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Abstract
This paper studies uncertainty set estimation for
unknown linear systems. Uncertainty sets are cru-
cial for the quality of robust control since they
directly influence the conservativeness of the con-
trol design. Departing from the confidence re-
gion analysis of least squares estimation, this pa-
per focuses on set membership estimation (SME).
Though good numerical performances have at-
tracted applications of SME in the control litera-
ture, the non-asymptotic convergence rate of SME
for linear systems remains an open question. This
paper provides the first convergence rate bounds
for SME and discusses variations of SME under
relaxed assumptions. We also provide numerical
results demonstrating SME’s practical promise.

1. Introduction
The problem of estimating unknown linear dynamical sys-
tems of the form xt+1 = A∗xt + B∗ut + wt with un-
known parameters (A∗, B∗) has seen considerable progress
recently (Sarker et al., 2023; Chen & Hazan, 2021; Sim-
chowitz & Foster, 2020; Wagenmaker & Jamieson, 2020;
Simchowitz et al., 2018; Dean et al., 2018; Abbasi-Yadkori
& Szepesvári, 2011). Most literature focuses on the analysis
of the least squares estimator (LSE) and its variants, where
sharp bounds on the convergence rates for subGaussian dis-
turbances wt have been obtained (Simchowitz & Foster,
2020; Simchowitz et al., 2018). Building on this, there is a
rapidly growing body of literature on “learning to control”
unknown linear systems that leverages LSE to achieve vari-
ous control objectives, such as stability and regret (Chang &
Shahrampour, 2024; Lale et al., 2022; Simchowitz & Foster,
2020; Kargin et al., 2022; Mania et al., 2019; Dean et al.,
2019b).
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However, for successful application of learning-based con-
trol methods to safety-critical applications, it is crucial to
quantify the uncertainties of the estimated system and to
robustly satisfy safety constraints and stability despite these
uncertainties (Wabersich et al., 2023; Brunke et al., 2022).
A promising framework for achieving this is to estimate
the uncertainty set of the unknown system parameters and
to utilize robust controllers to satisfy the robust constraints
under any parameters in the uncertainty set (Brunke et al.,
2022; Hewing et al., 2020). Uncertainty set estimation is
crucial for the success of robust control: on the one hand,
too large of an uncertainty set gives rise to over-conservative
control actions, resulting in degraded performance; on the
other hand, if the uncertainty set is underestimated and fails
to contain the true system, the resulting controller may lead
to unsafe behaviors (Brunke et al., 2022; Petrik & Russel,
2019).

To estimate uncertainty sets, a popular method is to construct
LSE’s confidence regions (Dean et al., 2019b; Simchowitz
& Foster, 2020). However, this approach yields a confidence
region for a point estimate rather than directly estimating the
uncertainty set of the model. Further, the confidence regions
are usually derived from concentration inequalities, which
allows convergence rate analysis but may suffer conserva-
tive constant factors (Petrik & Russel, 2019; Simchowitz &
Foster, 2020).

In this paper, we instead focus on a direct uncertainty set es-
timation method: set membership estimation (SME), which
estimates the uncertainty set without relying on the concen-
tration inequalities underlying the approaches based on LSE.
SME has a long history in the control community (Yu et al.,
2023b; Lauricella & Fagiano, 2020; Lorenzen et al., 2019;
Livstone & Dahleh, 1996; Fogel & Huang, 1982; Bertsekas,
1971). SME has primarily been proposed for scenarios with
bounded disturbances, which is common in safety-critical
systems, e.g. power systems (Qi et al., 2012), unmanned
aerial vehicles (UAV) (Benevides et al., 2022; Narendra
& Annaswamy, 1986), and building control (Zhang et al.,
2016). Further, the bounded disturbance is a standard as-
sumption in constrained control, such as robust (adaptive)
constrained control (Lu & Cannon, 2023; Lorenzen et al.,
2019; Dean et al., 2019b) and online constrained control (Li
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et al., 2021a; Liu et al., 2023).

Consequently, SME has been widely adopted in the robust
(adaptive) constrained control literature (Lorenzen et al.,
2019; Bujarbaruah et al., 2020; Zhang et al., 2021; Parsi
et al., 2020b;a; Sasfi et al., 2022) and the online control liter-
ature (Ho et al., 2021; Yu et al., 2023b; Yeh et al., 2022; Yu
et al., 2023a). Figure 1 provides a toy example illustrating
SME’s promising performance under bounded disturbances.

On the theory side, the convergence analysis of SME gener-
ally considers a simple regression problem: yt = θ∗xt +wt

with a deterministic sequence of xt and bounded i.i.d. dis-
turbances wt (Bai et al., 1998; Akçay, 2004; Kitamura et al.,
2005; Bai et al., 1995; Eising et al., 2022). This regression
problem does not capture the correlation between xt and the
history wt−1, . . . , w0 in the dynamical systems. This issue
was largely overlooked in the vast literature of empirical
algorithm design related to SME (for example, see (Loren-
zen et al., 2019; Köhler et al., 2019), etc.). It is not until
recently that (Lu et al., 2019) provide the first asymptotic
convergence guarantees for SME in linear systems. How-
ever, the non-asymptotic convergence rate still remains open
for SME in linear dynamical systems.

Contributions. This paper tackles the open question above
by providing non-asymptotic bounds on the convergence
rates of SME for linear systems. To the best of our knowl-
edge, this is the first convergence rate analysis of SME for
dynamical systems in the literature.

We consider two scenarios in our analysis. Firstly, when a
tight bound W on the support of wt is known, we provide an
instance-dependent convergence rate for SME. Interestingly,
for several common distributions of wt, SME enjoys a con-
vergence rate Õ(n1.5

x (nx+nu)
2/T ), which is faster than the

LSE’s error bound O(
√
nx+nu√

T
) in terms of the number of

samples T but is worse in terms of the dependence on state
and control dimensions nx, nu. The improved convergence
rate of SME with respect to T is enabled by leveraging the
additional boundedness property of wt, which is a common
assumption in robust constrained control but is not utilized
in LSE’s analysis. Secondly, when a tight bound of wt is
unknown, we introduce a UCB-SME algorithm that learns
conservative upper bounds of wt from data and constructs
uncertainty sets based on the conservative upper bounds.
We also provide a convergence rate of UCB-SME, which
has the same dependence on T but has worse dependence
on nx by a factor of

√
nx compared with the convergence

rate with a known tight bound.

Our estimation error bound relies on a novel construction of
an event sequence based on designing a sequence of stop-
ping times. This construction, together with the BMSB
condition in (Simchowitz et al., 2018), addresses the chal-
lenge caused by the correlation between xt, ut, and the

history disturbances (see the proof of Theorem 3.1 for more
details).

Moreover, our results lay a foundation for future non-
asymptotic analysis of control designs based on SME. To
illustrate this, we apply our results to robust-adaptive model
predictive control and robust system-level-synthesis (SLS)
and discuss the novel non-asymptotic guarantees enabled
by our convergence rates of SME.

Finally, we conduct extensive simulations to compare the
numerical behaviors of SME, UCB-SME, and LSE’s con-
fidence regions, which demonstrates the promising perfor-
mance of SME and UCB-SME.

2. Problem Formulation and Preliminaries
2.1. Problem Formulation

This paper focuses on the identification of uncertainty sets of
unknown system parameters in the linear dynamical system:

xt+1 = A∗xt +B∗ut + wt (1)

where A∗, B∗ are the unknown system parameters, xt ∈
Rnx , ut ∈ Rnu . For notational simplicity, we define θ∗ =
(A∗, B∗) by matrix concatenation and zt = (x⊤

t , u
⊤
t )

⊤ ∈
Rnz by vector concatenation, where nz = nx+nu. Accord-
ingly, the system (1) can be written as xt+1 = θ∗zt + wt.

The goal of the uncertainty set identification problem is to
determine a set ΘT that contains the true parameters θ∗ =
(A∗, B∗) based on a sequence of data {xt, ut, xt+1}T−1

t=0 .
Set ΘT is called an uncertainty set since it captures the re-
maining uncertainty on the system model after the revelation
of the data sequence {xt, ut, xt+1}T−1

t=0 .

Uncertainty sets play an important role in robust control,
where one aims to achieve robust constraint satisfaction
(Lorenzen et al., 2019; Lu & Cannon, 2023), robust objec-
tive optimization (Wu et al., 2013), and/or robust stability
(Tu, 2019) for any model in the uncertainty set.1 Therefore,
the diameter of the uncertainty sets heavily influences the
conservativeness of robust controllers and thus the control
performance. Formally, we define the diameter as follows.

Definition 2.1 (Diameter of a set of matrices). Consider a
set S of matrices θ ∈ Rnx×nz . We define the diameter of S
in Frobenius norm as diam(S) = supθ,θ′∈S ∥θ − θ′∥F .

2.2. Set Membership Estimation (SME)

In this section, we review set membership estimation (SME),
which is an uncertainty set identification method that has
been studied in the control literature for decades (Lu &

1In addition to model uncertainties, robust control may also
consider other system uncertainties, e.g., disturbances, measure-
ment noises, etc.
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Figure 1. A visualized toy example of uncertainty set comparison between SME in (2) and LSE confidence regions in (Simchowitz &
Foster, 2020; Abbasi-Yadkori & Szepesvári, 2011) for a one-dimensional system xt+1 = A∗xt + B∗ut + wt, with wt, ut ∈ [−1, 1]
generated i.i.d. from a truncated Gaussian distribution. Detailed experiment settings are in Appendix I. Figure (a) compares the diameters
of the uncertainty sets from SME and LSE 90% confidence bounds. Figure (b) and (c) visualize the the uncertainty sets after T = 5 and
T = 250 data points.

Cannon, 2023; Bertsekas, 1971). SME primarily focuses
on systems with bounded disturbances, i.e. wt ∈ W for
some bounded W for all t ≥ 0. When W is known, SME
computes an uncertainty/membership set by

ΘT =

T−1⋂
t=0

{θ̂ : xt+1 − θ̂zt ∈ W}. (2)

It is straightforward to see that θ∗ ∈ ΘT when wt ∈ W .

The bounded disturbance assumption may seem restrictive,
considering that the uncertainty set identification based on
the confidence region of LSE only requires subGaussian
disturbances (Simchowitz et al., 2018). However, in many
control applications, it is reasonable and common to as-
sume bounded wt. For example, bounded disturbances is a
standard assumption in the robust constrained control litera-
ture, such as robust constrained LQR (Lu & Cannon, 2023;
Lorenzen et al., 2019; Lu et al., 2019; Dean et al., 2019b),
and online constrained control of linear systems (Liu et al.,
2023; Li et al., 2021a). This is different from unconstrained
control, where unbounded subGaussian disturbances are
usually considered (Tu, 2019). The difference in the distur-
bance formulation is largely motivated by the applications:
constrained control is mostly applied to safety-critical ap-
plications, where the disturbances are usually bounded. For
example, in UAV and flight control, the disturbances are
mostly caused by wind gusts, and wind disturbances are
bounded in practice (Benevides et al., 2022; Narendra &
Annaswamy, 1986). Similarly, in building thermal con-
trol, the disturbances are caused by external heat exchanges,
which are also bounded (Zhang et al., 2016).

Ideally, one hopes that ΘT converges to the singleton of
the true model {θ∗} or at least a small neighborhood of
θ∗. This usually calls for additional assumptions, such as
the persistent excitation property on the observed data and

additional stochastic properties on wt. In this paper, we
consider the following assumptions to establish convergence
rate bounds on the diameter of ΘT , which, to the best of our
knowledge, is the first non-asymptotic guarantee of SME
for linear dynamical systems.

The first assumption formalizes the bounded disturbance
assumption discussed above and introduces stochastic prop-
erties of wt for analytical purposes.

Assumption 2.2 (Bounded i.i.d. disturbances). The distur-
bances are box-constrained, wt ∈ W := {w ∈ Rnx :
∥w∥∞ ≤ wmax} for all t ≥ 0. Further, wt is i.i.d., has zero
mean and positive definite covariance matrix Σw.

Assumption 2.2 is common in SME literature, e.g. (Akçay,
2004; Lu et al., 2019; Eising et al., 2022). In terms of gen-
erality, boundedness is essential for SME. The stochastic
properties, such as i.i.d., zero mean, positive definite co-
variance, are standard in the recent learning-based control
literature and allow the use of statistical tools utilized and
developed in the recent literature for non-asymptotic anal-
ysis. Besides, it is worth mentioning that SME still works
in non-stochastic settings. In particular, as long as wt ∈ W ,
even without the stochastic properties in Assumption 2.2,
the SME algorithm (2) still generates a valid uncertainty set
that contains θ∗. It is an interesting future direction to study
the convergence rate of SME without assuming stochastic
disturbances.

Next, we introduce the assumptions on ut, which relies on
the block-martingale small-ball (BMSB) condition proposed
in (Simchowitz et al., 2018). It can be shown that the BMSB
guarantees persistent excitation (PE) with high probability
under proper conditions (see Proposition 2.5 in (Simchowitz
et al., 2018) and Lemma 4.1). The PE condition requires
that zt explores all directions, which is essential for system
identification (Narendra & Annaswamy, 1987).
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Definition 2.3 (Persistent excitation). There exists α > 0
and m ∈ N+, such that for any t0 ≥ 0,

1

m

t0+m−1∑
t=t0

(
xt

ut

)
(x⊤

t , u
⊤
t ) ⪰ α2Inx+nu

.

Definition 2.4 (BMSB (Simchowitz et al., 2018)). Con-
sider a filtration {Ft}t≥1 and an {Ft}t≥1-adapted random
process {Zt}t≥1 in Rd. {Zt}t≥1 satisfies the (k,Γsb, p)-
block martingale small-ball (BMSB) condition for k > 0,
a positive definite Γsb, and 0 ≤ p ≤ 1, if the following
holds: for any fixed λ ∈ Rd with ∥λ∥2 = 1, we have
1
k

∑k
i=1 P(|λ⊤Zt+i| ≥

√
λ⊤Γsbλ | Ft) ≥ p for all t ≥ 1.

The following is the assumption on ut.

