

complete
input

top layers classifier

subset of
input

subset of
input top layers classifier

top layers classifier

...

pre-trained backbone

softmax

softmax

losse

losss
softmax

shortcut
logits1

fused
logits

robust
logits

shortcut
logitsN

losss

...

P

Q

O

Robust
Branch

Shortcut
Branch 1

Shortcut
Branch N

...

Figure 3: Multi-task training framework in our CVC using MCQA as example. It shows a robust branch and
two shortcut branches (N =2). The complete input (e.g., X = {P, Q, O} for MCQA) are fed to the robust
branch, while a subset to the shortcut branch (e.g., X1 = {P, O} to the first shortcut branch). Solid arrows
indicate feedforward, and dashed arrows for backpropagation.

4 The Implementation of CVC

In this section, we introduce how to implement CVC using deep neural networks, including multi-task training
and counterfactual inference strategies. Multi-task training explicitly decouples the robust path and shortcut
paths by multi-branch architecture, while counterfactual inference conducts unbiased inference based on
CVC-IV or CVC-MV in Section 3. Building on Section 3, we take MCQA and its corresponding SCM in
Figure 2 as the example in this section.

4.1 Multi-task Training

As illustrated in Figure 3, our overall framework implements the SCM in Figure 2(a) as multiple neural
network branches. The main branch takes all the input variables (i.e., complete input) to learn the causal
effect corresponding to the robust path of SCM (i.e., P, Q, O→R→A), which we call comprehensive reasoning
branch (or robust branch). The other branches, we call shortcut branches, take a subset of inputs (i.e., part
of the variables are muted) to explicitly learn the shortcut correlations corresponding to the shortcut paths
of SCM (e.g., P, O→A as Q is muted). We deploy each branch as the standard QA model with pre-trained
backbone Devlin et al. (2019) where the pre-trained backbone consists of bottom shared layers and top layers.
The model is trained via multi-task training, i.e., each branch is optimized using an individual objective.
Only the robust branch gradients are propagated to update the bottom shared layers in the backbone. In the
following, we introduce the details of how we implement each path in SCM (Figure 2).

P, Q, O → R → A. This path is implemented by the robust branch F r, which takes the complete input
X = {P, Q, O}, e.g., the realistic values of question, passage and options in MCQA. The network body, with
parameters denoted as θr, consists of a pre-trained backbone (e.g., BERT) and a classifier (e.g., one FC
layer). Since this branch learns the causal effect from R to A, we denote its output logits as:

Ar = F r(X ; θr). (7)

We explain that R can be regarded as the hidden state of the top layers before the classifier on the robust
branch. This illustrates the features of the text after being processed by the deep model’s comprehensive
reasoning ability.

P → A, Q → A and O → A. These paths are implemented by shortcut branches F s
n (n = 1, 2, · · · , N),

which learn the shortcut correlations between incomplete (controlled) input and the ground truth answer.
Each shortcut branch takes a subset of variables Xn ⊂ X as input (e.g., X1 = {P, O}) and sets the other
variables (e.g., Q) as null. The shortcut branch has the same architecture with the robust branch but different
parameters θs

n. We denote the outputs as:

As
n = F s

n(Xn; θs
n), n = 1, 2, · · · , N. (8)

Fusion combines all causal effects from any variables X directed linked to A, e.g., R→A in robust branch and
O→A in shortcut branch. Another functionality of the fusion is to facilitate the training of multi-branches.

6

Under review as submission to TMLR

We fuse the logits from the robust branch and shortcut branches as:

Ae
i =

∑
n

p̂r
i · p̂s

n,i, (9)

where p̂r
i = softmax(Ar

i), p̂s
n,i = softmax(As

n,i) and i is the i-th dimension of the prediction. Here we use
probabilities instead of logits because probabilities are non-negative and can work as normalization.

Objective adopts the standard cross-entropy loss to optimize all the branches. For the n-th shortcut branch,
we directly minimize the cross-entropy loss over its logits As

n:

Ls
n = −

∑
i

pi log softmax(As
n,i), (10)

where i denotes the i-th dimension of the prediction, and the one-hot vector p denotes the encoding of ground
truth answer.

For the robust branch, directly optimizing over the robust prediction Ar cannot avoid the model to learn
the correlations as in the conventional QA models, and cannot guarantee the model to learn the pure
comprehensive reasoning. We tackle this problem by fusing robust logits Ar with shortcut logits As

n. In
this way, we can force Ar to only preserve the prediction that can never be achieved by shortcuts, i.e.,
the comprehensive reasoning prediction with the complete input variables as input. We then optimize the
cross-entropy loss over the adjustment Ae, i.e., overall effects on A, for robust branch as:

Le = −
∑

i

pi log softmax(Ae
i). (11)

In pre-experiments, we empirically found that the robust branch may focus on only hard samples and ignore
easy samples by fusing the branches at the level of predictions. When outputs of shortcut branches are correct
with high confidence, logits-level fusion may lead to a very small value in Eq. 11. We further propose two
variants of losses to tackle this issue:

Le1 = −
∑

n

1
n

∑
i

pi log softmax(p̂r
i · p̂s

n,i),

Le2 = −
∑

n

wn

∑
i

pi log softmax(p̂r
i · p̂s

n,i),
(12)

where wn = softmax(Ls
n) = exp(Ls

n)∑m=n

m=1
exp(Ls

m)
is a weight to explicitly enhance the effect of the n-th shortcut

branch on the robust branch. We formulate the overall loss used in multi-task training as:

Lall = Le +
∑

n

Ls
n, (13)

where Le can be replaced with Le1 or Le2. Ablation studies empirically show that Le2 achieves better
performances. Noted that the optimization of robust branch will not affect the parameters on the shortcut
branches.

4.2 Counterfactual Inference

Different from conventional inference that is based on the posterior probability Devlin et al. (2019), we
propose to use counterfactual inference based on causal effects Pearl & Mackenzie (2018); Pearl (2001). In
this section, we introduce how to conduct CVC-IV and CVC-MV inferences given the robust branch and
shortcut branches.

Following the notation formats of normal prediction (NP) and counterfactual prediction (CP) in Eq. 3
and Eq. 4 along with the notation of output for each branch in Eq. 7 and Eq. 8, we can (i) denote the
prediction of the n-th shortcut branch as as

n =F s
n(p, o; θs

n) and its value with null input as as∗
n =F s

n(p∗, o∗; θs
n);

7

Under review as submission to TMLR

and (ii) denote the prediction of the robust branch as ar = F r(p, q, o; θr) and its value with null input as
ar∗ =F r(p∗, q∗, o∗; θr). In this case, we denote Aas∗

1 ,··· ,as∗
N

,ar∗ as Ap∗,q∗,o∗,r∗ .

