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ABSTRACT

It remains difficult to select a machine learning model from a set of candidates
in the absence of a large, labeled dataset. To address this challenge, we propose
a framework to compare multiple models that leverages three aspects of modern
machine learning settings: multiple machine learning classifiers, continuous pre-
dictions on all examples, and abundant unlabeled data. The key idea is to estimate
the joint distribution of classifier predictions using a mixture model, where each
component corresponds to a different class. We present preliminary experiments
on a large health dataset and conclude with future directions.

1 INTRODUCTION

The machine learning community has developed an immense number of trained models, spanning
a wide variety of modalities and tasks (You et al., 2021} |Arango et al.l [2023). Faced with these
options, practitioners must determine which model is most appropriate for their needs. Historically,
comparing machine learning classifiers requires access to labeled data, but high-quality labeled data
is often prohibitively expensive or impossible to obtain. The challenge of deciding between several
options is not new: doctors often face the choice between similar drugs to prescribe or treatments
to recommend. Unlike prescription medicine, however, machine learning models do not undergo
rigorous and well-documented clinical trials to assess their strengths and weaknesses. Choosing
between this plethora of models is thus not straightforward.

Addressing this challenge, we propose a framework for model comparison that makes use of unla-
beled data. The framework captures three key properties of machine learning ecosystems: multiple
machine learning models, continuous predictions, and abundant unlabeled data. While past work
has addressed some of these properties (Welinder et al., 2013 |Ji et al., |2020; |Chouldechova et al.}
2022; Bommasant et al.| 2022), no existing framework accommodates all three.

Concretely, we introduce a general mixture model framework to estimate the class-conditional joint
distribution of multiple models’ predictions. The resulting mixture model is well-suited to estimate
a broad class of performance metrics, both for individual models (e.g. calibration error or accuracy)
and for the set of candidate models as a whole (e.g. relative accuracy and systemic failures (Klein-
berg & Raghavan, 2021))). We instantiate this mixture model with a semi-supervised kernel density
estimator (KDE).

We ground our experiments in two domains: (1) healthcare and (2) content moderation. Both of
these domains naturally have more plentiful unlabeled data relative to labeled data. Our results are
encouraging and show that incorporating unlabeled data into model evaluations can improve the
quality of those evaluations.

2 METHODS

Problem Setting We consider a setting in which a model consumer (for example, a hospital sys-
tem) must choose between several classification models. Formally, there are M classification models
[f1, f2, ..., far] designed for the same prediction task, so f; : X — [0, 1], where X is the domain
of the input (X could, for example, correspond to EHR data, and in principle could be any modal-
ity). Models in the set may differ by function class, training data, or training hyperparameters. We
assume the practitioner has access to the continuous predictions, or scores, corresponding to the
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Figure 1: Joint distribution of model predictions. There are three key features we leverage: (1)
labeled and unlabeled data, (2) continuous predictions, and (3) predictions from multiple models.

class probabilities, so for any given z, lets = [s1,...,sy]| = [f1(2), ..., far(x)] € [0, 1]™ be the
concatenated predictions of all models.

During evaluation, we have access to two datasets: (1) an small labeled dataset, Dz, = {(z;, v:)}f_;
and (2) a larger unlabeled dataset Dy = {(z;)}¥,. Both the labeled and unlabeled examples
are drawn i.i.d. from the same distribution. The goal of the practitioner is to use these datasets to
estimate and compare model performance according to metrics she may care about, such as expected
calibration error (ECE) or AUROC. To this end, if she had access to the true y for each point, this
task would be simple. Despite not receiving ground truth access in Dy, she has access to several
proxies through s; = [f1(x;), ..., far(:)].

Proposal Our aim is to develop an approach that exploits three common properties of modern
multi-model settings: (1) multiple available trained models, (2) abundance of unlabeled data, relative
to labeled data, (3) access to each model’s predicted probabilities on every input. Prior work often
exploits one or two of these properties but not all three; for example, annotator aggregation methods
such as Dawid-Skene assume multiple discrete label proxies and accomodate unlabeled data, but do
not incorporate continuous predicted probabilities.

