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ABSTRACT

Informative representations enhance model performance and generalisability in
downstream tasks. However, learning self-supervised representations for spatially
characterised time series, like traffic interactions, poses challenges as it requires
maintaining fine-grained similarity relations in the latent space. In this study, we
extend time series contrastive learning by incorporating two structure-preserving
regularisers: one preserves the topology of similarities between instances, and
the other preserves the graph geometry of similarities across spatial and temporal
dimensions. To balance between contrastive learning and structure preservation,
we propose a dynamic mechanism that adaptively weighs the trade-off and stab-
lises training. We conduct experiments on multivariate time series classification,
as well as macroscopic and microscopic traffic prediction. For all three tasks,
our method preserves the structures of similarity relations more effectively and
improves state-of-the-art task performances. This extension can be applied to an
arbitrary encoder and is particularly beneficial for time series with spatial or geo-
graphical features. Our code is attached as supplementary material, which will be
made openly available with all resulting data after review.

1 INTRODUCTION

Self-supervised pretraining theoretically can learn representations that facilitate downstream tasks
(Saunshi et al.| [2019;HaoChen et al.|[2021};|Ge et al.| [2024). Also, it is practically shown to improve
model generalisability (Tendle & Hasan, 2021; Zhou et al.,[2022)). The latter is particularly valuable
for real-world applications, where both measurements and labels are often uncertain and unreliable.
In fact, self-supervised representation learning (SSRL) has been widely applied across fields such
as computer vision, natural language processing, and recommendation systems (there are many
literature reviews, to name a few, Schiappa et al.l 2023} [Liu et al., 2023} |Yu et al., 2024).

Contrastive learning has become the mainstay technique in SSRL of time series. [Lafabregue et al.
(2022) conducted an extensive experimental comparison over 300 combinations of network archi-
tectures and loss functions to evaluate the performance of time series representation learning for
clustering. One of their key findings is that the reconstruction loss used by traditional autoencoders
does not sufficiently fit temporal patterns. Instead, contrastive learning has emerged as a more effec-
tive approach, which embeds similar samples closer together while dissimilar samples farther apart
in the latent space (Wu et al.,|2023}; |Yang et al., [2024)).

Unique challenges arise when learning contrastive representations for spatial time series. First, data
with both temporal and spatial characteristics demand more fine-grained similarity comparisons,
which underpins contrastive learning. Financial time series may be considered similar even if some
variables show significant divergence, while movement traces with very different spatial features
can be anything but similar. Second, effective representation of spatial time series needs to capture
spatio-temporal patterns at the certain scale required by a practical task. For example, traffic interac-
tions involve two different spatial scales: at the macroscopic scale, traffic flow measures collective
road usage evolving over the road network; at the microscopic scale, trajectories describe the motion
dynamics of individual road users (e.g., car drivers, cyclists, pedestrians) in local road space.

To address the challenges, we extend time series contrastive learning by incorporating two regu-
larisers at different scales to preserve the original similarity structure in the latent space. One is a
topology-preserving regulariser for the global scale, and the other is a graph-geometry-preserving
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regulariser for the local scale. This combination can be simplistically written as a weighted loss
L = newr - Leur + nsp - sp + 7y, Where we propose a mechanism to dynamically balance the weights
nerr and nsp during training. Within this mechanism, the adaptive trade-off between contrastive
learning and structure preserving is based on the uncertainties of their corresponding terms ¢cpr and
{sp; meanwhile, the term 7, adds regularisation against overfitting of the dynamic weights.

The proposed method is applicable to spatial time series in general, and we consider traffic interac-
tion as a specific case. To validate the method, we conduct experiments on tasks of 1) multivariate
time series classification, where we benchmark against the current state-of-the-art (SOTA) models,
i.e., TS2Vec |Yue et al.| (2022)) and [Lee et al.|(2024); and 2) traffic prediction, where we use |Li
et al.| (2024a) for macroscopic benchmark and |Li et al| (2024b) for microscopic. In addition, the
efficiency of this method is evaluated with various model structures. Below we summarise the key
contributions of this study:

* We introduce an approach that incorporates structure-preserving regularisation in contrastive
learning of multivariate time series, to maintain finer-grained similarity relations in the latent
space of sample representations. We propose a dynamic weighing mechanism to adaptively
balance between contrastive learning and structure preservation.

* Preserving similarity structure can enhance SOTA performance on various downstream tasks.
The relative improvement on spatial datasets in the UEA archive is 2.96% in average classifica-
tion accuracy; on macroscopic traffic prediction task is 3.43% in flow speed MAE and 1.25%
in explained variance; on microscopic trajectory prediction task is 2.20% and 5.83% in missing
rates under radii of 0.5m and 1m, respectively.

* This approach can be applied to an arbitrary encoder for self-supervised representation learning.
Preserving the structure of similarity relations is particularly beneficial for time series data with
spatial or geographical characteristics, such as in robotics, meteorology, remote sensing, urban
planning, etc.

2 RELATED WORK

2.1 TIME SERIES CONTRASTIVE LEARNING

Contrastive learning for time series data is a relatively young niche and is rapidly developing. The
development has been dominantly focused on defining positive and negative samples. Early ap-
proaches construct positive and negative samples with subseries within time series (e.g., Franceschi
et al., |2019) and temporal neighbourhoods (e.g., [Tonekaboni et al.| [2021); and later methods cre-
ate augmentations by transforming original series (e.g., Eldele et al., 2021; 2023). More recently,
Yue et al.| (2022) generates random masks to enable both instance-wise and time-wise contextual
representations at flexible hierarchical levels, which exceeds previous state-of-the-art performances
(SOTAs). Given that not all negatives may be useful (Cai et al., [2020; Jeon et al.,[2021})),|Liu & Chen
(2024) makes hard negatives to boost performance, while [Lee et al.| (2024) utilises soft contrastive
learning to weigh sample pairs of varying similarities, both of which reach new SOTAs.

The preceding paragraph outlines a brief summary, and we refer the readers to Section 2 in|Lee et al.
(2024) and Section 5.3 in|Trirat et al.|(2024) for a detailed overview of the methods proposed in the
past 6 years. These advances have led to increasingly sophisticated models that mine the contextual
information embedded in time series by contrasting similarities. However, the structural details of
similarity relations between samples remain to be explored.

