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Abstract

Integrating external knowledge into Large Lan-
guage Models (LLMs) is vital, yet methods like
Retrieval-Augmented Generation (RAG) face
limitations with broad queries requiring multi-
source synthesis, while long-context models
are computationally prohibitive.

We propose Task-Aware Key-Value Cache
Compression (CACHENOTES), a novel guery-
agnostic framework that generates a reusable,
compact cache tailored to a specific task. Un-
like prior approaches, we first create a task-
specific ‘cheat-sheet’ summary that guides a
one-time compression of the corpus into a
reusable KV-cache. This enables LLMs to ef-
ficiently answer diverse, reasoning-intensive
queries using the compressed cache, eliminat-
ing repeated retrieval or context expansion.

Experiments on LongBench show that
CACHENOTES outperforms standard RAG by
up to 4 F1 points at a 20x compression rate,
and delivers up to 4x lower latency, while
remaining competitive with state-of-the-art
query-aware baselines. Additional results on
real-world enterprise and synthetic datasets
demonstrate that CACHENOTES is especially
effective for multi-hop and broad-coverage
queries.

1 Introduction

Incorporating external information into Large Lan-
guage Models (LLMs) significantly enhances their
utility across various applications, enabling them
to generate more informed and accurate out-
puts (Petroni et al., 2019).

While Retrieval-Augmented Generation (RAG)
efficiently inject relevant evidence for narrow, fo-
cused queries, they often struggle with questions
that require synthesizing information dispersed
across multiple documents or sections of text (Bar-
nett et al., 2024). Such multi-hop or broad queries
are bottlenecked by retrieval’s reliance on local

similarity and its inability to capture global rela-
tionships or latent links in the corpus, making it
challenging to surface all relevant context and often
introducing noise or redundancy (Yu et al., 2024).
Recent advancements have extended LLMs’ abil-
ity to process longer contexts (Reid et al., 2024; Li
et al., 2025a). This progress opens up the possibil-
ity of processing entire corpora as input, offering a
compelling alternative for tasks requiring holistic
understanding. However, this approach comes with
significant computational costs, as handling large
inputs requires substantial memory resources, par-
ticularly on GPUs, which creates a scalability bot-
tleneck (Liu et al., 2023). Furthermore, as context
length increases, models can struggle to discern
and use the relevant information buried within ex-
tensive text (Liu et al., 2024a; Laban et al., 2025).
This leads to a fundamental challenge:

How can LLMs efficiently and accurately
perform reasoning-intensive tasks that
require broad access to large external
corpora, without the prohibitive costs of
full-context inference or the limitations
of retrieval-based methods?

We address this challenge by introducing
Task-Aware Key-Value Cache Compression
(CACHENOTES), a query-agnostic yet task-guided
framework that creates a reusable, compact cache
for an entire corpus. Unlike prior work in query-
aware cache compression, which recomputes a
compressed context for each query (Rehg, 2024;
Xu et al., 2025; Li et al., 2025b; Corallo and Papotti,
2024) or generic, prompt-based methods (Kim
et al., 2024), our approach performs a one-time,
offline compression directed by a concise, human-
written task description and a model-generated
“cheat-sheet” that distills corpus content most crit-
ical for that task. This cheat-sheet guides cross-
attention-based token selection, producing a persis-
tent cache that can be rapidly leveraged by the LLM
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Figure 1: An illustration of our compression strategy. (1) A cheat-sheet S is generated from the corpus C, guided by
a task description (e.g., factual QA). (2) The original KV cache (here, 128k tokens) is then compressed (e.g., to 64k
tokens) using the cheat-sheet S to retain the most salient information. (3) At inference time, the LLM can answer
task-related questions using only the pre-compressed cache, as if it had access to the entire (uncompressed) corpus.
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Figure 2: Aggregated results on 16 datasets of Long-
Bench of KV cache compression methods compared to
RAG. Our cheatsheet-guided KV compression approach
achieves results exceeding RAG when the context length
is much smaller than average corpus size of 10k tokens.

at inference, with no retrieval or recompression.

Figure 1 provides an overview of our approach.
The process, initiated by the task description and
guided by the generated cheat-sheet, produces a
compact KV cache representation that retains all
task-critical details. Importantly, this compression
happens only once offline, creating a persistent rep-
resentation that can be reused for any query within
that task’s domain. The method can be applied to
any decoder-only model and applicable to a vari-
ety of knowledge-intensive tasks, without model
fine-tuning. Examples of generated cheat-sheets
and task descriptions are in Appendix B.

Our method, delivers performance that signifi-
cantly surpasses existing query-agnostic compres-
sion techniques and closely approaches the effec-
tiveness of more computationally intensive query-
aware compression. Figure 2 shows the quality
performance of our KV cache compression method
against RAG on the LongBench benchmark (Bai
et al., 2024). With high compression rates 20x and

10x and 5x (corpus compressed to 512, 1024 and
2048 tokens, respectively) our method outperforms
RAG despite being query-agnostic. With compres-
sion rate of 5x, our method achieves about 97.3%
of the full-context performance, demonstrating re-
markable information retention.