To leverage these properties, we introduce a general mixture model framework. In particular, for
each point in our dataset, we wish to estimate both P(y;|s; ), the true label, and P(s;|y;), the distribu-
tion of predictions conditional on the true label. Together, we can write P(y;|s;) o< P(s;|y:)P(yi),
which provides a posterior on y; given predictions from each model f. When y; is unobserved (i.e.
in the unlabeled dataset), we treat y; as a latent variable; otherwise, y; is revealed and we update the
likelihood calculations accordingly. When we sum these likelihoods over the entire dataset we get:

P(Dy, D) o< Y P(sily:) Pys)
=X Y Plsily)- D Plsilyi)P(yi)

€D, 1:11€Dy
where A\; modulates the relative weight of the labeled data in the likelihood. To parameterize
P(sily;), we utilize compositional data transforms, or one-to-one mappings between [0, 1] and R
(Aitchison, |1982). These invertible transformations enable us to map predicted probabilities to real
space without sacrificing any information. We will refer to model predictions when transformed as
scores.

Parametrization The class-conditional distribution of scores P(s;|y;) is flexible to any parame-
terization which can be reliably learned in the semi-supervised setting described above. We note the
parameterized distribution as Py (s|y).
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Here, we use a kernel density estimator to parameterize Py(s)|y) and leave a detailed exploration of
different mixture model parametrizations for future work. Kernel density estimators are particularly
well-suited for the task because they place no parametric assumptions on the functional form of
the distribution they are used to estimate; this is useful for distributions of predictions, which can
vary widely across outcomes and models. Traditionally, mixture models are fit through expectation-
maximization (EM), and alternate between estimating cluster assignments and estimating clusters
based on those assignments. We take a similar approach, where we alternate between estimating
the true label for a given example, and estimating the class-conditional distribution of model pre-
dictions based on these estimated labels. The estimated clusters are then used to infer labels for
the predictions on the unlabeled dataset, and so on. For all experiments, we fit each kernel density
estimator with a Gaussian kernel and a bandwidth of 0.5 and optimize the parameters using EM
over 50 epochs. We initialize cluster assignments through a KNN classifier, where K = 5. We
estimate cluster assignments using stochastic classification, where we draw the true label according
to the estimated P(y;|s;). Note that this differs from maximum a posteriori classification, where
we estimate cluster assignment based on the highest probability cluster assignment; this approach
would not properly reflect the overlap of the class-conditional distributions of model predictions.

3 EXPERIMENTS

Data We validate the proposed framework on two datasets. The first is MIMIC-IV Johnson et al.
(2023)), a large dataset of electronic health records describing 418K patient visits to a Boston-area
emergency department. For this dataset, we focus on three clinically relevant tasks: hospitalization
(predicting hospital admission based on features available during triage, p(y = 1) = .45), critical
outcomes (predicting inpatient mortality or a transfer to the ICU within 12 hours, p(y = 1) = .06),
and emergency department revisits (predicting a patient’s return to the emergency department
within 3 days, p(y = 1) = .03). We split and preprocess data according to prior work Xie et al.
(2022); Movva et al.|(2023)). The second is CivilComments, a large dataset of comments collected
from online news fora which have been annotated for toxicity Koh et al.|(2021). Toxicity detection
is a popular binary classification task in natural language processing, motivated by the increasing
demands of moderating online platforms (Gillespiel [2020). Model comparison is particularly salient
for this task; as of this writing, HuggingFace hosts hundreds of machine learning models trained to
detect abusive language.

We divide the available data into three splits (where, for MIMIC-IV, no patient appears in more
than one split). A portion of each dataset is used to train models in the model set; each model
sees the same training data, and we define the train data splits according to prior work [Movva et al.
(2023)); |Koh et al.|(2021)). Of the data not used to train the models, we reserve 50% for estimating
performance, and 50% for estimating ground truth for each performance metric. No method sees
data from the test split, which is used to estimate ground truth performance. Additionally, no method
sees data from the train split, which is assumed to be unavailable (and even if it were available, could
not be used to evaluate the set of models).

Models Our set of candidate models for MIMIC-IV contains three clinical risk scores. Each are
generated by different machine learning models (a logistic regression, multi-layer perceptron, and a
decision tree) fit to data in the train split. For a visualization of model score distributions, see Figure
[ The models achieve similar performance in terms of ECE and AUC, with slight differences in
AUPRC. For models trained to predict a critical outcome, ECEs range from .003 to .014, AUCs
range from .881 to .884 and AUPRCs range from .37 to .44. Results on this set of models are meant
to reflect performance when the set of models is similar along many metrics.