2.2 STRUCTURE-PRESERVING SSRL

Preserving the original structure of data when mapping into a latent space has been widely and
actively researched in manifold learning (for a literature review, Meila & Zhang| [2024) and graph
representation learning (Ju et al.| 2024} Khoshraftar & Anl[2024). In manifold learning, which is also
known as nonlinear dimension reduction, the focus is on revealing the geometric shape of data point
clouds for visualisation, denoising, and interpretation. In graph representation learning, the focus is
on maintaining the connectivity of nodes in the graph while compressing the data space required for
large-scale graphs. Structure-preserving has not yet attracted much dedication to time series data.



Under review as a conference paper at ICLR 2025

Ashraf et al.|(2023) provides a literature review on time series data dimensionality reduction, where
none of the methods are specifically tailored for time series.

Zooming in within structure-preserving SSRL, there are two major branches respectively focusing
on topology and geometry. Topology-preserving SSRL aims to maintain global properties such
as clusters, loops, and voids in the latent space; representative models include [Moor et al.| (2020)
and [Trofimov et al.|(2023)) using autoencoders, as well asMadhu & Chepuril (2023)) and |Chen et al.
(2024) with contrastive learning. The other branch is geometry-preserving and focuses more on local
shapes such as relative distances, angles, and areas. Geometry-preserving autoencoders include
Nazari et al.| (2023) and [Lim et al.| (2024), while L1 et al.| (2022) and |[Koishekenov et al.| (2023)
use contrastive learning. The aforementioned topology and geometry preserving autoencoders are
all developed for dimensionality reduction; whereas the combination of contrastive learning and
structure-preserving has been explored majorly with graphs.

2.3 TRAFFIC INTERACTION SSRL

In line with the conclusions in previous subsections, existing exploration in the context of traffic
interaction data and tasks also predominantly relies on autoencoders and graphs. For instance, using
a transformer-based multivariate time series autoencoder (Zerveas et al., [2021), [Lu et al.| (2022)
cluster traffic scenarios with trajectories of pairwise vehicles. Then a series of studies investigate
masking strategies with autoencoders for both individual trajectories and road networks, including
Cheng et al.[(2023));|Chen et al.|(2023); |Lan et al.| (2024)).

Leveraging data augmentation, [Mao et al.| (2022) utilise graphs and contrastive learning to jointly
learn representations for vehicle trajectories and road networks. They design road segment positive
samples as neighbours in the graph, and trajectory positive samples by replacing a random part with
another path having the same origin and destination. Similarly, [Zipfl et al.|(2023)) use a graph-based
contrastive learning approach to learn traffic scene similarity. They randomly modify the position
and velocity of individual traffic participants in a scene to construct positive samples, with negative
samples drawn uniformly from the rest of a training batch. Also using augmentation, Zheng et al.
(2024) focuses on capturing seasonal and holiday information for traffic prediction.

3 METHODS

This section begins by defining the problem of structure-preserving contrastive learning for spatial
time series. Following that, we explain the overall loss function to be optimised, where we propose
a dynamic weighing mechanism to balance contrastive learning and structure preserving during
training. Then we present the contrastive learning loss for time series, unifying both hard and soft
versions in a consistent format. Lastly, we introduce two structure-preserving regularisers, each
designed to maintain the global and local structure of similarity relations, respectively.

3.1 PROBLEM DEFINITION

We define the problem for general spatial time series, with traffic interaction as a specific case.
Learning the representations of a set of samples {x1, @2, - - - , & } aims to obtain a nonlinear func-
tion fg : * — =z that encodes each « into z in a latent space. Let T denote the sequence length of
time series and D the feature dimension at each timestamp ¢. The original space of @ can have the
form RT* P where spatial features are among the D dimensions; or R”*5*P where S represents
spatially distributed objects (e.g., sensors or road users). The latent space of z can also be structured
in different forms, such as R, RT*F or RT*5%F where P is the dimension of encoded features.

By contrastive learning, (dis)similar samples in the original space should remain close (far) in the
latent space. Meanwhile, by structure preservation, the distance matrix between samples should
maintain certain features after mapping into the latent space. We use d(x;, ;) to denote the distance
between two samples ¢ and j, and this also applies to their encoded representations z; and z;.
Various distance measures can be used to define d, such as cosine distance (COS), Euclidean distance
(EUC), and dynamic time warping (DTW). The smaller the distance between two samples, the more
similar they are. Considering the limitation of storage efficiency, similarity comparison is performed
in each mini-batch, where B samples are randomly selected.
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3.2 TRADE-OFF BETWEEN CONTRASTIVE LEARNING AND STRUCTURE PRESERVATION

We define the complete loss function for optimising fg as shown in Equation (I). Referring to the
simplified loss in Section[T} i.e., £ = ncrr - Lerr +7sp - £sp + 7, the contrastive learning loss for time
series (Lcrr) and structure-preserving loss (Lsp) are modified using the function x(1 — exp(—x))
and correspond to fcrr and fsp; ncrr, 1sp, and 7, depend on two deviation terms ocpr and osp,
which dynamically change during training.

1 1
L= -—=—Lcr (1 —exp(—Lerr)) + 55 Lsp (1 — exp(—Lsp)) + log ocrrosp 1
206y 205

The modification serves two purposes: it penalises negative values of Lgp, and stabilises training
when either Lcpr or Lgp approaches its optimal value. While in computation the value of Lgp
sometimes is below zero, the losses used as Lcpr and Lsp in this study all have their theoretical
optimal values of zer(ﬂ As Lcyr decreases and approaches its optimum zero, the modified term /¢ 1
has a slower decreasing rate when Lcpr < 1. More specifically, the derivative of z(1 — exp(—z))
is /(1 — exp(—x)(1 — z)), where =’ denotes the derivative of x and the multiplier in parentheses
decreases from 1 to 0. This thus stabilises the training when Lcrr approaches zero, and works the
same for Lgp.

Inspired by |[Kendall et al.| (2018)), we then weigh the two modified losses by considering their un-
certainties. The magnitudes of Lcrr and Lsp may vary with different datasets and hyperparameter
settings. This variation precludes fixed weights for contrastive learning and structure preservation.
We consider the loss values (denoted by ¢) as deviations from their optimal values, and learn adap-
tive weights according to the deviations. Given the optimal value of 0, we assume a Gaussian
distribution of ¢ with standard deviation o, i.e., p(f) = N(0,0?). Then we can maximise the log
likelihood 3" log p(¢) = 1 > (—log 2m —log 0 — 5 £?) to learn o. This is equivalent to minimising
> (522 % + log o). When balancing between two losses {crr and £sp that have deviations ocrr and
osp, respectively, we need to use Equation (2).