For the CVC-IV inference in Eq. 5, we obtain NP as Ap∗,q∗,o∗,r∗ and CP as Ap∗,q∗,o∗,r. Combining Eq. 5
and 9, we can derive the CVC-IV inference result as:

CVC-IV = Ap∗,q∗,o∗,r − Ap∗,q∗,o∗,r∗

= Aas∗
1 ,··· ,as∗

N
,ar − Aas∗

1 ,··· ,as∗
N

,ar∗

=
∑

n

p̂r · cs
n −

∑
n

cr
n · cs

n,
(14)

where each element in cr
n or cs

n is the same constant in [0, 1]. Each element in cr
n or cs

n are the same constant
derived from Eq. 9. Specifically, cr

n denotes the value of p̂r when the corresponding robust branch is fed null
input, and thus the same constant is used to denote the logits in cr

n. Similarly, cs
n corresponds to the value of

p̂s
n when the corresponding shortcut branch is fed null input. We highlight that CVC-IV inference corresponds

to computing Natural Indirect Effect (NIE) in causal inference Pearl & Mackenzie (2018); Pearl (2001). It is
equivalent to the normal inference on the robust model, similar to existing works such as Learned-Mixin Clark
et al. (2019) and RUBi Cadene et al. (2019). Differently, CVC-IV is totally derived from the systematical
causal analysis in QA and is thus more explainable than Learned-Mixin which is heuristic.

For the CVC-MV inference in Eq. 6, we denote NP as Ap,q,o,r, and CP as Ap,q,o,r∗ . Combining Eq. 6 and 9,
we can derive the CVC-MV inference result as:

CVC-MV = Ap,q,o,r − Ap,q,o,r∗

= Aas
1,...,as

N
,ar − Aas

1,...,as
N

,ar∗

=
∑

n

p̂r · p̂s
n −

∑
n

cr
n · p̂s

n,
(15)

which is an indirect way of making inference using only the robust branch. This result corresponds to
computing Controlled Indirect Effect (CIE) in causal inference Pearl & Mackenzie (2018); Pearl (2001).

Since the optimal value for cr
n varies across each sample, we train a c-adaptor F c

n with a two-layer MLP to
adaptively estimate cr

n. This can be formulated as:

cr
n = F c

n(p̂r, p̂s
n, Distance; θc

n), (16)

where F c
n(x1, x2, x3; θc

n)=W2
n tanh(W1

n[x1; x2; x3]), [;] is the concatenation operation, and θc
n ={W1

n, W2
n}

are learnable parameters. We implement Distance as the Jensen-Shannon divergence Lin (1991) JS[p̂r||p̂s
n]

between p̂r and p̂s
n. Specifically, we train a c-adaptor after the multi-task training in Figure 3 by fixing

the other parameters. The training objective is the same as the downstream task, e.g., computing the
cross-entropy loss with the logits of CVC-MV (Eq. 6) and ground-truth label:

Lc−adapter = −
∑

i

pi log softmax(
∑

n

p̂r · p̂s
n −

∑
n

cr
n · p̂s

n). (17)

4.3 Summary

Our approach consists of two stages: multi-task training (Section 4.1) and counterfactual inference (Section
4.2) summarized in Algorithm 1 (in Appendix). Multi-task training aims to train a robust branch F r and N
shortcut branches {F s

n}N
n=1. Counterfactual inference performs the robust and interpretable reasoning for QA.

We highlight that CVC training follows the supervised training on multi-task networks Cadene et al. (2019);
Clark et al. (2019). CVC differs from the inference process described in Section 4.B. Normal prediction will
use the overall trained model directly for the inference. Some debiasing method Cadene et al. (2019); Clark
et al. (2019) adopt the prediction only from the robust branch and discard the bias branch. The inference
process of CVC is derived from the causal analysis of the shortcut problems in QA model. Furthermore,
the inference process in Cadene et al. (2019); Clark et al. (2019) (directly using the robust branch) can be
regarded as a special case of CVC-IV while lacks interpretability.

8

Under review as submission to TMLR

5 Experiments

5.1 Experimental Settings

We evaluate the robustness of CVC for both MCQA and EQA, using a variety of adversarial attacks Zhang
et al. (2020b). Below we introduce the base datasets followed by the adversarial sets for each base datasets.
We conduct multi-task training on the training split of base datasets and conduct inference on original
development/test splits of base datasets and adversarial sets.

5.1.1 Base Datasets

MCQA aims to select the correct answer from several input options given a passage and a question. We
conduct experiments on the following benchmark datasets: MCTest Richardson et al. (2013) is generated
from fictional stories and aims at open-domain machine comprehension. The questions are limited to the
level that young children can understand. MCTest consists of two subsets, MC500 and MC160. We use the
combination of them in our experiments. DREAM Sun et al. (2019) is a dialogue-based dataset designed by
experts to evaluate the comprehensive ability of foreign learners. In addition to simply matching questions,
DREAM also contains more challenging questions that requires commonsense reasoning. RACE Lai et al.
(2017) is a dataset of English exam from middle and high school reading comprehension. RACE covers a
variety of topics and the proportion of questions that requires reasoning is much larger than other reading
comprehension datasets.

Compared to MCQA, options are not provided on the EQA task. EQA locates the answer span in a passage
given a question. We use the SQuAD dataset for EQA. SQuAD Rajpurkar et al. (2016) is adopted as the
benchmark for EQA where passages are from a set of Wikipedia articles. SQuAD requires several types of
reasoning like lexical variation, syntactic variation, etc.

5.1.2 Adversarial Sets

Adversarial Attacks on MCQA. To further evaluate the robustness of QA models, we propose four kinds
of grammatical adversarial attacks to generate adversarial examples. Add1Truth2Opt and Add2Truth2Opt
(Adv1 and Adv2): We replace one (or two) of the wrong options with another one (or two) answers that are
correct in other samples with the same passage. Add1Pas2Opt (Adv3): We replace one of the wrong options
with a random distracting sentence extracted from the passage. This distractor does not contain any word
that appears in the ground truth option. Add1Ent2Pas (Adv4): We first choose one of the wrong options
with at least one entity, e.g., person name and time, and then replace each entity with another entity of the
same type. Then, we add this modified sentence to the end of the passage.

Adversarial Attacks on EQA. For the EQA task, we utilize three kinds of grammatical adversarial attacks.
AddSent (Adv1), AddOneSent (Adv2) and AddVerb (Adv3). AddSent and AddOneSent released by Jia & Liang
(2017) add distracting sentences to the passage. The generating process is: firstly perturb the question (e.g.,
asking another entity) and create a fake answer, then convert the perturbed question into a distracting
sentence. The final distracting sentences were filtered by crowdworkers. AddSent is similar to AddOneSent
but much harder than AddOneSent. These two settings can be used to measure the model robustness against
entity or noun attacks. AddVerb was inspired by above two sets which aims to evaluate the model robustness
against verb attacks instead of noun. we hire expert linguists to annotate the AddVerb following Jia & Liang
(2017). Examples are as follows. For the question “What city did Tesla move to in 1880?”, AddSent sample
could be “Tadakatsu moved to the city of Chicago in 1881.”, and AddVerb sample could be “Tesla left the
city of Chicago in 1880.”

5.2 Implementation Details

We illustrate the general implementation here and more details for MCQA-specific and EQA-specific are placed
in the appendix. We deploy the pre-trained BERT and RoBERTa backbones provided by HuggingFace Wolf
et al. (2019). The learning rates are fixed to 3e-5, 2e-5 and 1e-5 for BERT-base, BERT-large, and RoBERTa-
large respectively. A linear warm-up strategy for learning rates is used with the first 10% steps in the whole

9

Under review as submission to TMLR

multi-branch training stage. The batch size is selected amongst {16, 24, 32} for the three backbones. The
number of bottom shared layers is fixed to 5/6 of the total number of layers in the backbone language model
for parameter-efficiency, e.g., sharing 10 layers in bottom shared layers when the BERT-base (12 layers) is
adopted as the backbone. The overall experiments are conducted on two pieces of Tesla V100 or two pieces
of RTX 2080Ti (depending on the usage of memory). Gradient accumulation and half precision are used to
relieve the issue of memory usage. Following Clark et al. (2019); Grand & Belinkov (2019); Ramakrishnan
et al. (2018), we perform model selection for CVC-IV (i.e., choosing the hyperparameters of training epochs)
based on the model performance in the development/test sets on the used dataset. We report the average
performance with four random seeds.

