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ABSTRACT

Genetic perturbation experiments play a crucial role in discovering the mecha-
nisms behind diseases and informing drug development. These experiments aim
to find a small subset out of many possible genes that yield a particular pheno-
type (e.g. cell growth) upon perturbation. However, the costs involved in each
experiment limits the number of perturbations that can be tested. In this paper, we
develop BioDiscoveryAgent, an Al agent that designs genetic perturbation exper-
iments adaptively based on previous perturbation results to enhance the detection
of perturbations that induce desired phenotypes. Our agent is based on language
models, which have rich biological knowledge, and generate reasoning for the
selection of genes to perturb. BioDiscoveryAgent attains an average of 23% im-
provement in detecting desired phenotypes across five datasets compared to exist-
ing Bayesian optimization baselines. This includes one dataset that is unpublished
and therefore guaranteed to not appear in the language model’s training data. Ad-
ditionally, BioDiscoveryAgent is uniquely able to predict gene combinations to
perturb, a task so far not explored in the setting of closed-loop experiment design.
Overall, our approach represents an accessible new paradigm in the computational
design of biological experiments, aimed at augmenting scientists’ capabilities and
accelerating scientific discovery.

1 INTRODUCTION

An essential challenge in drug discovery is identifying biological targets, such as proteins encoded
by genes, which, when modulated by a drug, lead to a desired phenotypic outcome (Scannell et al.|
2012). Misidentification of targets that do not effectively impact disease phenotype upon drug in-
teraction is a major cause of failure in clinical trials (Nelson et al., 2015). CRISPR-based genetic
perturbation experiments, which involve the repression or activation of genes followed by the mea-
surement of resulting biological effects, are instrumental in this search (Przybyla & Gilbert, [2022).
These experiments, known as perturbation screens or forward genetics screens (Schneeberger,2014;
Moresco et al., 2013)), have shown significant promise in various areas including drug target discov-
ery Wang & Doudnal (2023)), combating drug resistance, elucidating disease mechanisms Mamedov
et al.| (2023), cell engineering |Lim| (2022)), gene therapy |[Kalos et al.|(2011), and immunotherapy
Goodman et al.| (2022).

A perturbation screen typically targets all known protein-coding genes in humans, numbering around
19,000, yet anywhere between a handful of genes to a few thousand may exhibit the desired pheno-
type. Experimentally perturbing every single gene as part of the search is costly, and even more so
when considering gene combinations. By strategically designing these experiments in batches that
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prioritize genes likely to result in meaningful phenotypic effects, it is possible to reduce costs and
enhance the efficiency of the search process (King et al.l 2004; Cleary et al., 2017; [Huang et al.,
2023a; |Roohani et al., 2023). However, the selection of batches is difficult, requiring both domain-
specific knowledge and the ability to interpret and reason over prior experimental results. Recent
work has benchmarked existing Bayesian optimization algorithms for this task, but this requires
training bespoke machine learning models that are often difficult to interpret, on small datasets
(Mehrjou et all 2021} Lyle et al, [2023). Moreover, these models are unable to leverage the vast
biological prior knowledge contained within the scientific literature that is especially important in
early experimentation.

Closed-Loop Experiment Design
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Figure 1: An AI agent for closed-loop experiment design. In every round, the agent is given a
prompt that describes the research problem and includes experimental results from previous rounds.
It generates a set of genes to perturb in the next round and provides reasoning for its prediction. The
agent primarily makes use of a language model for its predictions but also has access to additional
tools such as the ability to search for relevant scientific papers on the internet.

In this paper, we apply language model-based agents to this task. Language Models (LMs) have
shown state of the art performance in information retrieval for clinical question answering (Moor
et al.,[2023)), gene set identification (Hu et al.,|2023)), cell type annotation using gene expression data
(Hou & J1,2024)) and patient matching for clinical trials (Wornow et al.,2024). Furthermore, agents
powered by LMs are particularly skilled at logical thinking and comparing various experimental
plans, which makes them useful in the design and execution of scientific experiments (Liu et al.,
2023 |Huang et al.| [2023b)). They are also capable of making use of tools such as executing code
that confer additional capabilities to the LM beyond prompt-based text generation [Schick et al.
(2024).

Here, we present BioDiscoveryAgent, an Al agent that designs genetic perturbation experiments
using a language model in conjunction with a suite of tools (Figure [Th). In each round, the agent
constructs a prompt that includes both the task description and experimental results from previous
rounds. The prompt is fed to a language model, Claude v1, and the response is processed to extract
the set of genes to perturb in the next round of experiments. For this task, the LM can also choose
how best to leverage different tools, such as searching the scientific literature for relevant articles or
querying information from tabular datasets that would otherwise not be available via text. BioDis-
coveryAgent outperforms baseline methods for experiment design, identifying 23% more experi-
mental hits after five experimental rounds of 128 genes each. It also shows enhanced performance
in a new setting, predicting responses to combinatorial gene perturbations. Unlike conventional ap-
proaches that are entirely black-box, the agent’s decision-making is fully transparent at every stage
and can be enhanced through using tools such as LM-based model critique. Overall, BioDiscov-
eryAgent utilizes its vast biological knowledge along with the ability to reason over insights from
previous experimental results to offer an accessible and interpretable method for designing genetic
perturbation experiments.
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2 PROBLEM FORMULATION

We study the following closed-loop experimental design task: an agent determines which genes to
perturb in each experiment round, using the results to plan subsequent rounds. The objective is to
maximize the number of hit genes or gene combinations that are detected over the full course of
rounds. In particular, we test our model on two real-world experimental settings:

Single-gene perturbation: Let G represent the set of all protein-coding genes in humans, where
|G| = 19000. The effect of perturbing a gene g € G, is denoted by a phenotypic response function
f(g), where f : G — R maps each gene to a real-valued phenotypic response. In this setting, we
define an experimental round as the perturbation of a set of genes {g1, ¢2,...,95} C G. Each gene
in this set is perturbed individually within separate cells. The goal of the experiment is to identify
those genes that upon perturbation produce a desired phenotype, f(g) > 7 for some threshold 7.
These genes are referred to as hits for that phenotype.

The goal for the agent is to guide the design of these experiments, such that over t = 1,2,...,T
experimental rounds, the total number of hits identified can be maximized. The experiment design
procedure involves selecting b genes to perturb at each round t. Let B; refer to the set of genes
selected at round ¢. Following this selection, the phenotypic response of perturbing each of these
genes f(g) for each g € By is revealed. In the next round (¢ + 1), the agent has access to all
phenotypic responses for genes tested in previous rounds: 1,2, ...,¢.