. 1
arg max — Z log p(Ycrr)p(fsp) < arg min Z <7

1
5—{cir + ——5{sp + log UCLTUSP> 2)
20
LT

202?

Replacing forr in Equation with Lerr (1 — exp(—ECLT)) and fgp with Lgp (1 — eXp(—ﬂsp)),
Equation (1)) is derived to be the overall loss. The training process trades-off between Lcrr and Lgp,
as well as between the weight regulariser r,, = log ocrrosp and the rest of Equation . When
Lcrr is small and Lgp is large, oc r becomes small and osp becomes large, which then increases the
weight for L while reduces the weight for Lgp. The reverse occurs when L¢ry is large and Lgp is
small. As the weighted sum of Lcrr and Lgp increases by larger weights, log ocrrosp decreases and
discourages the increase from being too much. Similarly, if the weighted sum decreases by smaller
weights, log oc rosp also regularises the decrease.

3.3 CONTRASTIVE LEARNING LOSS

In this study, we use the time series contrastive learning loss introduced in TS2Vec (Yue et al.| [2022)
and its succeeder SoftCLT (Lee et al., 2024)) that utilises soft weights for similarity compariso
For each sample x;, two augmentations are created by timestamp masking and random cropping,
and then encoded as two representations z; and 2. TS2Vec and SoftCLT losses consider the same
sum of similarities for a sample ¢ at a timestamp ¢, as shown in Equations (3) and (). Equation (3)
is used for instance-wise contrasting, which we denote by the subscript i, ; Equation @I) is used for
time-wise contrasting, denoted by the subscript iemyp.

B B
Sina(i,t) = D (exp( - 250) +exp(2lli - 2j0)) + Y (exp(zi - 2j0) +exp(2ly - 250)) ()

j=1

S

j=
J#i

T
(exp(zi, - 2!l) +exp(zie - zi0)) + Y (exp(ziy - 2is) + exp(zly - 21)) (@)

s=1
s#£t

M=

Stemp (45 ) =
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-

s

"We offer a more detailed analysis in Appendix
2The loss function equations in this subsection follow the original papers as closely as possible with minor
adjustments based on their open-sourced code.
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Equation @) then shows the TS2Vec loss. We refer the readers to|Yue et al. (2022)) for more details
about the hierarchical contrasting method.

1 1,t 7,t
l:TSZVec - ﬁ Z ; (é( ms)t + £<(em>p ) )
i

TS2Vec TS2Vec

D log exp(zi - ziy) +exp(2iy - 21 4) %)
where TSlg%ec , /‘?inSl(iv t) " ,
(4,t) exp(z; s - zi4) +exp(2ziy - 2i4)
¢ temp — 1Og S, .
TS2Vec emp (4, £)

Similarity comparison in TS2Vec is between two different augmentations for the same sample. This
is expanded by SoftCLT to also involve other samples in the same mini-batch. Varying instance-
wise and time-wise weights are assigned to different comparison pairs as soft assignments, with
Equations @ and . This introduces four hyperparameters, i.e., Tinst, Ttemp> &, and m. We use DTW
to compute d(x;, x;) and set o = 0.5, as recommended in the original paper; the other parameters
need to be tuned for different datasets. Specifically, m controls the sharpness of time hierarchical
contrasting. TS2Vec uses m = 1 (constant) and SoftCLT uses m(k) = 2" (exponential), where k is
the depth of pooling layers when computing temporal loss. In this study, we add one more option
m(k) = k + 1 (linear), and will tune the best way for different datasets.

2a n 1—a, ifi=j
L+ oxp(rme - d(@na)) |0, ifi#)

2
14 exp(Tiemp - m - [t — s[)

Winst ('L J) (6)

@)

Weemp (£, 8) =

Then Equation (8)) shows the SoftCLT loss, where we let A be 0.5 as recommended in the original
paper. For a more detailed explanation and analysis, we refer the readers to|Lee et al.[(2024).

Lsoaun NTzz(w;; s ).

SoftCLT SoftCLT
1 1" /
(4,t) exp(z], - zi,) +exp(ziy - 25,)
el E Winst (%, 7) log ST
SoftCLT = inst (2, 1)

exp(zi, -2z ,) +exp(z!, - 2
_ Zwinst Z ]) IOg p( 7,t ,7,t) p( i,t J,t)

Sinsl(i, t) (8)
'J;ﬁl
Where ! 12 12 /
- (t, exp(zi,t “zis) +exp(ziy - 2i )
temp Z’Ultemp S S. it
SoftCLT emp (7, 1)
exp(zi - 2i,s) +exp(2iy - 2is)
— mp(t, 8) 1
Zwte p(t, 5) log e
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3.4 STRUCTURE-PRESERVING REGULARISERS

We use the topology-preserving loss proposed in (Moor et al., [2020) and the graph-geometry-
preserving loss proposed in (Lim et al.| 2024) as two structure-preserving regularisers, respectively
focusing on the global and local structure of similarity relations. The global structure is preserved
for instance-wise comparison, and the local structure is preserved for comparison across temporal
or spatial features. In the following, we briefly describe the two losses, and the readers are referred
to the original papers for more details.

Equation (9) presents the topology-preserving loss computed in each mini-batch. Here A refers to a
B x B distance matrix between samples in the same batch, and is used to construct the Vietoris-Rips
complex; 7 represents the persistence pairing indices of simplices that are considered topologically
significant. The superscripts X and Z indicate original data space and latent space, respectively.

I [ TP S IO o

The graph-geometry-preserving loss is also computed per mini-batch, as is shown in Equation (10).
This loss measures geometry distortion, i.e., how much fg deviates from being an isometry that
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preserves distances and angles. The geometry to be preserved of the original data manifold is implied
by a similarity graph. To represent temporal and spatial characteristics, instead of using an instance
as a node in the graph, we consider the nodes as timestamps or in a spatial dimension such as sensors
or road users. Then the edges in the graph are defined by pairwise geodesic distances between nodes.

