
AdaCL: Adaptive Continual Learning

Elif Ceren Gok Yildirim Murat Onur Yildirim Mert Kilickaya Joaquin Vanschoren
Automated Machine Learning Group, Eindhoven University of Technology

Abstract

Class-Incremental Learning aims to update a
deep classifier to learn new categories while
maintaining or improving its accuracy on pre-
viously observed classes. Common methods to
prevent forgetting previously learned classes in-
clude regularizing the neural network updates
and storing exemplars in memory, which come
with hyperparameters such as the learning rate,
regularization strength, or the number of exem-
plars. However, these hyperparameters are usu-
ally tuned at the start and then kept fixed through-
out the learning sessions, ignoring the fact that
newly encountered tasks may have varying lev-
els of difficulty. This study investigates the ne-
cessity of hyperparameter ‘adaptivity’ in Class-
Incremental Learning: the ability to dynamically
adjust hyperparameters such as the learning rate,
regularization strength, and memory size accord-
ing to the properties of the new task at hand.
We propose AdaCL, a Bayesian Optimization-
based approach to automatically and efficiently
determine the optimal values for those parame-
ters with each learning task. We evaluate the ef-
fectiveness of adaptivity on four different contin-
ual learning approaches and multiple datasets.

1 Introduction

This paper focuses on Class-Incremental Learning of
deep neural network representations (Masana et al., 2020;
De Lange et al., 2021). Unlike standard batch learning,
which requires access to data from all categories simultane-
ously, Class-Incremental Learning can update a pre-trained
deep classifier with new categories by expanding the clas-
sifier layer with new output nodes for new classes. This
leads to more efficient learning and avoids the need to store
task identities which allows for a more realistic scenario.

Accepted pre-registered proposal at the 1st ContinualAI Unconfer-
ence, 2023, Virtual. Full report to follow. Copyright 2023 by the
author(s).

Adaptive Continual Learning

Task 1 Task 2 Task N

(X, y)

Task 3 Task 4

Continual Learning without Adaptivity

λfixed, mfixed, ηfixed

λ, m, η

λ, m, η

Task

Task

λ*, m*, η*

λfixed, mfixed, ηfixed λfixed, mfixed, ηfixed λfixed, mfixed, ηfixed

(X, y) λ*, m*, η* (X, y) λ*, m*, η* (X, y) λ*, m*, η* (X, y)

Figure 1: A comparison of fixed vs. adaptive continual
learning (AdaCL). In this work, we explore the potential
of tuning learning rate (η), regularization strength (λ) and
memory size per task (m), allowing to learn adaptively.

While Class-Incremental Learning enables expanding a
classifier without requiring task identities, it often results
in a significant cost known as catastrophic forgetting. This
occurs when the deep learner sacrifices accuracy on pre-
viously seen classes to learn new ones. Three major ap-
proaches have been explored to address this issue: regu-
larization, replay and architecture adaptation. Regulariza-
tion prevents abrupt shifts in the neural network weights
while learning new classes (Kirkpatrick et al., 2017; Li
and Hoiem, 2017). Replay stores a few exemplars per
class in memory and replays them during new learning in-
crements (Lopez-Paz and Ranzato, 2017). Architecture-
based approaches build network structures by either ex-
panding the existing network (Rusu et al., 2016; Yan et al.,
2021) or by partially isolating network parameters to re-
tain past class information (Liu et al., 2021a; Kang et al.,
2022; Dekhovich et al., 2023). Although these methods
improve the performance, they always use a fixed learn-
ing rate, regularization magnitude, and pre-defined mem-
ory size throughout the learning process.