BERT-base BERT-large RoBERTa-large

Set Method Test Adv1 Adv2 Adv3 Adv4 A.G. Test Adv1 Adv2 Adv3 Adv4 A.G. Test Adv1 Adv2 Adv3 Adv4 A.G.

M
C

T
es

t CT 68.9 63.9 59.4 20.2 54.8 - 72.3 70.0 66.8 35.5 57.6 - 88.9 88.2 86.6 72.6 84.2 -
CVC-MV 68.1 69.1 65.6 26.8 61.0 +6.1 73.2 74.3 73.5 38.4 68.4 +6.2 88.5 89.3 89.6 82.4 83.4 +3.3
CVC-IV 69.4 70.0 65.4 28.7 59.9 +6.4 74.4 75.5 75.1 40.4 69.5 +7.6 87.4 88.1 88.2 82.6 84.2 +2.9

D
R

E
A

M CT 61.5 47.5 39.2 20.9 41.8 - 65.9 50.6 43.0 25.6 48.2 - 84.1 78.2 76.3 57.1 71.8 -
CVC-MV 60.1 49.6 39.9 23.7 45.6 +2.3 64.0 51.9 46.5 26.3 51.3 +2.2 82.8 77.9 80.2 66.6 71.4 +3.2
CVC-IV 60.0 49.2 40.7 25.0 47.1 +3.1 64.5 52.0 46.2 26.6 51.1 +2.1 81.7 78.3 79.7 66.7 72.3 +3.4

R
A

C
E CT 64.7 56.0 50.1 36.6 58.3 - 67.9 61.9 57.9 51.0 61.7 - 78.4 72.4 67.9 65.9 72.1 -

CVC-MV 64.4 56.7 51.7 39.1 59.2 +1.4 68.6 63.1 58.0 52.4 65.3 +1.6 77.9 75.1 72.0 68.1 72.6 +2.4
CVC-IV 64.1 57.0 52.2 38.8 58.6 +1.4 68.4 62.9 58.7 51.8 65.6 +1.6 77.4 75.7 73.8 69.1 72.1 +3.1

Table 1: Accuracies (%) on three MCQA datasets. Models are trained on original training data. BERT-
base, BERT-large and RoBERTa-large are backbones. “A.G.” denotes the average improvement over the
conventional training (CT) Devlin et al. (2019) for Adv* sets.

BERT-base BERT-large RoBERTa-large
Method Dev Adv1 Adv2 Adv3 A.G. Dev Adv1 Adv2 Adv3 A.G. Dev Adv1 Adv2 Adv3 A.G.
CT 88.4 49.9 59.7 44.6 - 90.6 60.2 70.0 50.0 - 93.5 77.0 82.8 61.3 -
QAInformax 88.6 54.5 64.9 - +4.9 - - - - - - - - - -
MASS 80.2 53.4 63.5 - +3.7 - - - - - - - - - -
ECS-P 88.4 55.2 65.5 - +5.8 - - - - - - - - - -
ECS-Q 87.4 54.4 65.0 - +4.9 - - - - - - - - - -
CVC-MV 87.2 55.7 65.3 51.3 +6.0 90.2 62.6 72.4 52.5 +2.4 92.6 79.4 84.1 63.2 +1.9
CVC-IV 86.6 56.3 66.2 51.5 +6.6 89.4 62.6 71.8 54.1 +2.8 92.2 79.6 85.0 64.1 +2.5

Table 2: EQA F1-measure (%) on the SQuAD Dev set (Test set is not public) and adversarial sets. Models
are trained on original training data. BERT-base, BERT-large and RoBERTa-large are backbones. “-”: not
applicable from original paper. “A.G.”: our average improvement over the conventional training (CT) Devlin
et al. (2019) for Adv*. Results of ECS and MASS are from Xu et al. (2022) and Majumder et al. (2021).

5.3 Results and Analyses

Comparison with Baselines and State-of-the-Arts. Table 1 and Table 2 show the overall results for
MCQA and EQA, respectively. Note that the adversarial sets Adv are used to evaluate the robustness of
QA models. We report the average gain on Adv, denoted as A.G., to compare CVC with the conventional
training methods (CT). From Table 1, we can see that both CVC-MV and CVC-IV can surpass the baseline
method Devlin et al. (2019) for defending against adversarial attacks, e.g., by average increase of 7.6% with
BERT-large and 3.3% with RoBERTa-large on MCTest. It is worth highlighting the example that CVC-IV on

10

Under review as submission to TMLR

Set Method Test Adv1 Adv2 Adv3 Adv4 A.G.

M
C

T
es

t

CT Devlin et al. (2019) 68.9 63.9 59.4 20.2 54.8 -
DRiFt He et al. (2019) 69.6 66.0 61.9 23.0 54.8 +1.9
Bias Product Clark et al. (2019) 71.0 66.7 63.6 22.8 65.5 +5.1
Learned-Mixin Clark et al. (2019) 70.5 66.2 60.4 20.2 58.8 +1.8
Unknown Bias Utama et al. (2020b) 68.1 64.5 62.7 20.7 59.1 +2.2
Self-Debiasing Ghaddar et al. (2021) 69.2 64.9 61.5 22.2 57.2 +1.9
CVC-MV 68.1 69.1 65.6 26.8 61.0 +6.1
CVC-IV 69.4 70.0 65.4 28.7 59.9 +6.4

D
R

E
A

M

CT Devlin et al. (2019) 61.5 47.5 39.2 20.9 41.8 -
DRiFt He et al. (2019) 60.1 48.5 42.2 23.9 44.7 +2.5
Bias Product Clark et al. (2019) 58.6 47.5 38.8 22.6 40.2 -0.1
Learned-Mixin Clark et al. (2019) 60.9 49.2 41.7 20.0 42.3 +1.0
Unknown Bias Utama et al. (2020b) 59.3 48.7 40.3 24.5 43.2 +1.8
Self-Debiasing Ghaddar et al. (2021) 61.2 47.3 39.7 22.9 44.1 +1.2
CVC-MV 60.1 49.6 39.9 23.7 45.6 +2.3
CVC-IV 60.0 49.2 40.7 25.0 47.1 +3.1

R
A

C
E

CT Devlin et al. (2019) 64.7 56.0 50.1 36.6 58.3 -
DRiFt He et al. (2019) 62.0 56.1 53.3 39.3 58.3 +1.7
Bias Product Clark et al. (2019) 62.3 56.7 53.3 37.0 56.8 +1.0
Learned-Mixin Clark et al. (2019) 64.3 56.5 51.9 38.0 60.1 +1.4
Unknown Bias Utama et al. (2020b) 63.3 57.1 52.5 37.5 58.1 +1.1
Self-Debiasing Ghaddar et al. (2021) 63.5 56.6 52.7 38.2 58.9 +1.4
CVC-MV 64.4 56.7 51.7 39.1 59.2 +1.4
CVC-IV 64.1 57.0 52.2 38.8 58.6 +1.4

Table 3: Comparison of ours and related ensembling methods on MCQA with BERT-base. We implement
these methods by replacing Eq. 9 with their adjustment functions for known bias methods. “A.G.”: our
average improvement over the conventional training method (CT) Devlin et al. (2019) for Adv*.