Assumption 2.5 (BMSB and boundedness). With filtra-
tion Ft = F(w0, . . . , wt−1, z0, . . . , zt), the Ft-adapted
stochastic process {zt}t≥0 satisfies (1, σ2

zInz , pz)-BMSB
for some σz, pz > 0. Besides, there exists bz ≥ 0 such that
∥zt∥2 ≤ bz almost surely for all t ≥ 0.

Assumption 2.5 requires ut to guarantee both BMSB and
bounded zt. This can be satisfied by several robust (adap-
tive) constrained control policies, such as robust (adap-
tive) model predictive control (MPC) (Lu & Cannon, 2023;
Lorenzen et al., 2019; Lu et al., 2019), system level synthe-
sis (SLS) (Dean et al., 2019b), and control barrier functions
(CBF) (Lopez et al., 2020). In the following, we briefly
discuss robust (adaptive) MPC as an example. SLS and
CBF can be similarly shown to satisfy Assumption 2.5.

Example 1 (Robust (adaptive) MPC). Robust MPC is a
popular method for the robust constrained control (Rawl-
ings & Mayne, 2009), which aims to optimize the control
objective while satisfying robust safety constraints,

zt ∈ Zsafe, where xt+1=θzt + wt,∀ θ∈Θ0, wt∈W, (3)

where Θ0 is an initial uncertainty set known a priori, and
the safety constraint Zsafe is usually bounded. The robust
MPC policy, denoted by ut = πRMPC(xt; Θ0,W), satisfies
the constraints (3) for any θ ∈ Θ0. Therefore, it naturally
guarantees bounded zt under the true θ∗. Further, as shown
in (Li et al., 2023), BMSB can be achieved by adding a ran-
dom disturbance, i.e. ut = πRMPC(xt; Θ0,W) + ηt, where
ηt is i.i.d., bounded, and has positive definite covariance.
Therefore, the randomly perturbed robust MPC can satisfy
Assumption 2.5.2 Robust adaptive MPC is based on the
same control design, ut = πRMPC(xt; Θt,W), but utilizes
adaptively updated uncertainty sets Θt. Notice that Θt is
usually updated by SME in the literature of robust adaptive
MPC (Lorenzen et al., 2019; Lu & Cannon, 2023; Köhler
et al., 2019).

2Strictly speaking, robust MPC has to be more conservative to
satisfy (3) under the additional noise ηt (Li et al., 2023).

We also note that BMSB and bounded zt with high probabil-
ity are assumed in LSE literature (Theorem 2.4 (Simchowitz
et al., 2018)), and bounded zt with high probability under
subGaussian disturbances corresponds to bounded zt under
bounded disturbances for linear systems (see bounded-input-
bounded-output stability in Sec. 9 of (Hespanha, 2018)).

Finally, we assume that the bound wmax on wt is tight in
all directions, which is common in the literature on SME
analysis (Bai et al., 1998; Akçay, 2004; Lu et al., 2019).
Assumption 2.6 (Tight bound on wt). For any ϵ > 0, there
exists qw(ϵ) > 0, such that for any 1 ≤ j ≤ n, we have

min(P(wj
t ≤ ϵ− wmax),P(wj

t ≥ wmax − ϵ)) ≥ qw(ϵ),

where wj
t denotes the jth entry of vector wt. Without

loss of generality, we can further assume qw(ϵ) to be non-
decreasing with ϵ and qw(2wmax) = 1.3

In essence, Assumption 2.6 requires that a hyper-cubic W =
{w : ∥w∥∞ ≤ wmax} should be tight on the support of wt

in all coordinate directions, that is, there exists a positive
probability qw(ϵ) such that wt visits an ϵ-neighborhood of
wmax and −wmax, respectively, on all coordinates.

When the support of wt is indeed W = {w : ∥w∥∞ ≤
wmax}, many common distributions enjoy qw(ϵ) ≥ Ω(ϵ).4

For example, for the uniform distribution on W , we have
qw(ϵ) = ϵ

2wmax
; for the truncated Gaussian distribution

with zero mean, σ2
wIn covariance, and truncated region

W , we have qw(ϵ) = ϵ
2wmaxσw

exp(
−w2

max

2σ2
w

); and for the
uniform distribution on the boundary of W (a generalization
of Rademacher distribution), we have qw(ϵ) ≥ 1

2nx
≥ Ω(ϵ)

(see Appendix C.2 for more details).

However, knowing a tight bound on the support of wt can
be challenging in practice. Therefore, we will discuss how
to relax this assumption and learn a tight bound from data
in Section 3.2.

Further, the requirement of a hyper-cubic W can be restric-
tive because different entries of disturbances may have dif-
ferent magnitudes, resulting in a hyper-rectangular support
that violates Assumption 2.6. Our follow-up work relaxes
this assumption and generalizes the results in this paper.

3. Set Membership Convergence Analysis
3.1. Convergence Rate of SME with Known wmax

We now present the main result (Theorem 3.1) of this paper,
which is a non-asymptotic bound on the estimation error of
SME given bounded i.i.d. stochastic disturbances.

3This is because P(wj
t ≤ ϵ− wmax) and P(wj

t ≥ wmax − ϵ)

are non-decreasing with ϵ, and P(wj
t ≥ −wmax) = P(wj

t ≤
wmax) = 1 by Assumption 2.2.

4The Ω(·) notation is the lower bound version of O(·).
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Theorem 3.1 (Convergence rate of SME). For any m > 0
any δ > 0, when T > m, we have

P(diam(ΘT ) > δ) ≤ T

m
Õ(n2.5

z )anz
2 exp(−a3m)︸ ︷︷ ︸
T1

+ Õ((nxnz)
2.5)anxnz

4

(
1− qw

(
a1δ

4
√
nx

))⌈T/m⌉

︸ ︷︷ ︸
T2(δ)

where a1 = σzpz

4 , a2 =
64b2z
σ2
zp

2
z

, a3 =
p2
z

8 , a4 =
4bz

√
nx

a1
,

pz, σz, bz are defined in Assumption 2.5, ⌈·⌉ denotes the
ceiling function, and diam(·) is defined in Definition 2.1, the
factors hidden in Õ(·) are provided in Appendix D.4.

Theorem 3.1 provides an upper bound on the “failure” prob-
ability of SME, i.e., the probability that the diameter of
the uncertainty set is larger than δ. In this bound, T1

decays exponentially with m, so for any small ϵ > 0,
m can be chosen such that T1 ≤ ϵ, which indicates
m ≥ O(nz + log T + log(1/ϵ)). For any δ > 0, T2(δ)
decays exponentially with the number of data points T
and involves a distribution-dependent function qw(·), which
characterizes how likely it is for wt to visit the boundary
of W as defined in Assumption 2.6. To ensure the proba-
bility upper bound in Theorem 3.1 to be less than 1, one
can choose m = O(log T ) and a large enough T such that
T ≥ O(m) = O(log(T )). If wt is more likely to visit
the boundary, (a larger qw(·)), then SME is less likely to
generate an uncertainty set with a diameter bigger than δ.

Estimation error bounds when qw(ϵ) = Ω(ϵ). To provide
intuition for T2(δ) and discuss the estimation error bound
in Theorem 3.1 more explicitly, we consider distributions
satisfying qw(ϵ) = Ω(ϵ) for all ϵ > 0. Notice that several
common distributions satisfy this additional requirement,
such as uniform distribution and truncated Gaussian distri-
bution as discussed after Assumption 2.6.
Corollary 3.2 (Estimation error bound when qw(ϵ) = Ω(ϵ)).
For any ϵ > 0, let

m ≥ O(nz + log T + log(1/ϵ))

in the following.5 If wt is generated i.i.d. by a distribution
satisfying qw(ϵ) = Ω(ϵ) for all ϵ > 0, then with probability
at least 1− 2ϵ, for any θ̂T ∈ ΘT , we have

∥θ̂T − θ∗∥F ≤ diam(ΘT ) ≤ Õ

(
n1.5
x (nx + nu)

2

T

)
.

Corollary 3.2 indicates that the estimation error of any
point in the uncertainty set ΘT can be bounded by
Õ
(

n1.5
x (nx+nu)

2

T

)
when qw(ϵ) ≥ Ω(ϵ).

5A detailed formula is provided in Appendix E.

Dynamical systems without control inputs. SME also
applies to dynamical systems with no control inputs, i.e.,
xt+1 = A∗xt + wt, where the uncertainty set of A∗ can be
computed by AT =

⋂T−1
t=0 {Â : ∥xt+1 − Âxt∥∞ ≤ wmax}.

Its convergence rate can be similarly derived via the proof
of Theorem 3.1.

Corollary 3.3 (Convergence rate with B∗ = 0 (informal)).
For stable A∗, for any m > 0, δ > 0, T > m, we have

P(diam(AT ) > δ) ≤ T

m
Õ(n2.5

x )anx
2 exp(−a3m)

+ Õ(n5
x)a

n2
x

4 (1− qw(
a1δ

4
√
nx

))⌈T/m⌉

Consequently, when qw(ϵ) = Ω(ϵ), e.g. uniform or trun-
cated Gaussian, we have diam(AT ) ≤ Õ(n3.5

x /T ).

Note that (Simchowitz et al., 2018) have shown a lower
bound Ω(

√
nx/

√
T ) for the estimation of linear systems

with no control inputs when wt follows an (unbounded)
Gaussian distribution. Interestingly, Corollary 3.3 reveals
that, for some bounded-support distributions of wt, e.g. Uni-
form and truncated Gaussian, SME is able to converge at a
faster rate Õ(1/T ) in terms of the sample size T . This
does not conflict with the lower bound in (Simchowitz
et al., 2018) because SME’s rate only holds for bounded
disturbances. In fact, from (2), it is straightforward to see
that SME does not even converge under Gaussian distur-
bances. Therefore, SME is mostly useful in applications
with bounded disturbances, e.g. robust constrained control,
safety-critical systems, etc., while LSE’s confidence regions
are preferred for unbounded disturbances.

Lastly, Corollary 3.3 shows that SME’s convergence rate
has a poor dependence with respect to nx: Õ(n3.5

x ). This is
likely a proof artifact because we do not observe such poor
dimension scaling in simulation (see Figure 3). It is left as
future work to refine the dimension dependence.

3.2. SME with Unknown wmax

Next, we discuss the convergence rates of SME without
knowing a tight bound wmax in three steps: 1) only knowing
a conservative upper bound of wmax, 2) learning wmax from
data, and 3) a variant of SME that converges without prior
knowledge of wmax.

1) SME with a conservative upper bound for wmax. In
many practical scenarios, it is easier to obtain an over-
estimation of the range of the disturbances instead of a
tight upper bound, i.e., ŵmax ≥ wmax. In this case, we can
show that the uncertainty set converges to a small neighbor-
hood around θ∗ of size O(

√
nx(ŵmax−wmax)) at the same

convergence rate as Theorem 3.1.

Theorem 3.4 (Convservative bound on wmax). When wmax

in Assumption 2.6 is unknown but an upper bound ŵmax ≥

5
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wmax is known, consider the following SME algorithm:

Θ̂T (ŵmax) =

T−1⋂
t=0

{θ̂ : ∥xt+1 − θ̂zt∥∞ ≤ ŵmax},

For any m > 0, δ > 0, T > m, we have

P(diam(Θ̂T )>δ + a5
√
nx(ŵmax − wmax)) ≤ T1+T2(δ)

where a5 = 4
a1

, T1,T2(δ) are defined in Theorem 3.1.

2) Learning wmax. When wmax is not accurately known,
we can try to learn it from the data. Let’s first consider the
learning algorithm studied in (Bai et al., 1998).

w̄(T )
max = min

θ
max

0≤t≤T−1
∥xt+1 − θzt∥∞. (4)

Though algorithm (4) cannot provide an upper bound on
wmax under finite samples because w̄

(T )
max ≤ wmax for fi-

nite T ,6 it can be shown that w̄(T )
max converges to wmax as

T → +∞. The convergence for linear regression has been
established in (Bai et al., 1998). The following theorem es-
tablishes the convergence and convergence rate of algorithm
(4) for linear dynamical systems. Based on this convergence
rate, we will design an online learning algorithm (5) that
generates converging upper bounds of wmax.

Theorem 3.5. The estimation w̄
(T )
max of wmax satisfies:

0≤ wmax−w̄(T )
max≤ bzdiam(ΘT )︸ ︷︷ ︸

T3

+wmax− max
0≤t≤T−1

∥wt∥∞︸ ︷︷ ︸
T4

Therefore, for any δ > 0,

P(wmax − w̄(T )
max > δ) ≤ T1 + T2

(
δ

2bz

)
+ T5

(
δ

2

)
,

where T5(δ) = (1− qw(δ))
T .

Notice that T4 is the smallest possible learning error of
wmax from history wt, which can be achieved if one can
directly measure wt. However, with unknown θ∗, it is chal-
lenging to measure/compute wt exactly, then Theorem 3.5
shows that the learning error of wmax has an additional
term T3 that depends on the uncertainty around θ∗. There-
fore, the convergence rate of w̄(T )

max can be obtained by our
non-asymptotic analysis of SME in Theorem 3.1.

Further, when qw(ϵ) = Ω(ϵ), the convergence rate of w̄(T )
max

can be explicitly bounded by Õ(n1.5
x n2

z/T ), which is of the
same order as the convergence rate of the diameter of ΘT .

Corollary 3.6. For any 0 < ϵ < 1/3 and any T ≥ 1, there
exists δT > 0 satisfying limT→∞ δT = 0 such that

0 ≤ wmax − w̄(T )
max ≤ δT

6If SME does not use an upper bound on wmax, the generated
uncertainty set may not contain the true parameter θ∗.

with probability at least 1− 3ϵ.

In particular, when qw(δ) = O(δ), with probability 1− 3ϵ,

0 ≤ wmax − w̄(T )
max ≤ δT = Õ(n1.5

x n2
z/T )

3) SME with unknown wmax. Unfortunately, w̄(T )
max cannot

be directly applied to SME because w̄
(T )
max ≤ wmax, which

may cause θ∗ ̸∈ Θ̂T (w̄
(T )
max). However, by leveraging our

convergence rate bound in Theorem 3.5, we can construct an
upper confidence bound (UCB) of wmax and a correspond-
ing UCB-SME algorithm:

ŵ(T )
max = w̄(T )

max + δT , Θ̂ucb
T = Θ̂T (ŵ

(T )
max), (5)

where δT is defined in Corollary 3.6.