This paper addresses the issue of dynamically adjusting
how much to regularize, and store in Class-Incremental
Learning for each new task. We explore whether adap-
tation is necessary for optimal performance, treating the
learning rate, regularization magnitude, and memory size
as latent variables that should be adjusted based on the cur-
rent state of the learner and the complexity of the task (see
Figure 1). We use Bayesian Optimization to efficiently dis-
cover the best hyperparameters per task. Our experiments
on CIFAR-100 and MiniImageNet are expected to demon-
strate that adapting these parameters to the tasks results in

AdaCL: Adaptive Continual Learning

significant improvement and give us new insight into how
to adapt various new tasks. In summary, this paper makes
the following contributions:

I. In this paper, for the first time, we raise the important
issue of adaptive hyperparameter selection in class-
incremental learning.

II. We propose to predict the learning rate, regularization
magnitude, and memory size conditioned on the state
of the deep learner and the current learning task via
Bayesian Optimization.

III. Through large-scale experiments on well-established
benchmarks, we plan to show that learning adap-
tively yields significant performance improvements,
in terms of increasing accuracy while reducing forget-
ting.

2 Related Work

Class-Incremental Learning. Class-Incremental Learn-
ing updates a deep classifier with sequentially arriving data,
usually with mutually exclusive categories (Masana et al.,
2020; De Lange et al., 2021; Wang et al., 2023; Zhou et al.,
2023; Kilickaya et al., 2023). However, when novel data
arrives, previous training data becomes unavailable, lead-
ing to catastrophic forgetting. To mitigate this, researchers
have developed three main approaches: (i) regularization-
based methods, which stabilize important parameters or
distill previous knowledge into the model (Kirkpatrick
et al., 2017; Zenke et al., 2017; Lee et al., 2017; Li and
Hoiem, 2017; Chaudhry et al., 2018a; Zhou et al., 2021b;
Zhu et al., 2021), (ii) replay-based methods, which usu-
ally benefit from regularization-based methods and store
a subset of training data to rehearse during learning (Re-
buffi et al., 2017; Chaudhry et al., 2018b; Wu et al., 2019;
Aljundi et al., 2019; Ostapenko et al., 2019; Xiang et al.,
2019; Zhao et al., 2020; Liu et al., 2021b; Petit et al., 2023)
and (iii) architecture-based methods designs network archi-
tectures by extending the network (Rusu et al., 2016; Yan
et al., 2021; Zhu et al., 2022) or freezing network param-
eters partially to preserve old class knowledge (Liu et al.,
2021a; Kang et al., 2022; Dekhovich et al., 2023).

However, current studies assume a constant amount of reg-
ularization and memory size per task throughout learning
sessions which is unnatural, since learning unfamiliar ob-
jects requires more plasticity than learning familiar ones.
To address this issue, we propose an adaptive method in
which the regularization magnitude and memory size are
automatically tuned within each incremental learning step.

Hyperparameter Optimization. Hyperparameter Opti-
mization (HPO) aims to optimize the hyperparameters of
a given deep learning model, including the learning rate,
layer size, or balance of different loss functions. In this

paper, our focus is on balancing the contribution of a stan-
dard classification and the regularization loss as well as
memory size per task if applicable. To tackle the HPO
problem, complex techniques such as bi-level optimiza-
tion (Franceschi et al., 2018) or gradient-based optimiza-
tion (Baydin et al., 2018) have been proposed. Bi-level
optimizers alternate between optimizing neural network
weights and tuning the hyper-parameters, while gradient-
based methods treat the entire network weights as a hyper-
parameter to be updated.

Several recent studies (Chaudhry et al., 2019; De Lange
et al., 2021; Liu et al., 2023) share our core motivation
by investigating the impact of hyperparameter optimiza-
tion in evolving tasks. De Lange et al. (2021) adopt a
two-stage strategy: They initially fine-tune the current task
to identify the optimal learning rate with a grid search for
maximum plasticity and peak accuracy. Then, in the sec-
ond stage, they introduce a new thresholding hyperparam-
eter to naively balance the plasticity and stability trade-off:
They start with a high regularization strength and decay it
when the performance of the current task is below the de-
fined threshold. However, their approach follows a very
naive search since they basically apply two consecutive
grid searches to decide the optimum value. Moreover, they
focused on Task-Incremental setup and did not consider the
memory size in their search space.