Our set of candidate models for CivilComments contains three predictive models, which each use
the same architecture (DistilBERT |Sanh et al.| (2019)), paired with a different loss function. The
three loss functions are empirical risk minimization, invariant risk minimization, and the CORAL
algorithm, which attempts to match summary statistics—for example, means and covariances—of
network activations across domains (where here, a domain refers to comments targeting different
demographic groups) Sun & Saenko| (2016). Models in this set exhibit greater variability in per-
formance, with ECEs ranging from 0.05 to 0.10, AUCs ranging from 0.86 to 0.94, and AUPRCs
ranging from 0.39 to 0.71.
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Baselines We compare against three baselines. The first, Labeled, represents the standard ap-
proach to model evaluation and makes use of the available labeled data. We also compare against
Pseudo-Labeled, which trains a classifier to predict the true label from the model predictions—
directly estimating P(y;|s;)—and then labels the unlabeled examples using this classifier. We ad-
ditionally compare to a standard baseline drawn from the noisy annotator literature, Dawid-Skene,
which uses multiple potentially noisy binary annotations to estimate the latent true label of each
example.

Evaluation During evaluation, we wish to estimate performance metrics a practitioner comparing
models may care about. We evaluate the following metrics on (details of each metric are provided
in the Appendix):

1. Expected Calibration Error (ECE) measures the alignment between predicted probabil-
ities and observed outcomes in a classification model. Formally, for a binary classification

model f, ECE is defined as fol |P(y = 1| f(x) = p) —p|dp and in practice model evaluators
bin predictions based on p. We evaluate calibration with guantile binning across ten bins.
Intuitively, calibration quantifies the average discrepancy between a model’s confidence
and realized outcomes.

2. AUROC measures the separability between two classes for a particular model’s predic-
tions, focusing on the tradeoff between true positive rate and false positive rate. A large
value indicates that the model is able to sharply separate the two classes.

3. AUPRC measures the tradeoff between precision and recall. A large value indicates that
the model is able to simultaneously achieve high recall and precision. AUPRC is often
useful in label imbalanced settings.

In our experiments, we measure our framework’s ability to recover the ground truth for the
three metrics above. We measure the mean absolute difference between our estimated ECE
with limited labeled data and the “true” ECE if every point were labeled. Smaller values in
|True ECE — Estimated ECE]| indicate better estimates of ECE.

4 RESULTS

Figure 2] plots the accuracy of performance estimates using different methods, across four outcomes;
lower is better in all graphs.

Performance across metrics We observe the greatest benefits relative to labeled data alone when
measuring expected calibration error. We hypothesize that this is because estimating ECE requires
binning and then averaging calibration error across bins. This process tends to yield greater vari-
ability when the number of labeled points per bin is small. In contrast, metrics like AUROC and
AUPRC do not bin predictions and thus are more competitive with labeled data alone.

Comparison to baselines Dawid-Skene, as expected, performs poorly across metrics and out-
comes. This is unsurprising because the method restrictively assumes that errors between models
are independent, conditional on class; this is not true across the four outcomes we consider, and
is unlikely to be true of machine learning models in general. In addition, Dawid-Skene operates
on binary predictions on each example, and is unable to exploit the information contained in the
continuous distribution of model predictions. There are cases where pseudo-labeling using logistic
regression (red) can outperform the KDE (for example, estimating AUC for the ED revisit outcome
or ECE for the hospitalization outcome), but this behavior is not consistent (the KDE outperforms
pseudo-labeling in label-constrained settings in the remaining 7 metric-outcome combinations).

Improvements in model rankings In many cases, we might hope to recover relative estimates of
performance metrics (e.g. ranking) instead of the absolute metrics. Figure [3] evaluates our ability
to select the best model (according to a pre-specified metric). Our results suggest that the KDE
method is able to substantially improve our ability to identify the best model compared to the use
of labeled data alone (with 10 and 50 labeled examples, plotted in different shades). Concretely,
the use of 10 labeled examples identifies the best model according to ECE a third of the time,
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Figure 2: Comparison to baselines. We compare SSME to three baselines: labeled data alone,
pseudo-labeling with a logistic regression trained on the available labeled data, and Dawid-Skene,
an unsupervised method to aggregate multiple potentially noisy binary annotations. For estimating
expected calibration error (ECE), SSME outperforms labeled data alone across each of the four
outcomes. For AUC, SSME outperforms or matches labeled data for three outcomes, and worsens
estimates of AUC for hospitalization prediction. For AUPRC, SSME again outperforms or matches
labeled data on three of the four considered outcomes. Plots for the remaining two outcomes are in
the supplement.