Experimental results across diverse tasks us-
ing LLAMA 3.1 (Dubey et al., 2024) and QWEN
2.5 (Yang et al., 2024), on the LongBench bench-
mark, demonstrate that our task-aware compression
method consistently outperforms existing query-
agnostic methods and retrieval-based approach.
Furthermore, experiments on real world enterprise
data and custom synthetic datasets highlight the su-
perior capability of our method in handling broad,
multifaceted queries. Notably, in scenarios requir-
ing the synthesis of widely distributed information,
our approach significantly outperforms RAG, es-
tablishing compression as a key enabler for scaling
LLM reasoning beyond retrieval-based methods.

2 Problem Formulation

The primary challenge this work addresses is en-
abling LLMs to efficiently and effectively perform
reasoning-intensive knowledge tasks that require
access to extensive external corpora (Petroni et al.,
2021; Su et al., 2024a). As discussed in Section 1,
prevailing methods present a difficult trade-off:
RAG is efficient but struggles to synthesize dis-
persed evidence for broad, multi-hop queries, while
processing entire corpora with long-context mod-
els offers comprehensiveness but at a prohibitive
computational and memory cost. KV cache com-
pression is a promising method to create compact
representations of large contexts, offering a solu-
tion to this trade-off (Li et al., 2024; Liu et al.,
2024b). However, existing compression strategies
themselves introduce a critical dilemma regarding



their applicability and performance.

Ideally, we would like to pre-digest the entire
corpus D once, distilling it into a compact, task-
aware key—value cache (I~{, \7) that can be plugged
into the model for any downstream query. Such a
query-agnostic cache would remove the need for
retrieval or on-the-fly compression altogether: in-
ference would amount to a single forward pass over
the prompt, with no dependence on corpus size and
latencies close to those of small-context generation.

A fundamental challenge in compressing long-
context representations, however, is achieving
precisely this query-agnostic compression. Em-
pirical results show that existing methods de-
grade sharply—especially at high compression ra-
tios—often falling behind both full-context pro-
cessing and RAG (Jegou et al., 2024).

Conversely, query-aware compression shrinks
the KV footprint by guiding the compression with
the user query (Corallo and Papotti, 2024; Li et al.,
2025b), offering potentially superior efficiency at
the cost of increased query dependency. In fact, in
multi-query settings, repeatedly running the com-
pressor is computationally prohibitive, undermin-
ing the very goal of avoiding large-scale retrieval
or excessive context expansion.

Research Question. Can we design a query-
agnostic compression method that retains the effi-
ciency benefits of a precomputed cache while deliv-
ering quality on par with query-aware approaches?

3 Methodology

We present our task-aware, query-agnostic com-
pression strategy, motivated by the remarkable in-
context learning capabilities of modern LLMs. We
describe how we obtain a single, reusable cache
that covers an entire task’s external knowledge.

3.1 Motivation via In-Context Learning

Modern LLMs are capable of remarkable in-
context learning (Brown et al., 2020; Dong et al.,
2024): given a sufficiently rich prefix, they infer
the intended task and relevant knowledge with no
parameter updates. To clarify the distinction be-
tween retrieval and compression strategies, we use
a pedagogical analogy:

RAG, for instance, is akin to a student accessing
reference material through a search engine dur-
ing the test, retrieving snippets as needed for each
question. Long-context models are like students
who have memorized the entire corpus beforehand,

leveraging this extensive internal knowledge to an-
swer any question. Query-aware compression is
more targeted, analogous to a student who scans
their material during the test, focusing only on the
most relevant information for a particular query.
However, students typically prepare for exams
by organizing their knowledge before test time, of-
ten creating concise ""cheat-sheets"" that capture
the essential concepts and facts, allowing them to
quickly recall key points during the test. We hy-
pothesize that a task-specific, pre-computed sum-
mary (“cheat-sheet”) can serve as an effective scaf-
fold for compressing external corpora into compact,
reusable representations. Unlike prior query-aware
methods that require a new compressed cache for
each query, our method decouples cache construc-
tion from inference, amortizing compression cost
across all queries for a given task and corpus.

3.2 Task-Aware KV Compression

We propose a task-aware KV compression ap-
proach consisting of three distinct stages:

(1) Creation of the Cheat-sheet (Offline) Given
a full corpus C and a task description 1" (e.g.,
“open-domain QA”), we use an instruction-
following language model LLMj,s to produce a
concise summary S.

S = LLMinst(Ca T) (1)

The model is prompted: Before I give you the
question, imagine you are a student memorizing
this material according to the task you will perform
(specified in Task Description). Repeat the context
concisely yet comprehensively to aid memorization,
preserving all critical details. Create a cheat sheet
covering the entire context.

Task descriptions can be customized or aug-
mented with few-shot demonstrations to steer the
LLMijys towards generating a cheat-sheet S that is
optimally aligned with the task’s requirements.

