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Abstract001

Integrating external knowledge into Large Lan-002
guage Models (LLMs) is vital, yet methods like003
Retrieval-Augmented Generation (RAG) face004
limitations with broad queries requiring multi-005
source synthesis, while long-context models006
are computationally prohibitive.007

We propose Task-Aware Key-Value Cache008
Compression (CACHENOTES), a novel query-009
agnostic framework that generates a reusable,010
compact cache tailored to a specific task. Un-011
like prior approaches, we first create a task-012
specific ‘cheat-sheet’ summary that guides a013
one-time compression of the corpus into a014
reusable KV-cache. This enables LLMs to ef-015
ficiently answer diverse, reasoning-intensive016
queries using the compressed cache, eliminat-017
ing repeated retrieval or context expansion.018

Experiments on LongBench show that019
CACHENOTES outperforms standard RAG by020
up to 4 F1 points at a 20× compression rate,021
and delivers up to 4× lower latency, while022
remaining competitive with state-of-the-art023
query-aware baselines. Additional results on024
real-world enterprise and synthetic datasets025
demonstrate that CACHENOTES is especially026
effective for multi-hop and broad-coverage027
queries.028

1 Introduction029

Incorporating external information into Large Lan-030

guage Models (LLMs) significantly enhances their031

utility across various applications, enabling them032

to generate more informed and accurate out-033

puts (Petroni et al., 2019).034

While Retrieval-Augmented Generation (RAG)035

efficiently inject relevant evidence for narrow, fo-036

cused queries, they often struggle with questions037

that require synthesizing information dispersed038

across multiple documents or sections of text (Bar-039

nett et al., 2024). Such multi-hop or broad queries040

are bottlenecked by retrieval’s reliance on local041

similarity and its inability to capture global rela- 042

tionships or latent links in the corpus, making it 043

challenging to surface all relevant context and often 044

introducing noise or redundancy (Yu et al., 2024). 045

Recent advancements have extended LLMs’ abil- 046

ity to process longer contexts (Reid et al., 2024; Li 047

et al., 2025a). This progress opens up the possibil- 048

ity of processing entire corpora as input, offering a 049

compelling alternative for tasks requiring holistic 050

understanding. However, this approach comes with 051

significant computational costs, as handling large 052

inputs requires substantial memory resources, par- 053

ticularly on GPUs, which creates a scalability bot- 054

tleneck (Liu et al., 2023). Furthermore, as context 055

length increases, models can struggle to discern 056

and use the relevant information buried within ex- 057

tensive text (Liu et al., 2024a; Laban et al., 2025). 058

This leads to a fundamental challenge: 059

How can LLMs efficiently and accurately 060

perform reasoning-intensive tasks that 061

require broad access to large external 062

corpora, without the prohibitive costs of 063

full-context inference or the limitations 064

of retrieval-based methods? 065

We address this challenge by introducing 066

Task-Aware Key-Value Cache Compression 067

(CACHENOTES), a query-agnostic yet task-guided 068

framework that creates a reusable, compact cache 069

for an entire corpus. Unlike prior work in query- 070

aware cache compression, which recomputes a 071

compressed context for each query (Rehg, 2024; 072

Xu et al., 2025; Li et al., 2025b; Corallo and Papotti, 073

2024) or generic, prompt-based methods (Kim 074

et al., 2024), our approach performs a one-time, 075

offline compression directed by a concise, human- 076

written task description and a model-generated 077

“cheat-sheet” that distills corpus content most crit- 078

ical for that task. This cheat-sheet guides cross- 079

attention-based token selection, producing a persis- 080

tent cache that can be rapidly leveraged by the LLM 081
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Figure 1: An illustration of our compression strategy. (1) A cheat-sheet S is generated from the corpus C, guided by
a task description (e.g., factual QA). (2) The original KV cache (here, 128k tokens) is then compressed (e.g., to 64k
tokens) using the cheat-sheet S to retain the most salient information. (3) At inference time, the LLM can answer
task-related questions using only the pre-compressed cache, as if it had access to the entire (uncompressed) corpus.
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Figure 2: Aggregated results on 16 datasets of Long-
Bench of KV cache compression methods compared to
RAG. Our cheatsheet-guided KV compression approach
achieves results exceeding RAG when the context length
is much smaller than average corpus size of 10k tokens.