Then, by combining Theorem 3.4 and Corollary 3.6, we
can verify the well-definedness of UCB-SME and obtain its
convergence rate.
Theorem 3.7. For any 0 < ϵ < 1/3, any T ≥ 1, with
probability at least 1− 3ϵ, we have

θ∗ ∈ Θ̂ucb
T , diam(Θ̂ucb

T ) ≤ O(
√
nxδT ).

In particular, if qw(ϵ) = Ω(ϵ), then diam(Θ̂ucb
T ) ≤

O(n2
xn

2
z/T ) with probability at least 1− 3ϵ.

Notice that UCB-SME converges at the same rate in terms
of T but

√
nx-worse in terms of dimensionality when com-

pared with SME knowing a tight bound wmax.
Remark 3.8 (Computation complexity). SME can be com-
puted by linear programming since all constraints are linear
in (2). Further, UCB-SME can also be computed by linear
programming because (4) can be reformulated as a linear
program. However, the number of constraints for SME
and UCB-SME increases linearly with T . To address the
computation issue of SME, many computationally efficient
algorithms have been proposed based on approximations
of (2), e.g. (Lu et al., 2019; Yeh et al., 2022; Bai et al.,
1995). The convergence rates of these approximate algo-
rithms are unknown and how to design computationally
efficient UCB-SME remains open.

4. Proof Sketch of Theorem 3.1
The major technical novelty of this paper is the proof of
Theorem 3.1, thus we describe the key ideas here. The
complete proof is provided in Appendix D. For ease of
notation and without loss of generality, we assume T/m is
an integer in the following.

Specifically, we first define a set ΓT on the model estimation
error γ = θ̂ − θ∗ by leveraging the observation that xs+1 −
θ̂zs = ws − (θ̂ − θ∗)zs,

Γt =

t−1⋂
s=0

{γ : ∥ws − γzs∥∞ ≤ wmax}, ∀ t ≥ 0. (6)

6
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Notice that Θt = θ∗ + Γt, so diam(Θt) = diam(Γt), and

diam(Γt) = sup
γ,γ′∈Γt

∥γ − γ′∥F ≤ 2 sup
γ∈Γt

∥γ∥F .

Thus, we can define E1 := {∃ γ ∈ ΓT , s.t. ∥γ∥F ≥ δ
2}

such that P(diam(ΘT ) > δ) ≤ P(E1).

Next, we define an event E2 below, which is essentially PE
on every time segments km+ 1 ≤ t ≤ km+m for k ≥ 0,
where the choice of m will be specified later.

E2 =

{
1

m

m∑
s=1

zkm+sz
⊤
km+s ⪰ a21Inz ,∀ 0 ≤k≤

⌈
T

m

⌉
−1

}

where a1 = σzpz

4 .

Now, by dividing the event E1 based on E2, we obtain

P(diam(ΘT ) > δ) ≤ P(E1) ≤ P(Ec
2) + P(E1 ∩ E2).

The proof can be completed by establishing the following
bounds on P(Ec

2) and P(E1 ∩ E2).
Lemma 4.1 (Bound on P(Ec

2)). P(Ec
2) ≤ T1, where a2 =

64b2z
σ2
zp

2
z

and a3 =
p2
z

8 .

Lemma 4.2 (Bound on P(E1 ∩ E2)). P(E1 ∩ E2) ≤ T2(δ),
where a4 = max(1, 4bz

√
nx/a1).

Roughly, Lemma 4.1 indicates that PE holds with high prob-
ability, which is proved by leveraging the BMSB assumption
and set discretization. The proof of Lemma 4.2 is more in-
volved and is our major technical contribution. On a high
level, the proof relies on two technical lemmas below.
Lemma 4.3 (Discretization of E1∩E2 (informal)). Let M =
{γ1, . . . , γvγ} denote an ϵγ-net of {γ : ∥γ∥F = 1}. Under
a proper choice of ϵγ , we have vγ = Õ(n2.5

x n2.5
z )anxnz

4 .7

We can construct Γ̃T such that

P(E1 ∩ E2) ≤ P({∃ 1 ≤ i ≤ vγ , d ≥ 0, s.t. dγi ∈ Γ̃T } ∩ E2)

≤
vγ∑
i=1

P(E1,i ∩ E2)

where E1,i = {∃ d ≥ 0, s.t. dγi ∈ Γ̃T }.

Lemma 4.3 leverages finite set discretization to bound the
existence of a feasible element in an infinite continuous set.
The formal version of Lemma 4.3 is provided as Lemma
D.8 in the appendix.
Lemma 4.4 (Construction of event Gi,k via stopping times
(informal)). Consider Ft as defined in Assumption 2.5. Un-
der the conditions in Lemma 4.3, we construct Gi,k for all i
and all 0 ≤ k ≤ T/m− 1 by

Gi,k =

{
bi,km+Li,k

w
ji,km+Li,k

km+Li,k
≥ a1δ

4
√
nx

− wmax, and

7The exact formulas of vγ and ϵγ are in Lemma D.3.

1

m

m∑
s=1

zkm+sz
⊤
km+s ⪰ a21Inz

}
.

where bi,t, ji,t are measurable in Ft, and Li,k is constructed
as a stopping time with respect to {Fkm+l}l≥0. The formal
definitions of bi,t, ji,t, Li,k are provided in Appendix D.3.1.

Then, we have

P(E1,i ∩ E2)≤P

T/m−1⋂
k=0

Gi,k

≤
(
1− qw

(
a1δ

4
√
nx

)) T
m

The constructions of Gi,k and Li,k in Lemma 4.4 are our
major technical contribution. With the constructions above,
the proof can be completed by leveraging the conditional
independence property of stopping times, which is briefly
discussed below. Notice that by conditioning on the event
{Li,k = l}, we have wkm+Li,k

= wkm+l and wkm+l is in-
dependent of Fkm+l. Consequently, wkm+l is also indepen-
dent of bi,km+Li,k

, ji,km+Li,k
conditioning on {Li,k = l}

since bi,km+l, ji,km+l are measurable in Fkm+l. Therefore,
the probability of Gi,k conditioning on {Li,k = l} can be
bounded by the probability distribution of wt, which enjoys
good properties such as Assumption 2.6. More details of
the proof are in Appendix D.3.3.

In conclusion, Lemma 4.2 follows directly from Lemma 4.3
and Lemma 4.4. Combining Lemma 4.2 and Lemma 4.1
completes the proof of Theorem 3.1.
Remark 4.5 (Convergence rate of SME for general time
series). Similar to Theorem 2.4 in (Simchowitz et al., 2018),
our results for linear dynamical systems can also be gener-
alized to general time series with linear responses:

yt = θ∗zt + wt, t ≥ 0,

where Fy
t = F(w0, . . . , wt, z0, . . . , zt), yt ∈ Rny is mea-

surable in Fy
t but not in Fy

t−1. The SME algorithm is

Θy
T =

T−1⋂
t=0

{θ̂ : yt − θ̂zt ∈ W}.

Under Assumptions 2.2, 2.5, and 2.6, we have

P(diam(Θy
T ) > δ) ≤ T

m
Õ(n2.5

z )anz
2 exp(−a3m)

+ Õ((nynz)
2.5)a

nynz

4

(
1− qw

(
a1δ

4
√
ny

))⌈T/m⌉

,

where a1, a2, a3 are defined in Theorem 3.1 and a4 =
4bz

√
ny

a1
.

5. Applications to Robust Adaptive Control
Robust adaptive control usually involves two steps: updat-
ing the uncertainty set estimation, and designing robust

7
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Figure 2. Figures (a)-(b) compares the diameters of SME, UCB-SME, and SME with loose disturbance upper bounds that are 2, 3, 5,
and 10 times larger than the true disturbance bound wmax, as well as the baseline uncertainty set from the 90% confidence region of
LSE. Figure (c) shows the convergence to the true bound wmax of the lower estimation w̄max in (4) and the UCB ŵmax generated by the
UCB-SME algorithm in Figures (a)-(b).

controllers based on the updated uncertainty set. SME can
be naturally applied to robust adaptive control as the up-
dating rule of the uncertainty set estimation. To illustrate
this, we discuss the applications of SME to two popular
controllers, robust adaptive MPC and robust SLS. We focus
on the implications of our convergence rates.

Application of SME to robust adaptive MPC. SME has
long been adopted in the robust adaptive MPC design (see
e.g., (Köhler et al., 2019; Lorenzen et al., 2019; Lu & Can-
non, 2023)). However, due to the lack of non-asymptotic
guarantees for SME, the non-asymptotic analysis for ro-
bust adaptive MPC also remains unsolved. Applying Theo-
rem 3.1 straightforwardly, we can obtain a non-asymptotic
estimation error bound for robust adaptive MPC below,
which lays a foundation for future regret analysis. For sim-
plicity, we consider a tight bound W is known below, but
our results for unknown W can also be applied similarly.

Corollary 5.1. Consider the robust adaptive MPC con-
troller introduced in Example 1, where Θt is updated by
SME and W is known.8 Under the conditions of Corollary
3.2, the estimation error for any θ̂T ∈ ΘT can be bounded
by ∥θ̂T − θ∗∥F ≤ Õ(

n1.5
x n2

z

T ) with high probability.

Application of SME to robust SLS. Robust SLS has been
proposed in (Dean et al., 2019b) for robust constrained con-
trol under system uncertainties (Dean et al., 2019b). Since
(Dean et al., 2019b) assumes bounded disturbances, one can
apply SME for the uncertainty set estimation in place of the
LSE’s confidence regions in (Dean et al., 2019b). Then, by
leveraging Theorems 3.1, 4.1 in (Dean et al., 2019b) and
our Theorem 3.1, we can directly obtain a non-asymptotic
sub-optimality gap for learning-based robust SLS with SME
as the uncertainty set estimation. For simplicity, we consider
a known tight bound W , but our results for unknown W can

8When W is unknown, Theorems 3.4-3.7 all apply.

also be similarly applied here.

Corollary 5.2. Under the conditions in Theorem 3.1 in
(Dean et al., 2019b) and Corollary 3.2, for large enough
T , we have J(A∗,B∗,K̂)−J∗

J∗ ≤ Õ(n1.5
x n2

z/T ), where
K̂ denotes the robust SLS controller in (Dean et al.,
2019b) under the uncertainty set ΘT constructed by SME,
J(A∗, B∗, K̂) = limT→+∞ E 1

T

∑T−1
t=0 (x⊤

t Qxt+u⊤
t Rut)

denotes the infinite-horizon averaged total cost by imple-
menting the robust SLS controller K̂, and J∗ denotes the
optimal infinite-horizon averaged total cost.

6. Numerical Experiments
We evaluate the empirical performance of SME on various
systems and applications. For all experiments, we use the
90% confidence regions of LSE computed by Lemma E.3
in (Simchowitz & Foster, 2020) and Theorem 1 in (Abbasi-
Yadkori & Szepesvári, 2011) as the baseline. The details of
the simulation settings are provided in Appendix I.9

Comparison of SME, SME with loose bound, UCB-SME,
and LSE. This experiment is based on the linearized lon-
gitudinal flight control dynamics of Boeing 747 as studied in
recent literature on learning-based control of linear systems
(Lale et al., 2022; Mete et al., 2022).

In Figure 2, we show the diameters of SME, SME with loose
disturbance bounds, and UCB-SME on the identification
problem of the Boeing 747 dynamics with i.i.d. truncated
Gaussian (Figure 2a) and uniform (Figure 2b) disturbances.
We use control actions sampled from a uniform distribution
in both cases. In Figure 2c, we show that both the upper
bound ŵmax used for UCB-SME and the lower bound w̄max

9The code to reproduce all the experimental results
can be found at https://github.com/jy-cds/
non-asymptotic-set-membership.
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Figure 3. Diameters of the uncertainty sets constructed by SME,
UCB-SME, and LSE for systems with different dimensions.

in (4) converge to the true bound wmax as T increases. The
quantitative behaviors of SME and its variants are consistent
with those predicted by our theoretical results. In particular,
in Figure 2a and Figure 2b, SME and UCB-SME outperform
the 90% confidence regions of LSE in both the magnitude
and the convergence rate. In Figure 2c, we verify that the
UCB estimation ŵ

(T )
max converges to the true disturbance

bound wmax from above, while the estimation w̄
(T )
max con-

verges from below. It is worth noting that w̄(T )
max converges

to wmax very quickly in the simulations, allowing w̄
(T )
max to

be another potential approximation of wmax for SME when
T is very large.

Scaling with dimension. We compare the scaling of
SME, SME-UCB, and LSE with respect to the system
dimensions in Figure 3. We use an autonomous system
xt+1 = A⋆xt + wt, where A ∈ Rnx×nx has varying nx.
Disturbances wt are sampled from a truncated Gaussian
distribution and uniform distribution with wmax = 2. Sur-
prisingly, the scaling of SME with respect to the dimension
of the system is not significantly worse than that of LSE in
the simulation. This suggests that the convergence rate in
Corollary 3.2 can potentially be improved in terms of the
dimension dependence, which is left for future investigation.

Application to robust adaptive MPC. We provide an ex-
ample of the quantitative impact of using SME for adaptive
robust MPC in Figure 4. We consider the task of constrained
linear quadratic tracking problem as in (Li et al., 2023). The
model uncertainty set is estimated online with SME and
LSE’s 90 % confidence region. Control actions are com-
puted using the tube-based robust MPC (Rawlings et al.,
2017; Mayne et al., 2005) with the uncertainty sets. We
also plot the optimal MPC controller with accurate model
information. Thanks to the fast convergence of SME, the
tracking performance of the tube-based robust MPC with
SME estimation quickly coincides with OPT, while the same
controller based on LSE’s confidence region estimation con-
verges more slowly.
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Figure 4. Linear quadratic tracking of robust adaptive MPC based
on SME, LSE’s confidence regions, and the accurate model (OPT).

7. Concluding Remarks
This work provides the first convergence rates for SME in
linear dynamical systems with bounded disturbances and
discusses variants of SME with unknown bound on wt. Nu-
merical experiments demonstrate SME’s promising perfor-
mance under bounded disturbances.