(2) Layer-wise KV Compression (Offline) Con-
text and cheat-sheet are concatenated together:
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where n is the token length of the long context
and m is the token length of the cheat-sheet. This
concatenated input is processed by the LLM and
at each attention layer, the guiding principle is that
the cheat-sheet S, embodying the distilled essence



of the corpus for task T, provides query vectors
Qs that probe the context C to identify its most
relevant segments. To achieve this, we extract the
query vector of the cheat-sheet tokens () and the
key vector of the context tokens K., then compute
the Cross-attention between them':
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To ensure that the attention scores reflect both
the alignment and the relative importance of the
cheat-sheet values, the raw Cross-attention scores
W(SC) are scaled by the magnitude (norm) of the
value vectors Vg associated with the cheat-sheet
tokens. This step weights the attention scores, en-
suring that cheat-sheet tokens with stronger value
representations (higher norms) exert a proportion-
ally greater influence on identifying salient context
tokens (Jegou et al., 2024).

W) = softmax ( 3)
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norm
We then select the top indices from the cache of
C, corresponding to the highest attention scores:

norm

indices = TopK (avg(W(S’C)), k:) ®)

where avg(-) denotes the aggregation operation
over the cheat-sheet token dimension for each con-
text token.

From the full Key (K¢) and Value (V) vec-
tors of the original context C (derived from its
processing through the LLM’s layers), we gather
the compressed key-value pairs K, V correspond-
ing to these selected indices. A rerotation step
is applied to the positional embeddings of the key
vectors in K to ensure they maintain correct rela-
tive positional information in the new compressed
sequence. In the case of Rotary Position Embed-
dings (Su et al., 2024b), this involves recalculating
the corresponding sine and cosine components to
reflect the relative token offsets accurately, ensur-
ing that their positional information remains consis-
tent (Xiao et al., 2024a; Corallo and Papotti, 2024).

(3) Efficient Query Resolution (Online) When
facing a new question ey from the same domain,
at each attention layer, the keys and values of the
question are appended to the precomputed cache:
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!Cross-attention computation is tractable even for long
contexts since its complexity is O(mnd) which remains effi-
cient in practice since m can be set such that m << n.

No further compression or retrieval is necessary.
The LLM conditions on the updated K and V to
answer, reusing relevant external knowledge. This
is the only operation performed at inference time,
making it efficient as it only involves a single for-
ward pass for the typically short question and scales
linearly with the size of the precomputed cache.

4 Experimental Setup
4.1 Models

Our  experiments use LLAMA-3.1-8B-
INSTRUCT (Dubey et al., 2024) and QWEN2.5-
14B-INSTRUCT (Yang et al., 2024). The latter
model is configured with a context length of up
to 32,768 tokens. To handle inputs exceeding
this limit, we employ the YaRN technique (Peng
et al., 2024), as specified in their model card. We
compare our method against two query-aware
baselines, RAG and FINCH (Corallo and Papotti,
2024), as well as a query-agnostic baseline,
EXPECTED ATTENTION (Jegou et al., 2024),
and a Full Context upper bound. Additionally,
for the query-agnostic setting, we performed an
ablation study where the models were conditioned
exclusively on the task description similar to the
approach of "catalyst prompt" introduced by Kim
et al. (2024), we refer to this baseline as CAP-G
(TASK-SPECIFIC). We also included an additional
baseline where the responses were generated
solely based on the cheat-sheet, without applying
corpus compression, to assess the effect of corpus
compression on model performance.

For RAG, we use BGE-LARGE-EN-V 1.5 (Xiao
et al., 2024b) as the retriever, filling the entire con-
text with the top-k retrieved chunks, each contain-
ing 256 tokens. The retrieved chunks are ordered
according to their relative position within the orig-
inal long document. To ensure a fair comparison
with the other baselines if the concatenated chunks
exceed the context length used in the other experi-
ments, we truncate the input to match the maximum
context size. This truncation is performed by tak-
ing the first half of the reduced context from the
beginning and the remaining half from the end.

Greedy decoding is employed for all experi-
ments (Vijayakumar et al., 2016; Shao et al., 2017)
(temperature = 1.0, top, = 1.0) both for cheat-
sheet generation and answer generation. During
cheat-sheet generation, the maximum number of
newly generated tokens m is set to 2,048 using
the prompt in 3.2 for all experiments. The same



model used for compression (either LLAMA-3.1
or QWEN?2.5) is also used for cheat-sheet genera-
tion. Task description prompts 1" are provided in
Appendix C. Code and scripts required to repro-
duce the results in the paper will be released upon
publication.

4.2 Datasets and Metrics

We evaluated these methods on three datasets both
with traditional evaluation metrics (such as F1 for
QA) and LLM-based evaluation:

LongBench (Bai et al., 2024) is a benchmark
designed for long-context understanding. It cov-
ers 16 datasets across six tasks, including single-
document and multi-document QA, summarization,
code completion, few-shot learning, and a synthetic
task. The benchmark has an average context length
of 10k tokens. LongBench uses traditional evalu-
ation metrics, such as F1 for question answering
tasks (Rajpurkar et al., 2016), ROUGE-L for sum-
marization tasks (Lin, 2004), and Edit Similarity
for the Code Completion task (Svyatkovskiy et al.,
2020). For the size of the answer output, we use
the original values in the dataset.