At the end of T" rounds, the total hit ratio is computed as the fraction of true hits that were discovered

through the series of experiments. Let G, = U]_, B;", where B}t = {g € B; : f(g) > 7} represents

the hits identified in round ¢. The hit ratio can then be formally expressed as hit ratio = Ig“‘l , where
P

G, s the set of all true hits for the phenotype, G, = {g € G : f(g) > 7}. We use the terms hit ratio
and top-K recall interchangeably.

Two-gene perturbation: We also consider a new problem setting of predicting gene pairs (2-gene
combinations) to perturb. Here, each query consists of two genes perturbed in a single cell simul-
taneously. This formulation is both more computationally challenging given the larger search space
as well as biologically impactful. Let G = G x G denote the set of all possible gene pairs that can
be perturbed. Each element in G is a pair of genes (gq, g») Where gq, g» € G. The perturbation
experiment in this context is represented by a function f, : G> — R. This function f, maps each
gene pair to a real-valued phenotypic response, which measures the combined effect of perturbing
both genes simultaneously. The goal for the agent in this setting is to identify pairs of genes whose
combined perturbation results in the desired phenotypic results, i.e. f.(gq, gp) > 7. Thus, hits also
correspond to gene pairs instead of single genes.

3 BIODISCOVERYAGENT

We now present BioDiscoveryAgent which uses an LM to automate the scientific discovery process
for this biological setting. The overall algorithm is shown in AlgorithmT}

In the single gene setting, at each step ¢, the agent’s objective is to select a batch of B genes for
testing in the next step. The agent receives a prompt that describes general information about the
experimental setup and the biological hypothesis being tested (Figure [4h, Appendix [C| D). The
results from each experiment are incorporated into the next prompt, along with the same information
about the experimental setup. This prompt creation draws from established methods in developing
other LM-based agents, such as pre-action reasoning (Yao et al., 2022), reflective thinking (Shinn
et al.,[2023)), and stepwise planning (aut, [2023)).

The primary mechanism by which BioDiscoveryAgent interacts with the human user is through
natural language. An LM provides the capability to understand the prompts and generate responses
and has been trained on large corpora of text including the biological literature. Additionally, the
agent also has access to multiple resources to aid in this decision-making beyond what is stored
within its weights. These include direct access to the biomedical literature, a second agent to critique
its predictions, and the ability to analyze tabular datasets containing gene features relevant to the
experimental setting. See Appendix [G]for full implementation details and Figure [ for overall agent
pipeline.
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Figure 2: Per-round performance comparison to machine learning baselines for 1-gene pertur-
bation experiments: Each line averages results from 10 runs, with error bars indicating 1 standard
deviation. 128 genes were predicted per round over 5 rounds.

4 EXPERIMENTS

We assess model performance using data from past genetic perturbation experiments. Thus, we
simulate the perturbation of a gene g that is recommended by the agent by retrieving the relevant
observation of the perturbation-induced phenotype f(g) from this dataset. For each perturbation
screen, we calculate the hit ratio as the proportion of discovered hits out of the total true hits for that
screen.

We tested our model’s effectiveness through a series of batched experiments, each targeting 128
genes. At the beginning of each round, the model receives a prompt detailing the experiment’s
setup, the phenotypic outcome measured, and previously observed results. The agent processes this
information to select a new batch of 128 genes for perturbation in the next round. This cycle repeats
for five rounds, with the cumulative hit ratio recorded at each round.

For the single-gene perturbation setting, we make use of five different datasets spread across different
cell types. Each of the datasets contains the phenotypic response of knocking-down over 18,000
individual genes in distinct cells, with the exception of [Scharenberg et al.|(2023) which contains data
for 1061 perturbations. All datasets were released after 2021, apart from one dataset by Steinhart
et al., which is so far unpublished. For baseline models, we use the methods implemented in the
GeneDisco benchmark (Mehrjou et al., 2021). See Appendix

5 RESULTS

BioDiscoveryAgent outperforms baselines based on hit ratio for 1-gene perturbation experi-
ments: We compare the performance of BioDiscoveryAgent in its vanilla form (without any tools)
and its enhanced form (with all available tools) against a range of machine learning benchmarks,
including random sampling. As shown in Table ] BioDiscoveryAgent with all tools significantly
outperform baseline methods by 23% on average for hit ratios measured at experimental round 5.
Performance improvement is observed across 5 of the 6 datasets. As shown in Figure[3] this gap is
especially large at earlier rounds, where the LM can leverage its prior knowledge in biology to select
promising gene candidates right away, in contrast to baseline methods that suffer from the cold start
problem.

The vanilla agent outperforms all baselines except for the coreset approach. This exception is likely
due to the coreset method’s effective use of the gene feature dataset to identify diverse genes, infor-
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mation that may not be redundant with information found in the scientific literature. When using all
tools, BioDiscoveryAgent merges its biological knowledge with additional data sources like gene
features, enhancing its overall performance beyond that achieved by the coreset approach.

To verify that the model isn’t relying on uninformative hits, we measured model performance in
predicting hits that are non-essential genes. Essential genes are likely to be detected as hits under any
perturbation screen given the strong phenotypic effect of perturbing these genes Kim & Hart (202 1}).
On the other hand, the response of non-essential genes to perturbation, is harder to predict. When
filtering for non-essential genes, BioDiscoveryAgent still shows a 20% performance improvement
on average over baselines (Figure[6). Notably, the agent outperforms baselines across all 6 datasets
when only considering non-essential genes.

Additionally, we tested the model’s tendency to distinct genes when prompted differently and upon
observing different experimental results. We observe a low Jaccard similarity between all predicted
genes after five rounds of experiments for any pair of datasets (Figure[7), suggesting an approach to
gene selection that is not invariant to the task prompt and experimental observations.

BioDiscoveryAgent can guide 2-gene combinatorial perturbation experiments: In addition to
1-gene perturbation experiments, we also demonstrate that BioDiscoveryAgent can guide 2-gene
combinatorial perturbation experiments, which is significantly more difficult due to the much larger
combinatorial search space (100,576 gene pairs compared to only 18,939 pertinent genes in 1-gene
perturbation experiment) [Horlbeck et al.|(2018)). As shown in table (1] the BioDiscoveryAgent sig-
nificantly outperforms the random sampling baseline by 130% on average.

Model Cumulative Number of Hits

Rounds 1 2 3 4 5
Random | 2.6 = 1.43 5.7 +2.83 8.9 + 3.67 12.8 £3.74 16.4 +3.8
BDAgent | 5.50 +4.42 1433 +5.76 21.67 £7.56 30.50+7.34 32.67 +7.36

Table 1: Performance evaluation for 2-gene perturbation experiments. 32 gene pairs predicted
per round averaged over 10 runs, evaluated using the Horlbeck et al. dataset (n=100,576) |[Horlbeck
et al.|(2018). Error intervals correspond to 1 standard deviation.