at inference, with no retrieval or recompression.082

Figure 1 provides an overview of our approach.083

The process, initiated by the task description and084

guided by the generated cheat-sheet, produces a085

compact KV cache representation that retains all086

task-critical details. Importantly, this compression087

happens only once offline, creating a persistent rep-088

resentation that can be reused for any query within089

that task’s domain. The method can be applied to090

any decoder-only model and applicable to a vari-091

ety of knowledge-intensive tasks, without model092

fine-tuning. Examples of generated cheat-sheets093

and task descriptions are in Appendix B.094

Our method, delivers performance that signifi-095

cantly surpasses existing query-agnostic compres-096

sion techniques and closely approaches the effec-097

tiveness of more computationally intensive query-098

aware compression. Figure 2 shows the quality099

performance of our KV cache compression method100

against RAG on the LongBench benchmark (Bai101

et al., 2024). With high compression rates 20x and102

10x and 5x (corpus compressed to 512, 1024 and 103

2048 tokens, respectively) our method outperforms 104

RAG despite being query-agnostic. With compres- 105

sion rate of 5x, our method achieves about 97.3% 106

of the full-context performance, demonstrating re- 107

markable information retention. 108

Experimental results across diverse tasks us- 109

ing LLAMA 3.1 (Dubey et al., 2024) and QWEN 110

2.5 (Yang et al., 2024), on the LongBench bench- 111

mark, demonstrate that our task-aware compression 112

method consistently outperforms existing query- 113

agnostic methods and retrieval-based approach. 114

Furthermore, experiments on real world enterprise 115

data and custom synthetic datasets highlight the su- 116

perior capability of our method in handling broad, 117

multifaceted queries. Notably, in scenarios requir- 118

ing the synthesis of widely distributed information, 119

our approach significantly outperforms RAG, es- 120

tablishing compression as a key enabler for scaling 121

LLM reasoning beyond retrieval-based methods. 122

2 Problem Formulation 123

The primary challenge this work addresses is en- 124

abling LLMs to efficiently and effectively perform 125

reasoning-intensive knowledge tasks that require 126

access to extensive external corpora (Petroni et al., 127

2021; Su et al., 2024a). As discussed in Section 1, 128

prevailing methods present a difficult trade-off: 129

RAG is efficient but struggles to synthesize dis- 130

persed evidence for broad, multi-hop queries, while 131

processing entire corpora with long-context mod- 132

els offers comprehensiveness but at a prohibitive 133

computational and memory cost. KV cache com- 134

pression is a promising method to create compact 135

representations of large contexts, offering a solu- 136

tion to this trade-off (Li et al., 2024; Liu et al., 137

2024b). However, existing compression strategies 138

themselves introduce a critical dilemma regarding 139
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their applicability and performance.140

Ideally, we would like to pre-digest the entire141

corpus D once, distilling it into a compact, task-142

aware key–value cache (K̃, Ṽ) that can be plugged143

into the model for any downstream query. Such a144

query-agnostic cache would remove the need for145

retrieval or on-the-fly compression altogether: in-146

ference would amount to a single forward pass over147

the prompt, with no dependence on corpus size and148

latencies close to those of small-context generation.149

A fundamental challenge in compressing long-150

context representations, however, is achieving151

precisely this query-agnostic compression. Em-152

pirical results show that existing methods de-153

grade sharply—especially at high compression ra-154

tios—often falling behind both full-context pro-155

cessing and RAG (Jegou et al., 2024).156

Conversely, query-aware compression shrinks157

the KV footprint by guiding the compression with158

the user query (Corallo and Papotti, 2024; Li et al.,159

2025b), offering potentially superior efficiency at160

the cost of increased query dependency. In fact, in161

multi-query settings, repeatedly running the com-162

pressor is computationally prohibitive, undermin-163

ing the very goal of avoiding large-scale retrieval164

or excessive context expansion.165

Research Question. Can we design a query-166

agnostic compression method that retains the effi-167

ciency benefits of a precomputed cache while deliv-168

ering quality on par with query-aware approaches?169

3 Methodology170

We present our task-aware, query-agnostic com-171

pression strategy, motivated by the remarkable in-172

context learning capabilities of modern LLMs. We173

describe how we obtain a single, reusable cache174

that covers an entire task’s external knowledge.175

3.1 Motivation via In-Context Learning176

Modern LLMs are capable of remarkable in-177

context learning (Brown et al., 2020; Dong et al.,178

2024): given a sufficiently rich prefix, they infer179

the intended task and relevant knowledge with no180

parameter updates. To clarify the distinction be-181

tween retrieval and compression strategies, we use182

a pedagogical analogy:183

RAG, for instance, is akin to a student accessing184

reference material through a search engine dur-185

ing the test, retrieving snippets as needed for each186

question. Long-context models are like students187

who have memorized the entire corpus beforehand,188

leveraging this extensive internal knowledge to an- 189

swer any question. Query-aware compression is 190

more targeted, analogous to a student who scans 191

their material during the test, focusing only on the 192

most relevant information for a particular query. 193

However, students typically prepare for exams 194

by organizing their knowledge before test time, of- 195

ten creating concise ""cheat-sheets"" that capture 196

the essential concepts and facts, allowing them to 197

quickly recall key points during the test. We hy- 198

pothesize that a task-specific, pre-computed sum- 199

mary (“cheat-sheet”) can serve as an effective scaf- 200

fold for compressing external corpora into compact, 201

reusable representations. Unlike prior query-aware 202

methods that require a new compressed cache for 203

each query, our method decouples cache construc- 204

tion from inference, amortizing compression cost 205

across all queries for a given task and corpus. 206

3.2 Task-Aware KV Compression 207

We propose a task-aware KV compression ap- 208

proach consisting of three distinct stages: 209

(1) Creation of the Cheat-sheet (Offline) Given 210

a full corpus C and a task description T (e.g., 211

“open-domain QA”), we use an instruction- 212

following language model LLMinst to produce a 213

concise summary S. 214

S = LLMinst(C, T ) (1) 215

The model is prompted: Before I give you the 216

question, imagine you are a student memorizing 217

this material according to the task you will perform 218

(specified in Task Description). Repeat the context 219

concisely yet comprehensively to aid memorization, 220

preserving all critical details. Create a cheat sheet 221

covering the entire context. 222

Task descriptions can be customized or aug- 223

mented with few-shot demonstrations to steer the 224

LLMinst towards generating a cheat-sheet S that is 225

optimally aligned with the task’s requirements. 226

(2) Layer-wise KV Compression (Offline) Con- 227

text and cheat-sheet are concatenated together: 228

I =
[
C,S

]
∈ Rn+m, (2) 229

where n is the token length of the long context 230

and m is the token length of the cheat-sheet. This 231

concatenated input is processed by the LLM and 232

at each attention layer, the guiding principle is that 233

the cheat-sheet S, embodying the distilled essence 234
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of the corpus for task T, provides query vectors235