Data Availability. The LongBench dataset is pub-
licly accessible.

Company Notes Motivated by the need to eval-
uate KV Cache Compression on real-world data,
we curate a industrial dataset composed of long
technical documents drawn from enterprise sup-
port and troubleshooting portals. Each document is
provided in raw HTML and contains configuration
guides, best-practice notes, and resolution proce-
dures. We selected 49 documents ranging from
16,205 to 31,906 tokens, with an average length of
22,401 tokens, measured using the LLAMA-3.1-
8B-INSTRUCT tokenizer. Following the approach
of Edge et al. (2024), we generate five global
queries per document to ensure comprehensive cov-
erage, resulting in 245 query-context pairs, Global
queries are generated using prompts and configura-
tions of Wei et al. (2025) using GPT-4.1-MINI. For
the size of the answer output, we use 512 tokens.
To assess response quality, we adopt the grading
framework proposed by Wei et al. (2025), which
employs three core metrics:
* Helpful: precision, contextual relevance, and
practical value;
* Rich: breadth and diversity of perspectives;
* Insightful: profundity of understanding and orig-
inality of insights.

We use GPT-4.1-MINI as the evaluator, compar-
ing system outputs for each query in the test set.
Each response is assessed against the target metric
and original query. The evaluation prompt and con-
figuration follow the approach of Wei et al. (2025),
where the model is instructed to select the better
candidate between two possible responses?. Our
results show a strong correlation with human judg-
ment, supporting the reliability of this automated
evaluation approach.

Data Availability. 13 of the company notes used
in this study are publicly available and the corre-
sponding query-context pairs will be released.

Synthetic Dataset To assess the impact of inter-
chunk connectivity on RAG and KV Cache Com-
pression, we design a controllable synthetic QA
corpus. The corpus consists of 32k tokens orga-
nized into three structured chunk types: People,
Projects, and Memberships. Each chunk captures a
type of entity. The corpus structure is tuned through
a connectivity parameter k € {1,...,8} that con-
trols the number of projects each person is linked
to. This design allows us to vary the degree of in-
formation spread across chunks, directly impacting
the complexity of the queries.

We generate two types of questions: direct-
retrieval queries, which can be resolved from a
single chunk, and join-like queries that require
multi-hop reasoning across multiple chunks. For
each connectivity level, we generate 50 queries (25
direct-retrieval and 25 join-like), resulting in a total
of 400 queries. Ground truth answers are struc-
tured as lists of entities, allowing evaluation using
the F1 score, consistent with the approach used in
LongBench. Full dataset construction details are
provided in Appendix A. For the size of the answer
output, we use 256 tokens.

Data Availability. Our Synthetic dataset will be
released publicly upon publication.

5 Results and Discussions
We discuss four research questions:

1. When Does CACHENOTES Surpass RAG?
Figures 3—4 show that CACHENOTES consistently
matches or exceeds RAG on LongBench QA. For
instance, on Single-Doc QA the method yields an
average F1 that is 3-4 points higher than RAG at a

2Wei et al. (2025) also introduce a User-Friendliness met-
ric. In our pre-experiments, most of the answers were judged
‘not user-friendly’ due to their technical tone, so we omit this
dimension to focus on metrics relevant to our use case.
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Figure 3: Performance results on Longbench for LLAMA-3.1-8B-INSTRUCT.
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Figure 4: Performance results on Longbench for QWEN-2.5-14B-INSTRUCT.

1024-token retrieval budget for both Llama Qwen,
while remaining competitive on Multi-Doc QA.

The advantage widens on our Company Notes
corpus (Fig. 5), where technical documents re-
quire reasoning over long, densely interconnected
prose. Here, human-graded helpfulness and insight
scores favor CACHENOTES by 15-20 wins per as-
pect at 1024-token context, confirming that simi-
larity search alone often overlooks dispersed evi-
dence. This performance gain aligns with human
judgments collected in our blind evaluation, where
CACHENOTES was preferred 58.46% of the time,
close to the 62.7% preference by the LLM as judge.
This consistency indicates that CACHENOTES cap-
tures more contextually relevant information, al-
though its surface-level coverage can lower human
scores, at times allowing RAG’s more pragmatic
answers to win out.

To isolate this effect, we created a con-
trolled synthetic set that contrasts direct-retrieval

queries (answer lies in one chunk) with join-like
queries (answer must be assembled across chunks).
CACHENOTES again tracks full-context perfor-
mance on join-like queries, whereas RAG’s F1
falls by ~12 points as connectivity grows (Fig. 6).
These results echo the LongBench pattern: RAG
thrives when a single chunk suffices, but loses re-
call when information is scattered.

P

Takeaway: RAG remains a strong baseline for narrow,
self-contained questions. CACHENOTES, however, is
better suited to broader, multi-hop reasoning because
it pre-computes a task-aware summary of the entire
corpus, preserving links that retrieval may miss.