BioDiscoveryAgent accounts for prior knowledge and observations in decision-making : We
examine three scenarios: 1) Full Observation, where the agent utilizes both previous experiment
results and detailed information about the experiment’s goal; 2) No Observation, where the agent
ignores all experiment results; 3) Only Observation, where the agent is unaware of the current ex-
periment’s goal and only conditioned on observations. For these experiments, we use a batch size of
32 genes and 30 rounds of experimentation on the two datasets from |[Schmidt et al.[ (2022]).

Results show that Full Observation outperforms both No Observation and Only Observation, high-
lighting the significance of integrating prior knowledge and observations (Table 2] Figure[3p). Inter-
estingly, Full Observation and No Observation benefit from prior knowledge early on, unlike Only
Observation, which lacks the experiment’s goal, underscoring the vital role of prior knowledge in
the initial experiment phases. However, as experiments progress, Only Observation surpasses No
Observation, showcasing the agent’s capacity to adapt swiftly based on observations. Additionally,
we find that access to observations results in more similar gene predictions across different trials
compared to experiments without access to observations (Figure [3p), suggesting that observations
significantly influence BioDiscoveryAgent’s decision-making.

BioDiscoveryAgent can use tools to enhance performance and interpretability: To assess these
capabilities, we provided the basic (vanilla) agent with access to one tool at a time and evaluated
its performance (see Table[3] Appendix [K). While certain tools, like literature search, may decrease
performance in exchange for enhanced interpretability, employing all tools (with gene search config-
ured to find dissimilar genes) offers a balanced approach that consistently delivers superior results.

BioDiscoveryAgent provides interpretable predictions with references to the literature

BioDiscoveryAgent provides interpretable predictions at various stages. One such example is il-
lustrated in Appendix [M] and summarized in Figure d The agent is tasked with identifying genes
regulating the production of Interferon-gamma (IFNG). The vanilla agent explicitly reasons that it
will focus broadly on pathways related to IFN-v signalling, production and response (). Utiliz-
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Figure 3: Agent accounts for both prior knowledge and observations in decision-making Three
scenarios are considered: the agent has access to task description and experimental observations
(Full observation); the agent only has access to experimental observations (Only observation); the
agent only has access to the task description (No Observation). (a) Hit ratio (Top-K recall) at each
experimental round across 30 rounds of experiments. Each line corresponds to the average over
10 runs with error bars representing 1 standard deviation. (b) Jaccard similarity index between all
predicted genes at 10 rounds of experimentation. Each cell corresponds to a different model run.

ing the literature search tool, the agent accesses relevant literature to support its predictions, citing
specific papers and line numbers as in Figure [dd. For example, the agent highlights JFNG-AS] as a
gene for potential perturbation, supported by references to specific lines in scientific papers. The LM
critic tool provides valuable insights into the predicted set of genes, identifying potential issues such
as randomness or a focus on basic cellular processes that are unlikely to regulate IFNG production.
Thus, not only does the LM critic provide clear reasons for selecting specific genes but also further
opens avenues for human-in-the-loop feedback. See Appendix [}

6 DISCUSSION

BioDiscoveryAgent represents a new paradigm in the computational design of biological experi-
ments, aimed at augmenting scientists’ capabilities and accelerating scientific discovery. Tradition-
ally, this process employs a multi-stage pipeline that relies on an acquisition function combined
with a machine learning model. This model, often challenging to interpret, requires manual design
and periodic retraining with handpicked gene features. In contrast, we demonstrate that an agent,
powered by a large language model, can simplify the entire experimental design process into a sin-
gle prompt. Through its enhanced interpretability at every stage, the researcher can meaningfully
engage with the model throughout the process. Furthermore, the agent is equipped with prior bi-
ological knowledge, solving the cold start problem at the start of of a new round of experiments,
while still efficiently utilizing observational data as the rounds progress. Through the usage of tools,
it can explicitly search for and integrate information from the scientific literature as well as exist-
ing tabular datasets. This results in a research assistant capable of speeding up biological research
through utilizing information from diverse sources.

While BioDiscoveryAgent demonstrates strong capabilities in enhancing experiment design, it still
presents room for further development. BioDiscoveryAgent tends to perform better with certain cell
types over others, likely due to a difference in the level of coverage within the scientific literature.
Most performance benefits are observed in the early stages of experimentation rather than over
longer rounds of experiments. Additionally, there’s a need for developing better tools or fine-tuning
methods to improve the ability to extract information from non-text-based sources.

Overall, BioDiscoveryAgent offers a complementary method to existing approaches to experimental
design, significantly improving model performance in the low data regime while also enhancing
overall model interpretability. Amid increasing interest in active experimental design for biological
experiments, BioDiscoveryAgent offers compelling evidence that language models could become
an essential component of such systems. By facilitating improved reasoning and interpretability,
and leveraging a broad understanding of the scientific literature, Al tools like BioDiscoveryAgent
are poised to become integral to experimental design strategies in the near future.
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A  OVERALL AGENT WORKFLOW
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to perturb

Initial Response:
Reflection: Continuing with this broad approach in the next round of experiments could yield more insights into the types of genes that
have the biggest impacts on IFNG levels.
Research Plan: Conduct broad screening on genes involved in pathways related to IFN-y signaling, production or response. Analyze results
to determine gene categories that appear most promising to focus on in more targeted experiments.
Solution: IGFL1, TBC1D19, ZNF582, POTEE, EQTN....
Y Gene Search: ZNF41
> Gene Search >
Gene Search Terms Gene Search Result:
1.FAU, 2.FARSB, 3.SRSF2, 4.RPL13, 5.TRNT1
/ Critique predictions \
w/ Language
s Model
Critique: The selection of genes seems rather random and not very strategic. Many of the selected genes are involved in basic cellular
processes like transcription, translation and mitosis that are less likely to directly regulate IFNG production. A more targeted selection of
genes known to be involved in immune signaling and inflammation would likely yield better results.
(. | /