Logeo = ;in {H (L, f(,(:r,-i))2 — 2, (L, fg(wi))] , (10)

where H; represents an approximation of the Jacobian matrix of fg. Note that fo(a;) as the latent

representation of a; needs to maintain the node dimension. For example, if the nodes are considered
as timestamps, fp(x;) € RT*?; if the nodes are spatial objects, fy(x;) € RS*F. With a similarity
graph defined, then L is the graph Laplacian that is approximated using a kernel matrix with width
hyperparameter h, which requires tuning for different datasets.

4 EXPERIMENTS AND RESULTS

4.1 EXPERIMENT SETUP

We compare 6 losses for self-supervised representation learning (SSRL) of time series: TS2Vec,
SoftCLT, Topo-TS2Vec, GGeo-TS2Vec, Topo-SoftCLT, and GGeo-SoftCLT. Among the losses,
TS2Vec (Yue et al., [2022)) and SoftCLT (Lee et al., 2024) are baselines, and the others extend these
two with a topology-preserving or a graph-geometry-preserving regulariser. The comparison is then
evaluated by downstream task performances using these differently encoded representations. Con-
sequently, the comparison and evaluation serve as an extensive ablation study focusing on the effects
of structure-preserving regularisers. Our experiments are conducted with an NVIDIA A100 GPU
with 80GB RAM and 5 Intel Xeon CPUs. For fair comparisons, we control the following condi-
tions during experiments: random seed, the space and strategy for hyperparameter search, maximum
training epochs, early stopping criteria, and samples used for evaluating local structure preservation.

4.1.1 BASELINES AND DATASETS

The evaluation of performance improvement is on 3 downstream tasks: multivariate time series clas-
sification, macroscopic traffic prediction, and microscopic traffic prediction. For every downstream
task, we split training/(validation)/test sets following the baseline study and make sure the same data
are used for model training and performance evaluation. Each experiment for a task has two stages,
of which the first is SSRL and the second uses the encoded representations to perform classifica-
tion/prediction. Only the split training set is used in the first stage, with 25% separated as an internal
validation set to schedule the learning rate for SSRL.

The classification task is on 28 datasetsff] retrieved from the UEA archive (Bagnall et al., [2018]).
For each dataset, we set the representation dimension to 320 as used in the TS2Vec and SoftCLT
studies, train 6 encoders with the 6 losses, and then classify the encoded representations with an
RBF-kernel SVM. For traffic prediction, we use the dataset and model in (L1 et al., 2024a)) for the
macroscopic baseline, and those in (Li et al.,|2024b) for the microscopic baseline. The macroscopic
traffic prediction uses 40 minutes (2-minute intervals) of historical data in 193 consecutive road
segments to predict for all segments in the next 30 minutes. The microscopic traffic prediction
forecasts the trajectory of an ego vehicle in 3 seconds, based on the history of up to 26 surrounding
road users in the past 1 second (0.1-second intervals). Both traffic prediction baselines use encoder-
decoder structures. We first pretrain the encoder with the 6 different losses for SSRL, and then
fine-tune the complete model for prediction. The baseline trained from scratch is also compared.

To facilitate clearer analyses when presenting results, we divide the datasets included in the UEA
archive into those with spatial features and those without. According to data descriptions in (Bagnall
et al., |2018)), the UEA datasets are grouped into 6 categories: human activity recognition, motion
classification, ECG classification, EEG/MEG classification, audio spectra classification, and other
problems. The human activity and motion categories, along with the PEMS-SF and LSST datasets
that are categorised as other problems, contain spatial features. We thus consider these as spatial,
and the remaining datasets as non-spatial. As a result, each division includes 14 datasets.

3The UEA archive collects 30 datasets in total. We omitted the two largest, InsectWingbeat and PenDigits,
due to limited computation resources.
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4.1.2 HYPERPARAMETERS

We set the initial learning rate to 0.001, which reduces when the representation learning process
stops improving, and remains constant when searching for the other hyperameters. For each dataset,
we perform a grid search to find the parameters that minimise Lcpr after a certain number of itera-
tions. Table [T| shows search spaces of hyperparameters, where bs is abbreviated for batch size and
Ir,, is a separate learning rate for dynamic weights. When searching for best-suited parameters, we
first set them as default values, and then follow the search strategy presented in Table 2]

Table 1: Hyperparameter search space. Table 2: Hyperparameter search strategy.
Default  Search space Stage bs I, h Temp M Tins
bs 8 [8, 16, 32, 64]f] TS2Vee A
I, 005 [0.01.005] Topo-TS2Vec 01 A
h ! [0.25, 1,9, 25, 49] G(I})eo-TSZVec o A A
Tiemp 0 [0.5,1,1.5,2,2.5]
m constant  [constant, linear, exponential] SoftCLT Phase 1 O A A O
CME e £ 8 08
: h size; Ir,,: 1 i fi i ights. )
bs: batch size; Ir,,: learning rate for dynamic weights GGeo-SoftCLT O A A 0 0 0

“Maximum bs does not exceed train size. (O: default; [J: inherited; A: tuned.

The search spaces and strategy can result in up to 63 runs for one dataset. To save searching time,
we adjust the number of iterations to be adequate to reflect the progress of loss reduction but limited
to prevent overfitting, as our goal is to identify suitable parameters rather than fully train the models.
The number of iterations is scaled according to the number of training samples, with larger datasets
receiving more iterations.

4.1.3 EVALUATION METRICS

Our performance evaluation uses both task-specific metrics and structure-preserving metrics. The
former serves to validate performance improvements, while the latter serves to verify the effective-
ness of preserving similarity structures. These metrics differ in whether a higher or lower value
signifies better performance. To consistently indicate the best method, in the tables presented in the
following subsections, the best values are both bold and underlined; the second-best values are bold.

For classification, we use accuracy (Acc.) and the area under the precision-recall curve (AUPRC).
To evaluate macroscopic traffic prediction, we use mean absolute error (MAE), root mean squared
error (RMSE), the standard deviation of prediction errors (SDEP), and the explained variance by
prediction (EVar). Dealing with microscopic traffic, we predict vehicle trajectories and assess the
minimum final displacement error (min. FDE) as well as missing rates under radius thresholds of
0.5m, 1m, and 2m (MR 5, MR, MR5).