Chaudhry et al. (2019) tunes the hyperparameters for the
first T tasks with a grid search and then uses the best-found
values in the remaining tasks. However, it assumes that the
initial few tasks are representative enough for the rest of
the tasks which may not be realistic in most of the cases.
Again, they worked on the Task-Incremental scenario and
did not consider the memory size in their search space.

Liu et al. (2023) uses reinforcement learning in a Class-
Incremental scenario to adaptively find the best hyperpa-
rameter values while learning the tasks. They hold a valida-
tion set, similar to our study, to estimate rewards by finding
the best set of hyperparameters. However, its search space
is limited to learning rate, regularization strength, and the
type of classifier.

In this work, we propose Bayesian Optimization (Snoek
et al., 2012) with Tree Parzen Estimator due to its effective-
ness over multiple hyperparameters. We evaluate the gen-
erality of our approach by dynamically tuning the learning
rate, regularization strength, and memory size.

3 Method

Overview. Class-incremental learning involves updating a
neural network with new classes as it comes in. Specif-
ically, the learner receives a sequence of learning tasks
T1:t = (T1, T2, ..., Tt), each with a corresponding dataset
DT = (xi,t, yi,t)

nt consisting of nt instances per task.

Elif Ceren Gok Yildirim, Murat Onur Yildirim, Mert Kilickaya, Joaquin Vanschoren

Each input pair xi,t, yi,t ∈ Xt ×Yt is sampled from an un-
known distribution where xi,t is the sample and yi,t is the
corresponding label. It’s important to note that the learning
tasks are mutually exclusive, i.e., Yt−1 ∩ Yt = ∅. When
a new learning task arrives, a deep convolutional network
is optimized to embed the input instance into the classifier
space fΘ : Xt → Yt, where Θ represents the parameters of
the learner.

The incremental learner has two goals: to effectively learn
the current task (plasticity) while retaining performance on
all previous tasks (stability). This can be accomplished
by optimizing the following function where CE(·) repre-
sents the Cross-Entropy used in classification, and Reg(·)
is a regularization term that penalizes abrupt changes in the
neural network weights (Li and Hoiem, 2017; Kirkpatrick
et al., 2017; Rebuffi et al., 2017; Zhao et al., 2020):

L = CE(f(xi,t), yi,t) + λ ·Reg(Θ) (1)

3.1 Foundational Models

To regularize the weights of the backbone and store a
few exemplars per task, we experimented with four pop-
ular, well-established techniques: EWC (Kirkpatrick et al.,
2017), LwF (Li and Hoiem, 2017) iCaRL (Rebuffi et al.,
2017) and WA (Zhao et al., 2020). We tried to select base-
lines that complement each other and serve as strong base-
lines within the field of incremental learning (Table 1).

Table 1: Selected models to evaluate the impact of adaptiv-
ity in Class-Incremental Learning.

method prior-
based

distillation-
based

exemplar
collection

classifier
correction

EWC ✓
LwF ✓

iCaRL ✓ ✓
WA ✓ ✓ ✓

EWC. Elastic Weight Consolidation (Kirkpatrick et al.,
2017) is a weighted regularization approach. The authors
argue that not all weights contribute equally to learning
a new task and estimate the importance of each weight
in minimizing the classification loss for the current task:
Reg(Θ) = ||F(Θ − Θ′)||, where Θ′ is the model weights
from the previous learning step, F is the Fisher matrix of
the same size as the weight matrices Θ, re-weighting the
contributions of each weight to stabilize the important neu-
rons per task.