Method Dev Adv1 Adv2 Adv3 A.G.
CT Devlin et al. (2019) 88.4 49.9 59.7 44.6 -
DRiFt He et al. (2019) 85.7 53.7 65.7 48.5 +4.5
Bias Product Clark et al. (2019) 87.8 53.6 65.7 47.3 +4.1
Learned-Mixin Clark et al. (2019) 87.2 53.1 63.9 45.5 +2.1
Unknown Bias Utama et al. (2020b) 88.2 50.3 62.7 47.8 +2.2
Self-Debiasing Ghaddar et al. (2021) 89.3 52.7 64.1 46.0 +2.9
CVC-MV 87.2 55.7 65.3 51.3 +6.0
CVC-IV 86.6 56.3 66.2 51.5 +6.6

Table 4: Comparison of ours and related ensembling methods on EQA with BERT-base. We implement
DRiFt by directly changing our adjustment function (Eq. 9) to its. For Bias Product and Learned-Mixin, we
first use the corresponding adjustment functions in Clark et al. (2019), then we use the TF-IDF released by
original paper as the shortcut branch in our implementation for known bias methods. “A.G.”: our average
improvement over the conventional training method (CT) Devlin et al. (2019) for Adv*.

BERT-base gains 8.5% on the most challenging Adv3 set of MCTest. Besides, our methods are applicable to
different backbones like BERT and RoBERTa-large. The results on EQA in Table 2 show similar observation.
These results empirically demonstrate that our CVC strategy is general and model-agnostic.

Compared to state-of-the-art method, our CVC is more robust to adversarial attacks. As shown in Table 2,
CVC outperforms the state-of-the-art QAInformax Yeh & Chen (2019) by an average of 1.7% F1-measure
with the same BERT-base backbone. As shown in Table 3 and Table 4, we compare CVC with ensemble-based

11

Under review as submission to TMLR

methods. These methods mainly differ in the way of ensembling during training and the design of the bias
model. For example, Clark et al. (2019) adopts a TF-IDF model as the bias model on EQA while Utama et al.
(2020b) employs an early-stopping model as the bias model. The results show that CVC outperforms these
methods on MCTest and DREAM datasets. Besides, all the approach achieve less improvement on RACE
compared to other two datasets. The possible reason is that RACE is designed for reading comprehension that
highlights comprehensive reasoning. Thus, the training data is more debiased. Note that our counterfactual
analysis can regard these ensemble based methods as implementation of our CVC-IV. Also, we notice that
CVC-MV often performs worse than CVC-IV on Adv sets but better on in-domain Test (or Dev) sets. The
possible reason is that the important hyperparameter of CVC-MV cr

n is learned from in-domain data. We
will show that augmenting in-domain data with Adv examples greatly improves the performance of CVC-MV
in Table 9.

Ablative Setting Dev Adv1 Adv2 Adv3

(1) w/o first Shct.br. 85.5 52.6 62.5 50.8
(2) w/o second Shct.br. 86.1 57.7 66.1 42.1
(3) use Le 72.4 45.9 54.9 42.6
(4) use Le1 86.5 53.5 63.2 46.7
CVC-IV (ours) 86.6 56.3 66.2 51.5
(5) same cr

n 85.7 54.3 64.1 51.0
(6) cr

n =JS 85.9 54.3 64.2 51.1
(7) cr

n =Euc 86.0 54.4 64.1 51.2
(8) w/o distance 86.9 55.3 65.0 51.3
(9) w/o p̂r and p̂n 84.0 53.2 62.6 49.4
CVC-MV (ours) 87.2 55.7 65.3 51.3

Table 5: The ablation study on SQuAD (BERT-base).
(1)-(4) are ablative settings for multi-task training (using
CVC-IV); (5)-(9) are ablative settings related to CVC-
MV.

Ablation Study. Table 5 shows the EQA results
in 10 ablative settings to evaluate the importance
of shortcut branches, loss functions, and inference
strategies: (1) removing the first shortcut branch
(E muted) from the multi-task training; (2) remov-
ing the second shortcut branch (V muted) from
the multi-task training; (3) using Le to replace
Le2; (4) using Le1 to replace Le2; (5) setting cr

n to
the same constant (tuned in {0.2, 0.4, 0.6, 0.8, 1})
for all input samples; (6) setting cr

n = JS[p̂r||p̂s
n]

where JS denotes Jensen–Shannon divergence; (7)
setting cr

n as the euclidean distance between p̂r

and p̂s
n; (8) removing the distance item in Eq. 16

and (9) removing p̂r and p̂s
n in Eq. 16. Compared

to the ablative results, we can see that our full
approach achieves the overall top performance on
EQA. There is one exception. A higher score on
Adv1 is achieved (57.7 vs. 55.7) if we do not use
the second shortcut branch (V muted), i.e., the sec-
ond ablative. However, this setting achieves much
lower performance on Adv3 (42.1 vs. 51.3). This
observation indicates that this setting without all the shortcut branches cannot make a good trade-off on
different adversarial attacks. The ablation study for MCQA is shown in Appendix.

Extension to Natural Language Inference. Our CVC method can also work on other NLP tasks like
Natural Language Inference (NLI) task. Following the setting in previous works Clark et al. (2019), we train
the model on MNLI Williams et al. (2018) and evaluate it on an adversarial set, HANS McCoy et al. (2019).
We use the overlapped tokens in the hypothesis and premise as the only bias branch in the implementation of
CVC. From the results shown in Table 12, we observe that CVC-MV outperforms CT by over 9% on the
adversarial set, and achieves comparable performance compared to state-of-the-art methods.

6 Conclusions

We inspect the problem of fragility in QA models, and leverage the structural causal model to show that the
crux is from shortcut correlations. To train robust QA models, we propose a novel training approach called
Counterfactual Variable Control (CVC) and realize it based on a multi-task training pipeline. We conduct
extensive experiments on multiple QA benchmarks, and show that CVC can achieve high robustness while
being easy to interpret. Our future work is to enhance the structural causal model by considering subjective
factors, e.g., the preference of dataset annotators and the source of passages. These factors could be the
confounders which may have the effects on the input variables and answer prediction simultaneously. For
example, the tendency of the annotators or the crowdsourced workers. Such confounders may guide the model
to conduct bias inference. Some intervention techniques can be applied to remove the effect of confounders.

12

Under review as submission to TMLR

References
Ehsan Abbasnejad, Damien Teney, Amin Parvaneh, Javen Shi, and Anton van den Hengel. Counterfactual

vision and language learning. In CVPR, pp. 10044–10054, 2020.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473, 2014.

Remi Cadene, Corentin Dancette, Matthieu Cord, Devi Parikh, et al. Rubi: Reducing unimodal biases for
visual question answering. In NeurIPS, pp. 839–850, 2019.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia to answer open-domain
questions. In ACL, pp. 1870–1879, 2017.