Qs that probe the context C to identify its most236

relevant segments. To achieve this, we extract the237

query vector of the cheat-sheet tokens Qs and the238

key vector of the context tokens Kc, then compute239

the Cross-attention between them1:240

W(S,C) = softmax
(
QsKc

⊤
√
dk

)
(3)241

To ensure that the attention scores reflect both242

the alignment and the relative importance of the243

cheat-sheet values, the raw Cross-attention scores244

W(S,C) are scaled by the magnitude (norm) of the245

value vectors Vs associated with the cheat-sheet246

tokens. This step weights the attention scores, en-247

suring that cheat-sheet tokens with stronger value248

representations (higher norms) exert a proportion-249

ally greater influence on identifying salient context250

tokens (Jegou et al., 2024).251

W(S,C)
norm = W(S,C) · |Vs| (4)252

We then select the top indices from the cache of253

C, corresponding to the highest attention scores:254

indices = TopK
(

avg(W(S,C)
norm), k

)
(5)255

where avg(·) denotes the aggregation operation256

over the cheat-sheet token dimension for each con-257

text token.258

From the full Key (KC) and Value (VC) vec-259

tors of the original context C (derived from its260

processing through the LLM’s layers), we gather261

the compressed key-value pairs K̃, Ṽ correspond-262

ing to these selected indices. A rerotation step263

is applied to the positional embeddings of the key264

vectors in K̃ to ensure they maintain correct rela-265

tive positional information in the new compressed266

sequence. In the case of Rotary Position Embed-267

dings (Su et al., 2024b), this involves recalculating268

the corresponding sine and cosine components to269

reflect the relative token offsets accurately, ensur-270

ing that their positional information remains consis-271

tent (Xiao et al., 2024a; Corallo and Papotti, 2024).272

(3) Efficient Query Resolution (Online) When273

facing a new question qnew from the same domain,274

at each attention layer, the keys and values of the275

question are appended to the precomputed cache:276

K̃←
[

K̃
kqnew

]
, Ṽ←

[
Ṽ

vqnew

]
. (6)277

1Cross-attention computation is tractable even for long
contexts since its complexity is O(mnd) which remains effi-
cient in practice since m can be set such that m << n.

No further compression or retrieval is necessary. 278

The LLM conditions on the updated K̃ and Ṽ to 279

answer, reusing relevant external knowledge. This 280

is the only operation performed at inference time, 281

making it efficient as it only involves a single for- 282

ward pass for the typically short question and scales 283

linearly with the size of the precomputed cache. 284

4 Experimental Setup 285

4.1 Models 286

Our experiments use LLAMA-3.1-8B- 287

INSTRUCT (Dubey et al., 2024) and QWEN2.5- 288

14B-INSTRUCT (Yang et al., 2024). The latter 289

model is configured with a context length of up 290

to 32,768 tokens. To handle inputs exceeding 291

this limit, we employ the YaRN technique (Peng 292

et al., 2024), as specified in their model card. We 293

compare our method against two query-aware 294

baselines, RAG and FINCH (Corallo and Papotti, 295

2024), as well as a query-agnostic baseline, 296

EXPECTED ATTENTION (Jegou et al., 2024), 297

and a Full Context upper bound. Additionally, 298

for the query-agnostic setting, we performed an 299

ablation study where the models were conditioned 300

exclusively on the task description similar to the 301

approach of "catalyst prompt" introduced by Kim 302

et al. (2024), we refer to this baseline as CAP-G 303

(TASK-SPECIFIC). We also included an additional 304

baseline where the responses were generated 305

solely based on the cheat-sheet, without applying 306

corpus compression, to assess the effect of corpus 307

compression on model performance. 308

For RAG, we use BGE-LARGE-EN-V1.5 (Xiao 309

et al., 2024b) as the retriever, filling the entire con- 310

text with the top-k retrieved chunks, each contain- 311

ing 256 tokens. The retrieved chunks are ordered 312

according to their relative position within the orig- 313

inal long document. To ensure a fair comparison 314

with the other baselines if the concatenated chunks 315

exceed the context length used in the other experi- 316

ments, we truncate the input to match the maximum 317

context size. This truncation is performed by tak- 318

ing the first half of the reduced context from the 319

beginning and the remaining half from the end. 320

Greedy decoding is employed for all experi- 321

ments (Vijayakumar et al., 2016; Shao et al., 2017) 322

(temperature = 1.0, topp = 1.0) both for cheat- 323

sheet generation and answer generation. During 324

cheat-sheet generation, the maximum number of 325

newly generated tokens m is set to 2,048 using 326

the prompt in 3.2 for all experiments. The same 327
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model used for compression (either LLAMA-3.1328