LwF. Learning-without-Forgetting (Li and Hoiem, 2017)
is a knowledge-distillation approach where the teacher
branch is the model from the previous task, and the stu-
dent branch is the current model. The aim is to match the
activations of the teacher and student branches, either at the
feature or logit layer. We found that logit-based distillation
yielded better performance. Formally, LwF minimizes the

following objective where f ′ is the model from the pre-
vious learning step, and KL(p1, p2) is the KL-divergence
between two probability distributions p1 and p2:

Reg(Θ) = KL(f(xi,t), f
′(xi,t)) (2)

iCaRL. The Incremental Classifier and Representation
Learning (Rebuffi et al., 2017) leverages a hybrid approach
that involves two main components: exemplar-based mem-
ory which is carefully selected to maintain representation
and a regularization. The exemplar-based memory mod-
ule retains a subset of exemplar samples from previous
tasks, representing important instances that encapsulate the
learned knowledge. By utilizing exemplars, iCaRL ensures
the model’s ability to recognize and classify past instances
while discriminating between learned and new classes. The
distillation loss as in Eq. 2 used for regularization, enables
knowledge distillation from previous models to guide the
learning process for new tasks. This distillation process al-
lows the model to align logits of new classes with already
learned classes to mitigate catastrophic forgetting.

WA. The Maintaining Discrimination and Fairness in Class
Incremental Learning (Zhao et al., 2020) is a method that
consists of two phases: maintaining discrimination and
maintaining fairness. The first phase is similar to the pre-
viously established method (Rebuffi et al., 2017). Their
study demonstrates that knowledge distillation is not suf-
ficient by itself to prevent the model to treat old classes
and new classes fairly since there is a high tendency to-
wards new classes in the classifier layer to minimize the
Eq 2. Therefore, the second stage named Weight Aligning
(WA) focuses on maintaining fairness to correct this classi-
fier bias towards new classes. WA showed that it treats all
classes fairly, and significantly improves the overall perfor-
mance.

3.2 Constancy Assumption in Class Incremental
Learning

The scalar parameter λ balances the contribution of the
classification and regularization loss functions. A large
value of λ ensures minimal weight updates, which can sac-
rifice learning on the current task. Conversely, a small λ
yields good performance on the current task but may sac-
rifice performance on previous tasks, exacerbating catas-
trophic forgetting. Similarly, requirement for a fixed or pre-
determined memory size per task may not always be nec-
essary, as it depends on the new task and its relationship
to previous tasks. Specifically,where the new task is highly
similar to previous tasks, it is possible to retain past knowl-
edge by storing only a small number of representative sam-
ples. Conversely, when the new task is significantly dis-
tinct, it is reasonable to store a larger number of examples
in memory to prevent catastrophic forgetting while learn-
ing the new task. However, as a common practice, impor-

AdaCL: Adaptive Continual Learning

tant hyperparameters such as learning rate (η), regulariza-
tion strength (λ), and memory size (m) are set to a fixed or
pre-defined scalar value throughout all incremental learn-
ing sessions with t ∈ T1:t; such that ηt = ηt−1, λt = λt−1

or λt =
t∗c

(t∗c)+c where c is the number of classes per task.
Similarly, mt = mt−1 or mt = M

t where M is the pre-
defined total memory size.

We hypothesize that the assumption of constant or pre-
defined learning rate, regularization strength, and exem-
plar size per task is unrealistic for building accurate life-
long learning machines. Our reasoning is two-fold:

Low Plasticity and High Stability. The incremental
learner may encounter a novel object that is highly famil-
iar with the previously learned tasks. For example, it may
encounter the category dog after observing many other an-
imal categories, such as cat, cow, bird. In this case, the
learner does not need to store many exemplars from pre-
vious tasks or to be too plastic, as it can quickly transfer
knowledge from the previous tasks where it is similar to
the human learning process and referred to low road trans-
fer (Perkins and Salomon, 1992). Hence, no drastic updates
to the learned filters are necessary.