Long Chen, Xin Yan, Jun Xiao, Hanwang Zhang, Shiliang Pu, and Yueting Zhuang. Counterfactual samples
synthesizing for robust visual question answering. arXiv preprint arXiv:2003.06576, 2020.

Christopher Clark, Mark Yatskar, and Luke Zettlemoyer. Don’t take the easy way out: Ensemble based
methods for avoiding known dataset biases. In EMNLP, pp. 4060–4073, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. In NAACL, pp. 4171–4186, 2019.

Shi Feng, Eric Wallace, Alvin Grissom II, Mohit Iyyer, Pedro Rodriguez, and Jordan Boyd-Graber. Pathologies
of neural models make interpretations difficult. In EMNLP, pp. 3719–3728, 2018.

Abbas Ghaddar, Philippe Langlais, Mehdi Rezagholizadeh, and Ahmad Rashid. End-to-end self-debiasing
framework for robust nlu training. In Findings of the Association for Computational Linguistics: ACL-
IJCNLP 2021, pp. 1923–1929, 2021.

Yash Goyal, Ziyan Wu, Jan Ernst, Dhruv Batra, Devi Parikh, and Stefan Lee. Counterfactual visual
explanations. In ICML, pp. 2376–2384, 2019.

Gabriel Grand and Yonatan Belinkov. Adversarial regularization for visual question answering: Strengths,
shortcomings, and side effects. In Proceedings of the Second Workshop on Shortcomings in Vision and
Language, pp. 1–13, 2019.

He He, Sheng Zha, and Haohan Wang. Unlearn dataset bias in natural language inference by fitting the
residual. In Proceedings of the 2nd Workshop on Deep Learning Approaches for Low-Resource NLP (DeepLo
2019), pp. 132–142, 2019.

Po-Sen Huang, Robert Stanforth, Johannes Welbl, Chris Dyer, Dani Yogatama, Sven Gowal, Krishnamurthy
Dvijotham, and Pushmeet Kohli. Achieving verified robustness to symbol substitutions via interval bound
propagation. In EMNLP, pp. 4074–4084, 2019.

Po-Sen Huang, Huan Zhang, Ray Jiang, Robert Stanforth, Johannes Welbl, Jack Rae, Vishal Maini, Dani
Yogatama, and Pushmeet Kohli. Reducing sentiment bias in language models via counterfactual evaluation.
In EMNLP: Findings, pp. 65–83, 2020.

Robin Jia and Percy Liang. Adversarial examples for evaluating reading comprehension systems. In EMNLP,
pp. 2021–2031, 2017.

Robin Jia, Aditi Raghunathan, Kerem Göksel, and Percy Liang. Certified robustness to adversarial word
substitutions. In EMNLP, pp. 4120–4133, 2019.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. Smart: Robust and
efficient fine-tuning for pre-trained natural language models through principled regularized optimization.
In ACL, pp. 2177–2190, 2020.

13

Under review as submission to TMLR

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. Dense passage retrieval for open-domain question answering. In EMNLP, pp. 6769–6781,
2020.

Divyansh Kaushik and Zachary C Lipton. How much reading does reading comprehension require? a critical
investigation of popular benchmarks. In EMNLP, pp. 5010–5015, 2018.

Divyansh Kaushik, Eduard Hovy, and Zachary C Lipton. Learning the difference that makes a difference
with counterfactually-augmented data. In ICLR, 2020.

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie Vidgen,
Grusha Prasad, Amanpreet Singh, Pratik Ringshia, et al. Dynabench: Rethinking benchmarking in nlp. In
NAACL, pp. 4110–4124, 2021.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: A benchmark for
question answering research. TACL, 7:452–466, 2019.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. Race: Large-scale reading comprehen-
sion dataset from examinations. In EMNLP, pp. 785–794, 2017.

Carolin Lawrence and Stefan Riezler. Improving a neural semantic parser by counterfactual learning from
human bandit feedback. In ACL, pp. 1820–1830, 2018.

Ronan Le Bras, Swabha Swayamdipta, Chandra Bhagavatula, Rowan Zellers, Matthew Peters, Ashish
Sabharwal, and Yejin Choi. Adversarial filters of dataset biases. In ICML, pp. 1078–1088, 2020.

Jianhua Lin. Divergence measures based on the shannon entropy. IEEE Transactions on Information theory,
37(1):145–151, 1991.

Kai Liu, Xin Liu, An Yang, Jing Liu, Jinsong Su, Sujian Li, and Qiaoqiao She. A robust adversarial training
approach to machine reading comprehension. In AAAI, 2020a.

Xiaodong Liu, Hao Cheng, Pengcheng He, Weizhu Chen, Yu Wang, Hoifung Poon, and Jianfeng Gao.
Adversarial training for large neural language models. arXiv preprint arXiv:2004.08994, 2020b.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692, 2019.

Sagnik Majumder, Chinmoy Samant, and Greg Durrett. Model agnostic answer reranking system for
adversarial question answering. arXiv preprint arXiv:2102.03016, 2021.

Tom McCoy, Ellie Pavlick, and Tal Linzen. Right for the wrong reasons: Diagnosing syntactic heuristics in
natural language inference. In ACL, pp. 3428–3448, 2019.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in
vector space. arXiv preprint arXiv:1301.3781, 2013.

Stephen L Morgan and Christopher Winship. Counterfactuals and causal inference. Cambridge University
Press, 2015.

Leland Gerson Neuberg. Causality: models, reasoning, and inference. Econometric Theory, 19(4):675–685,
2003.

Yulei Niu and Hanwang Zhang. Introspective distillation for robust question answering. NeurIPS, 34, 2021.

Yulei Niu, Kaihua Tang, Hanwang Zhang, Zhiwu Lu, Xian-Sheng Hua, and Ji-Rong Wen. Counterfactual
vqa: A cause-effect look at language bias. In CVPR, pp. 12700–12710, 2021.

14

Under review as submission to TMLR

Judea Pearl. Direct and indirect effects. In Proceedings of the Seventeenth conference on Uncertainty in
artificial intelligence, pp. 411–420, 2001.

Judea Pearl and Dana Mackenzie. The book of why: the new science of cause and effect. Basic Books, 2018.

Judea Pearl et al. Causal inference in statistics: An overview. Statistics surveys, 3:96–146, 2009.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word representa-
tion. In EMNLP, pp. 1532–1543, 2014.

Jiaxin Qi, Yulei Niu, Jianqiang Huang, and Hanwang Zhang. Two causal principles for improving visual
dialog. In CVPR, pp. 10857–10866, 2020.

Lianhui Qin, Antoine Bosselut, Ari Holtzman, Chandra Bhagavatula, Elizabeth Clark, and Yejin Choi.
Counterfactual story reasoning and generation. In EMNLP, pp. 5046–5056, 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for machine
comprehension of text. In EMNLP, pp. 2383–2392, 2016.

Sainandan Ramakrishnan, Aishwarya Agrawal, and Stefan Lee. Overcoming language priors in visual question
answering with adversarial regularization. In NeurIPS, pp. 1541–1551, 2018.

Siva Reddy, Danqi Chen, and Christopher D Manning. Coqa: A conversational question answering challenge.
TACL, 7:249–266, 2019.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Semantically equivalent adversarial rules for
debugging nlp models. In ACL, pp. 856–865, 2018.