or QWEN2.5) is also used for cheat-sheet genera-329

tion. Task description prompts T are provided in330

Appendix C. Code and scripts required to repro-331

duce the results in the paper will be released upon332

publication.333

4.2 Datasets and Metrics334

We evaluated these methods on three datasets both335

with traditional evaluation metrics (such as F1 for336

QA) and LLM-based evaluation:337

LongBench (Bai et al., 2024) is a benchmark338

designed for long-context understanding. It cov-339

ers 16 datasets across six tasks, including single-340

document and multi-document QA, summarization,341

code completion, few-shot learning, and a synthetic342

task. The benchmark has an average context length343

of 10k tokens. LongBench uses traditional evalu-344

ation metrics, such as F1 for question answering345

tasks (Rajpurkar et al., 2016), ROUGE-L for sum-346

marization tasks (Lin, 2004), and Edit Similarity347

for the Code Completion task (Svyatkovskiy et al.,348

2020). For the size of the answer output, we use349

the original values in the dataset.350

Data Availability. The LongBench dataset is pub-351

licly accessible.352

Company Notes Motivated by the need to eval-353

uate KV Cache Compression on real-world data,354

we curate a industrial dataset composed of long355

technical documents drawn from enterprise sup-356

port and troubleshooting portals. Each document is357

provided in raw HTML and contains configuration358

guides, best-practice notes, and resolution proce-359

dures. We selected 49 documents ranging from360

16,205 to 31,906 tokens, with an average length of361

22,401 tokens, measured using the LLAMA-3.1-362

8B-INSTRUCT tokenizer. Following the approach363

of Edge et al. (2024), we generate five global364

queries per document to ensure comprehensive cov-365

erage, resulting in 245 query-context pairs, Global366

queries are generated using prompts and configura-367

tions of Wei et al. (2025) using GPT-4.1-MINI. For368

the size of the answer output, we use 512 tokens.369

To assess response quality, we adopt the grading370

framework proposed by Wei et al. (2025), which371

employs three core metrics:372

• Helpful: precision, contextual relevance, and373

practical value;374

• Rich: breadth and diversity of perspectives;375

• Insightful: profundity of understanding and orig-376

inality of insights.377

We use GPT-4.1-MINI as the evaluator, compar- 378

ing system outputs for each query in the test set. 379

Each response is assessed against the target metric 380

and original query. The evaluation prompt and con- 381

figuration follow the approach of Wei et al. (2025), 382

where the model is instructed to select the better 383

candidate between two possible responses2. Our 384

results show a strong correlation with human judg- 385

ment, supporting the reliability of this automated 386

evaluation approach. 387

Data Availability. 13 of the company notes used 388

in this study are publicly available and the corre- 389

sponding query-context pairs will be released. 390

Synthetic Dataset To assess the impact of inter- 391

chunk connectivity on RAG and KV Cache Com- 392

pression, we design a controllable synthetic QA 393

corpus. The corpus consists of 32k tokens orga- 394

nized into three structured chunk types: People, 395

Projects, and Memberships. Each chunk captures a 396

type of entity. The corpus structure is tuned through 397

a connectivity parameter k ∈ {1, . . . , 8} that con- 398

trols the number of projects each person is linked 399

to. This design allows us to vary the degree of in- 400

formation spread across chunks, directly impacting 401

the complexity of the queries. 402

We generate two types of questions: direct- 403

retrieval queries, which can be resolved from a 404

single chunk, and join-like queries that require 405

multi-hop reasoning across multiple chunks. For 406

each connectivity level, we generate 50 queries (25 407

direct-retrieval and 25 join-like), resulting in a total 408

of 400 queries. Ground truth answers are struc- 409

tured as lists of entities, allowing evaluation using 410

the F1 score, consistent with the approach used in 411

LongBench. Full dataset construction details are 412

provided in Appendix A. For the size of the answer 413

output, we use 256 tokens. 414

Data Availability. Our Synthetic dataset will be 415

released publicly upon publication. 416

5 Results and Discussions 417

We discuss four research questions: 418

1. When Does CACHENOTES Surpass RAG? 419

Figures 3–4 show that CACHENOTES consistently 420

matches or exceeds RAG on LongBench QA. For 421

instance, on Single-Doc QA the method yields an 422

average F1 that is 3-4 points higher than RAG at a 423

2Wei et al. (2025) also introduce a User-Friendliness met-
ric. In our pre-experiments, most of the answers were judged
‘not user-friendly’ due to their technical tone, so we omit this
dimension to focus on metrics relevant to our use case.
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Figure 4: Performance results on Longbench for QWEN-2.5-14B-INSTRUCT.

1024-token retrieval budget for both Llama Qwen,424

while remaining competitive on Multi-Doc QA.425

The advantage widens on our Company Notes426

corpus (Fig. 5), where technical documents re-427

quire reasoning over long, densely interconnected428

prose. Here, human-graded helpfulness and insight429

scores favor CACHENOTES by 15–20 wins per as-430

pect at 1024-token context, confirming that simi-431

larity search alone often overlooks dispersed evi-432

dence. This performance gain aligns with human433

judgments collected in our blind evaluation, where434

CACHENOTES was preferred 58.46% of the time,435

close to the 62.7% preference by the LLM as judge.436

This consistency indicates that CACHENOTES cap-437

tures more contextually relevant information, al-438

though its surface-level coverage can lower human439

scores, at times allowing RAG’s more pragmatic440

answers to win out.441

To isolate this effect, we created a con-442

trolled synthetic set that contrasts direct-retrieval443

queries (answer lies in one chunk) with join-like 444

queries (answer must be assembled across chunks). 445

CACHENOTES again tracks full-context perfor- 446

mance on join-like queries, whereas RAG’s F1 447

falls by ≈12 points as connectivity grows (Fig. 6). 448

These results echo the LongBench pattern: RAG 449

thrives when a single chunk suffices, but loses re- 450

call when information is scattered. 451

Takeaway: RAG remains a strong baseline for narrow,
self-contained questions. CACHENOTES, however, is
better suited to broader, multi-hop reasoning because
it pre-computes a task-aware summary of the entire
corpus, preserving links that retrieval may miss.