As for metrics to evaluate structure preservation, we adopt a combination of those used in (Moor
et al., 2020) and (Lim et al., 2024). More specifically, we consider 1) kNN, the proportion of
shared k-nearest neighbours according to distance matrices in the latent space and in the original
space; 2) continuity (Cont.), one minus the proportion of neighbours in the original space that are
no longer neighbours in the latent space; 3) trustworthiness (Trust.), the counterpart of continuity,
measuring the proportion of neighbours in the latent space but not in the original space; 4) MRRE,
the averaged error in the relative ranks of sample distances between in the latent and original space;
and 5) distance matrix RMSE (dRMSE), the root mean squared error of differences between sample
distance matrices in the latent and original space. We calculate these metrics at two scales to evaluate
global and local structure preservation. For global evaluation, our calculation is based on EUC
distances between samples; for local evaluation, the calculation is based on EUC distances between
timestamps for at most 500 samples in a test set.

4.2 MULTIVARIATE TIME SERIES CLASSIFICATION

The classification performance on spatial and non-spatial datasets is presented in Table Next
to the averaged accuracy, we also include the loss values on test sets to offer more information.
More detailed results can be found in Tables [AT] and [AZ]in the Appendix [A.2] where we present
the classification accuracy with different representation learning losses for each dataset. Then we
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use Table [4] to more specifically compare the relative improvements induced by adding a topology
or graph-geometry preserving regulariser. The relative improvement is the percentage of accuracy
difference from the corresponding baseline performance.

Tables 3|and[|clearly show that structure-preserving improves classification accuracy, not only when
time series data involves spatial features, but also when it does not. The relative improvements in
Table [4] are higher for non-spatial datasets than for spatial datasets, which is because the datasets
without spatial features are more difficult to learn in the UEA archive. As is shown in Table 3] the
loss of contrastive learning decreases when a structure-preserving regulariser is added for spatial
datasets, while increases for non-spatial datasets. This implies that preserving similarity structure is
well aligned with contrastive learning for spatial datasts, and can even enhance contrastive learning.

Table 3: UEA classification evaluation. Table 4: Classification accuracy improved by
Datasets Method Acc. AUPRC Lor  Lsp Topo/GGeo regulariser. Comparison is made
TS2Vee 0848 0872 2943 with corresponding baseline performance.
With  Topo-TS2Vec  0.851  0.876  2.264 0.085 Datasets  Lmprovement  Persentage in Acc. (%)
spatial  GGeo-TS2Vec  0.856 0.881 2200 186.9 by method min. mean  max.
features  SoftCLT 0.852 0.876  7.943
(14)  Topo-SoftCLT  0.862  0.882  4.900 0.087 With  Topo-TS2Vec ~ -4.403  0.800 16.54
GGeo-SoftCLT 0.864 0.883 2316 221.1 spatial  GGeo-TS2Vec  -3.783 1.143 10.44
e om0 wan
Without  Topo-TS2Vec 0.553 0.561 11.12  0.122 ’ ’ ’
spatial  GGeo-TS2Vec  0.536  0.564 15.58 957.0 Without  Topo-TS2Vec -5.263  8.852  50.00
features  SoftCLT 0.508 0.532 4714 spatial  GGeo-TS2Vec  -33.33 2.083 4444
(14) Topo-SoftCLT ~ 0.496 0.534 7.328 0.124 features  Topo-SoftCLT  -33.33 -0.815 50.00
GGeo-SoftCLT  0.537 0.549 10.09 144.7 (14) GGeo-SoftCLT  -20.83  18.49 166.7

Table 5: Structure preserving evaluation over datasets with and without spatial features in the UEA archive.

. Local mean between timestamps Global mean between all samples
Datasets Method
KNN  Trust. Cont. MRRE dRMSE kNN Trust. Cont. MRRE dRMSE
TS2Vec 0.563 0.868 0.875 0.117 0346 0419 0.784 0.765 0.189 0.150

With Topo-TS2Vec 0.569 0.873 0.878 0.114 0.344 0418 0.783 0.764  0.190 0.154
spatial  GGeo-TS2Vec  0.569 0.873 0.881 0.114 0.341 0418 0.781 0.762 0.190 0.157
features  SoftCLT 0562 0.866 0.875 0.117 0.348 0420 0.788 0.765 0.187 0.171

(14) Topo-SoftCLT ~ 0.564 0.869 0.877 0.115 0344 0421 0.784 0.767 0.188 0.153

GGeo-SoftCLT  0.571 0.875 0.883  0.111 0337 0425 0.790 0.768 0.185 0.149

TS2Vec 0423 0.820 0.835 0.150 0.304 0.362 0.767 0.767  0.252 0.197

Without ~ Topo-TS2Vec 0.424 0.820 0.831 0.151 0308 0356 0.763 0.767 0.254 0.191
spatial  GGeo-TS2Vec  0.420 0.820 0.832 0.151 0310  0.365 0.769 0.771 0.253 0.189
features  SoftCLT 0432 0.820 0.835 0.148 0312 0354 0.763 0.764  0.252 0.197
(14) Topo-SoftCLT ~ 0.426 0.818 0.834  0.148 0312 0361 0.768 0.768 0.254 0.205
GGeo-SoftCLT  0.430 0.822 0.835 0.147 0315 0355 0.761 0.762  0.257 0.203

Note: the best values are both bold and underlined; the second-best values are bold.

The assessment of similarity preservation is presented in Table [5] at both local and global scales.
Consistent with the task-specific evaluation, Table [5] shows that structure-preserving regularisation
preserves more complete information on similarity relations. The improvements are generally more
significant on datasets with spatial features, which makes it more evident that our proposed preser-
vation suits spatial time series data better. Although the comparisons in these tables indicate more
notable improvements by preserving graph geometry than preserving topology, we have to note that
this does not demonstrate any superiority of one over the other. Different datasets have different
characteristics that benefit from preserving global or local structure, and domain knowledge is nec-
essary to determine which could be more effective.

4.3 MACROSCOPIC AND MICROSCOPIC TRAFFIC PREDICTION

In Table [6] we present the performance evaluation for both macroscopic and microscopic traffic
prediction. This table shows consistent improvements by pretraining encoders with our methods.
Notably, single contrastive learning (i.e., TS2Vec and SoftCLT) does not necessarily improve down-
stream prediction, whereas it does when used together with preserving similarity structure. Given
that our comparisons are conducted through controlling random conditions, this result effectively
shows the necessity of preserving structure when learning traffic interaction representations.
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Table 6: Traffic prediction evaluation.