equivalent to choosing at random. The addition of 1000 unlabeled examples significantly improves
this percentage, to approximately 80%. With 50 labeled examples, the rate of correctly ranking the
best model rises to 55%, while an additional 1000 unlabeled examples increases this value to 83%.
It is easier to identify the best model according to AUC and AUPRC given labeled data alone; with
10 labeled examples, model selection is better than random, and with 50 labeled examples, the best
model selection rate rises to over 70%. Unlabeled data produces significant improvements in our
ability to rank models by AUC (reaching near perfect accuracy with 1000 unlabeled examples), and
matches the performance of labeled data alone for AUPRC. Just as the heatmaps indicate, knowledge
of the prior helps substantially; Figure @B plots the improvements in best model selection when the
prior is available, and exhibits steeper improvements with the addition of unlabeled data.

5 DISCUSSION

Our empirical results are promising and indicate that there are advantages to augmenting model
evaluation with unlabeled data, particularly for the estimation of calibration error with few labeled
examples. Perhaps most importantly, the use of unlabeled data can be useful for the practical ques-
tion of identifying the best model for a particular task, across each of the three metrics we consider.

Several open questions remain. We consider exclusively binary tasks and two datasets; it will be
important to verify the generalizability of these results to additional tasks and domains. We also
employ a particular mixture modeling technique based on kernel density estimators. While the
model is well-motivated by the practical considerations of multi-model evaluation, kernel density
estimators are known to generalize poorly to higher dimensions. For cases with large model sets,
or multiple classes, alternative techniques that scale to high dimensions (for example, normalizing
flows) could be preferable.
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Figure 3: Improvements in model ranking. We plot the probability that we correctly rank the
best model, according to different metrics, across 50 runs. When unlabeled data is zero, we use the
labeled data alone. When we learn the prior (top), we see significant improvements in our ability to
identify the b eset model with the addition of unlabeled data. We see greatest benefits for identifying
the best calibrated model. When we introduce knowledge of the prior (bottom), there are steeper
improvements in model rankings with more unlabeled data.
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A EXPERIMENTAL DETAILS

Dataset We validate the proposed framework on MIMIC-IV (Johnson et al.}[2023), a large dataset
of electronic health records describing 418K patient visits to a Boston-area emergency department.
We focus on three clinically relevant tasks: hospitalization (predicting hospital admission based on
features available during triage, P(y = 1) = .45), critical outcomes (predicting inpatient mortality
or a transfer to the ICU within 12 hours, P(y = 1) = .06), and emergency department revisits
(predicting a patient’s return to the emergency department within 3 days, P(y = 1) = .03). We split
and preprocess data according to prior work (Xie et al., 2022; Movva et al., |2023); for a full list of
features, please refer to Table S1 in|Movva et al.|(2023)). We divide the available data into three splits,
where no patient appears in more than one split. We reserve 30% of the data for classifier training.
We reserve an additional 35% for estimating performance, which we refer to as the estimation split.
Our mixture models are fit to this data. The test split contains the remaining 35% of available data.
No method sees data from the test split, which is used to estimate ground truth performance. For all
experiments where relevant, we set \; to be 2000.

Classification Models We use two sets of candidate classifiers, one with real data and one with
synthetic. The real set of candidate classifiers contains three clinical risk scores. Each risk score is
generated by different machine learning classifier: a logistic regression (LR), a decision tree (DT),
and a multi-layer perceptron (MLP) fit to data in the train split. To illustrate performance of the
proposed mixture model in a well-specified setting, we also generate a synthetic set of candidate
classifiers, in which we simulate each classifier’s scores based on the empirical mean and variance
of its class-conditional score distributions. The resulting joint distribution of classifier scores is a
multivariate Gaussian (in which classifier scores are still correlated) and allows us to understand the
extent to which mixture model misspecification may play a role in our results.