Matthew Richardson, Christopher JC Burges, and Erin Renshaw. Mctest: A challenge dataset for the
open-domain machine comprehension of text. In EMNLP, pp. 193–203, 2013.

N. Roese. Counterfactual thinking. Psychological Bulletin, 121(1):133–148, 1997.

Kenneth J Rothman and Sander Greenland. Causation and causal inference in epidemiology. American
journal of public health, 95(S1):S144–S150, 2005.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional attention flow for
machine comprehension. arXiv preprint arXiv:1611.01603, 2016.

Seungjae Shin, Kyungwoo Song, JoonHo Jang, Hyemi Kim, Weonyoung Joo, and Il-Chul Moon. Neutralizing
gender bias in word embedding with latent disentanglement and counterfactual generation. In EMNLP:
Findings, pp. 3126–3140, 2020.

Chenglei Si, Zhengyan Zhang, Fanchao Qi, Zhiyuan Liu, Yasheng Wang, Qun Liu, and Maosong Sun. Better
robustness by more coverage: Adversarial and mixup data augmentation for robust finetuning. In ACL
Findings, pp. 1569–1576, 2021.

Daniel Steel. Social mechanisms and causal inference. Philosophy of the social sciences, 34(1):55–78, 2004.

Kai Sun, Dian Yu, Jianshu Chen, Dong Yu, Yejin Choi, and Claire Cardie. Dream: A challenge data set and
models for dialogue-based reading comprehension. TACL, 7:217–231, 2019.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob
Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Kaihua Tang, Yulei Niu, Jianqiang Huang, Jiaxin Shi, and Hanwang Zhang. Unbiased scene graph generation
from biased training. In CVPR, pp. 3716–3725, 2020.

Prasetya Ajie Utama, Nafise Sadat Moosavi, and Iryna Gurevych. Mind the trade-off: Debiasing nlu models
without degrading the in-distribution performance. In ACL, pp. 8717–8729, 2020a.

15

Under review as submission to TMLR

Prasetya Ajie Utama, Nafise Sadat Moosavi, and Iryna Gurevych. Towards debiasing nlu models from
unknown biases. In EMNLP, pp. 7597–7610, 2020b.

Mark J Van der Laan and Sherri Rose. Targeted learning: causal inference for observational and experimental
data. Springer Science & Business Media, 2011.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron Singer, and Stuart
Shieber. Investigating gender bias in language models using causal mediation analysis. NeurIPS, 33, 2020.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, and Sameer Singh. Universal adversarial triggers for
attacking and analyzing nlp. In EMNLP, pp. 2153–2162, 2019.

Shuohang Wang and Jing Jiang. Machine comprehension using match-lstm and answer pointer. In ICLR,
2016.

Tan Wang, Jianqiang Huang, Hanwang Zhang, and Qianru Sun. Visual commonsense r-cnn. In CVPR, pp.
10760–10770, 2020.

Yicheng Wang and Mohit Bansal. Robust machine comprehension models via adversarial training. In NAACL,
pp. 575–581, 2018.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sentence
understanding through inference. In NAACL, pp. 1112–1122, 2018.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, R’emi Louf, Morgan Funtowicz, and Jamie Brew. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Weiwen Xu, Bowei Zou, Wai Lam, and Ai Ti Aw. Improving lexical embeddings for robust question answering.
arXiv preprint arXiv:2202.13636, 2022.

Yadollah Yaghoobzadeh, Remi Tachet, Timothy J Hazen, and Alessandro Sordoni. Robust natural language
inference models with example forgetting. arXiv preprint arXiv:1911.03861, 2019.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov, and Christo-
pher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question answering. In EMNLP,
pp. 2369–2380, 2018.

Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut, Percy Liang, and Jure Leskovec. Qa-gnn: Reasoning
with language models and knowledge graphs for question answering. In NAACL, pp. 535–546, 2021.

Mao Ye, Chengyue Gong, and Qiang Liu. Safer: A structure-free approach for certified robustness to
adversarial word substitutions. In ACL, pp. 3465–3475, 2020.

Yi-Ting Yeh and Yun-Nung Chen. Qainfomax: Learning robust question answering system by mutual
information maximization. In EMNLP, pp. 3361–3366, 2019.

Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad Norouzi, and Quoc V
Le. Qanet: Combining local convolution with global self-attention for reading comprehension. In ICLR,
2018.

Sicheng Yu, Jing Jiang, Hao Zhang, Yulei Niu, Qianru Sun, and Lidong Bing. Interventional training for
out-of-distribution natural language understanding. In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, December 2022.

Dong Zhang, Hanwang Zhang, Jinhui Tang, Xian-Sheng Hua, and Qianru Sun. Causal intervention for
weakly-supervised semantic segmentation. NeurIPS, 33, 2020a.

Wei Emma Zhang, Quan Z Sheng, Ahoud Alhazmi, and Chenliang Li. Adversarial attacks on deep-learning
models in natural language processing: A survey. ACM Transactions on Intelligent Systems and Technology,
11(3):1–41, 2020b.

16

Under review as submission to TMLR

Qingfu Zhu, Weinan Zhang, Ting Liu, and William Yang Wang. Counterfactual off-policy training for neural
dialogue generation. In EMNLP, pp. 3438–3448, 2020.

17

Under review as submission to TMLR

A Algorithm

In Algorithm 1, we summarize the overall process of the proposed Counterfactual Variable Control (CVC)
approach.

Algorithm 1 Counterfactual Variable Control (CVC) algorithm
Stage One: Multi-task Training
Input: complete train set data X and N different subsets of train set data {Xn}N

n=1
Output: F r with parameters θr and {F s

n}N
n=1 with parameters {θs

n}N
n=1

1: for batch in X and {Xn}N
n=1 do

2: for n in {1, ..., N} do
3: optimize θs

n with batch of Xn by Eq. equation 10;
4: end for
5: optimize θr with batch of X by Eq. equation 11 for MCQA (by Le2 in Eq. equation 12 for EQA);
6: end for

Stage Two: Counterfactual Inference
Input: F r with parameters θr, {F s

n}N
n=1 with parameters {θs

n}N
n=1, complete target test data X ′ along with

its subsets {X ′
n}N

n=1 and a boolean USE_IV .
Output: CVC inference result ({F c

n}N
n=1 with parameters {θc

n}N
n=1)

1: if USE_IV then
2: compute CVC-IV inference result with target data by Eq. equation 14;
3: else
4: optimize {θc

n}N
n=1 with X and {Xn}N

n=1 by Eq. equation 15, Eq. equation 16 and cross-entropy loss for
QA task;

5: compute CVC-MV inference result with target data X ′ and {X ′
n}N

n=1 by Eq. equation 15 and Eq. equa-
tion 16;

6: end if

B MCQA-Specific Implementation

MCTest DREAM RACE
Random guess 25.0 33.3 25.0
Complete input 68.9 61.5 64.7
No P 24.2 32.8 41.6
No Q 52.5 57.1 51.0
No P, Q 22.4 33.4 34.7

Table 6: Accuracies (%) of conventional training BERT-base MCQA models tested with complete input. “No
X” means the value of input variable X is muted.