Regarding limitations and future directions, this work only
considers box constraints on wt, so it is worth extending the
analysis to more general constraints. In addition, this paper
only measures the size of the uncertainty sets by their diam-
eters. We leave for future work to consider other metrics,
such as volume. Further, our bounds suffer poor dependence
on the system dimension, which is not reflected in simula-
tions. Hence, it is important to further refine the bounds and
discuss the fundamental limits. Another exciting direction
is to speed up the computation of SME since the current
computation complexity increases linearly with the sample
size. The convergence rate of fast SME algorithms is an im-
portant open question. Other interesting directions include
the extensions of the SME analysis to nonlinear systems,
where recent nonlinear system identification literature (Sat-
tar et al., 2022; Foster et al., 2020) may provide insights;
and analyzing SME in the presence of other uncertainties,
e.g. measurement noises (Sarkar & Rakhlin, 2019).

SME is a valid estimation for bounded non-stochastic dis-
turbances (Fogel & Huang, 1982; Milanese et al., 2013;
Lauricella & Fagiano, 2020; Livstone & Dahleh, 1996).
Therefore, a fruitful direction is to study SME’s conver-
gence rates under non-stochastic wt. Another potential
method for uncertainty set estimation is the credible regions
of Bayesian approaches, e.g. Thompson sampling for lin-
ear systems (Kargin et al., 2022; Abeille & Lazaric, 2017)
and Gaussian processes for nonlinear systems (Fisac et al.,
2018). A future direction is to study the convergence rates
of credible regions.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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Roadmap for the appendices
• Appendix A introduces additional notation used throughout the Appendix.

• Appendix B provides more literature review on LSE and SM, and a more detailed discussion on the technical
contributions of this paper.

• Appendix C provides more discussions on examples that satisfy Assumptions 2.5 and 2.6.

• Appendix D presents the proof of Theorem 3.1. In particular, we provide helper lemmas in Appendix D.1 and prove
Lemma 4.1, Lemma 4.2 in Appendix D.2 and Appendix D.3 respectively. A more precise upper bound for Theorem 3.1
(without the Õ(·) notation) is provided in Appendix D.4.

• Appendix E presents a proof of Corollary 3.2

• Appendix F provides a proof of Corollary 3.3.

• Appendix G presents a proof of Theorem 3.4.

• Appendix H provides proofs of Theorem 3, Corollary 3, and Theorem 4.

• Appendix I provides details of the simulation.

A. Additional notations
Let Sn(0, 1) denote the unit sphere in Rn in l2 norm, i.e., Sn(0, 1) = {x ∈ Rn : ∥x∥2 = 1}. Let Sn×m(0, 1) denote the
unit sphere in Rn×m with respect to the Frobenius norm, i.e., Sn×m(0, 1) = {M ∈ Rn×m : ∥M∥F = 1}. Let B̄n(0, 1)
denote the closed unit ball in Rn in l2 norm, i.e., B̄n(0, 1) = {x ∈ Rn : ∥x∥2 ≤ 1}. Let B̄n×m(0, 1) denote the closed
unit ball in Rn×m in Frobenius norm, i.e., B̄n×m(0, 1) = {M ∈ Rn×m : ∥M∥F ≤ 1}. For a matrix M ∈ Rn×m,
vec(M) is the vectorization of M . Moreover, we define the inverse mapping of vec(·) as mat(·), i.e., for a vector d ∈ Rnm,
mat(d) ∈ Rn×m. Consider a σ-algebra F and a random variable X , we write X ∈ F if X is measurable with respect
to F , i.e., for all Borel measurable sets B ⊆ R, we have X−1(B) ∈ F . We can similarly define F-measurable random
matrices and random vectors. Further, consider a polyhedral D = {x : Ax ≤ b}, we write D ∈ F if matrix A and vector b
are measurable with respect to F . Consider two symmetric matrices A,B ∈ Rn×n, we write A ⪰ B if A−B is a positive
definite matrix. We define min ∅ = +∞. For a set E , let 1E denote the indicator function on E . For a vector x ∈ Rn, we
use xj to denote the jth coordinate of x. Throughout the paper, we use TrunGauss(0, σw, [−wmax, wmax]) to refer to the
truncated Gaussian distribution generated by Gaussian distribution with zero mean and σ2

w variance with truncated range
[−wmax, wmax]. The same applies to multi-variate truncated Gaussian distributions.

B. More discussions on least square and set membership
System identification studies the problem of estimating the parameters of an unknown dynamical systems from trajectory
data. There are two main classes of estimation methods: point estimator such as least square estimation (LSE), and set
estimator such as set membership estimation (SME). In the following, we provide more discussions and literature review on
LSE and SME. We will also discuss the major technical novelties of this work.

B.1. Least square estimation

For linear dynamical systems xt+1 = A∗xt +B∗ut + wt = θ∗zt + wt, given a trajectory of data {xt, ut}t≥0, least square
estimation generates a point estimator that minimizes the following quadratic error (Van Overschee & De Moor, 2012;
Ljung, 1998):

θ̂LSE = min
θ̂

T−1∑
t=0

∥xt+1 − θ̂zt∥22.

Least-square estimation is widely used and its convergence (rate) guarantees have been investigated for a long time. In
particular, non-asymptotic convergence rate guarantees of LSE has become increasingly important as these guarantees are the
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foundations for non-asymptotic performance analysis of learning-based/adaptive control algorithms. Earlier non-asymptotic
analysis of LSE focused on the simpler regression model yt = θ∗xt + wt, where xt and yt are independent (Campi &
Weyer, 2002; Vidyasagar & Karandikar, 2006; Hsu et al., 2012).

Recently, there is one major breakthrough in (Simchowitz et al., 2018) that provides LSE’s convergence rate analysis for
linear dynamical system xt+1 = θ∗zt +wt, where xt+1 and zt = [x⊤

t , u
⊤
t ]

⊤ are correlated. More specifically, (Simchowitz
et al., 2018) establishes a fundamental property, block-martingale small-ball (BMSB), to analyze LSE under correlated
data. BMSB enables a long list of subsequent literature on LSE’s non-asymptotic analysis for different types of dynamical
systems, e.g., (Oymak & Ozay, 2019; Dean et al., 2019a; Zheng & Li, 2020; Rantzer, 2018; Faradonbeh et al., 2018;
Wagenmaker & Jamieson, 2020; Tsiamis et al., 2022; Zhao & Li, 2022; Li et al., 2021b).

Though LSE is a point estimator, one can establish confidence region of LSE based on proper statistical assumptions on
wt. The pioneer works on the confidence region of LSE for linear dynamical systems are (Abbasi-Yadkori et al., 2011;
Abbasi-Yadkori & Szepesvári, 2011), which construct ellipsoid confidence regions for LSE. Moreover, the non-asymptotic
bounds on estimation errors established in (Simchowitz et al., 2018; Dean et al., 2019b) can also be viewed as confidence
bounds. Further, the estimation error Õ(

√
nx+nz√

T
) has been shown to match the fundamental lower bound for any estimation

methods for unbounded disturbances in (Simchowitz et al., 2018). However, these confidence bounds all rely on statistical
inequalities, which may result in loose constant factors despite an optimal convergence rate. When applying these confidence
bounds to robust control, where the controller is required to satisfy certain stability and constraint satisfaction properties for
every possible system in the confidence region, a loose constant factor will result in a larger confidence region and a more
conservative control design. Finally, in robust control and many practical applications, the disturbances are usually bounded,
and it will be interesting to see how the knowledge of the boundedness will improve the uncertainty set estimation.

On a side note, this paper is also related with the ambiguity set estimation for the transition probabilities in robust Markov
decision processes (Petrik & Russel, 2019). There are attempts on improving the ambiguity set estimation based on LSE for
less conservative robust MDP (Petrik & Russel, 2019).

B.2. Set membership

Set membership is commonly used in robust control for uncertainty set estimation (Milanese & Vicino, 1991; Adetola
& Guay, 2011; Tanaskovic et al., 2013; Bujarbaruah et al., 2020; Zhang et al., 2021; Parsi et al., 2020b;a; Sasfi et al.,
2022). There is a long history of research on SME for both deterministic disturbances, such as (Bai et al., 1995; Fogel &
Huang, 1982; Kitamura & Fujisaki, 2003; Milanese et al., 2013; Lauricella & Fagiano, 2020; Livstone & Dahleh, 1996),
and stochastic disturbances, such as (Bai et al., 1998; 1995; Kitamura et al., 2005; Akçay, 2004; Lu et al., 2019). For
the stochastic disturbances, both convergence and convergence rate analysis have been investigated under the persistent
excitation (PE) condition. However, the existing convergence rates are only established for simpler regression problems,
yt = θ∗xt + wt, where yt and xt are independent (Akçay, 2004; Bai et al., 1995; 1998; Kitamura et al., 2005).

Recently, (Lu et al., 2019) provided an initial attempt to establish the convergence guarantee of SME for linear dynamical
systems xt+1 = θ∗zt+wt for correlated data xt+1 and zt. However, (Lu et al., 2019) assumes that PE holds deterministically,
and designs a special control design based on constrained optimization to satisfy PE deterministically. Therefore, the
convergence for general control design and the convergence rate analysis remain open questions for correlated data arising
from dynamical systems.

In this paper, we establish the convergence rate guarantees of SME on linear dynamical systems under the BMSB conditions
in (Simchowitz et al., 2018). Compared with (Lu et al., 2019), BMSB condition can be satisfied by adding an i.i.d. random
noise to a general class of control designs (Li et al., 2021b).

Technically, one major challenge of SME analysis compared with the LSE analysis is that the diameter of the membership
set does not have an explicit formula, which is in stark contrast with LSE, where the point estimator is the solution to a
quadratic program and has explicit form. A common trick to address this issue in the analysis of SME is to connect the
diameter bound with the values of disturbances subsequences {wsk}k≥0: it can be generally shown that a large diameter
indicates that a long subsequence of disturbances are far away from the boundary of W . However, existing construction
methods of {wsk}k≥0 will cause the time indices {sk}k≥0 to correlate with the realization of the sequences {xt, ut, wt}t≥0

(Akçay, 2004; Lu et al., 2019; Bai et al., 1995).10 Consequently, in the correlated-data scenario and when PE does not hold

10In (Lu et al., 2019), the correlation between {sk}k≥0 and {xt, ut, wt}t≥0 is via the PE condition, but (Lu et al., 2019) assume
deterministic PE to avoid this correlation issue.
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deterministically, under the existing construction methods in (Akçay, 2004; Lu et al., 2019; Bai et al., 1995), the probability
of {wsk}k≥0 with correlated time indices cannot be bounded by the probability of the independent sequence {wt}t≥0. One
major technical contribution of this paper is to provide a novel construction of {wsk}k≥0 based on a sequence of stopping
times and establish conditional independence properties despite correlated data and stochastic PE condition (BMSB). More
details can be found in Lemma 4.4 and the proof or Lemma 4.2.

Though we only consider box constraints for wt, it is worth mentioning that SME can be applied to much more general
forms of disturbances. For example, a common alternative is the ellipsoidal-bounded disturbance where W := {w ∈ Rnx :
w⊤Pw ≤ 1} with positive definite P ∈ Rnx×nx (Bai et al., 1995; van Waarde et al., 2023; Eising & Cortes, 2023; Liu et al.,
2016) and polytopic-bounded disturbance W := {w ∈ Rnx : Gw ≤ h} for positive definite G ∈ Rnx×nx and h ∈ Rnx

(Fogel & Huang, 1982; Lu et al., 2019; Lu & Cannon, 2023). There are also SME literature assuming bounded energy of the
disturbance sequences (Bai et al., 1995). It is an interesting future direction to extend the analysis in this paper to more
general disturbance constraints.

A separate but important challenge is that the knowledge of W is not always available a priori. There is literature discussing
the estimation of W (Lauricella & Fagiano, 2020; Bai et al., 1998). We leave for future work how to simultaneously estimate
W and perform non-asymptotic analysis on the size of the membership set.

Further, exact SME involves the intersection of an increasing number of sets, thus causing the computation complexity
increases with time t, which can become prohibitive when t is large. There are many methods trying to reduce the
computation complexity by approximating the membership sets (see e.g., (Livstone & Dahleh, 1996; Lu et al., 2019), etc.).
It is an exciting future direction to study the diameter bounds of the approximated SME methods.

Lastly, it is worth pointing out that SME and its convergence rate in Theorem 3.1 can be easily extended to the general
time series with linear responses below, which is also considered in LSE’s convergence rate analysis in (Simchowitz et al.,
2018). Same as (Simchowitz et al., 2018), we define the general time series with linear responses as yt = θ∗zt + wt, where
yt, wt ∈ Rny , zt ∈ Rnz , θ∗ ∈ Rny×nz . We let Ft = σ(w0, . . . , wt, z0, . . . , zt) be the natural filtration. Note that we
consider yt ∈ Ft but yt ̸∈ Ft−1. It is straightforward to see that Theorem 3.1 still holds for this general time series since the
proof in Appendix D does not require yt to be the first nx elements of zt+1.

C. More discussions on Assumptions 2.5 and 2.6
C.1. More discussions on Assumption 2.5

The BMSB condition has been widely used in learning-based control. It has been shown that BMSB can be satisfied
in many scenarios. For example, (Simchowitz et al., 2018; Tu, 2019) showed that linear systems with i.i.d. perturbed
linear control policies, i.e., xt+1 = Axt + B(Kxt + ηt) + wt,11 satisfy BMSB if the disturbances wt and ηt are i.i.d.
and follow Gaussian distributions with positive definite covariance matrices. Later, (Dean et al., 2019b) showed that
xt+1 = Axt+B(Kxt+ ηt)+wt can still satisfy BMSB even for non-Gaussian distributions of wt, ηt, as long as wt and ηt
have independent coordinates and finite fourth moments. Recently, (Li et al., 2021b) extended the results to linear systems
with nonlinear policies, i.e., xt+1 = Axt +B(πt(xt)+ ηt)+wt, and showed that BMSB still holds as long as the nonlinear
policies πt generate bounded trajectories of states and control inputs, and wt, ηt are bounded and follow distributions with
certain anti-concentrated properties (a special case is positive definite covariance matrix).