Metrics and Evaluation We estimate three continuous performance metrics for each classifier,
which are of broad interest to machine learning practitioners: area under the receive-operating curve
(AUROC), area under the precision-recall curve (AUPRC), and the expected calibration error (ECE).
To do so, we sample a true label for each unlabeled point using our fitted posterior distribution for
P(y;|s;). We then compare the sampled true label to the scores s;[j] = f;(z;) for each model j.

These metrics capture both each classifier’s ability to differentiate classes (AUROC, AUPRC) and
measure how semantically meaningful the predicted probabilities are (calibration), which is consid-
ered a pre-requisite to the effective, non-discriminatory clinical decision-making (Crowson et al.,
2016} Berk et al.,2017).

B RELATED WORK

Our work builds on two areas of literature: methods which use a combination of labeled and
unlabeled data to 1) evaluate a single classifier or 2) evaluate the accuracy of multiple proxies. We
elaborate on each below, and provide a taxonomy of related work in Table I]

Semi-supervised classifier evaluation concerns the evaluation of a single classifier, using
both labeled and unlabeled data. There are two types of assumptions works rely on to produce a
semi-supervised estimate of performance. The first type of assumption places parametric constraints
on the distribution of classifier scores. Several works attempt to fit a mixture model to the distribu-
tion of classifier scores (Welinder et al., 2013} |Chouldechova et al.| 2022} Miller et al., 2018)), as
we do, while others apply techniques from Bayesian calibration (Ji et al., [2020; 2021). Our work
differs in that the proposed framework naturally accommodates and exploits multiple classifiers,
and as our results show, doing so results in improved estimates of ground truth. As |Garg et al.
(2022) establish, estimating accuracy on the unlabeled data is impossible absent assumptions about
the nature of the distribution shift. Examples of these assumptions include covariate shift (Chen
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et al.l 2022 |Lu et al., |2023), conditional independence of features (Steinhardt & Liang} [2016), and
calibration on the unlabeled data (Guillory et al.l 2021; Jiang et al., [2022). Here too, a majority
of existing work focuses on evaluating individual classifiers and often rely on larger amounts of
labeled data than we assume (on the order of hundreds of labeled data points). In contrast, our focus
is on the evaluation of multiple classifiers, when the number of labeled data points is too small to
reliably learn any model of distribution shift between the labeled and unlabeled data.

Semi-supervised evaluation of multiple proxies was first introduced by [Dawid & Skene| (1979),
who proposed a method to estimate ground truth in the presence of multiple potentially noisy
proxies. Many follow-on works inherited Dawid-Skene’s strong assumption of class-conditional
independence of proxies (Parisi et al., 2014 |Platanios et al.,|2017). Such an assumption is plausible
in the context of medical diagnostics that use different biological features, but does not naturally
translate to sets of candidate classifiers, whose predictions are likely to be correlated. Subsequent
work has made an effort to relax the assumption of class-conditional independence, replacing it
with independence conditional on a latent notion of example difficulty ?Paun et al|(2018) or a or
annotator quality (Ratner et al} [2017; Bach et al.| 2017). However, these methods are designed to
estimate the accuracy of binary proxies; they do not exploit the continuous probabilities available
in multi-classifier evaluation. Recent work has made progress towards accommodating continuous
proxies (Nazabal et al., 2016} Pir§ & étrumbelj, 2019). Their focus is optimal aggregation, in
contrast to our own, which is evaluation.

Multiple Continuous Unlabeled Labeled
classifiers predictions data data
Dawid-Skene and others 55
Unsuperv1s§d OOD 55 55
evaluation
Semi-supervised evaluation
: . 55
of single classifiers
Our method

Table 1: A comparison of prior work and our proposed method. Whereas previous works only use
at most three sources of information, our method is able to estimate the true labels from multiple
classifiers’ continuous predictions with both labeled and unlabeled examples.

C ADDITIONAL RESULTS

Relative value of labeled and unlabeled data Here, we restrict our focus to CivilComments
and ECE because 1) the model set exhibits larger differences in performance between models and
2) the KDE produces the greatest improvements with respect to ECE. In the previous section, we
considered a single setting for the number of unlabeled data points provided to each method. We
next study performance estimation using the proposed framework as a function of both the number
of unlabeled examples and the number of labeled examples (Figure[d] where darker cells correspond
to better estimates of ECE). As expected, cells darken quickly as we advance down the heatmap and
increase the number of labeled examples available.