Research Problem: I'm planning to run a CRISPR screen to identify genes that regulate the production of Interferon-gamma (IFNG). There
—{ are 18,939 possible genes to perturb and | can only perturb 128 genes at a time. I'm able to measure out the log fold change in Interfer-
on-gamma (IFNG) normalized read counts which will be referred to as the score.
I
Generate Language Literature
Search Terms Model Search Terms Search API
Summarize Language Research Papers
papers Model
Literature Review
You have done some literature review till now and have the following information at your disposal which you may use:
Paper: Overexpressing Long Noncoding RNAs Using Gene-activating CRISPR:
The passage describes a technique called activating CRISPR that can be used to overexpress long noncoding RNAs (IncRNAs) in
cells. As an example, they use this technique to overexpress the INcRNA IFNG-AS1 in Jurkat T cells, a human T lymphocyte cell line.
Overexpressing IFNG-AS1 led to a greater than 20-fold increase in its expression (lines 6-7).
\ The activating CRISPR technique targets transcription factors to the promoter region to upregulate gene expression (lines 4-5) /
I

v

| Solution: 1. IFNGR1, 2. IFNGR2, 3. SMAD2, 4. SMAD3, 5. PRKCQ, 6. PIM1, 7. BCL10, 8. IKBKB, 9. STAT5A, 10. NFKB2 ... |
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Figure 4: Agent workflow with all tools over a single experimental round. Prompts and agent
responses have been summarized. See Appendix [M]for full trace. (a) The input to the agent is the
description of the problem. (b) The vanilla agent just feeds the problem description directly into the
LM. (c) The agent predicts the set of genes to perturb in the next experiment. Response is structured
containing Reflection, Research Plan and Solution. (d) In case of the literature search tool, the
model is provided with context from the scientific literature along with the problem description.
The LM determines appropriate search terms of the scientific literature, top ranked retrieved papers
are summarized by the LM. (e) In case of using the gene search tool, the LM identifies a gene for
which to query similar/dissimilar genes (f) The LM can also be prompted differently to function as
a critic and analyze the predictions so far from a different perspective (g) Final output gene list after
using different tools.

B ALGORITHM
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Algorithm 1 BioDiscoveryAgent: Al Agent for Biological Experiment Design (using all tools)

Input: Experiment description, Number of rounds .S, Number of genes perturbed b
Output: Set of genes to perturb
fort=1,...,Tdo
LM searches, summarizes relevant scientific literature, adds it to the prompt
Agent prompts LM to select b new genes (or gene pairs). Qutput: LM generates structured
response with Reflection, Research Plan, Gene Search, Solution entries
while some predicted genes are invalid do
Prompt LM to select new genes
end while
Prompt LM to critique the prediction made by main agent
Get phenotypic score f(g) for each gene ¢ and add to prompt for next step
if context window is too large then
Prompt LM to summarize text for context window management
end if
end for

C ProMPT

The prompt includes the task information and response format as this example shown below.

You are a scientist working on problems in drug discovery.

Research Problem: I’'m planning to run a genome-wide CRISPR screen
to identify genes that regulate the production of Interleukin
-2 (IL-2). There are 18,939 possible genes to perturb and I
can only perturb 128 genes at a time. For each perturbation, I
'm able to measure out the log fold change in Interleukin-2 (
IL-2) normalized read counts which will be referred to as the
score. I can only do a few rounds of experimentation.

Always respond in this format exactly:

1. Reflection: Thoughts on previous results and next steps.

2. Research Plan: The full high level research plan, with current
status and reasoning behind each proposed approach. It should
be at most 5 sentences.

3. Solution: Propose a list of predicted genes to test separated
by commas in this format: 1. <Gene name 1>, 2. <Gene name 2>

Do not include any genes from this prompt (since they’re already
tested) .

D DATASET SPECIFIC PROMPTS

For each dataset, we mention the research problem and the type of measurement outcome that the
agent will be presented with. These are used to create the research problem with which the BioDis-
coveryAgent is prompted.

IFNG Task: identify genes that regulate the production of
Interferon—-gamma (IFNG)

IFNG Measurement: the log fold change in Interferon-gamma (IFNG)
normalized read counts

IL2 Task: identify genes that regulate the production of

Interleukin-2 (IL-2)
IL2 Measurement: the log fold change in Interleukin-2 (IL-2) normalized
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read counts

Steinhart CRISPRa Task: identify genes that upon inhibition allow
cells to resist T-cell
exhaustion, under the HA GD2 CAR
(chimeric—-antigenic receptor) condition

Steinhart CRISPRa Measurement: the log fold change in normalized
sgRNA read counts
compared to the non-targeting control,
22 days after perturbation

Scharenberg Task: identify genes mediating lysosomal choline
recycling using an
endolysosome—focused CRISPR-Cas9 screen
Scharenberg Measurement: enrichment or depletion of targeting
sgRNAs (indicated by
a high score) in the culture medium lacking free choline

Carnevale Task: identify genes that, upon being knocked out,
would boost the efficacy of engineered T cells in
the presence of an adenosine agonist that
creates an immunosuppressive condition

Carnevale Measurement: the change in T cell proliferation

E PROCESSING GENE LIST AND EXPERIMENTAL OBSERVATIONS

When choosing genes for perturbation, it is not always feasible to include all possible genes to
choose from. At the same time, we want to avoid arbitrarily narrowing down the gene list based on
our existing knowledge. Therefore, we adopt a two-step approach: Initially, we allow BioDiscov-
eryAgent to suggest genes without restrictions (Figure [Sh). This enables it to draw on its compre-
hensive understanding of biology freely. If the agent is unable to produce the required gene list after
many trials due to invalid or repeated sampling of genes (Figure[p,c), BioDiscoveryAgent summa-
rizes the list of all remaining genes and adds it to the prompt to aid in gene selection (Figure [5).
The summarized gene list is designed to cover a broad range of biological pathways and functions.

Moreover, after multiple experimental rounds, the historical data and experimental observations can
also often exceed the LM’s processing capacity. To address this, we employ a similar summarization
technique to keep the information in future prompts focused and relevant.

F AGENT RESPONSE FORMAT

To ensure interpretability and to guide the agent’s thought process, a consistent response format
is defined across all prompts. We direct the LM to structure its responses into several parts:
Reflection, Research Plan, Solution (Appendix[C] (Figure[df)), similar to[Huang et al.
(2023b). Research Plan helps in effective planning and monitoring progress. Through the
Reflection and Research Plan entries, the model is able to provide additional reasoning
behind a particular prediction. This also helps to rule out predictions that may be hallucinations or
not well-motivated. Solution contains a formatted list of genes to perturb next.

G TooL DESCRIPTIONS FOR BIODISCOVERYAGENT

In this section, we provide some more details about the tools provided to BioDiscoveryAgent to aid
it in making its predictions, along with the resoning for adding those tools.