\ Macroscopic Traffic \ Microscopic Traffic
Method MAE RMSE SDEP EVar | min. FDE MRy.5 MR; MR,
(km/h)  (km/h)  (km/h) (%) (m) (%) (%) (%)

No pretraining 3254 6713 6707 80409 | 0640  59.467 12285 0.723
TS2Vec 3313 6749 6734 80252 | 0.638 58716 12.044 0710
Topo-TS2Vec 3284 6829 6828 79.695 | 0.636 58936 11.871 0.661
GGeo-TS2Vec 3213 6643  6.641 80792 | 0.636  59.157 11947 0.648
SoftCLT 3240 6780 6780 79.980 | 0.633  58.495 11.630 0.710
Topo-SoftCLT 3142 6542 6533 81412 | 0.633  58.158 11.568 0.710
GGeo-SoftCLT 3298  6.875 6872 79432 | 0635 58516 11.582 0.710

Best improvement (%) \ 3432 2546  2.594 1.248 \ 1.180 2.201 5.833 10476
Note: the best values are both bold and underlined; the second-best values are bold.

Table [7)then displays the corresponding evaluation on similarity structure preservation. The results
in this table are obtained by assessing the encoders after fine-tuning for traffic prediction. The
models with no pretraining maintain the best global similarities between samples but do not achieve
optimal prediction. Likewise, models yielding better predictions do not maintain more similarities.

Table 7: Structure preserving evaluation of traffic prediction tasks.

| Macroscopic Traffic | Microscopic Traffic
| KNN  Cont. Trustt MRRE dRMSE | kNN Cont. Trust. MRRE dRMSE
Local mean between timestamps for at most 500 samples

No pretraining | 0.126  0.527 0.525  0.500 0.221 | 0.398 0.750 0.589  0.406 0.475
TS2Vec 0.132 0.540 0.531 0.483 0.246 | 0.398 0.759 0.592 0.397 0.493
Topo-TS2Vec 0.129 0.534 0.528 0.487 0240 | 0395 0.756 0.587  0.396 0.511
GGeo-TS2Vec | 0.127 0.532  0.527 0.488 0.254 | 0393 0.751 0.585 0.400 0.513
SoftCLT 0.132 0.543 0.528 0.477 0249 | 0397 0.753 0.588  0.405 0.480
Topo-SoftCLT | 0.125 0.526 0.522  0.495 0.229 | 0399 0.754 0.590 0.403 0.481
GGeo-SoftCLT | 0.128 0.532 0.523  0.492 0.244 | 0.398 0.758 0.591 0.398 0.470

Global mean between all samples

No pretraining | 0.471 0.991 0.987 0.007 0.254 | 0.288 0.958 0.855 0.068 0.277
TS2Vec 0.372 0985 0976 0.013 0.264 | 0275 0.954 0.840 0.077 0.274
Topo-TS2Vec 0.307 0981 0970 0.017 0.267 | 0.264 0.945 0.813  0.090 0.266
GGeo-TS2Vec | 0.358 0983 0.973  0.015 0.255 | 0.290 0.946 0.815 0.089 0.264
SoftCLT 0405 0986 0978 0.012 0.226 | 0.283 0.935 0.844 0.083 0.273
Topo-SoftCLT | 0.407 0987 0.979 0.011 0.253 | 0.284 0947 0.842  0.080 0.292
GGeo-SoftCLT | 0.392 0.986 0.978 0.012 0.250 | 0.234 0911 0.785 0.118 0.283

Note: the best values are both bold and underlined; the second-best values are bold.

Method

We provide Figure [I] to further understand the contribution of structure preservation to traffic pre-
diction performance. This figure compares the changes in local and global means of kNN, MRRE,
and dRMSE before and after fine-tuning. Considering Topo-SoftCLT as an anchor given that it pro-
vides the best improvement, we can see that fine-tuning improves the local and global kNN, global
MRRE, and local dRMSE. This then suggests that task-specific performance may be enhanced by
preserving certain similarity structures in the latent representation space.

kNN 1 MRRE | dRMSE |

TS2Vec
Topo-TS2Vec
GGeo-TS2Vec 1
SoftCLT
Topo-SoftCLT
GGeo-SoftCLT A

MacroTraffic

TS2Vec 1
Topo-TS2Vec
GGeo-TS2Vec A
SoftCLT
Topo-SoftCLT
GGeo-SoftCLT A

T T T T T T T T T
-0.05 0.00 0.05 -0.05 0.00 0.05 -0.05 0.00 0.05
Local mean Global mean Change in metric after continued training

MicroTraffic

Figure 1: Comparison of structure preservation metrics for pretrained encoders used in traffic prediction before
and after fine-tuning.
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4.4 TRAINING EFFICIENCY

Incorporating structure-preserving regularisation increases computational complexity, and conse-
quently, training time. The magnitude of this increase depends on the data and model that are
applied on. With Table [§] we quantify the additional time required for structure preservation and
evaluate its impact across diverse model architectures. In prior experiments, we used Convolutional
Neural Network (CNN) encoders for classification on UEA datasets, Dynamic Graph Convolution
Network (DGCN) [Li et al.| (2021)) encoders for macroscopic traffic prediction, and VectorNet (Gu
et al.| (2021) encoder for microscopic traffic prediction. To obtain a more comprehensive evaluation,
we include two more Recurrent Neural Network (RNN) models for macroscopic traffic prediction:
Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) encoders, each paired with a
simple linear decoder. Results in Table [§] show that preservin structure increases training time by
less than 50% in most cases. However, when time sequences are very long (e.g., more than 1,500
steps), the computation of graph-geometry preserving loss becomes intense.

Table 8: Training time per epoch in the stage of self-supervised representation learning.