High Plasticity and Low Stability. The incremental
learner may encounter a novel object that is highly unfa-
miliar with the previous tasks. For example, it may en-
counter the category car after observing many other animal
categories, such as cat, cow, bird. In this case, the learner
would require more exemplars from previous tasks to pre-
serve old knowledge and high plasticity to learn about the
novel object with never-before-seen parts, such as wheels.

3.3 AdaCL: Adaptive Continual Learning

AdaCL defines the regularization magnitude and mem-
ory size per task as functions that consist set of incre-
mental tasks, conditioned on the current learning task
and all previous tasks. Formally, we define η(t) =
η1, η2, . . . , ηt−1, ηt, and λ(t) = λ1, λ2, . . . , λt−1, λt, and
m(t) = m1,m2, . . . ,mt−1,mt where ηt, λt and mt are
predicted by minimizing the following optimization prob-
lem:

arg min
η,λ,m

L(Θ;Vt) = arg min
η,λ,m

|Vt|∑
i=1

[CE(f(xi,t; Θ), yi,t) (3)

Here, Vt is a randomly selected class-balanced subset of
the current task and previous tasks that guide the model’s
adaptation with careful consideration of both new and pre-
vious tasks’ characteristics and prevents bias over certain
classes. L(Θ;Vt) is the loss function where the learning
rate η, the regularization coefficient λ, and memory size
per task m is determined by solving the optimization prob-
lem. Our adaptive approach, AdaCL (Algorithm 1), starts
after the first task since it is just a standard batch learning.
In the following tasks, it retains the model θt−1 trained on

Algorithm 1 AdaCL: Adaptive Continual Learning
Require:

θt−1 ▷ model from previous task
Xt ▷ dataset from new task
Mt−1 = m1, . . . ,mt−2,mt−1 ▷ memory from old tasks
Vt−1 = v1, . . . , vt−2, vt−1 ▷ val. set from tasks seen so far
ηspace ▷ search space for learning rate
λspace ▷ search space for regularization
mspace ▷ search space for memory
configs, epochs ▷ # of configurations and epochs

1: Vt = Vt−1 ∪ vt ← Xt

2: for c = 1, . . . , configs do
3: ηt ← ηspace ▷ η for new task
4: λt ← λspace ▷ λ for new task
5: Mt : mt ← mspace ▷ memory with a size of mt

6: D = Xt ∪Mt−1 ∪Mt ▷ concat new data and memory
7: for e = 1, . . . , epochs do
8: Train Eq. 1 with θt−1 and D
9: Evaluate Eq. 3 with Vt

10: end for
11: end for
12: return θt, Vt, η

∗
t , λ

∗
t ,M

∗
t ▷ new model with optimal

learning rate, regularization strength and memory size

the previous task, receives current task data Xt, and creates
a validation set Vt. Then, training data D is constructed
and trained with Eq. 1 after the configuration for ηt, λt

and mt is selected by Bayesian Optimization (see section
3.4). After each epoch, the selected configuration is eval-
uated on the validation set Vt with Eq. 3. Subsequently,
this process is repeated until reaching the total number of
configurations. The optimal learning rate η∗t , lambda λ∗

t ,
and memory size per task m∗

t are determined based on the
validation performance.

This approach allows us to automatically adjust the learn-
ing rate, regularization strength, and memory size per task
according to the specific learning task based on the given
loss function which lets the model find the degree of diffi-
culty itself, avoiding the unrealistic assumption of a fixed
learning rate, regularization strength, and memory size
throughout the learning process.

3.4 Bayesian Optimization via Parzen Estimator

We optimize the objective function using multivariate tree-
structured parzen estimators (TPE) (Bergstra et al., 2011).
TPE builds a conditional probability tree that maps hyper-
parameters to their respective model performances. Then it
can be used to guide a search algorithm to find the optimal
set of hyperparameters for the given model. In this study,
TPE is utilized as a search algorithm where it searches
within the provided range for learning rate, regularization
strength, and memory size per task and then searches for
the best value by evaluating across accumulated validation
set which consists of previous and new tasks throughout in-
cremental learning sessions. Specifically, we are planning
to build upon the implementation from the Optuna frame-
work (Akiba et al., 2019).