2. Why Is Compression Still Useful When a
Cheat-Sheet Exists? We performed an ablation
on the two LongBench QA tasks, comparing three
settings: (i) generation directly from the cheat-
sheet, (i) CACHENOTES conditioned on that same
cheat-sheet, and (iii) CAP-G (TASK-SPECIFIC)
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where compression is conditioned only by the task
description. Figure 7 shows that using the cheat-
sheet alone lags behind our compression by 4-7 F1
points across the 512-, 1024-, and 2048-token bud-
gets in both Single-Doc and Multi-Doc QA. Even
the lighter variant that sees only the task description
surpasses the cheat-sheet baseline, underscoring
that token-level, context-aware KV representations
preserve more cues.

Takeaway: Pre-computing KV vectors yields richer
signals than presenting the model with a standalone
textual cheat-sheet, compression retains token-wise
importance weights that summaries cannot capture.

3. Can CACHENOTES Rival Query-Aware Com-
pression? Figures 3—4 reveal that, despite be-
ing query-agnostic, CACHENOTES matches or
outperforms the query-aware method FINCH on
two LongBench tasks. On Summarization, it
scores 2—-3 ROUGE-L points higher than FINCH
across the 512-2048-token retrieval budgets, and
on Few-Shot Learning it gains 4—6 exact-match
points—surpassing even the full-context upper
bound in several settings. We attribute this to the
cheat-sheet’s role as a globally coherent view of the
corpus, which naturally benefits abstractive sum-
marization and example-driven generalization.

The picture changes for Code Completion. Here,
CACHENOTES trails the query-agnostic baseline
Expected Attention by roughly 5 Edit-Similarity
points, while FINCH remains competitive. Man-
ual inspection suggests a task-mismatch: the gen-
erated cheat-sheets often summarize entire files
rather than zooming in on the next-line prediction
needed for completion. Providing a few-shot ex-
emple that mirrors the “predict-the-next-line”” ob-
jective—or an explicit task tag in the compression
prompt—should help align the compressed repre-
sentation with this highly local task.

Takeaway: CACHENOTES rivals (and sometimes sur-
passes) query-aware FINCH on tasks that reward a
global view of the corpus. For locality-sensitive tasks
such as code completion, users can steer cheat-sheet
generation—e.g. by inserting task-specific examples
into LL Ming see Appendix 3.
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4. What Is the Impact on Practical Deploy-
ment? Figure 8 reports the Online time-to-first-
token (TTFT) when the corpus grows from 16k
to 128k tokens, under a fixed 8 k-token retrieval
budget and a 512-token prompt (single-GPU, batch
= 1). At 128k tokens, TTFT rises to 12.4 s for
Flash-Attention 2 full-context decoding and 13.3 s
for FINCH, whereas RAG delivers the first token
in 6.1 s. By contrast, CACHENOTES responds in
0.23 s, about 4x faster than RAG and 54x faster
than the full-context baseline. Similar gaps hold be-
cause FINCH’s query-time compression and Full
Context’s prefill scales roughly quadratically with
corpus length, RAG requires retrieval and prefilling
of the retrieved chunks which scales quadratically
with the length of the chunks, while CACHENOTES
reuses an offline-computed cache whose complex-
ity scales linearly with the cache size.

Takeaway: Latency and memory savings make
CACHENOTES a favorable drop-in for high-
throughput, latency-sensitive workloads.

6 Related Work

Storing the full KV cache is a memory bottleneck in
LLMs, scaling with model depth and input length.
Recent work focuses on compressing this cache,
broadly categorized as:

Query-agnostic compression methods compress
the cache independently of downstream tasks, offer-
ing fast inference but potentially discarding useful
context (Zhang et al., 2023; Devoto et al., 2024;
Xiao et al., 2024a; Feng et al., 2025). These often
select salient tokens using heuristics (e.g., attention
weights) from the context itself and can struggle
when optimal context heavily depends on the query.

Query-aware compression techniques compress
the cache per example at inference time. This opti-
mizes for each query, dynamically selecting critical

tokens for higher quality, but incurs higher latency
and limits scalability due to per-query computa-
tion (Rehg, 2024; Xu et al., 2025; Li et al., 2025b;
Corallo and Papotti, 2024).

Our Method introduces a model-generated, task-
aware “cheat-sheet” as an explicit proxy for what
the model deems critical for a given task. This
creates a middle ground: more flexible and contex-
tually rich than prior query-agnostic approaches,
yet far more efficient than query-aware methods by
precomputing a reusable, task-specific cache.

Reasoning-Intensive Retrieval. Standard dense
retrievers struggle with multi-hop reasoning in
knowledge-intensive tasks, often missing crucial
evidence spread across documents. Reasoning-
aware retrieval methods (Shao et al., 2025; Wang
et al., 2024; Trivedi et al., 2023) address this by
coupling retrieval with model reasoning, but this
increases inference complexity and often requires
per-query recomputation. Our approach differs by
decoupling reasoning from inference, shifting this
effort offline by pre-compressing and distilling rel-
evant knowledge.

7 Conclusion

We presented a task-aware compression approach
that enhances the ability of LLMs to consume large
corpora by efficiently populating the KV cache
with condensed contextual representations.