C.2. More discussions on Assumption 2.6

In this subsection, we provide two example distributions, truncated Gaussian and uniform distributions, and discuss their
corresponding qw(ϵ) functions. It will be shown that for both distributions below, qw(ϵ) = O(ϵ).
Lemma C.1 (Example of uniform distribution). Consider wt that follows a uniform distribution on [−wmax, wmax]

nx .
Then, qw(ϵ) = ϵ

2wmax
.

Proof. Since Unif(W) is symmetric, we only need to consider one direction j = 1.

P(wj + wmax ≤ ϵ) =

∫
w1+wmax≤ϵ

∫
w2,...,wnx∈[−wmax,wmax]

1

(2wmax)nx
1(w∈W) dw

11Though we only describe a static linear policy ut = Kxt here, the results in (Simchowitz et al., 2018; Tu, 2019; Dean et al., 2019b)
hold for dynamic linear policies.
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=

∫
w1≤ϵ−wmax

1

2wmax
1(w∈W)dw

1 =
ϵ

2wmax

Similarly, P(wmax − w1 ≤ ϵ) =
∫
w1≥wmax−ϵ

1
2wmax

1(w∈W)dw
1 = ϵ

2wmax
.

Lemma C.2 (Example of truncated Gaussian distribution). Consider wt follows a truncated Gaussian distribution on
[−wmax, wmax]

nx generated by a Gaussian distribution with zero mean and σwInx covariance matrix. Then, qw(ϵ) =
1

min(
√
2πσw,2wmax)

exp(
−w2

max

2σ2
w

)ϵ.

Proof. Since this distribution is symmetric and each coordinate is independent, we only need to consider one direction j.
Let X denote a Gaussian distribution with zero mean and σ2

w variance. By the definition of truncated Gaussian distributions,
we have

P(wj + wmax ≤ ϵ) =
P(−wmax ≤ X ≤ −wmax + ϵ)

P(−wmax ≤ X ≤ wmax)

Notice that X/σw follows the standard Gaussian distribution, so we can obtain the following bounds.

P(−wmax ≤ X ≤ −wmax + ϵ) =

∫ (−wmax+ϵ)/σw

−wmax/σw

1√
2π

exp(−z2

2
) dz

≥ 1√
2π

exp(−w2
max/(2σ

2
w))

ϵ

σw

and

P(−wmax ≤ X ≤ wmax) =

∫ wmax/σw

−wmax/σw

1√
2π

exp(−z2

2
) dz

≤ min(1,
1√
2π

2wmax

σw
)

Therefore, we obtain

P(wj + wmax ≤ ϵ) =
P(−wmax ≤ X ≤ −wmax + ϵ)

P(−wmax ≤ X ≤ wmax)

≥ max(
1√
2π

exp(−w2
max/σ

2
w)

ϵ

σw
,

ϵ

2wmax
exp(

−w2
max

2σ2
w

))

=
1

min(
√
2πσw, 2wmax)

exp(
−w2

max

2σ2
w

)ϵ

Finally, P(wmax − w1 ≤ ϵ) can be bounded similarly.

Lemma C.3 (Example of uniform distribution on the boundary of W (a generalization of Rademacher distribution)).
Consider wt follows a uniform distribution on {w : ∥w∥∞ = wmax}. Then qw(ϵ) =

1
2nx

.

Proof. Since the hyper-cube {w : ∥w∥∞ = wmax} has 2nx facets, the probability on each facet is 1
2nx

. Therefore,
P(wj ≤ ϵ− wmax) ≥ P(wj = −wmax) =

1
2nx

for all j. The same applies to P(wj ≥ −ϵ+ wmax).

D. Proof of Theorem 3.1
The section provides more details for the proof of Theorem 3.1. In particular, we first provide technical lemmas for set
discretization, then prove Lemma 4.1 and Lemma 4.2 respectively. The proof of Theorem 3.1 follows naturally by combining
Lemma 4.1 and Lemma 4.2.
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D.1. Technical lemmas: set discretization

This subsection provide useful technical lemmas for the proofs of Lemma 4.1 and Lemma 4.2. The results are based on a
finite-ball covering result that is classical in the literature (Rogers, 1963) (Verger-Gaugry, 2005).
Theorem D.1 (Theorem 1.1 and 1.2 in (Verger-Gaugry, 2005) and Theorem 2 in (Rogers, 1963) (revised to match the
setting of this paper)). Consider a closed ball B̄n(0, 1) = {x ∈ Rn : ∥x∥2 ≤ 1} in l2 norm. Considering covering this
ball B̄n(0, 1) with smaller closed balls B̄n(z, ϵ) for z ∈ Rn. Let vϵ,n denote the minimal number of smaller balls needed to
cover B̄n(0, 1). For n ≥ 1 and 0 < ϵ < 1/2, we have

vϵ,n ≤ 544n2.5 log(n/ϵ)(
1

ϵ
)n

Proof. Theorem 1.1 and 1.2 in (Verger-Gaugry, 2005) and Theorem 2 in (Rogers, 1963) discuss the upper bounds of vϵ,n in
several different cases. These upper bounds in these different cases are unified by the upper bound in the theorem above by
algebraic manipulations.

We apply Theorem D.1 to obtain the number of covering balls in the two settings below. These two settings will be
considered in the proofs of Lemma 4.1 and 4.2 respectively.
Corollary D.2. There exists a finite set M′ = {λ1, . . . , λvλ} ⊆ Snz (0, 1) such that for any λ ∈ Rnz with ∥λ∥2 = 1, there
exists λi ∈ M′ such that ∥λ− λi∥2 ≤ 2ϵλ.

In the following, we consider ϵλ = σ2
zp

2
z/(64b

2
z) = 1/a2. Notice that ϵλ < 1/2. Accordingly,

vλ ≤ 544n2.5
z log(a2nz)a

nz
2 . (7)

Proof. ϵλ ≤ 1/64 < 1/2 because pz ≤ 1 and σz ≤ bz by the definitions of BMSB and bz . Then, the bound on vλ follows
from Theorem D.1.

Lemma D.3. There exists a finite set M = {γ1, . . . , γvγ} ⊆ Snx×nz
(0, 1) such that for any γ ∈ Rnx×nz and ∥γ∥F = 1,

there exists γi ∈ M such that ∥γ − γi∥F ≤ 2ϵγ . Consider ϵγ = a1

4bz
√
nx

= 1/a4. Notice that ϵγ < 1/2. Accordingly,

vγ ≤ 544n2.5
x n2.5

z log(a4nxnz)a
nznx
4 .

Proof. The proof is basically by mapping the matrices to vectors based on matrix vectorization, then mapping the vectors
back to matrices. These two mappings are isomorphism.

Specifically, consider a closed unit ball in Rnxnz . There exist vϵ,nxnz
smaller closed balls to cover it, denoted by

B1, . . . ,Bvϵ,nxnz
. Consider the non-empty sets from B1∩Snxnz

(0, 1), . . . ,Bvϵ,nxnz
∩Snxnz

(0, 1). For any 1 ≤ i ≤ vϵ,nxnz
,

if Bi ∩ Snxnz (0, 1) ̸= ∅, select a point vec(γ) ∈ Bi ∩ Snxnz (0, 1). Notice that ∥vec(γ)∥2 = 1. In this way, we construct a
finite sequence {vec(γ1), . . . , vec(γvγ )} where vγ ≤ vϵγ ,nxnz .12

For any γ ∈ Rnx×nz , we have vec(γ) ∈ Rnxnz and ∥vec(γ)∥2 = 1. Hence, there exists 1 ≤ i ≤ vγ such that
vec(γ) ∈ Bi ∩ Snxnz (0, 1). Hence, ∥vec(γ) − vec(γi)∥2 ≤ 2ϵγ . Moreover, ∥γi∥F = ∥vec(γi)∥2 = 1. Therefore,
∥γi − γ∥F ≤ 2ϵγ . So the set M = {γ1, . . . , γvγ

} satisfies our requirement.

D.2. Proof of Lemma 4.1

Essentially, Lemma 4.1 shows that PE holds with high probability under the BMSB condition. This result has been
established in Proposition 2.5 in (Simchowitz et al., 2018), though in a different form. The rest of this subsection will prove
the PE condition needed in this paper based on Proposition 2.5 in (Simchowitz et al., 2018).

Firstly, we review Proposition 2.5 in (Simchowitz et al., 2018) for the convenience of the reader.
Theorem D.4 (Proposition 2.5 in (Simchowitz et al., 2018) when k = 1). Let {Zt}t≥1 be an {FZ

t }t≥1-adapted random
process taking values in R. Z0 is given. If {Zt}t≥0 is (1, v, p)-BMSB, then

P(
T∑

t=1

Z2
t ≤ v2p2T/8) ≤ exp(−Tp2/8)

12Here, without loss of generality, we consider B1 ∩ Snxnz (0, 1), . . . ,Bvγ ∩ Snxnz (0, 1) are not empty.

18



Learning the Uncertainty Sets for Linear Dynamics via Set Membership: A Non-asymptotic Analysis

Next, we prove the PE in one segment of data sequence.

Lemma D.5 (Probability of PE in one segment). For any m ≥ 1, for any k ≥ 0, we have

P(
km+m∑
t=km+1

ztz
⊤
t ≻ (σ2

zp
2
zm/16)Inz

| Fkm) ≥ 1− vλ exp(−mp2z/8))

Proof. Consider M′ = {λ1, . . . , λvλ} defined in Corollary D.2. For any λi ∈ M′, λ⊤
i zt satisfies the (1, σz, pz)-BMSB

condition. Therefore, by Theorem D.4, we have

P(
T∑

t=1

λ⊤
i ztz

⊤
t λi ≤ σ2

zp
2
zT/8) ≤ exp(−Tp2z/8).

Notice that the horizon length T is arbitrary and the starting stage t = 1 can also be different because we consider a
time-invariant dynamical system in this paper. Therefore, for any m ≥ 1, k ≥ 0, for any λi ∈ M′, we have

P(
m∑
i=1

λ⊤
i zkm+iz

⊤
km+iλi ≤ σ2

zp
2
zm/8 | Fkm) ≤ exp(−mp2z/8),

where we condition on Fkm to make sure zkm is known under Fkm, which is required by Theorem D.4.

For arbitrary λ such that ∥λ∥2 = 1, there exists λi ∈ M′ such that ∥λ − λ′∥2 ≤ 2ϵλ. Therefore, we can bound∑km+m
t=km+1 λ

⊤ztz
⊤
t λ by

∑km+m
t=km+1 λ

⊤
i ztz

⊤
t λi.

km+m∑
t=km+1

λ⊤ztz
⊤
t λ =

km+m∑
t=km+1

λ⊤
i ztz

⊤
t λi +

km+m∑
t=km+1

(λ+ λi)
⊤ztz

⊤
t (λ− λi)

≥
km+m∑
t=km+1

λ⊤
i ztz

⊤
t λi −

km+m∑
t=km+1

∥λ+ λi∥2∥zt∥22∥λi − λ∥2

(a)

≥
km+m∑
t=km+1

λ⊤
i ztz

⊤
t λi −

km+m∑
t=km+1

4b2zϵλ

=

km+m∑
t=km+1

λ⊤
i ztz

⊤
t λi − 4b2zϵλm

(b)

≥
km+m∑
t=km+1

λ⊤
i ztz

⊤
t λi − σ2

zp
2
zm/16

where (a) is by Assumption 2.5, ∥λ− λi∥2 ≤ 2ϵλ, and ∥λ∥2 = ∥λi∥2 = 1; and (b) is by choosing ϵλ ≤ σ2
zp

2
z/(64b

2
z).

Therefore, by the definition of positive definiteness and the inequalities above, we can complete the proof by the following.

P(
km+m∑
t=km+1

ztz
⊤
t ≻ (σ2

zp
2
zm/16)Inz

| Fkm) = P(∀ ∥λ∥2 = 1,

km+m∑
t=km+1

λ⊤ztz
⊤
t λ > σ2

zp
2
zm/16 | Fkm)

≥ P(∀1 ≤ i ≤ vλ,

km+m∑
t=km+1

λ⊤
i ztz

⊤
t λi > σ2

zp
2
zm/8 | Fkm)

≥ 1−
vλ∑
i=1

P(
km+m∑
t=km+1

λ⊤
i ztz

⊤
t λi ≤ σ2

zp
2
zm/8 | Fkm)

≥ 1− vλ exp(−mp2z/8)),

which completes the proof.

Now, we are ready for the proof of Lemma 4.1.
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Proof of Lemma 4.1. Recall that E2 = { 1
m

∑m
s=1 zkm+sz

⊤
km+s ⪰ a21Inz

, ∀ 0 ≤ k ≤ ⌈T/m⌉ − 1}, where a1 = σzpz/4.
Hence

E2 =

T/m−1⋂
k=0

{
km+m∑
t=km+1

ztz
⊤
t ≻ (σ2

zp
2
zm/16)Inz

}.

Therefore,

P(E2) ≥ 1−
T/m−1∑
k=0

P(
km+m∑
t=km+1

ztz
⊤
t ⪯ (σ2

zp
2
zm/16)Inz

)

≥ 1− T

m
vλ exp(−mp2z/8)

= 1− T

m
(544n2.5

z log(a2nz)a
nz
2 ) exp(−mp2z/8),

where we use Lemma D.5 and the fact that if P(
∑km+m

t=km+1 ztz
⊤
t ⪯ (σ2

zp
2
zm/16)Inz

| Fkm) ≤ vλ exp(−mp2z/8)), then
P(
∑km+m

t=km+1 ztz
⊤
t ⪯ (σ2

zp
2
zm/16)Inz

) ≤ vλ exp(−mp2z/8)).

D.3. Proof of Lemma 4.2

This proof takes four major steps:

(i) Define bi,t, ji,t, Li,k.

(ii) Provide a formal definition of E1,k based on bi,t, ji,t, Li,k and prove a formal version of Lemma 4.3.

(iii) Prove Lemma 4.4.

(iv) Prove Lemma 4.2 by the formal version of Lemma 4.3 and Lemma 4.4.