1. AI critic: LMs are very sensitive to the prompt they are presented with. Past research

has shown varying performance depending on the setting in which the LM is queried.
Thus, an LM prompted to behave as an agent for a human researcher may behave very
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Figure 5: Gene selection strategy: (a) The space of genes that can be tested in a given experiment
is constrained by expeirmental limitations. BioDiscoveryAgent can take a few tries to select genes
within this limited space. (b) A common error is repeating previously tested genes. (c) Often this
will result in the agent getting stalled and unable to make successful selections, especially in the
case of large batch sizes. (d) After several failed attempts, we summarize the space of genes that
can be tested while prioritizing gene diversity.

differently from one that is prompted to mainly critique the prediction made by another
LM. To benefit from these contrastive prompting strategies, we make use of an Al critic
similar to the idea by [Weng et al.| (2023) to identify mistakes and enhance the quality of
the final prediction made by the agent.

At every round, once BioDiscoveryAgent comes up with a batch of genes to be
tested, a critic agent (which is also an LM) is prompted to critique the choice of the main
agent and it can change some or all the genes in the batch and come up with a new set
of genes (Figure ff). Having such an agent improved performance giving the system
additional opportunities to reflect on its reasoning. The system prompt for the critic agent
was as follows:

As an advisor, please critique this plan and suggest some
changes to it. Use this format:

1. Critigque: include all relevant details of the critique.

2. Updated Solution: Give an updated selection of {args.
num_genes} genes based on the critique separated by
commas in this format:: 1. <Gene name 1>, 2. <Gene name
2> ... \n

Try to first focus a lot on trying very diverse genes to get
a sense of which types of genes affect the research
problem the most. From the observations, update your
beliefs quickly and smartly and then double down on
genes that you think shall be hits in order to increase
the cumulative hit ratio.
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Please do not critique/make a lot of changes if there is no
need to make a change.

In addition to the above prompt, the critic agent was also provided with a list of all genes
that were tested in the previous rounds along with genes that were identified as hits.

. Literature Search: Scientific literature captures prior knowledge that can be leveraged to

design experiments. A scientist typically reads literature relevant to a problem, builds a
hypothesis, and cites relevant past work. We aimed to provide BioDiscoveryAgent with
similar capabilities that would allow it to search for relevant papers on the web, learn from
them, and incorporate its learnings in designing the experiments.

As part of the input, the user can choose to have the agent query the literature at
each experimental cycle to inform its predictions. In this case, the agent uses the PubMed
API (Wobben, 2020) to search for papers containing the most pertinent literature for the
experiments that the agent was asked to design. The search terms are chosen by the agent.
Once the top 5 papers have been identified, the agent summarizes the information within
these papers including parsed title, abstract, methods, results, and conclusion sections. It
then attaches the summarization to the prompt and use it to identify additional genes to
perturb for the given experimental round (Figure d). The citations to these papers are
retained and returned along with the model predictions. Over time, the agent accumulated
these summaries, granting it access to all literature surveys conducted in previous rounds
to propose a set of genes for each specific round.

The inclusion of a literature review tool enhanced interpretability and improved grounding
as the agent frequently cited papers it had previously surveyed when predicting genes for
the batch. Despite these benefits, the use of a literature review tool had its drawbacks. It
tended to make the agent less exploratory, heavily biasing its reasoning towards the papers
retrieved. The agent struggled to generate innovative queries for the literature survey API,
and the lack of additional re-ranking on API outputs further limited the diversity of papers
presented to the agent. This raised some important questions about the most effective use
of scientific literature by an Al agent, a topic for future work.

. Gene Search: LMs are trained on text-based data and do not have access to many biological

databases that are stored in the form of tabular data. We provide the agent with the ability
to select a gene for which it would like to search for similar or dissimilar genes. This is
computed using the cosine similarity between the provided gene features. This process
first computes the inner product of gene features with the queried gene’s features and sorts
the results based on the desired similarity or dissimilarity. Then the selected genes are
concatenated to the prompt to the main agent. For example, if the LM requests a gene
search of the gene ZNF41 based on dissimilarity, the agent appends the following result in
the next prompt “Gene Search Result: FAU, FARSB, SRSF2, RPLI3, ... (Figure ).

For similarity, we retrieved the top 10 genes, while for dissimilarity, we retrieved the top
50 genes.

H BASELINES

Soft Uncertain: Prioritizes genes with higher uncertainty under M, using a softmax func-
tion with temperature.

Top Uncertain: Selects genes with the highest uncertainty under model M.

Margin Sample: Selects genes for which the model M has the smallest margins between
different classes.

Coreset: Selects genes which are the most distant from previously selected genes based on
their embedding representation in M .

Badge: Uses a modified k-means algorithm on the gradient embeddings of the data points
to select genes. The aim is to diversify the batch based on the model’s gradients.

Kmeans: Selects genes that are closest to the cluster centers determined by K-means. Two
baselines apply K-means either to an embedding of the data or the raw data directly.
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Figure 6: Per-round performance comparison to machine learning baselines for 1-gene pertur-
bation experiments (non-essential genes): Each line averages results from 10 runs, with error bars
indicating 1 standard deviation. 128 genes were predicted per round over 5 rounds. At each step,
only those genes were considered hits that were not also essential genes.
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Figure 7: Jaccard similarity index between all predicted hits at 5 rounds of experimentation
Each cell corresponds to the union of predicted hits across 10 model runs for each dataset.
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Dataset Schmidt22 (IL2) Schmidt22 (IFNG)
Rounds 10 20 30 10 20 30
Model Setting Avg. Top-K Recall

BDAgent Only Obs. | 0.0449 0.0872 0.1037 0.0291 0.0702 0.1061
BDAgent NoObs. | 0.0605 0.0846 0.1071 0.0484 0.0727 0.0872
BDAgent Full Obs. | 0.0596 0.0908 0.1143 0.0559 0.0842 0.1077

Table 2: Model uses both prior knowledge and experimental observations to make predictions.
32 genes predicted per round.

Model Top-K Recall

Dataset Schmidtl  Schmidt2  Steinhart Scharen. Carnev. Sanchez
Random 0.037 0.031 0.0333 0.160 0.036 0.034
BDAgent (Vanilla) 0.067 0.089 0.110 0.292 0.038 0.053
BDAgent (Literature) 0.052 0.069 0.073 0.232 0.023 0.055
BDAgent (Al critic) 0.069 0.089 0.130 0.341 0.044 0.056
BDAgent (Similar Genes) 0.083 0.087 0.111 0.351 0.045 0.056
BDAgent (Dissimilar Genes) 0.099 0.162 0.064 0.286 0.048 0.041
BDAgent (All Tools) 0.095 0.122 0.114 0.314 0.054 0.058

Table 3: Agent performance improvements when using different tools for 1-gene perturbation
experiments. Results shown are for experimental round 5 averaged over 10 runs, with error intervals
showing 1 standard deviation. *For|Scharenberg et al.| (2023)), a batch size of 32 was used due to its
smaller pool of 1061 relevant genes. ' Steinhart refers to an unpublished dataset.