452

2. Why Is Compression Still Useful When a 453

Cheat-Sheet Exists? We performed an ablation 454

on the two LongBench QA tasks, comparing three 455

settings: (i) generation directly from the cheat- 456

sheet, (ii) CACHENOTES conditioned on that same 457

cheat-sheet, and (iii) CAP-G (TASK-SPECIFIC) 458
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where compression is conditioned only by the task459

description. Figure 7 shows that using the cheat-460

sheet alone lags behind our compression by 4–7 F1461

points across the 512-, 1024-, and 2048-token bud-462

gets in both Single-Doc and Multi-Doc QA. Even463

the lighter variant that sees only the task description464

surpasses the cheat-sheet baseline, underscoring465

that token-level, context-aware KV representations466

preserve more cues.467

Takeaway: Pre-computing KV vectors yields richer
signals than presenting the model with a standalone
textual cheat-sheet, compression retains token-wise
importance weights that summaries cannot capture.

468

3. Can CACHENOTES Rival Query-Aware Com- 469

pression? Figures 3–4 reveal that, despite be- 470

ing query-agnostic, CACHENOTES matches or 471

outperforms the query-aware method FINCH on 472

two LongBench tasks. On Summarization, it 473

scores 2–3 ROUGE-L points higher than FINCH 474

across the 512–2048-token retrieval budgets, and 475

on Few-Shot Learning it gains 4–6 exact-match 476

points—surpassing even the full-context upper 477

bound in several settings. We attribute this to the 478

cheat-sheet’s role as a globally coherent view of the 479

corpus, which naturally benefits abstractive sum- 480

marization and example-driven generalization. 481

The picture changes for Code Completion. Here, 482

CACHENOTES trails the query-agnostic baseline 483

Expected Attention by roughly 5 Edit-Similarity 484

points, while FINCH remains competitive. Man- 485

ual inspection suggests a task-mismatch: the gen- 486

erated cheat-sheets often summarize entire files 487

rather than zooming in on the next-line prediction 488

needed for completion. Providing a few-shot ex- 489

emple that mirrors the “predict-the-next-line” ob- 490

jective—or an explicit task tag in the compression 491

prompt—should help align the compressed repre- 492

sentation with this highly local task. 493

Takeaway: CACHENOTES rivals (and sometimes sur-
passes) query-aware FINCH on tasks that reward a
global view of the corpus. For locality-sensitive tasks
such as code completion, users can steer cheat-sheet
generation—e.g. by inserting task-specific examples
into LLMinst see Appendix 3.

494
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Figure 8: Time to first token with increasing corpus
length (question length=512).

4. What Is the Impact on Practical Deploy-495

ment? Figure 8 reports the Online time-to-first-496

token (TTFT) when the corpus grows from 16k497

to 128k tokens, under a fixed 8 k-token retrieval498

budget and a 512-token prompt (single-GPU, batch499

= 1). At 128k tokens, TTFT rises to 12.4 s for500

Flash-Attention 2 full-context decoding and 13.3 s501

for FINCH, whereas RAG delivers the first token502

in 6.1 s. By contrast, CACHENOTES responds in503

0.23 s, about 4× faster than RAG and 54× faster504

than the full-context baseline. Similar gaps hold be-505

cause FINCH’s query-time compression and Full506

Context’s prefill scales roughly quadratically with507

corpus length, RAG requires retrieval and prefilling508

of the retrieved chunks which scales quadratically509

with the length of the chunks, while CACHENOTES510

reuses an offline-computed cache whose complex-511

ity scales linearly with the cache size.512

Takeaway: Latency and memory savings make
CACHENOTES a favorable drop-in for high-
throughput, latency-sensitive workloads.