It is worth mentioning that the formal definition of E1,k is slightly different from the definition in Lemma 4.3, but we still
have P(E1 ∩ E2) ≤

∑vγ
i=1 P(E1,k ∩ E2), which is the key property that will be used in the proof of Lemma 4.2.

D.3.1. STEP (I): DEFINITIONS OF bi,t, ji,t, Li,k .

Recall the discretization of Snx×nz
(0, 1) in Lemma D.3, which generates the set M = {γ1, . . . , γvγ

}. We are going to
define bi,t, ji,t, Li,k for γi ∈ M for each 1 ≤ i ≤ vγ . Notice that M is a deterministic set of matrices.
Lemma D.6 (Definition of bi,t, ji,t). For any γi ∈ M, any 0 ≤ t ≤ T , there exist bi,t ∈ {−1, 1} and 1 ≤ ji,t ≤ nx such
that bi,t, ji,t ∈ F(zt) ⊆ Ft and

∥γizt∥∞ = bi,t(γizt)
ji,t .

Note that one way to determine bi,t, ji,t from zt is by the following: first pick the smallest j such that |(γizt)j | = ∥γizt∥∞,
then let bi,t = sgn((γizt)j), where sgn(·) denotes the sign of a scalar argument.

Proof. For any γi ∈ M, any 0 ≤ t ≤ T , we have

∥γizt∥∞ = max
1≤j≤nx

max
b∈{−1,1}

b(γizt)
j

Hence, there exist bi,t, ji,t such that ∥γizt∥∞ = bi,t(γizt)
ji,t . Further, bi,t, ji,t only depend on γi and zt, so they are

F(zt)-measurable, and F(zt) ⊆ Ft.

Lemma D.7 (Definition of stopping times Li,k). Let η = a1√
nx

. For any γi ∈ M, any 0 ≤ k ≤ T/m− 1, we can define a
random time index 1 ≤ Li,k ≤ m+ 1 by

Li,k = min(m+ 1,min{l ≥ 1 : ∥γizkm+l∥∞ ≥ η}).

Then, we have 1 ≤ Li,k ≤ m+ 1. Further, for any 1 ≤ l ≤ m, {Li,k = l} ∈ Fkm+l, and {Li,k = m+ 1} ∈ Fkm+m ⊆
Fkm+m+1. In other words, Li,k is a stopping time with respect to filtration {Fkm+l}l≥1.
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Proof. For any i and any k, it is straightforward to see that Li,k is well-defined and 1 ≤ Li,k ≤ m+ 1.

When Li,k = l ≤ m, this is equivalent with ∥γizkm+l∥∞ ≥ η but ∥γizkm+s∥ < η for 1 ≤ s < l. Notice that this event is
only determined by zkm+l, . . . , zkm+1, so {Li,k = l} ∈ Fkm+l.

When Li,k = m+ 1, this is equivalent with ∥γizkm+s∥ < η for 1 ≤ s ≤ m. Notice that this event is only determined by
zkm+m, . . . , zkm+1, so {Li,k = m+ 1} ∈ Fkm+m.

Therefore, by definition, Li,k is a stopping time with respect to filtration {Fkm+l}l≥1.

D.3.2. STEP (II): A FORMAL VERSION OF LEMMA 4.3 AND ITS PROOF

Lemma D.8 (Discretization of E1 ∩ E2 (Formal version of Lemma 4.3)). Let M = {γ1, . . . , γvγ} be an ϵγ-net of
{γ : ∥γ∥F = 1} as defined in Lemma D.3, where ϵγ = min( a1

4bz
√
nx

, 1), vγ = Õ(n2.5
x n2.5

z )anxnz
4 , and a4 =

4bz
√
nx

a1
.

Define

E1,i = {∃ γ ∈ ΓT , s.t. bi,km+Li,k
(γzkm+Li,k

)ji,km+Li,k ≥ a1δ

4
√
nx

, ∀ k ≥ 0}.

Then, we have

P(E1 ∩ E2) ≤
vγ∑
i=1

P(E1,i ∩ E2).

The rest of this subsubsection is dedicated to the proof of Lemma D.8. As an overview: firstly, we will discuss the
implications of E2 on γi ∈ M. Then, we discuss the implications of E2 on any γ. Lastly, we prove Lemma D.8 by combining
the implications of E2 on any γ and ∥γ∥F ≥ δ/2.

Lemma D.9 (The implication of E2 on γi). If E2 happens, then for any γi ∈ M, any 0 ≤ k ≤ T/m− 1, we have

max
1≤s≤m

∥γizkm+s∥∞ ≥ a1√
nx

.

Therefore, almost surely, we have 1 ≤ Li,k ≤ m and

bi,km+Li,k
(γizkm+Li,k

)ji,km+Li,k ≥ a1√
nx

.

Proof. If E2 happens, then by definition, we have

1

m

m∑
s=1

zkm+sz
⊤
km+s ⪰ a21Inz

,

for all 0 ≤ k ≤ T/m− 1.

Now, for any γi ∈ M, we have that

1

m

m∑
s=1

γizkm+sz
⊤
km+sγ

⊤
i ⪰ a21γiγ

⊤
i . (8)

Therefore, by taking trace at each side of (8), we obtain

1

m

m∑
s=1

tr(γizkm+sz
⊤
km+sγ

⊤
i ) ≥ a21tr(γiγ⊤

i ) (9)

Since γi ∈ Snx×nz
(0, 1), we have ∥γi∥F = 1, so tr(γiγ⊤

i ) = tr(γ⊤
i γi) = ∥γi∥2F = 1. Further, we have

tr(γizkm+sz
⊤
km+sγ

⊤
i ) = tr(z⊤km+sγ

⊤
i γizkm+s) = z⊤km+sγ

⊤
i γizkm+s = ∥γizkm+s∥22.
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Consequently, we have
1

m

m∑
s=1

∥γizkm+s∥22 ≥ a21

for all k.

By the pigeonhole principle, we have that
max

1≤s≤m
∥γizkm+s∥22 ≥ a21.

This is equivalent with max1≤s≤m ∥γizkm+s∥2 ≥ a1.

Notice that ∥γizkm+s∥2 ≤ √
nx∥γizkm+s∥∞, so max1≤s≤m

√
nx∥γizkm+s∥∞ ≥ a1, which completes the proof of the

first inequality in the lemma statement.

Next, we prove the second inequality in the lemma statement. Notice that by the definition of Li,k in Lemma D.7
and by η = a1√

nx
, we have 1 ≤ Li,k ≤ m and ∥γizkm+Li,k

∥∞ ≥ a1√
nx

for all k. Further, by Lemma D.6, we have

∥γizkm+Li,k
∥∞ = bi,km+Li,k

(γizkm+Li,k
)ji,km+Li,k almost surely. Hence, we have bi,km+Li,k

(γizkm+Li,k
)ji,km+Li,k ≥

a1√
nx

, which completes the proof.

Lemma D.10 (The implication of E2 on γzt). If E2 happens, then for any γ ∈ Rnx×nz , there exists 1 ≤ i ≤ vγ , such that

bi,km+Li,k
(γzkm+Li,k

)ji,km+Li,k ≥ a1
2
√
nx

∥γ∥F ,

for all 0 ≤ k ≤ T/m− 1.

Proof. Firstly, when γ = 0, the inequality holds because both sides are 0.

Next, when γ ̸= 0, it suffices to prove bi,km+Li,k
( γ
∥γ∥F

zkm+Li,k
)ji,km+Li,k ≥ a1

2
√
nx

. Therefore, we will only consider
γ ∈ Snx×nz

(0, 1). By Lemma D.3, there exists γi ∈ M such that ∥γ − γi∥F ≤ 2ϵγ = min( a1

2bz
√
nx

, 2). Notice that by
Lemma D.9, if E2 happens, for all k, we have

bi,km+Li,k
(γizkm+Li,k

)ji,km+Li,k ≥ a1√
nx

.

Therefore,

bi,km+Li,k
(γzkm+Li,k

)ji,km+Li,k = bi,km+Li,k
(γizkm+Li,k

)ji,km+Li,k

− bi,km+Li,k
((γi − γ)zkm+Li,k

)ji,km+Li,k

≥ a1√
nx

− |bi,km+Li,k
((γi − γ)zkm+Li,k

)ji,km+Li,k |

≥ a1√
nx

− ∥(γi − γ)zkm+Li,k
∥2

≥ a1√
nx

− ∥γi − γ∥2∥zkm+Li,k
∥2

≥ a1√
nx

− 2ϵγbz ≥ a1
2
√
nx

Proof of Lemma D.8. By Lemma D.10, under E2, for any γ ∈ Rnx×nz , there exists 1 ≤ i ≤ vγ , such that

bi,km+Li,k
(γzkm+Li,k

)ji,km+Li,k ≥ a1
2
√
nx

∥γ∥F ,
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for all 0 ≤ k ≤ T/m− 1. Therefore, if E1 ∩ E2 happens, there exists γ ∈ ΓT and a corresponding i, such that

bi,km+Li,k
(γzkm+Li,k

)ji,km+Li,k ≥ a1
2
√
nx

∥γ∥F ≥ a1δ

4
√
nx

.

Therefore,

P(E1 ∩ E2) ≤ P(
vγ⋃
i=1

E1,i ∩ E2) ≤
vγ∑
i=1

P(E1,i ∩ E2),

which completes the proof.

D.3.3. PROOF OF LEMMA 4.4

Notice that Lemma 4.4 states two inequalities: in the following, we will first prove the first inequality P(E1,i ∩ E2) ≤
P(∩T/m−1

k=0 Gi,k), then prove the second inequality on P(Gi,k | ∩k−1
k′=0Gi,k′).

Lemma D.11 (Bound E1,i ∩ E2 by Gi,k). Under the conditions in Lemma 4.4, for any 1 ≤ i ≤ vγ , we have

P(E1,i ∩ E2) ≤ P(
T/m−1⋂
k=0

Gi,k).

Proof. Firstly, for any γ ∈ ΓT , we have ∥wt − γzt∥∞ ≤ wmax for all t ≥ 0. This suggests that, for any 1 ≤ j ≤ nx, we
have

−wmax ≤ wj
t − (γzt)

j ≤ wmax.

Hence, we have b(γzt)
j ≤ bwj

t + wmax for any b ∈ {−1, 1}, 1 ≤ j ≤ nx, and t ≥ 0.

Next, by E1,i, there exists γ ∈ ΓT such that bi,km+Li,k
(γzkm+Li,k

)ji,km+Li,k ≥ a1δ
4
√
nx

for all k ≥ 0. Therefore,

bi,km+Li,k
w

ji,km+Li,k

km+Li,k
+ wmax ≥ a1δ

4
√
nx

for all k.

Finally, E1,i ∩ E2 implies that bi,km+Li,k
w

ji,km+Li,k

km+Li,k
+ wmax ≥ a1δ

4
√
nx

and 1
m

∑m
s=1 zkm+sz

⊤
km+s ⪰ a21Inz

for all k, which
is
⋂

k Gi,k by the definition of Gi,k.

Lemma D.12 (Bound on P(Gi,k | ∩k−1
k′=0Gi,k′)). Under the conditions in Lemma 4.4, for any 1 ≤ i ≤ vγ and any k ≥ 0,

we have

P(Gi,k |
k−1⋂
k′=0

Gi,k′) ≤ 1− qw(
a1δ

4
√
nx

).

Proof. Firstly, notice that when 1
m

∑m
s=1 zkm+sz

⊤
km+s ⪰ a21Inz , we have 1 ≤ Li,k ≤ m by the proof of Lemma D.9.

Therefore, we have

P(Gi,k |
k−1⋂
k′=0

Gi,k′) ≤ P(bi,km+Li,k
w

ji,km+Li,k

km+Li,k
+ wmax ≥ a1δ

4
√
nx

, 1 ≤ Li,k ≤ m |
k−1⋂
k′=0

Gi,k′)

≤
m∑
l=1

P(bi,km+lw
ji,km+l

km+l + wmax ≥ a1δ

4
√
nx

, Li,k = l |
k−1⋂
k′=0

Gi,k′)

≤
m∑
l=1

P(bi,km+lw
ji,km+l

km+l + wmax ≥ a1δ

4
√
nx

| Li,k = l,

k−1⋂
k′=0

Gi,k′)P(Li,k = l |
k−1⋂
k′=0

Gi,k′)

(a)

≤ (1− qw(
a1δ

4
√
nx

))

m∑
l=1

P(Li,k = l |
k−1⋂
k′=0

Gi,k′)
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≤ 1− qw(
a1δ

4
√
nx

)

The inequality (c) is proved in the following:

P(bi,km+lw
ji,km+l

km+l + wmax ≥ a1δ

4
√
nx

| Li,k = l,

k−1⋂
k′=0

Gi,k′)

=

∫
v0:km+l

P(bi,km+lw
ji,km+l

km+l + wmax ≥ a1δ

4
√
nx

, w0:km+l = v0:km+l | Li,k = l,

k−1⋂
k′=0

Gi,k′)dv0:km+l

=

∫
v0:km+l∈Skm+l

P(bi,km+lw
ji,km+l

km+l + wmax ≥ a1δ

4
√
nx

| w0:km+l = v0:km+l)

× P(w0:km+l = v0:km+l | Li,k = l,

k−1⋂
k′=0

Gi,k′)dv0:km+l

(b)

≤ (1− qw(
a1δ

4
√
nx

))

∫
v0:km+l∈Skm+l

P(w0:km+l = v0:km+l | Li,k = l,

k−1⋂
k′=0

Gi,k′)dv0:km+l

= 1− qw(
a1δ

4
√
nx

),

where we define a shorthand notation w0:km+l = (w0, . . . , wkm+l−1), and we use v0:km+l to denote a realization of
w0:km+l, then we define the set of values of w0:km+l as Skm+l such that Li,k = l,

⋂k−1
k′=0 Gi,k′ holds. Notice that

Li,k = l can be determined by a set of values of w0:km+l because Li,k is a stopping time of {Fkm+l}l≥1 and thus
{Li,k = l} ∈ Fkm+l. The inequality (b) above is because of the following: firstly, notice that bi,km+l, ji,km+l ∈ Fkm+l, so
bi,km+l, ji,km+l are deterministic values when w0:km+l = v0:km+l. Further, since wkm+l is independent of w0:km+l, we
have P(wmax + bwj

km+l ≥ ϵ | w0:km+l = v0:km+l) ≤ 1− qw(ϵ) for any deterministic b, j and any ϵ > 0 by Assumption
2.6. Hence, we have P(bi,km+lw

ji,km+l

km+l + wmax ≥ a1δ
4
√
nx

| w0:km+l = v0:km+l) ≤ 1− qw(
a1δ

4
√
nx

).