While our work demonstrates significant
promise, our experiments primarily use relatively
small corpora. Expanding context window capabil-
ities in open LLMs will make our approach increas-
ingly relevant for realistic, large-scale corpora. Fur-
ther research is needed to address other challenges
before widespread deployment in production sys-
tems can be realized, particularly concerning the
merging of compressed caches and the computa-
tional scalability of the compression process.

Future directions include head-wise and layer-
wise compression, leveraging prior findings that
some heads and layers are less critical and can be
selectively compressed (Feng et al., 2024; Zhang
et al., 2024). Additionally, our results highlight a
complementary strength between KV compression
(excels in broad queries) and RAG (more effective
for narrow queries). This raises the question of
whether a hybrid approach could further enhance
retrieval: compressing the corpus offline for global
coverage while dynamically fetching top-K chunks
online to better address narrow queries.



Limitations

While our work demonstrates that large corpora
can be effectively compressed into manageable KV
caches for efficient LLM inference, there are impor-
tant limitations that warrant further investigation.

Merging Compressed KV Caches In many real-
world applications, knowledge is distributed across
large or growing collections of documents. While
our method enables efficient offline compression of
individual document KV caches, merging these pre-
computed caches—so the model can reason seam-
lessly across multiple sources—remains an open
problem. A core difficulty is that independently-
compressed caches lack cross-document attention:
simply concatenating caches does not recover de-
pendencies between documents, and positional
alignment becomes nontrivial. Recent works such
as CacheBlend (Yao et al., 2025) address merging
for uncompressed caches via selective recomputa-
tion, while methods like KVLink (Yang et al., 2025)
propose positional alignment and bridging tokens
for improved reuse. However, a robust and general
approach for merging compressed caches remains
unsolved. Promising future directions include (i)
developing positional alignment or bridging-token
strategies to restore cross-document connections;
(i1) selective recomputation of boundary tokens
in compressed caches; and (iii) adaptive merging
schemes (e.g., clustering or reweighting similar
keys) to reduce redundancy without degrading in-
formation fidelity.

Resource Requirements Another limitation con-
cerns the scalability of our cross-attention-based
compression. Our method relies on computing
attention scores between the cheat-sheet and the
entire corpus. In scenarios where either the con-
text (n) or the cheat-sheet (m) becomes very large,
the O(mnd) cost can become memory hungry be-
cause its memory scales as O(mn). In practice,
this requires selecting a smaller m (a more aggres-
sively summarized cheat-sheet), or partitioning the
corpus into smaller, chunks (as in Corallo and Pa-
potti (2024)), and then compressing each chunk
depended with previous compressed chunk.
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A Synthetic Dataset Construction

We construct a synthetic dataset designed to pre-
cisely control corpus complexity and the connec-
tivity level between text chunks. By varying inter-
chunk connectivity, we are able to thoroughly eval-
uate different methods, identifying the exact sce-
narios where each technique performs well or fails.
Figure 9 illustrates the structured design of our
corpus. Our dataset will be publicly released to
support future research.

A.1 Structured Entities and Corpus Chunks

We define three entity types.

People. Each person is described through
template-structured biographies containing at-
tributes such as name, age, occupation, city, and
hobbies. To maintain uniformity and facilitate con-
trolled experiments, each biography text chunk is
standardized to a length of 256 tokens using addi-
tional neutral filler text.

Projects. Each project has attributes including
title, domain, sponsor, year started, and a descrip-
tive summary. Like for people, each text chunk is
standardized to 256 tokens.

Memberships. A membership represents the rela-
tionship between people and projects and specifies
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Synthetic Dataset Corpus

4 People

/{pnamel} is {agel} and works as {role1} in {city1}.
{pname1} loves {hobbies1}

~

N
o

{pname2} is {age2} and works as {role2} in {city2}. @
\_{pname2} loves {hobbies2}
Projects

(" Funded by {sponsor1}, {projtitle1} focuses on
{domain1} started in {year1}.

J

N
o

Funded by {sponsor2}, {projtitle2} focuses on
\_{domain2} started in {year2}.

Memberships
-

{pname1l} is the {rolel1} in {projtitlel} in {dept1}
department.

(2]

\
(1]

{pnamel} is the {role2} in {projtitle2} in {dept2}
Kdepartment.

(2]
J
K. People’s chunks @ Projects’ chunks @ Memberships’ chunks/

Figure 9: Overview of our synthetic dataset. In this
example, the connectivity level is set to 2.

Projects

/Funded by {sponsor1}, {projtitle1} focuses on h
{domain1} started in {year1}.

Funded by {sponsor2}, {projtitle2} focuses on

d in2} started i 2}
\{ lomain2} started in {year2} )

Memberships

({pnamel} is the {role1} in {projtitle1} in
{deptl} department.

{pname1} is the {role2} in {projtitle2} in

\{deptz} department. Y,

Q: What are {pname1}’s project
domains?

Q: Which projects does {pname1}
belong to?