Task/data Encoder  Base (sec/epoch) TS2Vec Topo-TS2Vec GGeo-TS2Vec SoftCLT  Topo-SoftCLT ~ GGeo-SoftCLT

Avg. UEA® CNN 11.94 1.00x 1.46x 2.35% 1.00x 1.46x 2.36x%
MicroTraffic ~ VectorNet 123.89 1.00x 1.41x 1.12x 1.13x 1.60x 1.30x
DGCN 128.43 1.00x 1.34x 1.20x 0.92x 1.25% 1.22x
MacroTraffic LSTM 18.33 1.00x 1.50% 1.17x 1.09x 1.61x 1.28x
GRU 17.19 1.00x 1.46x 1.12x 1.07x 1.58x 1.23x

¢ Detailed results are referred to Appendix A.2]

Figure ] further illustrates the influence of structure-preserving pretraining on the fine-tuning
progress of different models used for macroscopic traffic prediction. For LSTM and GRU, SSRL
consistently enhances prediction performance compared to training from scratch, with structure
preservation providing substantial improvements. For DGCN which is a more complicated model,
training from scratch is already very effective and only Topo-SoftCLT leads to minor improvement.

DGCN LSTM GRU

Explained variance

% 0.2 P 4 F E
0.1 4 1 1
T T T T T T T T T T T T
0 30 60 90 0 30 60 90 0 30 60 90
Epochs Epochs Epochs
—e— No pretraining TS2Vec —=— Topo-TS2Vec —<— GGeo-TS2Vec SoftCLT ~ —+— Topo-SoftCLT ~— GGeo-SoftCLT

Figure 2: Training progress of models pretrained with different losses on macroscopic traffic prediction.

5 CONCLUSION

This paper presents an approach to structure-preserving contrastive learning for spatial time series,
where a dynamic mechanism is proposed to adaptively balance between contrastive learning and
structure preservation. Our method is experimentally demonstrated to improve the SOTA perfor-
mance, including for multivariate time series classification in various contexts and for traffic predic-
tion at both macroscopic and microscopic scales. In general, adding structure-preserving regularisa-
tion has a limited impact on representation learning efficiency. It can be computationally intensive
when the time sequence is long; however, the performance improvement is evident, making it an
acceptable price to pay for utilising the information embedded in time series data. Our experiments
(albeit preliminary) also suggest that preserving certain similarity structures can be crucial to en-
hance downstream task performance, highlighting that the structural information of similarities in
spatio-temporal data remains yet to be exploited. Given that many real-world practices involve spa-
tial time series, this study can be applied not only to traffic interactions, but also to any that can
benefit from preserving specific structures in similarity relations.

10
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A APPENDIX

A.1 THEORETICAL OPTIMAL VALUES OF LOSSES

For L1sovec, a value of 0 is reached when zg,t and z;’ , are identical. Similarly, the optimal case of
Lsorcrr 18 when the samples with soft assignments close to 1 are identical, while dissimilar samples
have soft assignments close to 0. The topology-preserving loss Lipo, is O when the topologically
relevant distances remain the same in the latent space as in the original space, i.e., A [7*]
AZ [7X] and A* [n”] = A” [x”]. Finally, Lgge, approximates the distortion measure of isometry

and is ideally O, but can be negative when Tr(f{i) < 2, as the approximation of H; is kernel-based
depending on a hyperparameter h.

A.2 DETAILED RESULTS ON UEA DATASETS

This section provides detailed comparison of evaluation results for the used 28 datasets in the UEA
archive. Tables[AT]and [A2] present the results of classification accuracy. Tables [A3]and [Ad] present
the training time for self-supervised representation learning. In addition, to visually show the effect
of differently regularised contrastive learning losses on representation, we apply t-SNE to compress
the encoded representations into 3 dimensions, as plotted in Figure [A 1| for the dataset Epilepsy, and
Figure[A2]for RacketSports. We use these two datasets because they are visualisation-friendly, with
4 classes and around 150 test samples.

Table Al: Detailed evaluation of classification accuracy on spatial datasets in the UEA archive.

Dataset TS2Vec Topo-TS2Vec GGeo-TS2Vec  SoftCLT  Topo-SoftCLT  GGeo-SoftCLT
ArticularyWordRecognition ~ 0.980 0.987 0.983 0.987 0.977 0.987
BasicMotions 1.000 1.000 1.000 1.000 1.000 1.000
CharacterTrajectories 0.971 0.985 0.972 0.980 0.977 0.986
Cricket 0.944 0.944 0.972 0.972 0.972 0.986
ERing 0.867 0.874 0.881 0.893 0.878 0.863
EigenWorms 0.809 0.817 0.863 0.817 0.901 0.840
Epilepsy 0.957 0.957 0.949 0.964 0.957 0.949
Handwriting 0.498 0.499 0.479 0.487 0.478 0.580
LSST 0.485 0.566 0.536 0.452 0.569 0.581
Libras 0.883 0.844 0.850 0.889 0.850 0.867
NATOPS 0.917 0.917 0.933 0.922 0.917 0.944
PEMS-SF 0.792 0.775 0.815 0.751 0.803 0.740
RacketSports 0.908 0914 0914 0.928 0.908 0.875
UWaveGestureLibrary 0.862 0.831 0.834 0.888 0.881 0.897
Avg. over spatial datasets 0.848 0.851 0.856 0.852 0.862 0.864
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Table A2: Detailed evaluation of classification accuracy on non-spatial datasets in the UEA archive.

Dataset TS2Vec Topo-TS2Vec GGeo-TS2Vec  SoftCLT  Topo-SoftCLT  GGeo-SoftCLT
AtrialFibrillation 0.200 0.267 0.133 0.133 0.200 0.267
DuckDuckGeese 0.360 0.540 0.520 0.400 0.420 0.400
EthanolConcentration 0.289 0.274 0.297 0.243 0.308 0.308
FaceDetection 0.510 0.508 0.505 0.516 0.497 0.505
FingerMovements 0.480 0.480 0.480 0.530 0.470 0.540
HandMovementDirection 0.324 0.405 0.257 0.324 0.230 0.257
Heartbeat 0.751 0.761 0.717 0.756 0.737 0.732
Japanese Vowels 0.978 0.986 0.978 0.970 0.978 0.978
MotorImagery 0.480 0.500 0.500 0.520 0.500 0.500
PhonemeSpectra 0.263 0.258 0.269 0.269 0.260 0.257
SelfRegulationSCP1 0.778 0.768 0.788 0.761 0.730 0.771
SelfRegulationSCP2 0.467 0.550 0.561 0.528 0.511 0.511
SpokenArabicDigits 0.973 0.976 0.966 0.964 0.968 0.957
StandWalkJump 0.467 0.467 0.533 0.200 0.133 0.533
Avg. over non-spatial datasets ~ 0.523 0.553 0.536 0.508 0.496 0.537

Table A3: Detailed representation training time per epoch (unit: s) on spatial datasets in the UEA archive.