Elif Ceren Gok Yildirim, Murat Onur Yildirim, Mert Kilickaya, Joaquin Vanschoren

4 Experimental Protocol

Datasets. In this paper, we experiment with CI-
FAR100 (Krizhevsky et al., 2009) and MiniIma-
geNet (Vinyals et al., 2016). Each dataset exhibits objects
from 100 different categories. We train all the models with
10 tasks, with 10 classes within each learning task on both
CIFAR100 and MiniImageNet. Both datasets have 5000
training, and 1000 testing color images per learning task,
each with 32 × 32 and 64 × 64 resolution for CIFAR100
and MiniImageNet respectively.

Metrics. We resort to the standard metrics for evaluation,
accuracy (ACC) which measures the final accuracy aver-
aged over all tasks, and backward transfer (BWT) which
measures the average accuracy change of each task after
learning new tasks:

ACC =
1

T

∑T

i=1
AT,i (4)

BWT =
1

T − 1

∑T−1

i=1
(AT,i −Ai,i) (5)

where AT,i represents the testing accuracy of task T after
learning task i.

Baselines. EWC, LwF, iCARL, and WA are our direct
baselines since we built our experiments on them. We also
compare our common baseline results with OMDP (Liu
et al., 2023). Finally, we select one recent memory-free
work FeTrIL (Petit et al., 2023), and one recent memory-
based work PODNet (Douillard et al., 2020) to provide
comprehensive insights.

Implementation Details. We employ adaptive hyperpa-
rameter optimization on the methods discussed in section
3.2, and subsequently, we compare the adaptive variants of
these methods with their fixed (original) versions. For the
fixed versions, we provide default η, λ and m as it is used
in PYCIL (Zhou et al., 2021a) framework.

We implement all the methods in PyTorch (Paszke et al.,
2019). We use ResNet-32 as the backbone (He et al., 2016).
We set the number of epochs to E for each configuration
but use the Successive Halving (Li et al., 2018) scheduler
for a more efficient search. We use SGD optimizer with
momentum parameter set to 0.9 and weight decay set to
5e4 for the first task and 2e4 for the rest of the tasks. The
batch size is set to B. We run experiments on three different
seeds and report their average. We store a small subset of
the validation data from each incremental learning step in
the memory to evaluate the search algorithm. The search
space for learning rate and memory per task is set between
[lower, upper] and [0, m] respectively. Search space for λ
is determined based on the ablation experiments.

5 Conclusion

This study introduces the idea of adaptive learning rate,
regularization and memory size in addressing the chal-
lenges of Class-Incremental Learning. These parameters
are treated as tunable variables that can be adjusted accord-
ing to the learner’s current condition and the complexity
of the task. Leveraging the power of Bayesian Optimiza-
tion, the paper presents a methodology to predict the opti-
mal values for these parameters in each learning task. By
conducting experiments on well-established benchmarks,
the study aims to showcase the remarkable enhancements
in performance achieved through adaptive learning, result-
ing in improved accuracy and diminished forgetting. To
improve this paper, as a future studies, cost of tuning hy-
perparameters can be minimized and also getting rid of val-
idation set or finding better way to build it can be consid-
erable.To further enhance the refinement of this paper, po-
tential avenues for future investigation could involve the re-
duction of hyperparameter tuning costs and the exploration
of alternative methods for constructing or optimizing the
validation set.

To sum up, our study leads the way in introducing the con-
cept of adaptive hyperparameter optimization in the realm
of Class-Incremental Learning, with a mindful considera-
tion of the limitations we’ve recognized. As the field ad-
vances, we anticipate that these insights will shape the evo-
lution of advanced continual learning approaches, empow-
ering deep neural networks to adapt to evolving datasets.