513

6 Related Work514

Storing the full KV cache is a memory bottleneck in515

LLMs, scaling with model depth and input length.516

Recent work focuses on compressing this cache,517

broadly categorized as:518

Query-agnostic compression methods compress519

the cache independently of downstream tasks, offer-520

ing fast inference but potentially discarding useful521

context (Zhang et al., 2023; Devoto et al., 2024;522

Xiao et al., 2024a; Feng et al., 2025). These often523

select salient tokens using heuristics (e.g., attention524

weights) from the context itself and can struggle525

when optimal context heavily depends on the query.526

Query-aware compression techniques compress527

the cache per example at inference time. This opti-528

mizes for each query, dynamically selecting critical529

tokens for higher quality, but incurs higher latency 530

and limits scalability due to per-query computa- 531

tion (Rehg, 2024; Xu et al., 2025; Li et al., 2025b; 532

Corallo and Papotti, 2024). 533

Our Method introduces a model-generated, task- 534

aware “cheat-sheet” as an explicit proxy for what 535

the model deems critical for a given task. This 536

creates a middle ground: more flexible and contex- 537

tually rich than prior query-agnostic approaches, 538

yet far more efficient than query-aware methods by 539

precomputing a reusable, task-specific cache. 540

Reasoning-Intensive Retrieval. Standard dense 541

retrievers struggle with multi-hop reasoning in 542

knowledge-intensive tasks, often missing crucial 543

evidence spread across documents. Reasoning- 544

aware retrieval methods (Shao et al., 2025; Wang 545

et al., 2024; Trivedi et al., 2023) address this by 546

coupling retrieval with model reasoning, but this 547

increases inference complexity and often requires 548

per-query recomputation. Our approach differs by 549

decoupling reasoning from inference, shifting this 550

effort offline by pre-compressing and distilling rel- 551

evant knowledge. 552

7 Conclusion 553

We presented a task-aware compression approach 554

that enhances the ability of LLMs to consume large 555

corpora by efficiently populating the KV cache 556

with condensed contextual representations. 557

While our work demonstrates significant 558

promise, our experiments primarily use relatively 559

small corpora. Expanding context window capabil- 560

ities in open LLMs will make our approach increas- 561

ingly relevant for realistic, large-scale corpora. Fur- 562

ther research is needed to address other challenges 563

before widespread deployment in production sys- 564

tems can be realized, particularly concerning the 565

merging of compressed caches and the computa- 566

tional scalability of the compression process. 567

Future directions include head-wise and layer- 568

wise compression, leveraging prior findings that 569

some heads and layers are less critical and can be 570

selectively compressed (Feng et al., 2024; Zhang 571

et al., 2024). Additionally, our results highlight a 572

complementary strength between KV compression 573

(excels in broad queries) and RAG (more effective 574

for narrow queries). This raises the question of 575

whether a hybrid approach could further enhance 576

retrieval: compressing the corpus offline for global 577

coverage while dynamically fetching top-K chunks 578

online to better address narrow queries. 579
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Limitations580

While our work demonstrates that large corpora581

can be effectively compressed into manageable KV582

caches for efficient LLM inference, there are impor-583

tant limitations that warrant further investigation.584

Merging Compressed KV Caches In many real-585

world applications, knowledge is distributed across586

large or growing collections of documents. While587

our method enables efficient offline compression of588

individual document KV caches, merging these pre-589

computed caches—so the model can reason seam-590

lessly across multiple sources—remains an open591

problem. A core difficulty is that independently-592

compressed caches lack cross-document attention:593

simply concatenating caches does not recover de-594

pendencies between documents, and positional595

alignment becomes nontrivial. Recent works such596

as CacheBlend (Yao et al., 2025) address merging597

for uncompressed caches via selective recomputa-598

tion, while methods like KVLink (Yang et al., 2025)599

propose positional alignment and bridging tokens600

for improved reuse. However, a robust and general601

approach for merging compressed caches remains602

unsolved. Promising future directions include (i)603

developing positional alignment or bridging-token604

strategies to restore cross-document connections;605

(ii) selective recomputation of boundary tokens606

in compressed caches; and (iii) adaptive merging607

schemes (e.g., clustering or reweighting similar608

keys) to reduce redundancy without degrading in-609

formation fidelity.610

Resource Requirements Another limitation con-611

cerns the scalability of our cross-attention-based612

compression. Our method relies on computing613

attention scores between the cheat-sheet and the614

entire corpus. In scenarios where either the con-615

text (n) or the cheat-sheet (m) becomes very large,616

the O(mnd) cost can become memory hungry be-617

cause its memory scales as O(mn). In practice,618

this requires selecting a smaller m (a more aggres-619

sively summarized cheat-sheet), or partitioning the620

corpus into smaller, chunks (as in Corallo and Pa-621

potti (2024)), and then compressing each chunk622

depended with previous compressed chunk.623
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A Synthetic Dataset Construction 880

We construct a synthetic dataset designed to pre- 881

cisely control corpus complexity and the connec- 882

tivity level between text chunks. By varying inter- 883

chunk connectivity, we are able to thoroughly eval- 884

uate different methods, identifying the exact sce- 885

narios where each technique performs well or fails. 886

Figure 9 illustrates the structured design of our 887

corpus. Our dataset will be publicly released to 888

support future research. 889

A.1 Structured Entities and Corpus Chunks 890

We define three entity types. 891

People. Each person is described through 892

template-structured biographies containing at- 893

tributes such as name, age, occupation, city, and 894

hobbies. To maintain uniformity and facilitate con- 895

trolled experiments, each biography text chunk is 896

standardized to a length of 256 tokens using addi- 897

tional neutral filler text. 898

Projects. Each project has attributes including 899

title, domain, sponsor, year started, and a descrip- 900

tive summary. Like for people, each text chunk is 901

standardized to 256 tokens. 902

Memberships. A membership represents the rela- 903

tionship between people and projects and specifies 904
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Figure 9: Overview of our synthetic dataset. In this
example, the connectivity level is set to 2.