I RELATED WORK

Artificial intelligence has demonstrated significant potential across various scientific domains, from
realistic simulations of human behavior (Park et al.| [2023b) to exploring mathematical function
spaces (Romera-Paredes et al., [2023). Research has shown the utility of these models in mining and
querying the scientific literature (Lala et al., 2023} |Schick et al.|[2023)), as well as in general research
tasks such as analyzing large datasets, reasoning about data, and generating reports (Shakked &
Zhang| 2023). Additionally, closed-loop lab-based experimentation has made notable advances,
particularly in chemical synthesis (Boiko et al.,|2023)) and materials discovery (Wang et al.| [2023).

In the biological domain, research has shown that large language models can capture significant
information about biological pathways and processes (Park et al.| 2023a), and are valuable in simu-
lating biological processes at various scales (Schaefer et al.| [2023)). The concept of using artificial
intelligence to generate hypotheses for functional genomics experiments is not new (King et al.,
2004)). The vast potential experimental space and the resulting combinatorial challenges underscore
the inherent value of this approach. Earlier studies have also investigated the use of machine learning
to optimize the design of genetic perturbation experiments (Mehrjou et al., 20215 Lyle et al., [2023]).

J  DATASETS AND BASELINES

For the single-gene perturbation setting, we make use of five different datasets spread across different
cell types, publication dates and data generation sites. Each of the datasets measures a distinct
biological process. The [Schmidt et al.| (2022) dataset measures the changes in the production of two
key cytokines involved in immune signaling: Interleukin-2 (IL-2) and Interferon-y (IFNG) under
different genetic perturbations performed in primary human T-cells. The (Carnevale et al.| (2022)
dataset includes perturbation screens for identifying genes that render T cells resistant to inhibitory
signals encountered in the tumor microenvironment. Unpublished data from Steinhart et al. studies
the impact of genome-wide perturbations on CAR-T cell proliferation. The|Scharenberg et al.|(2023)
dataset measures the effect of perturbation on mediating lysosomal choline recycling in pancreatic
cells, and the |[Sanchez et al.| (2021) dataset studies the change in expression of endogenous tau
protein levels in neurons.
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Model Top-K Recall
Dataset Schmidt]  Schmidt2  Steinhart’ Scharen. Carnev. Sanchez
Random 0.037 0.031 0.033 0.160 0.036 0.034
BDAgent (Vanilla) 0.067 0.089 0.110 0.292 0.038 0.053
BDAgent (All Tools) 0.095 0.122 0.114 0.314 0.054 0.058
Soft Uncertain 0.037 0.037 0.034 0.205 0.031 0.029
Top Uncertain 0.057 0.072 0.058 0.294 0.037 0.039
Margin Sample 0.054 0.061 0.054 0.285 0.036 0.033
Coreset 0.072 0.102 0.069 0.243 0.047 0.061
Badge 0.060 0.077 0.042 0.258 0.044 0.039
Kmeans Embed. 0.045 0.064 0.028 0.170 0.036 0.037
Kmeans Data 0.048 0.074 0.025 0.281 0.039 0.043

Table 4: Performance comparison to machine learning baselines for 1-gene perturbation ex-
periments. Results shown are for experimental round 5 averaged over 10 runs, with error intervals
showing 1 standard deviation. *For Scharenberg2?2, a batch size of 32 was used due to its smaller
pool of 1061 relevant genes. Steinhart refers to an unpublished dataset.

For the two-gene perturbation task, we use a dataset from a screen that knocked down 100,576 gene
pairs in K562 cells. For each gene pair, we are interested in the synergistic effects on cell fitness
upon combinatorial knockdown. Synergy is determined by the deviation between the observed cell
fitness and the expected fitness, which is calculated from the average impact of knocking down each
gene individually.

For baseline models, we use the methods implemented in the GeneDisco benchmark (Mehrjou et al.}
2021). Every baseline includes a multi-layer perceptron M for predicting experimental outcomes
using gene features. This is then combined with one of six different acquisition functions for de-
signing each round of experiments (See Appendix [H).

K PERFORMANCE IMPACT OF USING DIFFERENT TOOLS

* Literature search: Here, the agent had access solely to the literature search tool. We
observed that this tool does not always improve performance, as the agent may become
fixated on a few simple keywords and irrelevant papers, leading to less effective searches.
Nonetheless, literature search provides valuable, interpretable citations for the gene predic-
tion process, beneficial for scientists.

* Al critic: When only using the Al critic tool, performance improves slightly over the
vanilla model mainly by diversifying the original genes predicted or by concentrating the
predictions towards specific gene sets.

» Similar Genes: Performance significantly improved when using a gene similarity search
based on specific features, especially for IFNG and Scharenberg22. We believe this im-
provement is due to gene similarity searches relying on experimentally derived gene fea-
ture sets, typically stored in tabular format and not fully represented in the text of scientific
papers. Thus, the vanilla LM may not have access to this information.

* Dissimilar Genes: Here, the agent used the gene search tool to find dissimilar genes,
with minor instructions on how to explore these diverse genes. This approach of focusing
on dissimilar genes encourages BioDiscoveryAgent to explore a wider variety of genes,
drawing inspiration from the coreset method. We observed variable performance across
different datasets, likely reflecting the varying reliance on diversity for each target task.

L INTERPRETABILITY EXAMPLES

Here we show some examples that demonstrate the interpretability of BioDiscoveryAgent for exper-
imental design:

1. In the initial steps, where the agent tried out a lot of random genes, the critic agent guides
the main agent to focus more on genes relevant to the task.
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1. Critique: The selection of genes seems somewhat random
and not focused enough on likely candidates based on
known lysosomal and endolysosomal genes and pathways. I
would suggest focusing more on genes known to be
involved in lysosomal function, endolysosomal
trafficking, and choline metabolism. Some of the
selected genes like MAPK1l, RAF1l, PIK3CG, EIF2S1 seem
less likely to be directly involved.

2. Updated Solution: 1. CTSA, 2. HEXA, 3. HEXB, 4. GBA, 5.
GUSB, 6. GALC, 7. SmMpDl, 8. LIPA, 9. ASAH1l, 10. NPC1,
11. NPC2, 12. LAMP1, 13. LAMP2, 14. LAMP3, 15.RAB7A, 16.