References

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.
(2019). Optuna: A next-generation hyperparameter op-
timization framework.

Aljundi, R., Lin, M., Goujaud, B., and Bengio, Y. (2019).
Gradient based sample selection for online continual
learning. NeurIPS.

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and
Siskind, J. M. (2018). Automatic differentiation in ma-
chine learning: a survey. JMLR.

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. (2011).
Algorithms for hyper-parameter optimization. NeurIPS.

Chaudhry, A., Dokania, P. K., Ajanthan, T., and Torr, P. H.
(2018a). Riemannian walk for incremental learning: Un-
derstanding forgetting and intransigence. In ECCV.

Chaudhry, A., Ranzato, M., Rohrbach, M., and Elhoseiny,
M. (2018b). Efficient lifelong learning with a-gem.
arXiv preprint.

Chaudhry, A., Ranzato, M., Rohrbach, M., and Elhoseiny,
M. (2019). Efficient lifelong learning with a-gem. In
ICLR.

AdaCL: Adaptive Continual Learning

De Lange, M., Aljundi, R., Masana, M., Parisot, S., Jia, X.,
Leonardis, A., Slabaugh, G., and Tuytelaars, T. (2021).
A continual learning survey: Defying forgetting in clas-
sification tasks. IEEE transactions on pattern analysis
and machine intelligence, 44(7):3366–3385.

Dekhovich, A., Tax, D. M., Sluiter, M. H., and Bessa, M. A.
(2023). Continual prune-and-select: class-incremental
learning with specialized subnetworks. Applied Intelli-
gence, pages 1–16.

Douillard, A., Cord, M., Ollion, C., Robert, T., and Valle,
E. (2020). Podnet: Pooled outputs distillation for small-
tasks incremental learning. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part XX 16, pages 86–102.
Springer.

Franceschi, L., Frasconi, P., Salzo, S., Grazzi, R., and Pon-
til, M. (2018). Bilevel programming for hyperparameter
optimization and meta-learning. In ICML.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In CVPR.

Kang, H., Mina, R. J. L., Madjid, S. R. H., Yoon, J.,
Hasegawa-Johnson, M., Hwang, S. J., and Yoo, C. D.
(2022). Forget-free continual learning with winning
subnetworks. In International Conference on Machine
Learning, pages 10734–10750. PMLR.

Kilickaya, M., Van der Weijer, J., and Asano, Y. (2023).
Towards label-efficient incremental learning: A survey.
arXiv preprint.

Kirkpatrick, J., Pascanu, R., et al. (2017). Overcoming
catastrophic forgetting in neural networks. PNAS.

Krizhevsky, A., Hinton, G., et al. (2009). Learning mul-
tiple layers of features from tiny images. Toronto, ON,
Canada.

Lee, S.-W., Kim, J.-H., Jun, J., Ha, J.-W., and Zhang, B.-
T. (2017). Overcoming catastrophic forgetting by incre-
mental moment matching. NeurIPS.

Li, L., Jamieson, K., Rostamizadeh, A., Gonina, E.,
Hardt, M., Recht, B., and Talwalkar, A. (2018). Mas-
sively parallel hyperparameter tuning. arXiv preprint
arXiv:1810.05934.

Li, Z. and Hoiem, D. (2017). Learning without forgetting.
TPAMI.

Liu, Y., Li, Y., Schiele, B., and Sun, Q. (2023). Online hy-
perparameter optimization for class-incremental learn-
ing. Proceedings of the AAAI Conference on Artificial
Intelligence, 37(7):8906–8913.

Liu, Y., Schiele, B., and Sun, Q. (2021a). Adaptive aggre-
gation networks for class-incremental learning. In Pro-
ceedings of the IEEE/CVF conference on Computer Vi-
sion and Pattern Recognition, pages 2544–2553.

Liu, Y., Schiele, B., and Sun, Q. (2021b). Rmm: Rein-
forced memory management for class-incremental learn-
ing. Advances in Neural Information Processing Sys-
tems, 34:3478–3490.