Dataset TS2Vec Topo-TS2Vec  GGeo-TS2Vec SoftCLT Topo-SoftCLT ~ GGeo-SoftCLT
ArticularyWordRecognition ~ 3.799 (1.00x) 5.61 (1.48x%) 5.863 (1.54x) 3.772 (0.99x) 5.77 (1.52x%) 5.983 (1.57x)
BasicMotions 0.475 (1.00x)  0.685(1.44x)  0.709 (1.49%x)  0.457(0.96x)  0.687 (1.45x)  0.711 (1.50x)
CharacterTrajectories 20.640 (1.00x) 30.863 (1.50x)  33.32(1.61x) 20.652(1.00x) 30.948 (1.50x)  33.18 (1.61x)
Cricket 1.903 (1.00x)  2.653 (1.39x)  5.437(2.86x)  1.904 (1.00x)  2.655(1.40x)  5.436(2.86x)
ERing 0.319 (1.00x)  0.482(1.51x) 0487 (1.53x)  0.316(0.99x)  0.483 (1.51x) 0.49 (1.54x)
EigenWorms 19.862 (1.00x) 23.823 (1.20x) 149.05 (7.50x) 20.224 (1.02x) 24.856(1.25x)  150.7 (7.59%)
Epilepsy 1.737 (1.00x) 2.49 (1.43x%) 2.753 (1.58x)  1.686 (0.97x)  2.506 (1.44x)  2.755 (1.59%)
Handwriting 1.875 (1.00x)  2.771 (1.48x)  2.959 (1.58x) 1.88 (1.00x) 2775 (1.48x)  2.987 (1.59%)
LSST 29.786 (1.00x) 45.273 (1.52x) 45.162 (1.52x) 29.859 (1.00x) 45.216 (1.52x) 45.154 (1.52x)
Libras 2.081(1.00x)  3.142(1.51x)  3.142(1.51x)  2.085(1.00x)  3.135(1.51x)  3.141 (1.51x)
NATOPS 1.953 (1.00x)  2.989 (1.53x)  2.949 (1.51x)  2.085(1.07x)  3.147(1.61x)  3.159 (1.62x)
PEMS-SF 3.413(1.00x)  5.069 (1.49x) 5.38 (1.58%) 3.415(1.00x)  5.064 (1.48x)  5.399 (1.58x%)
RacketSports 1.781 (1.00x)  2.685(1.51x)  2.664 (1.50x)  1.771(0.99%x)  2.711(1.52x)  2.665 (1.50x)
UWaveGestureLibrary 1.699 (1.00x)  2.395(1.41x) 2788 (1.64x)  1.776 (1.05x)  2.595(1.53x) 2.99 (1.76 %)
Avg. over spatial datasets 6.523067 1.46x 2.12x 1.00x 1.48% 2.15%

Table A4: Detailed representation training time per epoch (unit: s) on non-spatial datasets in the UEA archive.

Dataset TS2Vec Topo-TS2Vec GGeo-TS2Vec SoftCLT Topo-SoftCLT GGeo-SoftCLT
AtrialFibrillation 0.182 (1.00x) 0.258 (1.42x) 0.369 (2.03x) 0.177 (0.97x) 0.259 (1.42x) 0.366 (2.01x)
DuckDuckGeese 0.617 (1.00x) 0.973 (1.58x) 1.059 (1.72x) 0.621 (1.01x) 0.968 (1.57x) 1.104 (1.79%)
EthanolConcentration 4.939 (1.00x) 6.655 (1.35%) 20.128 (4.08x) 4.89 (0.99x) 6.664 (1.35x) 20.182 (4.09%)
FaceDetection 70.709 (1.00x) 109.6 (1.55x%) 108.83 (1.54x)  71.104 (1.01x) 107.523 (1.52x) 107.092 (1.51x)
FingerMovements 3.826 (1.00x) 5.67 (1.48x) 5.706 (1.49x) 3.779 (0.99x) 5.671 (1.48x) 5.716 (1.49x)
HandMovementDirection 2.221 (1.00x) 3.353 (1.51x%) 4.151 (1.87x) 2.226 (1.00x) 3.334 (1.50%) 4.142 (1.86x)
Heartbeat 2.811 (1.00x) 4.218 (1.50x) 5.22 (1.86x%) 2.818 (1.00x) 4.216 (1.50x) 5.221 (1.86x%)
JapaneseVowels 3.211 (1.00x) 4.871 (1.52x) 4.821 (1.50%) 3.199 (1.00x) 4.846 (1.51x) 4.83 (1.50%)
Motorlmagery 7.450 (1.00x) 9.637 (1.29x) 51.0 (6.85x%) 7.475 (1.00x) 9.659 (1.30x) 50.881 (6.83x)
PhonemeSpectra 42.956 (1.00x)  63.801 (1.49%x)  70.578 (1.64x) 43.015(1.00x)  63.807 (1.49x)  70.806 (1.65%)
SelfRegulationSCP1 4.178 (1.00x) 6.042 (1.45x) 10.446 (2.50x)  4.237 (1.01x) 6.094 (1.46x) 10.415 (2.49%)
SelfRegulationSCP2 3.295 (1.00x) 4.67 (1.42x) 9.391 (2.85x%) 3.269 (0.99x) 4.629 (1.40x) 9.376 (2.85%)
SpokenArabicDigits 96.299 (1.00x) 143.411 (1.49x) 131.577 (1.37x) 86.495(0.90x) 125916 (1.31x) 129.073 (1.34x)
StandWalkJump 0.304 (1.00x) 0.404 (1.33%) 1.68 (5.53%) 0.31 (1.02x) 0.4 (1.32x) 1.7 (5.59%)
Avg. over non-spatial datasets 17.357000 1.46x 2.57x 0.99x 1.44x 2.57x
TS2Vec Topo-TS2Vec GGeo-TS2Vec SoftCLT Topo-SoftCLT GGeo-SoftCLT
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Figure Al: Encoded representations after training with different losses on the test set of Epilepsy. Classes are
indicated by colors.
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