A: {projectitlel}, {projtitle2} A: {domain1}, {domain2}

Direct-Retrieval Join-like

Figure 10: Overview of our questions. In this example,
the connectivity level is set to 2.

the role (e.g., Engineer, Manager) and department
(e.g., R&D, Marketing) that a person holds in a
project. These text chunks similarly include filler
text to meet the fixed-length criterion.

We generate multiple corpus instances with
varying connectivity levels, ranging from 1 to 8,
where level £ means each person links to exactly
k projects. Higher connectivity increases dataset
complexity by distributing relevant information
about a person across multiple membership and
project chunks, thus challenging the model’s abil-
ity to synthesize scattered information. Each cor-
pus at a given connectivity level comprises exactly
32k tokens, ensuring consistent corpus size across
experiments.
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A.2 Controlled Question Types for Evaluation

To rigorously evaluate the performance of both KV-
cache compression and retrieval-based methods,
we generate two primary question categories (Fig-
ure 10).

Direct Retrieval Questions. These questions re-
quire information localized within a single Mem-
berships chunk. Example templates include:

» Which projects does pname belong to?

e Which role does pname have in projtitle?

» Which department is pname part of?
Answering these queries does not require cross-
chunk synthesis. As shown in Figure 10 in order
to solve this queries model has to (1) Locate the
single Memberships chunk whose name attribute
matches the query subject, (2) Read the target at-
tribute projects, role, or department directly
from that chunk, (3) Return the extracted value(s)
without needing to consult any other chunks.

Join-like Questions. Answering these queries re-
quire combining information across multiple Mem-
berships and Projects chunks. For example:

» What are pname’s project domains?

* In which years did pname’s projects begin?

* Who sponsors pname’s projects?

Addressing these queries tests a model’s capa-
bility for multi-hop reasoning and synthesis across
distributed knowledge sources. As the connectiv-
ity level grows, these join-like questions become
increasingly complex, requiring the aggregation of
information from multiple chunks. As shown in
Figure 10, in order to solve this queries model has
to (1) Open all Memberships chunks whose name
equals the queried person to collect the list of linked
project titles. (2) For each collected project title,
open the corresponding Projects chunk. (3) Extract
the requested attribute (domain, year started,
or sponsor) from each project chunk. (4) Return
gathered attribute values.

For each connectivity level (1 through 8), we
generate 50 distinct queries: 25 direct-retrieval and
25 join-like, totaling 400 distinct queries across all
connectivity levels.

B Examples of Generated Cheat-sheet

Below are examples of generated cheat-sheets for
HotPotQA in Table 1 and QAsper in Table 2. Inter-
estingly, the model often includes plausible ques-
tions and answers in its cheat-sheets, mimicking



the way a student might create study notes to ac-

tively engage with the material.

Inference
Query

What title did the author of Det norske The-
ater’s first production hold ?

Task
Descrip-
tion

Answer the question based on the given pas-
sages. Only give me the answer and do not
output any other words.

Long
Docu-
ment

Passage 1: Det Norske Jernkompani Det
Norske Jernkompani also known as Jernkom-
paniet or Det store Jern Compagni, was a Nor-
wegian iron company. It was established in
1618 [...]

Passage 2: Det norske Theater (Bergen) Det
norske Theater is a former theatre in Bergen,
Norway, and regarded as the first pure Norwe-
gian stage theatre. It opened in 1850 (1850) by
primus motor, violinist Ole Bull, and closed
in 1863 (1863), after a bankruptcy. The the-
atre’s first production was Holberg’s comedy
Den Vagelsindede, and the opening was on 2
January 1850 [...]

Cheat-
sheet

Here is the context in concise yet comprehen-
sive form:

Det Norske Jernkompani was a Norwegian
iron company established in 1618. Det norske
Theater was a theatre in Bergen, Norway, and
regarded as the first pure Norwegian stage
theatre. Sprakaret 2013 was a national year
of celebration of languages in Norway. Lud-
vig Holberg was a writer, essayist, philoso-
pher, historian, and playwright born in Bergen,
Norway. Lucie Wolf was a Norwegian stage
actress. The Feast at Solhaug was the first
publicly successful drama by Henrik Ibsen.
Per Sunderland was a Norwegian stage ac-
tor and film actor. The Nynorsk Literature
Prize is awarded annually by Noregs Mallag,
Det Norske Teatret, and Det Norske Samlaget.
Svein Tindberg is a Norwegian actor. Aloy-
sius Valente was a Norwegian dancer, chore-
ographer and stage instructor.

QA:

What is the name of the Norwegian iron
company established in 1618?Answer: Det
Norske Jernkompani.

Table 1: Examples of generated cheat-sheets on Hot-
PotQA. Inference Query is only used online, while the

Task Description offline.
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Inference
Query

How does this approach compare to other
WSD approaches employing word embed-
dings?

Task
Descrip-
tion

You are given a scientific article and a ques-
tion. Answer the question as concisely as you
can, using a single phrase or sentence if possi-
ble. If the question cannot be answered based
on the information in the article, write *unan-
swerable’. If the question is a yes/no question,
answer ’yes’, 'no’, or "'unanswerable’. Do not
provide any explanation.