Lopez-Paz, D. and Ranzato, M. (2017). Gradient episodic
memory for continual learning. NeurIPS.

Masana, M., Liu, X., Twardowski, B., Menta, M., Bag-
danov, A. D., and van de Weijer, J. (2020). Class-
incremental learning: survey and performance evalua-
tion on image classification. arXiv preprint.

Ostapenko, O., Puscas, M., Klein, T., Jahnichen, P., and
Nabi, M. (2019). Learning to remember: A synaptic
plasticity driven framework for continual learning. In
CVPR.

Paszke, A., Gross, S., et al. (2019). Pytorch: An imper-
ative style, high-performance deep learning library. In
NeurIPS.

Perkins, D. N. and Salomon, G. (1992). Transfer of learn-
ing. International encyclopedia of education, 2:6452–
6457.

Petit, G., Popescu, A., Schindler, H., Picard, D., and
Delezoide, B. (2023). Fetril: Feature translation for
exemplar-free class-incremental learning. In Proceed-
ings of the IEEE/CVF Winter Conference on Applica-
tions of Computer Vision, pages 3911–3920.

Rebuffi, S.-A., Kolesnikov, A., Sperl, G., and Lampert,
C. H. (2017). icarl: Incremental classifier and represen-
tation learning. In CVPR.

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer,
H., Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R., and
Hadsell, R. (2016). Progressive neural networks. arXiv
preprint arXiv:1606.04671.

Snoek, J., Larochelle, H., and Adams, R. P. (2012). Prac-
tical bayesian optimization of machine learning algo-
rithms. NeurIPS 2012, 25.

Vinyals, O., Blundell, C., et al. (2016). Matching networks
for one shot learning. NeurIPS’16, page 3637–3645, Red
Hook, NY, USA. Curran Associates Inc.

Wang, L., Xingxing, Z., Hang, S., and Jun, Z. (2023).
A comprehensive survey of continual learning: Theory,
method and application. arXiv preprint.

Wu, Y., Chen, Y., Wang, L., Ye, Y., Liu, Z., Guo, Y., and Fu,
Y. (2019). Large scale incremental learning. In CVPR.

Xiang, Y., Fu, Y., Ji, P., and Huang, H. (2019). Incremen-
tal learning using conditional adversarial networks. In
ICCV.

Yan, S., Xie, J., and He, X. (2021). Der: Dynamically ex-
pandable representation for class incremental learning.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 3014–3023.

Elif Ceren Gok Yildirim, Murat Onur Yildirim, Mert Kilickaya, Joaquin Vanschoren

Zenke, F., Poole, B., and Ganguli, S. (2017). Continual
learning through synaptic intelligence. In ICML.

Zhao, B., Xiao, X., Gan, G., Zhang, B., and Xia, S.-T.
(2020). Maintaining discrimination and fairness in class
incremental learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 13208–13217.

Zhou, D.-W., Wang, F.-Y., Ye, H.-J., and Zhan, D.-C.
(2021a). Pycil: A python toolbox for class-incremental
learning. arXiv preprint arXiv:2112.12533.

Zhou, D.-W., Wang, Q.-W., Qi, Z.-H., Ye, H.-J., Zhan, D.-
C., and Liu, Z. (2023). Deep class-incremental learning:
A survey. arXiv preprint.

Zhou, D.-W., Ye, H.-J., and Zhan, D.-C. (2021b). Co-
transport for class-incremental learning. In ACM MM.

Zhu, F., Zhang, X.-Y., Wang, C., Yin, F., and Liu, C.-L.
(2021). Prototype augmentation and self-supervision for
incremental learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pages 5871–5880.

Zhu, K., Zhai, W., Cao, Y., Luo, J., and Zha, Z.-J.
(2022). Self-sustaining representation expansion for
non-exemplar class-incremental learning. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 9296–9305.