RAB1A, 17. CLN3, 18. MCOLN1, 19. ATP6VOAl, 20. ATP6VOC,

21. ATP6V1A, 22. ATP6V1B2, 23. AP1S1l, 24. AP1S2, 25.
AP3B1, 26. AP3D1, 27. VPS11l, 28. VPS18, 29. VPS33a, 30.
VPS33B, 31. VPS41l, 32. VPS45

2. Providing reasoning for selecting specific genes not only enhances interpretability but also
creates opportunities for human-in-the-loop feedback. This feedback is conveyed in natu-
ral language by subject experts. Additionally, the agent supports its predictions by citing
relevant scientific literature, as shown below.:

Human tryptophanyl-tRNA synthetase is an IFN- -inducible
entry factor for Enterovirus.

Here is a description of what can be gathered from the
provided information:

The file describes a study identifying human tryptophanyl-
tRNA synthetase (hWARS) as an interferon-gamma (IFN-G)-—
inducible cellular entry factor for Enterovirus A71 (EV-
A71) and other enteroviruses. hWARS expression is
required for EV-A71 infectivity and pathogenesis (lines
1-3). hWARS was identified using an RNAi screen of the
human genome (line 2). Its importance was confirmed
using multiple methods (line 5). hWARS expression and
location change in response to IFN-G, allowing EV-A71
infection (lines 4-5). A hWARS-transduced mouse model
showed EV-A71 infection effects (line 6). hWARS is
needed for other enteroviruses like coxsackievirus Al6 (
CV-Al6) and enterovirus D68 (EV-D68) (line 7).

M COMPLETE AGENT TRACE

In this section, we provide a few initial steps of the agent run equipped with all tools, and prompts
seen by the agent at each step, as well as the agent’s response.

Human: Step O
You are a scientist working on problems in drug discovery.

Research Problem: I’'m planning to run a genome-wide CRISPR screen
to identify genes that regulate the production of Interferon-
gamma (IFNG). There are 18,939 possible genes to perturb and
I can only perturb 128 genes at a time. For each perturbation,

I'’m able to measure out the log fold change in Interferon-
gamma (IFNG) normalized read counts which will be referred to
as the score. I can only do a few rounds of experimentation.
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Here is one strategy you can follow: Try to first focus a lot on
trying very diverse genes to

get a sense of which types of genes affect the research problem
the most. From the observations,

update your beliefs quickly and smartly and then double down on
genes which you think shall be hits

in order to increase the cumulative hit rate.

Always respond in this format exactly:

1. Reflection: Thoughts on previous results and next steps.

2. Research Plan: The full high level research plan, with current
status and reasoning behind each proposed approach. It should
be at most 5 sentences.

3. Gene Search: Name a gene to search for 50 most dissimilar genes

based on features. Only include the gene name itself after
"2. Gene Search:".

4. Solution: Propose a list of predicted genes to test separated

by commas in this format: 1. <Gene name 1>, 2. <Gene name 2>

Do not include any genes from this prompt (since they’re already
tested) .

Now let’s start!

You have done some literature review till now and have the
following information at your disposal which you may use to
make your predictions:

Overexpressing Long Noncoding RNAs Using Gene-activating CRISPR.
Here is a summary of the information that can help with the
research problem:

The passage describes a technique called activating CRISPR that
can be used to overexpress long noncoding RNAs (1ncRNAs) in
cells. As an example, they use this technique to overexpress
the 1IncRNA IFNG-AS1 in Jurkat T cells, a human T lymphocyte
cell line. Overexpressing IFNG-AS1 led to a greater than 20-
fold increase in its expression (lines 6-7).

Since IFNG-AS1 is associated with inflammatory bowel disease,
overexpressing it in T cells could affect interferon gamma
production. The activating CRISPR technique targets
transcription factors to the promoter region of a gene to
upregulate its expression (lines 4-5). This suggests that
perturbing transcription factors involved in regulating IFNG
expression could impact interferon gamma levels.

In this segment, I cannot find specific genes to target in the
first round of experiments. The passage does not provide that
level of detail. However, based on the information provided,
transcription factors and 1ncRNAs associated with interferon
gamma regulation and production could be good candidates to
screen first. An initial broad screen of diverse candidates
from these groups could help identify the types of genes that
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have the biggest impact on the research problem. The results
could then inform a more focused second round of screening.

Human tryptophanyl-tRNA synthetase is an IFN- -inducible entry
factor for Enterovirus.
Here is a summary of the information provided:

The passage describes the identification of human tryptophanyl-
tRNA synthetase (hWARS) as an interferon-gamma (IFN- )-
inducible cellular entry factor for Enterovirus A71 (EV-A71).
hWARS expression was found to be required for productive
infection of EV-A71 as well as other human enteroviruses like
coxsackievirus Al6 and EV-D68 (lines 1-3).

High levels of IFN- were detected in patients with severe EV-AT1
infection, suggesting that hWARS expression upon IFN-
stimulation may contribute to EV-A71 pathogenicity (lines
15-17) .

In this segment, I cannot find specific genes that regulate IFNG
production. The passage focuses on hWARS as an entry factor
for EV-A71 that is induced by IFN-

For the research problem, I would suggest:

1) Focusing initial experiments on diverse genes involved in
pathways related to IFN- signaling or production, such as
the JAK-STAT pathway or genes involved in T helper cell
differentiation. Observing the effects of perturbing these
genes could provide insights into which gene types most impact

IFNG levels.

2) Based on initial observations, select genes that appear to have
the largest effects on IFNG for follow-up experiments. This
could help increase the cumulative "hit rate" of genes that
regulate IFNG production.

3) Considering genes encoding other components of the IFN-
response pathway in addition to hWARS, such as IFNGR1 and
IFNGR2 which encode the IFN- receptor subunits. Perturbing
these genes may also impact IFNG levels.

Assistant: 1. Reflection: We have screened a diverse set of genes
so far and identified many promising candidates involved in
IFN- signaling and regulation. Continuing with this broad
approach in the next round of experiments could yield more
insights into the types of genes that have the biggest impacts

on IFNG levels.

2. Research Plan: Conduct another round of broad screening on
genes involved in pathways related to IFN- signaling,
production or response. Analyze results to determine gene
categories that appear most promising to focus on in
subsequent, more targeted experiments.