MCQA has two shortcut correlations (see Figure 2), i.e., Q → A and P → A2. We present the muting
experiment results of MCQA in Table 6 that can reflect the strength of corresponding direct cause-effects.
For example, the results on the row of “No Q” represent the performance of only using P→A and O→A
shown in Figure 2 (b). We inspect them and notice that the effect from the former one is trivial and negligible
compared to the latter. One may argue that Q is an important cue to predict the answer. Actually, annotators
intentively avoid any easy question-answer pairs when building MCQA datasets. For example, they include
a person name in all options of questions about who. We thus assume Q→A has been eliminated during
well-designed data collection and utilize one shortcut branch (i.e., muting Q). Therefore, Eq. equation 11
and equation 12 are equivalent for MCQA (N =1 and wn =1). Other MCQA-specific implementation details
are the same with the official code of Devlin et al. (2019).

2O→A is not discussed here as O is mandatory and can not be muted.

18

Under review as submission to TMLR

SQuAD
Complete input 88.1
No E 59.4
No V 55.1
No E, V 15.3
No Q 12.4

Table 7: F1 scores (%) of conventional training BERT-base EQA models tested with complete input. “No X”
means the value of input variable X is muted.

C EQA-Specific Implementation

P

V

E

R A

(a)
SCM

(b)
shortcut

S

P

V

E

R A

S

Figure 4: The SCM for EQA task where Q is decomposed to S, V and E.

Different from MCQA, we propose to manually separate the question (Q) of EQA into corresponding parts:
entities & nouns (E); verbs & adverbs (V); and the remaining stop words & punctuation marks (S). As shown
in Figure 4, the SCM of EQA contains four input variables as P (passage), E, V and S. The comprehensive
reasoning variable R mediates between these four variables and answer A. The reason why we conduct this
partition is twofold: (1) P is mandatory for EQA. The lack of P will result in an invalid prediction. To study
the effects of Q→A, what we can do is to split the variable Q into partitions. (2) Our resulting Q partitions
are intuitive. E and V contain the most important semantic meanings. We inspect the empirical effects of all
shortcut paths as shown in Table 7, and build shortcut branches with N =2 to represent all shortcut paths
in Figure 4(b). The first shortcut branch takes X1 = {P, S, V} as input and aims to learn P, S, V→A. The
second shortcut branch takes X2 = {P, S, E} as input and learns P, S, E→A. We empirically use Le2 to train
EQA models. Other EQA-specific implementation details are the same with the official code of Devlin et al.
(2019).

D Ablations on MCQA

Table 8 shows the MCQA results in 10 ablative settings. Specifically, we (1) use X1 = {Q, O} as the input
of the only shortcut branch; (2) use two shortcut branches, where the first one takes X1 = {P, O} as input
and the second one takes X2 = {Q, O} as input, and deploy the Le in Eq. equation 11; (3) use the same two
shortcut branches as (2), but deploy the Le1 in Eq. equation 12; (4) use the same two shortcut branches as
(2), but Le2 in Eq. equation 12 is used; The ablative setting of (5)-(9) on MCQA are the same as those used
for EQA.

Results on (1)-(4) show that considering the shortcut branch with input {Q,O} is not effective for the
robustness of model. The reason is that this shortcut branch is hard to train, i.e., not easy to converge (please
refer to “MCQA-specific” and Table 6). Our empirical conclusions are as follows. Firstly, the shortcut branch
with negligible effect magnitude can be ignored when designing the multi-branch architecture. Secondly, if
no prior knowledge of the effect magnitude on each shortcut path (of SCM), using Le2 is the best choice.
Results on (5)-(9) show the efficiency of our proposed c-adaptor.

19

Under review as submission to TMLR

Ablative Setting Test Adv1 Adv2 Adv3 Adv4

(1) one modified Shct.br. 68.3 63.1 58.0 24.8 56.5
(2) two Shct.br. with Le 70.1 66.8 61.0 24.6 57.1
(3) two Shct.br. with Le1 70.2 66.7 62.1 25.6 56.5
(4) two Shct.br. with Le2 70.8 66.6 61.8 27.1 62.2
CVC-IV (ours) 69.4 70.0 65.4 28.7 59.9
(5) same cr

n 68.1 69.3 64.4 25.6 59.3
(6) cr

n =JS 70.1 67.0 61.9 20.8 62.2
(7) cr

n =Euc 69.8 67.7 61.9 22.3 60.5
(8) w/o distance 66.1 67.9 65.2 27.8 61.0
(9) w/o p̂r and p̂n 65.6 66.3 64.8 27.4 59.9
CVC-MV (ours) 68.1 69.1 65.6 26.8 61.0

Table 8: The ablation study on MCTest (BERT-base). (1)-(4) are ablative settings for multi-task training
(using CVC-IV inference). “Average” means the average performance on Adv* test sets; (5)-(9) are ablative
settings related to CVC-MV inference.

Test Adv1 Adv2 Adv3 Adv4 A.G.

Adv1
CT 71.0 70.6 72.1 42.5 60.5 -
CVC-IV 71.7 73.3 74.9 49.2 63.8 +3.9
CVC-MV 71.6 72.9 74.8 48.0 62.7 +3.2

Adv2
CT 72.3 73.0 75.1 50.1 63.3 -
CVC-IV 71.8 73.8 76.2 59.8 65.5 +3.5
CVC-MV 71.8 74.2 76.6 61.1 65.5 +3.9

Adv3
CT 67.5 62.7 59.9 70.9 57.1 -
CVC-IV 67.6 64.5 62.4 70.2 61.6 +2.0
CVC-MV 66.8 63.7 62.3 70.3 60.5 +1.5

Adv4
CT 69.8 65.4 60.2 27.7 63.3 -
CVC-IV 69.9 66.2 62.4 32.7 61.0 +1.4
CVC-MV 67.5 65.6 62.4 25.4 66.7 +0.9

All
CT 70.5 72.1 74.1 72.5 63.4 -
CVC-IV 72.7 73.5 76.4 71.9 68.4 +2.0
CVC-MV 73.1 74.6 76.6 73.3 73.5 +4.0

Table 9: Accuracies (%) on the MCTest dataset, using different kinds of data augmentation in training
with BERT-base. The leftmost column shows which type of adversarial attack for MCQA is used as data
enhancement.

E Data Augmentation

Data augmentation with adversarial examples is an intuitive method to improve the model robustness Ribeiro
et al. (2018); Jia & Liang (2017). We conduct experiments on the MCTest dataset to show the effect of
augmentation adversarial data on CT, CVC-IV, and CVC-MV. Specifically, we augment the training data
by generating adversarial samples following our adversarial attacks Adv. The results are shown in Table 9.
Comparing Table 9 to the results without data augmentation (Table 1), we can observe that models get
consistently improved via data augmentation. Comparing the results between CT and CVC, we find that
CVC achieves further performance boosts for augmented models. For example, CVC-MV gains an average
accuracy increase of 4.0% to “Add All” models when the training data are augmented with all the four kinds
of adversarial examples. Note that it is high-cost and time consuming to conduct the data augmentation

20

Under review as submission to TMLR

experiments for EQA, because the adversarial attacks for EQA require a lot of human annotations and
proofreading.