Figure 10: Overview of our questions. In this example,
the connectivity level is set to 2.

the role (e.g., Engineer, Manager) and department905

(e.g., R&D, Marketing) that a person holds in a906

project. These text chunks similarly include filler907

text to meet the fixed-length criterion.908

We generate multiple corpus instances with909

varying connectivity levels, ranging from 1 to 8,910

where level k means each person links to exactly911

k projects. Higher connectivity increases dataset912

complexity by distributing relevant information913

about a person across multiple membership and914

project chunks, thus challenging the model’s abil-915

ity to synthesize scattered information. Each cor-916

pus at a given connectivity level comprises exactly917

32k tokens, ensuring consistent corpus size across918

experiments.919

A.2 Controlled Question Types for Evaluation 920

To rigorously evaluate the performance of both KV- 921

cache compression and retrieval-based methods, 922

we generate two primary question categories (Fig- 923

ure 10). 924

Direct Retrieval Questions. These questions re- 925

quire information localized within a single Mem- 926

berships chunk. Example templates include: 927

• Which projects does pname belong to? 928

• Which role does pname have in projtitle? 929

• Which department is pname part of? 930

Answering these queries does not require cross- 931

chunk synthesis. As shown in Figure 10 in order 932

to solve this queries model has to (1) Locate the 933

single Memberships chunk whose name attribute 934

matches the query subject, (2) Read the target at- 935

tribute projects, role, or department directly 936

from that chunk, (3) Return the extracted value(s) 937

without needing to consult any other chunks. 938

Join-like Questions. Answering these queries re- 939

quire combining information across multiple Mem- 940

berships and Projects chunks. For example: 941

• What are pname’s project domains? 942

• In which years did pname’s projects begin? 943

• Who sponsors pname’s projects? 944

Addressing these queries tests a model’s capa- 945

bility for multi-hop reasoning and synthesis across 946

distributed knowledge sources. As the connectiv- 947

ity level grows, these join-like questions become 948

increasingly complex, requiring the aggregation of 949

information from multiple chunks. As shown in 950

Figure 10, in order to solve this queries model has 951

to (1) Open all Memberships chunks whose name 952

equals the queried person to collect the list of linked 953

project titles. (2) For each collected project title, 954

open the corresponding Projects chunk. (3) Extract 955

the requested attribute (domain, year started, 956

or sponsor) from each project chunk. (4) Return 957

gathered attribute values. 958

For each connectivity level (1 through 8), we 959

generate 50 distinct queries: 25 direct-retrieval and 960

25 join-like, totaling 400 distinct queries across all 961

connectivity levels. 962

B Examples of Generated Cheat-sheet 963

Below are examples of generated cheat-sheets for 964

HotPotQA in Table 1 and QAsper in Table 2. Inter- 965

estingly, the model often includes plausible ques- 966

tions and answers in its cheat-sheets, mimicking 967
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the way a student might create study notes to ac-968

tively engage with the material.969

Inference
Query

What title did the author of Det norske The-
ater’s first production hold ?

Task
Descrip-
tion

Answer the question based on the given pas-
sages. Only give me the answer and do not
output any other words.

Long
Docu-
ment

Passage 1: Det Norske Jernkompani Det
Norske Jernkompani also known as Jernkom-
paniet or Det store Jern Compagni, was a Nor-
wegian iron company. It was established in
1618 [...]
Passage 2: Det norske Theater (Bergen) Det
norske Theater is a former theatre in Bergen,
Norway, and regarded as the first pure Norwe-
gian stage theatre. It opened in 1850 (1850) by
primus motor, violinist Ole Bull, and closed
in 1863 (1863), after a bankruptcy. The the-
atre’s first production was Holberg’s comedy
Den Vægelsindede, and the opening was on 2
January 1850 [...]

Cheat-
sheet

Here is the context in concise yet comprehen-
sive form:
Det Norske Jernkompani was a Norwegian
iron company established in 1618. Det norske
Theater was a theatre in Bergen, Norway, and
regarded as the first pure Norwegian stage
theatre. Språkåret 2013 was a national year
of celebration of languages in Norway. Lud-
vig Holberg was a writer, essayist, philoso-
pher, historian, and playwright born in Bergen,
Norway. Lucie Wolf was a Norwegian stage
actress. The Feast at Solhaug was the first
publicly successful drama by Henrik Ibsen.
Per Sunderland was a Norwegian stage ac-
tor and film actor. The Nynorsk Literature
Prize is awarded annually by Noregs Mållag,
Det Norske Teatret, and Det Norske Samlaget.
Svein Tindberg is a Norwegian actor. Aloy-
sius Valente was a Norwegian dancer, chore-
ographer and stage instructor.
QA:
What is the name of the Norwegian iron
company established in 1618?Answer: Det
Norske Jernkompani.

Table 1: Examples of generated cheat-sheets on Hot-
PotQA. Inference Query is only used online, while the
Task Description offline.

Inference
Query

How does this approach compare to other
WSD approaches employing word embed-
dings?

Task
Descrip-
tion

You are given a scientific article and a ques-
tion. Answer the question as concisely as you
can, using a single phrase or sentence if possi-
ble. If the question cannot be answered based
on the information in the article, write ’unan-
swerable’. If the question is a yes/no question,
answer ’yes’, ’no’, or ’unanswerable’. Do not
provide any explanation.

Long
Docu-
ment

Introduction. Language modelling initially
relied on one-hot word encoding, which cap-
tured only alphabetical order, not semantic
similarity. Vector space models enabled learn-
ing lower-dimensional representations and
capturing semantic relations, improving tasks
such as question answering, stance detection,
and claim verification (BIBREF0–2).
Recent models (BIBREF3, BIBREF4) exploit
the idea that words in similar contexts share
semantic similarity. However, these models
cannot resolve words with multiple meanings
(polysemy). [...]