Long
Docu-
ment

Introduction. Language modelling initially
relied on one-hot word encoding, which cap-
tured only alphabetical order, not semantic
similarity. Vector space models enabled learn-
ing lower-dimensional representations and
capturing semantic relations, improving tasks
such as question answering, stance detection,
and claim verification (BIBREF0-2).

Recent models (BIBREF3, BIBREF4) exploit
the idea that words in similar contexts share
semantic similarity. However, these models
cannot resolve words with multiple meanings

(polysemy). [...]

Cheat-
sheet

The article discusses a method for learn-
ing multi-sense word embeddings using a
KL divergence-based energy function. The
method models word embeddings as Gaussian
mixtures, where each word is represented by
a mixture of Gaussian distributions. The KL
divergence between the Gaussian mixtures is
used as the energy function to capture the sim-
ilarity and entailment between words. The
method is compared to other approaches, such
as w2g and w2gm, and is shown to perform
better on benchmark word similarity and en-
tailment datasets.

Cheat Sheet:

Method: KL divergence-based energy func-
tion for multi-sense word embeddings.
Representation: Words as mixtures of Gaus-
sians.

Energy Function: KL divergence between
mixtures.

Approximation: Uses upper/lower bounds
for tractability.

Baselines: Compared to w2g (single Gaus-
sian), w2gm (mixture with expected likeli-

hood kernel).

Performance: Outperforms baselines on
benchmark datasets.

QA:

What is the name of the proposed model in
the article? Answer: GM_KL.

What is the name of the dataset used to train
the proposed model? Answer: Text8.

Table 2: Examples of generated cheat-sheets on QAsper.
Inference Query is only used online, while the Task
Description offline.



C Task Description Prompts

Here we detail the task description prompt used in
the experiments. Each is shown to the language
model verbatim. All experiments have been exe-
cuted with a fixed seed (42) to ensure deterministic
results.

Company Notes

You are a helpful assistant who can an-
swer the user query according ONLY to
the Company Note provided. Provide
detailed and accurate information based
on the user’s questions, ensuring that the
responses are relevant and informative.

Synthetic Dataset

Answer the question based on the given
passages. Only give me the answer and
do not output any other words. Answers
should be concise and formatted as lists,
separated by commas if multiple items
are present.

For LongBench we use the task instruction prompts
supplied in their dataset.

D Ablation: Task-Focused Cheatsheet
Prompt for LonBench-LCC

Motivation. LongBench’s LCC task asks the
model to predict the next line of code from a long
context. The default L L M;, s, prompt produces
a “cheatsheet” summarizing all preceding tokens,
but it does not explicitly guide the model to priori-
tize the lines that are most useful for code comple-
tion. We therefore replaced that generic summary
prompt with a variant task-focused that (i) instructs
the model to memorize context specifically for code
completion and (ii) provides an inline example of
how to highlight the salient variables and methods >

Revised prompt. The full text is reproduced be-

low:

Since your task is code completion,

write a cheat sheet that is tailored
to help you write the correct next
line(s) of code.

Highlight or list the specific lines or
variables in the context that are
most relevant for this task.

For example:
public class Example {

3We keep the rest of the evaluation pipeline unchanged.
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private int count;
public void increment() {
count++;
3
public int getCount() {
Cheatsheet (for next line):
- We are in getCount(), which should
return the current value of count.
- count is a private integer field.
- Convention: Getter methods return the
corresponding field.
- [Relevant lines: declaration of count,
method header]

Next line will likely be: return count;

Results. Table 3 reports automatic scores (higher
is better) for three retrieval-token budgets. Inject-
ing the task-focused prompt yields consistent ab-
solute gains of /2 points at all budgets, confirm-
ing that carefully engineered prompts can help the

model compress long contexts into more actionable
cues.

Table 3: Impact of task-focused cheatsheet prompt on
LCC.

Method 512 1024 2048

3549 3627 3235
37.51 38.48 34.25

LCC (default prompt)
+ Task-focused prompt

E Company Data Annotation

In our human evaluation setup, the annotator fol-
lows the same grading protocol as used in the LLM-
based evaluation. For each question, the annota-
tor is presented with the question itself, a refer-
ence document containing the relevant company
notes, and two candidate answers—without know-
ing which system (RAG or CACHENOTES) pro-
duced each answer. The annotator may consult
the company notes to assess the factual accuracy
and relevance of each response with respect to the
question, and is asked to select the better answer.
The evaluation was conducted by a single anno-
tator: a PhD student in computer science with a
background in NLP, fluent in English, based in Eu-
rope, and familiar with both the company’s domain
and its internal terminology. Instructions given to
participant for annotation:
You are evaluating answers to technical
support questions based on internal

company documentation. For each
example, you will be shown:

A question



A reference document (company notes)

Two candidate answers, Answer A and
Answer B

Your task is to compare the two answers
and decide which one is better
overall, using the company notes to
verify accuracy.

The institution of the annotator approved the data
collection protocol.

F Information About Use Of Al
Assistants

In the preparation of this manuscript, we used an
Al assistant to aid in coding and text rewriting.
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