F Efficiency

Training Inference
MCQA EQA MCQA EQA

Time Parameter Time Parameter Time Parameter Time Parameter
CT 1× 1× 1× 1× 1× 1× 1× 1×
CVC-IV 2× 1.17× 3× 1.33× 1× 1× 1× 1×
CVC-MV 2× 1.17× 3× 1.33× 2× 1.17× 3× 1.33×

Table 10: Efficiency comparison with convention training (CT) with respect to time and the number of
parameters.

We show the summarized efficiency compared to conventional training (CT) in Table 10. While CVC-MV
requires multiple runs on BERT (or RoBERTa) and consumes more computation during the inference stage,
it has advantages over CVC-IV. Firstly, CVC-MV offers more interpretability for the robust QA model as
demonstrated in the case studies (Figure 5 and Figure 6). CVC-MV illustrates the debiasing process based
on causal inference by subtraction (CP-NP) while the result is directly given by CP for CVC-MV. Secondly,
CVC-MV outperforms CVC-IV in certain cases, such as in the data augmentation scenario (Table 9) where
all types of adversarial data are augmented during training. In addition, there are several ways to further
reduce the computation cost of CVC-MV. Firstly, we can train the bias branch with a shallower model, such
as the bottom 4 layers of BERT. Secondly, we can employ knowledge distillation to compress the bias branch
even further.

G Adversarial Dataset

Adv1 Adv2 Adv3 Adv4

MCTest 840 840 835 177
DREAM 1119 911 2003 577
RACE 4892 4576 4876 1330
SQuAD 3560 1787 542 -

Table 11: Number of samples for the adversarial sets on four benchmarks.

We show the statistics for all the adversarial datasets in Table G. Building adversarial datasets for MCQA is
a more straightforward process than for EQA. We devise several methods to add distractor options to the
MCQA datasets, using options that have obvious word overlaps with the passage to confuse the model. The
generation process of AddVerb for EQA is similar to that of AddSent Jia & Liang (2017). The differences
consist of (i) AddVerb is used to evaluate the robustness of the model against verb attacks and (ii) AddVerb
instances are annotated by a human expert linguist completely (raw version of AddSent is firstly generated
by machine). Given a question-answer pair, the linguist creates a distracting AddVerb sentence in three steps:

• Replace the verb in the question with an antonym of this verb or an irrelevant verb. The verb is
selected by the annotator to have an exact meaning.

• Create a fake answer with the same type as the ground-truth answer.

• Combine modified question and fake answer, and convert them into statement.

An illustration of the whole process is shown in Figure 5.

21

Under review as submission to TMLR

Original question: What city
did Tesla move to in 1880?

Ground-truth answer: Prague

Step 1 Step 2

Modified question: What city
did Tesla left to in 1880?

Fake answer: Florence

Step 3

Generated sentence: Tesla left the city
of Florence in 1880.

Figure 5: An illustration of the AddVerb. We use the instanced question-answer pair in Jia & Liang (2017)
as an example.

H Case Studies

We show two examples as case studies to show the interpretability of our approach from two aspects: (1) the
disentanglement of robust paths and shortcut in multi-branch architecture, (2) human-like counterfactual
inference. Figure 6 and Figure 7 (in Appendix) illustrate two samples from MCQA and EQA respectively to
demonstrate the underlying mechanism of CVC-IV and CVC-MV inference. In Figure 6, the conventional
training method CT Devlin et al. (2019) merely aligns the words between passage and options. This action
leads to the wrong choice C, which is a confusing choice generated by Adv1. In contrast, both CVC-IV and
CVC-MV pick the right answer D. On the bottom blocks, we demonstrate the calculation on prediction logits
during CVC-IV (Eq. 5) and CVC-MV (Eq. 6), respectively. We take the CVC-MV as an example to interpret
this calculation. Both Normal Prediction (NP) Ap,q,o,r and Counterfactual Prediction (CP) Ap,q,o,r∗ contain
the logits of A, B, C and D. The logit value of C is from the word alignment shortcut and it is high in
both NP and CP. It thus can be counteracted after the subtraction in CVC-MV. In contrast, the logit value
of D is from the comprehensive reasoning. When muting the corresponding variable R (denoted by r∗ in
CP Ap,q,o,r∗), this value must be reduced. Then it becomes evident after the subtraction in CVC-MV. The
sample in Figure 7 on EQA can be interpreted in the same way. The only differences is that the “options” for
EQA are tokens, e.g., which token is the start position for answer span). Note that we normalize the bar
chart (the result of the subtraction) for a clear visualization.

Figure 6: A case study of CVC on MCTest trained on official data. The ground truth is underlined.

22

Under review as submission to TMLR

CVC-MV inference for start token

-

=
CVC-MV prediction

CVC-IV inference for start token

-

=
CVC-IV prediction

On the other hand, Luther also points out that the Ten Commandments when considered not as God's condemning
judgment but as an expression of his eternal will, that is, of the natural law also positively teach how the Christian
ought to live. This has traditionally been called the "third use of the law." For Luther, also Christ's life, when
understood as an example, is nothing more than an illustration of the Ten Commandments, which a Christian
should follow in his or her vocations on a daily basis. Luther denied Christ's life a dark story.

Question: What did Luther consider Christ's life?

Ground-truth answer: illustration of the Ten Commandments
CT result: a dark story
CVC-IV result: an illustration of the Ten Commandments,
CVC-MV result: an illustration of the Ten Commandments,

Figure 7: A case study of CVC on SQuAD trained on official data. The distracting sentence from AddVerb
is underlined. Only bold tokens in passage are shown in bar chart due to limited page size.

23

Under review as submission to TMLR

Matched Dev HANS
CT 84.2 62.4
Reweight Clark et al. (2019) 83.5 69.2
Bias Product Clark et al. (2019) 83.0 67.9
Learned-Mixin Clark et al. (2019) 84.3 64.0
Learned-Mixin+H Clark et al. (2019) 84.0 66.2
DRiFt-HYPO He et al. (2019) 84.3 67.1
DRiFt-HAND He et al. (2019) 81.7 68.7
DRiFt-CBOW He et al. (2019) 82.1 65.4
Self-debias+Conf-reg Utama et al. (2020b) 84.5 69.1
Self-debias+Reweight Utama et al. (2020b) 82.3 69.7
Mind the Trade-off Utama et al. (2020a) 84.3 70.3
ForgettableHANS Yaghoobzadeh et al. (2019) 84.3 70.4
ForgettableBoW Yaghoobzadeh et al. (2019) 83.4 71.2
ForgettableBiLST M Yaghoobzadeh et al. (2019) 83.3 71.3
End2End Ghaddar et al. (2021) 83.2 71.2
EIIL Yu et al. (2022) 83.9 69.9
CVC-IV 82.9 70.0
CVC-MV 83.0 71.5

Table 12: NLI accuracies (%) on Matched Dev and HANS. Our CVC methods are trained only on the
original training data (MNLI) with BERT-base.

24

	Introduction
	Related Work
	Counterfactual Variable Control (CVC)
	Normal Prediction and Counterfactual Prediction
	CVC

	The Implementation of CVC
	Multi-task Training
	Counterfactual Inference
	Summary

	Experiments
	Experimental Settings
	Base Datasets
	Adversarial Sets

	Implementation Details
	Results and Analyses

	Conclusions
	Algorithm
	MCQA-Specific Implementation
	EQA-Specific Implementation
	Ablations on MCQA
	Data Augmentation
	Efficiency
	Adversarial Dataset
	Case Studies