Cheat-
sheet

The article discusses a method for learn-
ing multi-sense word embeddings using a
KL divergence-based energy function. The
method models word embeddings as Gaussian
mixtures, where each word is represented by
a mixture of Gaussian distributions. The KL
divergence between the Gaussian mixtures is
used as the energy function to capture the sim-
ilarity and entailment between words. The
method is compared to other approaches, such
as w2g and w2gm, and is shown to perform
better on benchmark word similarity and en-
tailment datasets.
Cheat Sheet:
Method: KL divergence-based energy func-
tion for multi-sense word embeddings.
Representation: Words as mixtures of Gaus-
sians.
Energy Function: KL divergence between
mixtures.
Approximation: Uses upper/lower bounds
for tractability.
Baselines: Compared to w2g (single Gaus-
sian), w2gm (mixture with expected likeli-
hood kernel).
Performance: Outperforms baselines on
benchmark datasets.
QA:
What is the name of the proposed model in
the article? Answer: GM_KL.
What is the name of the dataset used to train
the proposed model? Answer: Text8.

Table 2: Examples of generated cheat-sheets on QAsper.
Inference Query is only used online, while the Task
Description offline.

13



C Task Description Prompts970

Here we detail the task description prompt used in971

the experiments. Each is shown to the language972

model verbatim. All experiments have been exe-973

cuted with a fixed seed (42) to ensure deterministic974

results.975

Company Notes976

You are a helpful assistant who can an-977

swer the user query according ONLY to978

the Company Note provided. Provide979

detailed and accurate information based980

on the user’s questions, ensuring that the981

responses are relevant and informative.982

Synthetic Dataset983

Answer the question based on the given984

passages. Only give me the answer and985

do not output any other words. Answers986

should be concise and formatted as lists,987

separated by commas if multiple items988

are present.989

For LongBench we use the task instruction prompts990

supplied in their dataset.991

D Ablation: Task-Focused Cheatsheet992

Prompt for LonBench–LCC993

Motivation. LongBench’s LCC task asks the994

model to predict the next line of code from a long995

context. The default LLMinstr prompt produces996

a “cheatsheet” summarizing all preceding tokens,997

but it does not explicitly guide the model to priori-998

tize the lines that are most useful for code comple-999

tion. We therefore replaced that generic summary1000

prompt with a variant task-focused that (i) instructs1001

the model to memorize context specifically for code1002

completion and (ii) provides an inline example of1003

how to highlight the salient variables and methods 31004

Revised prompt. The full text is reproduced be-1005

low:1006

1007
Since your task is code completion ,1008

write a cheat sheet that is tailored1009
to help you write the correct next1010

line(s) of code.1011
Highlight or list the specific lines or1012

variables in the context that are1013
most relevant for this task.1014

For example:1015
public class Example {1016

3We keep the rest of the evaluation pipeline unchanged.

private int count; 1017
public void increment () { 1018

count ++; 1019
} 1020
public int getCount () { 1021

Cheatsheet (for next line): 1022
- We are in getCount (), which should 1023

return the current value of count. 1024
- count is a private integer field. 1025
- Convention: Getter methods return the 1026

corresponding field. 1027
- [Relevant lines: declaration of count , 1028

method header] 1029
Next line will likely be: return count; 1030

Results. Table 3 reports automatic scores (higher 1031

is better) for three retrieval-token budgets. Inject- 1032

ing the task-focused prompt yields consistent ab- 1033

solute gains of ≈2 points at all budgets, confirm- 1034

ing that carefully engineered prompts can help the 1035

model compress long contexts into more actionable 1036

cues. 1037

Table 3: Impact of task-focused cheatsheet prompt on
LCC.

Method 512 1024 2048

LCC (default prompt) 35.49 36.27 32.35
+ Task-focused prompt 37.51 38.48 34.25

E Company Data Annotation 1038

In our human evaluation setup, the annotator fol- 1039

lows the same grading protocol as used in the LLM- 1040

based evaluation. For each question, the annota- 1041

tor is presented with the question itself, a refer- 1042

ence document containing the relevant company 1043

notes, and two candidate answers—without know- 1044

ing which system (RAG or CACHENOTES) pro- 1045

duced each answer. The annotator may consult 1046

the company notes to assess the factual accuracy 1047

and relevance of each response with respect to the 1048

question, and is asked to select the better answer. 1049

The evaluation was conducted by a single anno- 1050

tator: a PhD student in computer science with a 1051

background in NLP, fluent in English, based in Eu- 1052

rope, and familiar with both the company’s domain 1053

and its internal terminology. Instructions given to 1054

participant for annotation: 1055

You are evaluating answers to technical 1056
support questions based on internal 1057
company documentation. For each 1058
example , you will be shown: 1059

1060
A question 1061

1062
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A reference document (company notes)1063
1064

Two candidate answers , Answer A and1065
Answer B1066

1067
Your task is to compare the two answers1068

and decide which one is better1069
overall , using the company notes to1070
verify accuracy.1071

The institution of the annotator approved the data1072

collection protocol.1073

F Information About Use Of AI1074

Assistants1075

In the preparation of this manuscript, we used an1076

AI assistant to aid in coding and text rewriting.1077
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