D.3.4. PROOF OF LEMMA 4.2

The proof is by leveraging Lemma D.8 and Lemma 4.4.

P(E1 ∩ E2) ≤
vγ∑
i=1

P(E1,i ∩ E2)

≤
vγ∑
i=1

P(
T/m−1⋂
k=0

Gi,k)

=

vγ∑
i=1

P(Gi,0)P(Gi,1 | Gi,0) · · ·P(Gi,T/m−1 |
T/m−2⋂
k=0

Gi,k)

≤
vγ∑
i=1

(1− qw(
a1δ

4
√
nx

))T/m

≤ 544n2.5
x n2.5

z log(a4nxnz)a
nznx
4 (1− qw(

a1δ

4
√
nx

))T/m.

D.4. A more precise upper bound for Theorem 3.1

By the proof of Lemma 4.1 and Lemma 4.2 above, we have

P(diam(ΘT ) > δ) ≤ 544
T

m
n2.5
z log(a2nz)a

nz
2 exp(−a3m)+544n2.5

x n2.5
z log(a4nxnz)a

nznx
4 (1− qw(

a1δ

4
√
nx

))T/m (10)
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E. Proof of Corollary 3.2
The proof involves two parts. Firstly, we will show that Term 1 ≤ ϵ under our choice of m. Secondly, we will let Term 2 = ϵ,
then we will show δ ≤ Õ(n1.5

x n2
z/T ), which completes the proof.

Step 1: show Term 1 ≤ ϵ. Notice that when m ≥ 1
a3
(log(Tϵ ) + nz log(a2) + 2.5 log(nz) + log log(a2nz) + 7) =

O(nz + log T + log(1/ϵ)), we have TÕ(n2.5
z )anz

2 exp(−a3m) ≤ ϵ. Since m ≥ 1, we obtain Term 1 ≤ ϵ.

Step 2: let Term 2 = ϵ and show δ ≤ Õ(n1.5
x n2

z/T ). Let Term 2 = ϵ, then we have (1 − qw(
a1δ

4
√
nx

))T/m =

ϵ
Õ(n2.5

x n2.5
z )anxnz

4

. Then, we obtain (1− qw(
a1δ

4
√
nx

)) =
(

ϵ
Õ(n2.5

x n2.5
z )anxnz

4

)m/T

, which is equivalent with

qw(
a1δ

4
√
nx

) = 1−
(

ϵ

Õ(n2.5
x n2.5

z )anxnz
4

)m/T

.

When qw(
a1δ

4
√
nx

) = O( a1δ
4
√
nx

), we obtain

δ = O(
4
√
nx

a1
)

(
1−

(
ϵ

Õ(n2.5
x n2.5

z )anxnz
4

)m/T
)

≤ O(
−4

√
nx

a1
) log

((
ϵ

Õ(n2.5
x n2.5

z )anxnz
4

)m/T
)

= O(
4
√
nxm

a1T
)(log(1/ϵ) + nxnz + log(nxnz))

= Õ

(
n1.5
x n2

z

T

)
.

Step 3: prove Corollary 3.2. By leveraging the bounds above and Theorem 3.1, we have P(diam(ΘT ) ≤ Õ
(

n1.5
x n2

z

T

)
) ≥

P(diam(ΘT ) ≤ δ) ≥ 1− 2ϵ.

Since θ∗ ∈ ΘT by definition, for any θ̂T ∈ ΘT , we have ∥θ̂T − θ∗∥F ≤ diam(ΘT ) ≤ Õ
(

n1.5
x n2

z

T

)
with probability at least

1− 2ϵ.

F. Proof of Corollary 3.3
We provide a formal version of Corollary 3.3 and its proof below.

Corollary F.1 (Convergence rate when B∗ = 0 (formal version)). When A∗ is (κ, ρ)-stable, i.e., ∥(A∗)t∥2 ≤ κ(1− ρ)t for
all t with ρ < 1, for any m > 0 and any δ > 0, when T > m, we have

P(diam(AT ) > δ) ≤ T

m
Õ(n2.5

x )anx
2 exp(−a3m) + Õ(n5

x)a
n2

4 (1− qw(
a1δ

4
√
nx

))⌈T/m⌉

where bx = κ∥x0∥2 + κ
√
nx/ρ, px = 1/192, σx =

√
λmin(Σw)/2, a1 = σxpx

4 , a2 = 64wmax

σ2
xp

2
x

, a3 =
p2
x

8 , a4 =
4bx

√
nx

a1
.

Consequently, when the distribution of wt satisfies qw(ϵ) = O(ϵ), e.g. uniform or truncated Gaussian, we have ∥θ̂ − θ∗∥ ≤
Õ(n3.5

x /T ).

The proof of Corollary 3.3 is exactly the same as the proofs of Theorem 3.1 and Corollary 3.2. When A∗ is stable, we
can show that ∥xt∥2 ≤ bx for all t. Further, by (Dean et al., 2019b), the sequence {xt}t≥0 satisfies the (1, σx, px)-BMSB
condition. Therefore, we complete the proof.

G. Proof of Theorem 3.4
Specifically, we define ϵ0 =

4
√
nx

a1
(ŵmax − wmax).
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The proof is similar to the proof of Theorem 3.1. Firstly, we define Γ̂T as a translation of the set Θ̂T :

Γ̂t =

t−1⋂
s=0

{γ : ∥ws − γzs∥∞ ≤ ŵmax}, ∀ t ≥ 0. (11)

Notice that

Θ̂T = θ∗ + Γ̂T

by considering γ = θ̂ − θ∗. Therefore, we can upper bound our goal event {diam(Θ̂T ) > δ + ϵ0} by the event E3 defined
below.

P(diam(Θ̂T ) > δ + ϵ0) ≤ P(E3), where E3 := {∃ γ ∈ Γ̂T , s.t. ∥γ∥F ≥ δ + ϵ0
2

}. (12)

Next, notice that

P(diam(Θ̂T ) > δ + ϵ0) ≤ P(E3) ≤ P(E3 ∩ E2) + P(Ec
2)

By Lemma 4.1, we have already shown P(Ec
2) ≤ Term 1. So we only need to discuss P(E3 ∩ E2).

Lemma G.1.
P(E3 ∩ E2) ≤ Term 2

Proof. Firstly, define

E3,i = {∃ γ ∈ Γ̂T , s.t. bi,km+Li,k
(γzkm+Li,k

)ji,km+Li,k ≥ a1(δ + ϵ0)

4
√
nx

, ∀ k ≥ 0}.

We have P(E3 ∩ E2) ≤
∑vγ

i=1 P(E3,i ∩ E2) based on the same proof ideas of Lemma D.8.

Next, we will show that

Pr(E3,k ∩ E2) ≤ P(
T/m−1⋂
k=0

Gi,k) (13)

This is because for any γ ∈ Γ̂T , we have b(γzt)
j ≤ bwj

t + ŵmax for any b ∈ {−1, 1}, 1 ≤ j ≤ nx, and t ≥ 0. By E3,i,
there exists γ ∈ Γ̂T such that bi,km+Li,k

(γzkm+Li,k
)ji,km+Li,k ≥ a1(δ+ϵ0)

4
√
nx

for all k ≥ 0. Thus, bi,km+Li,k
w

ji,km+Li,k

km+Li,k
+

ŵmax ≥ a1(δ+ϵ0)
4
√
nx

for all k. Notice that this is equivalent with bi,km+Li,k
w

ji,km+Li,k

km+Li,k
+ wmax ≥ a1δ

4
√
nx

for all k because

ϵ0 =
4
√
nx

a1
(ŵmax − wmax). In this way, we can prove (13).

Finally, we can complete the proof by the following.

P(E3 ∩ E2) ≤
vγ∑
i=1

P(E3,i ∩ E2) ≤
vγ∑
i=1

P(
T/m−1⋂
k=0

Gi,k)

=

vγ∑
i=1

P(Gi,0)P(Gi,1 | Gi,0) · · ·P(Gi,T/m−1 |
T/m−2⋂
k=0

Gi,k)

≤
vγ∑
i=1

(1− qw(
a1δ

4
√
nx

))T/m ≤ Term 1

where the second last inequality is by Lemma D.12 and the last inequality uses the definition of vγ in Lemma D.3.
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H. Proofs of Theorem 3.5, Corollary 3.6, and Theorem 3.7
This section provides proofs of the main results related to the SME with unknown wmax as discussed in Section 3.2.
Namely, Theorem 3.5 and Corollary 3.6 provide the rate of convergence of the estimator w̄(T )

max defined in (4) to wmax, and
Theorem 3.7 states the rate of convergence of UCB-SME algorithm introduced in (5).

For ease of notation, we introduce the following function indexed by the time horizon T > 0,

WT : θ 7→ max
0≤t≤T−1

∥xt+1 − θzt∥∞. (14)

The estimator w̄(T )
max is simply the infimum of this function, i.e., w̄(T )

max = infθ WT (θ).

H.1. Proof of Theorem 3.5

The proof of Theorem 3.5 involves two steps:

• Step 1: We demonstrate that the learning error of wmax incurred by the estimator w̄(T )
max is governed by the diameter of

the uncertainty set ΘT and the minimum learning error achievable if θ∗ were known.

• Step 2: We then provide an upper bound the probability of learning error exceeding a fixed threshold.

Before we proceed with the proof of Theorem 3.5, we present the the following technical lemma.

Lemma H.1. Consider the sequence of functions {WT }T>0 defined in (14). The following holds:

i. WT is convex in Rnx×nz ,

ii. The sequence {infθ WT (θ)}T>0 is bounded and monotonically non-decreasing, i.e.,

0 ≤ inf
θ
WT (θ) ≤ inf

θ
WT+1(θ) ≤ wmax,

for all T > 0,

iii. WT attains its minimum in ΘT , i.e., argminθ WT (θ) ⊂ ΘT .

Proof. (i.) For 0 ≤ t ≤ T − 1, the function θ 7→ ∥xt+1 − θzt∥∞ is convex due to convexity of norms. Since the maximum
of convex functions is convex (Boyd & Vandenberghe, 2004), convexity of WT follows.
(ii.) Notice that WT+1 can be defined in terms of WT recursively as WT+1(θ) = max (WT (θ), ∥xT+1 − θzT ∥∞). Thus,
WT (θ) ≤ WT+1(θ) for all θ ∈ Rnx×nz , implying monotonicity of {infθ WT (θ)}T>0. To see boundedness, first notice that

WT (θ
∗) = max

0≤t≤T−1
∥xt+1 − θ∗zt∥∞ = max

0≤t≤T−1
∥wt∥∞ ≤ wmax,

since xt+1 = θ∗zt + wt. Therefore, for any T > 0, we have that

inf
θ
WT (θ) = inf

θ
max

0≤t≤T−1
∥xt+1 − θzt∥∞ ≤ max

0≤t≤T−1
∥xt+1 − θ∗zt∥∞ ≤ wmax

.
(iii.) First, we show that WT attains its minimum on Rnx×nz . If zt = 0 for t ∈ [T ], then WT is a constant function and
any θ ∈ Rnx×nz is a minimum of WT . Now, suppose zt ̸= 0 for some t ∈ [T ]. Then, WT diverges at the infinity, i.e.,
limk→∞ WT (θk) = ∞ for any sequence {θk}k∈N such that ∥θk∥ → ∞ as k → ∞. Since WT is convex and bounded below
with finite infimum, there exists a global minimizer θ̄T ∈ Rnx×nz such that WT (θ̄T ) = infθ WT (θ) = w̄

(T )
max. Furthermore,

by (ii), we have that ∥xt+1 − θ̄T zt∥∞ ≤ wmax for all t ∈ [T ] and any global minimizer θ̄T ∈ argminθ WT (θ), hence
θ̄T ∈ ΘT by definition.
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Step 1 of the Proof of Theorem 3.5: We first show that the error margin of the estimate w̄
(T )
max from wmax is governed

by the sum of two factors: (i) the diameter of ΘT , which arises due to the lack of knowledge of θ∗, and (ii) the minimum
learning error achievable if θ∗ were known, namely

0 ≤ wmax − w̄(T )
max ≤ bzdiam(ΘT ) + wmax − max

0≤t≤T−1
∥wt∥∞. (15)

First, 0 ≤ wmax− w̄
(T )
max is simply due to Lemma H.1. Next, we prove the second inequality wmax− w̄

(T )
max ≤ bzdiam(ΘT )+

wmax −max0≤t≤T−1 ∥wt∥∞. By Lemma H.1, there exists θ̄T ∈ ΘT such that WT (θ̄T ) = wmax and

wmax = max
0≤t≤T−1

∥xt+1 − θ̄T zt∥∞,

= max
0≤t≤T−1

∥xt+1 − θ∗zt + (θ∗ − θ̄T )zt∥∞,

≥ max
0≤t≤T−1

(∥xt+1 − θ∗zt∥∞ − ∥(θ∗ − θk)zt∥∞) ,

where the inequality is due to reverse triangle inequality. Furthermore, by using the equivalence of ℓ2 and ℓ∞ norms, i.e.,
∥x∥2 ≤ ∥x∥∞ for x ∈ Rnx , we bound wmax further below by

wmax ≥ max
0≤t≤T−1

(
∥xt+1 − θ∗zt∥∞ − ∥(θ∗ − θ̄T )zt∥2

)
,

≥ max
0≤t≤T−1

(
∥xt+1 − θ∗zt∥∞ − ∥θ∗ − θ̄T ∥2∥zt∥2

)
,

≥ max
0≤t≤T−1

∥wt∥∞ − bzdiam(ΘT ),

where the second inequality is due to ∥θ∗ − θ̄T ∥2 := supz ̸=0
∥(θ∗−θ̄T )z∥2

∥z∥2
≤ ∥(θ∗−θ̄T )zt∥2

∥zt∥2
and the third inequality follows

from the assumption ∥zt∥2 ≤ bz , the equivalence of Frobenius and spectral norms ∥θ∗ − θ̄T ∥2 ≤ ∥θ∗ − θ̄T ∥F , and
θ∗, θ̄T ∈ ΘT . Consequently,

wmax − w̄(T )
max ≤ wmax − max

0≤t≤T−1
∥wt∥∞ + bzdiam(ΘT ).