A significant challenge to estimating performance in the absence of abundant labeled data is identi-
fying the underlying prevalence of the outcome. The accuracy of the estimated prior has a direct im-
pact on the accuracy of the estimated metric, for each of the metrics we consider. To disentangle the
difficulty of estimating prevalence from estimating performance, we replicate the contour plot with
a revealed prior; that is, the KDE estimates P(f(x;)|y), but P(y) is set to be the ground truth prior.
We see that cells corresponding to few labeled examples and many unlabeled examples darken, sug-
gesting that knowledge of the underlying prevalence can be useful towards semi-supervised model
evaluation in label-constrained settings.

Results on additional metrics As discussed, the mixture model can be used to estimate any metric
that measures discrepancies between p(y = 1|x) and y, including AUC and AUPRC. Figure ??
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A Learned Prior B Known Prior
Absolute difference in ECE Absolute difference in ECE
(averaged over model set) (averaged over model set)

# of Labeled Examples
# of Labeled Examples

| 104

Figure 4: Comparing the effectiveness of additional labeled and unlabeled data. We plot im-
provements in ECE as we increase unlabeled data (x-axis) and as we increase labeled data (y-axis);
darker cells correspond to better estimates of ECE, averaged across models. When the kernel den-
sity estimator learns the prior (left), we see that increasing labeled data and increasing unlabeled
data both improve estimates of ECE, albeit at different rates. Adding knowledge of the prior (right)
improves the utility of additional unlabeled data (for example, the estimation performance of 30
labeled examples and 1000 unlabeled examples improves with the addition of the known prior).
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Figure 5: Comparison to baselines on other datasets. Our method is able to recover the ground
truth performance metrics with less labeled data on both the hospitalization and toxicity classifica-
tion datasets.

describes the mixture model’s ability to recover AUC and AUPRC when well-specified (i.e. on the
the set of synthetic classifiers). At very small amounts of labeled data (10 labeled examples), the
mixture model offers improvements over using labeled data alone. The near-perfect performance
of the fully-supervised mixture model suggests that it is possible for the mixture model to estimate
AUC and AUPRC accurately. However, the gain relative to labeled data alone may be smaller in
class-balanced, binary classification settings.
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Results on additional datasets Figure |5| provides results on CivilComments and MIMIC hospi-
talization.

D EXTENSIONS

Multi-class settings Here we explored our method’s performance in binary outcome settings.
However, our method can be easily extended to multi-class outcomes as well. For a C class mixture,
our likelihood can be written as follows:

C
P(Dy,Dr) <A Y P(silyi = trrue) + Y D P(silyi =y)P(yi =)
z,€D z;€Dy y=1
labeled likelihood unlabeled likelihood

For each point x, we can access s € [0,1])". Compositional data transforms provide one-to-one
mappings ¢ : [0,1] — R. Thus, we can transform each classifier’s scores f;(z) to g(f;(x)) €
R without losing any information, which we concatenate across all classifiers to get g(f(x)) €
RM . We can then fit any mixture distribution to these scores; for instance, a multivariate normal
distribution enables us to model the covariance in class-conditional classifier scores.

Multi-model performance metrics While we utilized the joint distribution of classifier scores to
fit our mixture model, each of the metrics we examined were single classification model scores. In
this sense, we used the joint distribution to improve our estimates of the ground truth labels, but not
in the classifier evaluation stage itself.

A growing body of literature on multi-classifier metrics provides some motivation to measure prop-
erties of the classifiers as a set. For instance, some recent work has demonstrated systemic failures
(Bommasani et al.| 2022} Kleinberg & Raghavan, [2021) across classifiers, where, for instance, a
set of separate classifiers produces errors on the same instances. Given that we model the full joint
distribution of predictions, our method can be extended to incorporate systemic failure and multi-
classifier metrics as well.

Alternative mixture parameterizations Until now, we’ve let Py(f(x)|y) be parameterized by a
KDE, but alternative parameterizations are also possible, provided (1) they can accommodate both
labeled and unlabeled data and (2) can be fit to the mixture model framework described above.

In particular, we’ve implemented normalizing flow based mixture models Izmailov et al.| (2020).
Normalizing flows apply a learnable and invertible transform fy to a distribution z ~ D; to obtain
fo(z) ~ Ds. By modeling z in a latent space (e.g. as a Gaussian mixture distribution), one can
move back and forth between the two distributions, as f, ' (fy(2)) = 2.
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