This completes the proof of the first step.

Step 2 of the Proof of Theorem 3.5: Using the learning error bound in (15), we obtain an upper bound on the probability
of learning error exceeding a fixed δ > 0 as shown below

P(wmax − w̄(T )
max > δ) ≤ T1 + T2

(
δ

2bz

)
+ T5

(
δ

2

)
, (16)

where T5(δ) := (1− qw(δ))
T .

First, using the the fact that {wt}T−1
t=0 are iid, we show that

P
(
wmax − max

0≤t≤T−1
∥wt∥∞ > δ

)
= P(wmax − δ > ∥wt∥∞, ∀ 0 ≤ t ≤ T − 1),

=

T−1∏
t=0

P(wmax − δ > ∥wt∥∞),

≤
T−1∏
t=0

P(wmax − δ > w1
t ),

≤ (1− qw(δ))
T ,

where the first inequality is due to w1
t ≤ ∥wt∥∞ and the second inequality is from Assumption 2.6. Finally, we obtain the

desired convergence rate using the error bound in (15) as follows

P(wmax − w̄(T )
max > δ) ≤ P

(
bzdiam(ΘT ) + wmax − max

0≤t≤T−1
∥wt∥∞ > δ

)
28



Learning the Uncertainty Sets for Linear Dynamics via Set Membership: A Non-asymptotic Analysis

≤ P
(
bzdiam(ΘT ) > δ/2 or wmax − max

0≤t≤T−1
∥wt∥∞ > δ/2

)
≤ P

(
diam(ΘT ) >

δ

2bz

)
+ P

(
wmax − max

0≤t≤T−1
∥wt∥∞ > δ/2

)
≤ T1 + T2

(
δ

2bz

)
+ T5(δ/2).

where the last inequality is by Theorem 3.1.

This completes the second and the last step of the proof.

H.2. Proof of Corollary 3.6

First, by the proof of Corollary 3.2 in Appendix E, we have that T1 = T
m Õ(n2.5

z )anz
2 exp(−a3m) ≤ ϵ whenever m ≥

O(nz+log T+log 1
ϵ ).

Next, we show T5(δT /2) ≤ T2(
δT
2bz

). Since bz ≥ σz by the definition of BMSB, we have a1δT
8
√
nxbz

≤ δT
2 . Since qw(·) is a

non-decreasing function, we have 1− qw(
a1δT

8
√
nxbz

) ≥ 1− qw(
δT
2 ). Notice that m ≥ 1, and the constant factors in front of

the (1− qw(·))⌈(T/m)⌉ in T2 is also larger than 1. Consequently, T2(
δT
2bz

) ≥ T5(δ/2). Therefore, the choice of δT for the
second term T2 also guarantees T5(δT /2) ≤ ϵ.

Therefore, it suffices to ensure T2(
δT
2bz

) ≤ ϵ. Notice that, when δT
2bz

= 2wmax, then T2(
δT
2bz

) = 0 ≤ ϵ, so there exists δT
such that T2(

δT
2bz

) ≤ ϵ.

Next, we will show that there exists such δT that diminishes to zero as T goes to infinity. Notice that we need

1− qw

(
a1δT

8bz
√
nx

)
≤
(

ϵ

Õ((nxnz)2.5a
nxnz
4 )

)1/⌈T/m⌉

,

so that

qw

(
a1δT

8bz
√
nx

)
≥ 1−

(
ϵ

Õ((nxnz)2.5a
nxnz
4 )

)1/⌈T/m⌉

,

where the right hand side converges to zero as T → ∞.

Now, consider δ(k) = 1/k. Since qw
(

a1δ(k)
8bz

√
nx

)
> 0, there exists a large enough Tk for any k > 0 such that for any T ≥ Tk,

we have that

qw

(
a1δ(k)

8bz
√
nx

)
≥ 1−

(
ϵ

Õ((nxnz)2.5a
nxnz
4 )

)1/⌈Tk/m⌉

.

Furthermore, for any T > 0, we can define

δT =

{
δ(k), if Tk ≤ T < Tk+1, for k > 0,

2wmax, if T < T1.

In this way, δT satisfies T2(
δT
2bz

) ≤ ϵ and δT → 0 as T → +∞.

Finally, using the proof of Corollary 3.2, we can show that there exists δT
2bz

= Õ(n1.5
x n2

z/T ) such that T2(
δT
2bz

) ≤ ϵ whenever
qw(δ) = O(δ). This implies δT = Õ(n1.5

x n2
z/T ) and completes the proof.

H.3. Proof of Theorem 3.7

We first show that the unknown θ∗ is a member of USC-SME uncertainty set Θ̂ucb
T with high probability. By Theorem 3.5,

Corollary 3.6, and the definition in (5), we have

P(wmax > ŵ(T )
max) = P(wmax − w̄(T )

max > δT ) ≤ 3ϵ,

which implies 1− 3ϵ ≤ P(wmax ≤ ŵ
(T )
max) ≤ P(θ∗ ∈ Θ̂ucb

T ).
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Next, we show that the diameter of the UCB-SME uncertainty set is controlled by δT with high probability. Notice that
Θ̂ucb

T ⊆ ΘT (wmax + δT ) because w̄
(T )
max ≤ wmax. Therefore, by Theorem 3.4, the following holds for any constant r > 0:

P(diam(Θ̂ucb
T ) > r + a5

√
nxδT ) ≤ P(diam(ΘT (wmax + δT )) > r + a5

√
nxδT ),

≤ T1 + T2(r).

Let r = δT , then, using the inequality T2(δT ) ≤ T2(δT /2bz), we have that

P(diam(Θ̂ucb
T ) > δT + a5

√
nxδT ) ≤ P(diam(ΘT (wmax + δT )) > δT + a5

√
nxδT ),

≤ 2ϵ.

Therefore, with probability 1− 2ϵ, the diameter of Θ̂ucb
T is bounded above by

diam(Θ̂ucb
T ) ≤ δT + a5

√
nxδT = O(

√
nxδT ).

Finally, we can verify that the event {diam(Θ̂ucb
T ) ≤ δT + a5

√
nxδT = O(

√
nxδT )} and the event {θ∗ ∈ Θ̂ucb

T } simultane-
ously happen with probability at least 1− 3ϵ as follows:

P
(
θ∗ ̸∈ Θ̂T (ŵ

(T )
max), or diam(Θ̂T (wmax + δT )) > δT + a5

√
nxδT

)
≤ P

(
wmax− max

0≤t≤T−1
∥wt∥∞ ≥ δT /2, or diam(ΘT ) > δT /2bz, or diam(Θ̂T (wmax + δT )) > δT +a5

√
nxδT

)
≤ P

(
wmax− max

0≤t≤T−1
∥wt∥∞ ≥ δT /2

)
+ P

(
diam(ΘT ) > δT /2bz, or diam(Θ̂T (wmax + δT )) > δT +a5

√
nxδT

)
≤ ϵ+ P(E2) +

vγ∑
i=1

P

(⋂
k

Gi,k(min(δT /2bz, δT ))

)
≤ 3ϵ.

The third inequality follows from

• the proof of Theorem 3.5 in Appendix H.1,

• Theorem 3.4,

• the fact that the probabilties P(diam(ΘT ) > δT /2bz) and P(diam(Θ̂T (wmax + δT )) > δT + a5
√
nxδT ) are bounded

by the same events E2,

• and Gi,k(δT ), Gi,k(δT /2bz) ⊆ Gi,k(min(δT /2bz, δT )), where Gi,k(δ) is defined in Lemma 4.4 as a function of δ.

This completes the proof.

I. Simulation details and additional experiments
This section provides the details on the simulation experiments, along with some additional results. The code
for replicating the presented results can be found in the github repository: https://github.com/jy-cds/
non-asymptotic-set-membership.

I.1. Baseline: LSE’s confidence regions

In all our experiments, we use the 90% confidence region of the LSE as the baseline uncertainty set. The diameters of LSE’s
confidence regions are computed by taking minimum of the formulas provided in the following two papers: Lemma E.3 in
(Simchowitz & Foster, 2020) and Theorem 1 in (Abbasi-Yadkori & Szepesvári, 2011). To apply Theorem 1 in (Abbasi-
Yadkori & Szepesvári, 2011), we used regularization parameter λ = 0.1, δ = 0.1 for 90% confidence, S =

√
tr (θ∗,⊤θ∗),

variance proxy L = 1 for truncated Gaussian distribution and L = 4/3 for uniform distribution.
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To determine the parameters in Lemma E.3 of (Simchowitz & Foster, 2020), we approximately optimize the projection
matrix P in Lemma E.3 as follows. First, we consider an orthogonal transformation of the empirical covariance matrix Λ =∑T

t=1 ztz
⊤
t with Λ = GMG⊤ where G is unitary. This transforms the event E in Lemma E.3 to M ≥ λ1P0 + λ2(I − P0),

where GP0G
⊤ = P . We select P0 as a block matrix [[Ip, 0], [0, 0]], then optimize over the block size p in search of the

tightest LSE confidence bound.

I.2. Figure 1: SME and LSE uncertainty set visualization

In this experiment, we consider xt+1 = A∗xt + B∗ut + wt, where A∗ = 0.8 and B∗ = 1 are unknown. wt ∼
TrunGauss(0, σw, [−wmax, wmax]) is i.i.d. and ut ∼ TrunGauss(0, σu, [−umax, umax]) are also i.i.d generated, where
σw = σu = 0.5, and wmax = umax = 1. We compare SME that knows wmax = 1 and LSE’s 90% confidence region
computed based on Appendix I.1.

I.3. Figure 2

In this experiment, we consider the the linearized longitudinal flight control dynamics of Boeing 747 (Lale et al., 2022;
Mete et al., 2022) with i.i.d. bounded inputs and disturbances sampled from truncated Gaussian and uniform distribution.
The dynamics is xt+1 = A∗xt +B∗ut + wt with

A =


0.99 0.03 −0.02 −0.32
0.01 0.47 4.7 0
0.02 −0.06 0.4 0
0.01 −0.04 0.72 0.99

 B =


0.01 0.99
−3.44 1.66
−0.83 0.44
−0.47 0.25

 .

Disturbances are sampled from TrunGauss(0, I, [−wmax, wmax]
4) as well as Unif([−wmax, wmax]

4), while control inputs
are samples from TrunGauss(0, I, [−wmax, wmax]

2) in both disturbance settings, with wmax = 2. To compute the UCB for
SME using (5), we heuristically define δT = β

n1.5
x ·n2

z·(maxt ∥xt∥)
T , where nx = 4 and nz = 6 are the system dimension,

while β is a tunable parameter. This definition matches the dimension and time order of the theoretical analysis in
Corollary 3.6. In both experiments of Figure 2, we fix β = 0.01.

In Figure 2(a)-(b), we plot SME with accurate and conservative bounds of wmax, UCB-SME, and LSE’s 90% confidence
regions computed by Appendix I.1. We use 10 different seeds to generate the disturbance sequences for each plot, and use
the shaded region to denote 1 standard deviation from the mean (colored lines).

I.4. Figure 3

In this experiment, we consider autonomous systems of the form xt+1 = A∗xt +wt, where A∗ ∈ Rnx is randomly sampled
and its spectral radius is normalized to be 0.9. We simulate SME and LSE for nx = 5, 10, 15, 20, 25. The disturbances are
sampled from TrunGauss(0, I, [−wmax, wmax]

nx) as well as Unif([−wmax, wmax]
nx) with wmax = 2. This simula!tion is

run on 10 random seeds and the total length of the simulation is set to be T = 1000 across all nx experiments. The mean is
plotted as solid lines and the shaded regions denote 1 standard deviation from the mean.

Though SME’s theoretical bound with respect to the dimension is Õ(n1.5
x n2

z) from Corollary 3.3, which is much worse than
LSE’s bound, it is not reflected in Figure 3. Therefore, it is promising that the dimension scaling in the analysis in Section 3
can be further tightened. We leave this for future work.

I.5. Figure 4

To illustrate the quantitative impact of using SME for adaptive tube-based robust MPC, we study tube-based robust MPC
for a system xt+1 = A∗xt + B∗ut + wt with nominal system A∗ = 1.2, B∗ = 0.9 with an initial model uncertainty set
Θ0 := [1, 1.2]× [0.9, 1.1]. We use the basic tube-based robust MPC method (Rawlings et al., 2017; Mayne et al., 2005)
and parameterize the control policy as uk = Kxk + vk + ηk, where K = −1, vk is determined by the tube-based robust
MPC algorithm, and ηk is a bounded exploration injection with ηk ∼ Unif([−0.01, 0.01]). The disturbance wk has a known
bound of wmax = 0.1 and is generated to be i.i.d. Unif([−0.1, 0.1]). The horizon of the tube-based robust MPC is set to be
5. The state and input constraints are such that xk ∈ [−10, 10] and uk ∈ [−10, 10] for all k ≥ 0. We consider the task of
constrained LQ tracking problem with a time-varying cost function ct := (xt − gt)

⊤Q(xt−gt) + u⊤
t Rut where the target

trajectory is generated as gt = 8 sin(t/20).
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We compare the performance of an adaptive tube-based robust MPC controller that uses the SME for uncertainty set
estimation against one that uses the LSE 90% confidence region (LSE). For better visualization of the trajectory difference
as a result of different estimation methods, we used the minimum of the the dominant factors in Dean et al. (2018, equation
C.12) and the LSE 90% confidence region for the LSE uncertainty set. We also plot the offline optimal RMPC controller,
i.e., the controller that has knowledge of the true underlying system parameters (OPT).

Since the controller has to robustly satisfy constraints against the worst-case model in the uncertainty set, smaller uncertainty
set for the tube-based robust MPC means more optimal trajectories can be computed. This observation is consistent with the
extensive empirical results in the control literature (Lorenzen et al., 2019; Lu et al., 2019; Köhler et al., 2019).
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