2. Gene Search: ZNF41
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Gene Search Result:FAU, FARSB, SRSF2, RPL13, TRNT1l, SRSF3, HSPEIL,
TXNL4A, PRELID1, TRMT112, LSM2, NCAPG, CCT4, RPS29, WDR43,
ZNHIT2, CHAF1B, COPS6, RPS15, RPLS, GTF2B, NUDT21, RPS17,
RPL17, ZPR1, RPL15, CICF, ALGll, ERH, DBR1l, NIP7, RPL27, BOP1,

VCP, WDR75, RRM1, LUC7L3, POLR2D, RPS3, RPL36, DDBl, DUX4,
VPS25, RPL31, RPS16, DTL, POLE2, TRAPPC1, TRAPPCS, RPL24

Human: You are a scientist working on problems in drug discovery.

Research Problem: I’'m planning to run a genome-wide CRISPR screen
to identify genes that regulate the production of Interferon-—
gamma (IFNG). There are 18,939 possible genes to perturb and
I can only perturb 128 genes at a time. For each perturbation,

I’'m able to measure out the log fold change in Interferon-—
gamma (IFNG) normalized read counts which will be referred to
as the score. I can only do a few rounds of experimentation.

Now for the next round of experiment your students are planning on
testing the following genes:
["IGFL1’, ’TBC1D19’, ’'ZNF582’, ’'POTEE’, ’'EQIN’, ’AP1S2’, ’'KRBOX4’,
"ZNF611’, "MGST1’, ’RBM25’, ’'PSMD7’, ’TXNL4A’, ’'TBCC’, ’'CHMP6
", '"RBBP5’, ’'RPS19’, ’'NUP93’, ’'ATP6VOC’, ’'SDE2’, ’'CDC45", '
GPN2’, ’SRSF7’, ’'KPNB1l’, 'GPN3’, 'RPL27’, ’'PLK1l’, ’'ESPL1’, '
RPS4X’, ’'MTBP’, ’'TIMELESS’, 'PAFAHIBl’, 'ETF1’, ’'DONSON’, '
GINS2’, ’'sSpCc24’, 'CDC123’, ’'SF3B4’, 'RPS8’, ’"SAP30BP’, '
CFAP298’, ’'RPS16’, ’'DUT’, ’'CCT4’, ’'TBCB’, ’'MED8’, ’SBNOl’, '/
SNAPC2’, ’POLR2I’, ’INTS3’, ’'PSMD14’, ’'KIF1l’, ’'RUVBL1’, '’
RPL12’, "RPL37’, '"USP36’, ’'THOC1l’, ’"RPS13’, ’SMAD2’, ’S0OCS3’,
'PIAS3’, ’'LTA’, ’'IL15’, ’'STAT1’, ’SOCS2’, ’'PTIPN22’, ’'NFKB2’, '
socss’, 'PTPN11’, ’'TAB2’, ’'SMAD7’, ’'STAT3’, 'IL12B’, ’'IRF7’, '
PTPN2’, ’IFNGR1’, ’CXCL9", ’IL18", "JAK1l’, ’"IRF8’, ’"SMAD4’', '
socsl’, ’STAT2', ’'STAT5A’, ’'IRF9’, ’'RORC’, ’'NFKBIA’, ’'IFNGR2’,
" IRF3’, ’'GATA3’, ’'IRF4’, 'TNF’, ’'PIAS1’, ’SMAD3’, ’'STATS5B’, '’
IRF5’, 'RELA’, ’'PTPN4’, ’'NFKBIE’, ’IL12A’, ’'TBX21’, ’'PTPN6’, '
NFKB1’, ‘IRF1l’, ’'CXCL10’, ’IL1B’, 'TYK2’, ’JAK2’, ’'NFKBIB’, '’
SOCS6’, 'IRF2’, 'TGFBl’, ’'PIAS2’, ’'IL6’, 'EOMES’, ’SMAD5’, '’
NFKBIL1’, ’SMAD6’, ’'STAT4’, ’'PIAS4’, ’"SRP19’, ’'MRPL53’, '
ZNF207’, 'METTL17’, ’'UBAP1l’, ’'SART1’, ’'ERAL1l’, ’'FAU’, ’SRSF2’]

As an advisor, please critique this plan and suggest some changes
to it. Use this format:

1. Critique: include all relevant details of the critique.

2. Updated Solution: Give an updated selection of 128 genes based
on the critique separated by commas in this format:: 1. <Gene
name 1>, 2. <Gene name 2>

Try to first focus a lot on trying very diverse genes to

get a sense of which types of genes affect the research problem
the most. From the observations,

update your beliefs quickly and smartly and then double down on
genes which you think shall be hits

in order to increase the cumulative hit rate.

Please do not critique/make a lot of changes if there is no need
to make a change.

21




Machine Learning for Genomics Explorations workshop at ICLR 2024

Ass

istant:

1.

= ===claude-1 response (2000) = =
Critique: The selection of genes seems rather random and not
very strategic. Many of the selected genes are involved in
basic cellular processes like transcription, translation and
mitosis that are less likely to directly regulate IFNG
production. A more targeted selection of genes known to be
involved in immune signaling and inflammation would likely
yield better results.

Updated Solution:

IFNGR1, 2. IFNGR2, 3. JAK1l, 4. JAK2,
STAT1, 6. STAT2, 7. STAT3, 8. STAT4,
STAT5A, 10. STAT5B, 11. IRF1, 12. IRF2,
IRF3, 14. IRF4, 15. IRF5, 16. IRF7, 17. IRF8, 18. IRF9,
RELA, 20. NFKB1, 21. NFKB2, 22. NFKBIA, 23. NFKBIB,
NFKBIE, 25. NFKBIL1, 26. MAP3K7, 27. MAP3KS,
MAP2K4, 29. MAP2K7, 30. TGFBl, 31. TGFBR1, 32. TGFBR2,
SMAD2, 34. SMAD3, 35. SMAD4, 36. SMADS5, 37. SMAD7,
IL12A, 39. IL12B, 40. IL1B, 41. IL6, 42. IL15, 43. ILlS,
TNF, 45. LTA, 46. CXCL9, 47. CXCL10, 48. SOCSl, 49. SOCS2,
socs3, 51. PIAS1, 52. PIAS2, 53. PIAS3, 54. PIAS4,
PTPN1, 56. PTPN2, 57. PTPN4, 58. PTPN6, 59. PTPN11,
PTPN22, 61. TAB2, 62. MAP3K14, 63. CHUK, 64. IKBKB,
MAP2K1, 66. MAP2K3, 67. PRKCQ, 68. PIM1, 69. PIM2,
PIM3, 71. BCL10, 72. CARD11, 73. MALT1, 74. IKBKG,
UBE2V2, 76. UBE2N, 77. UBE2D3, 78. UBE2D4, 79. RIPK2,
MAP3K1, 81. MAP3K3, 82. MAP3K5, 83. MAP2K2, 84. MAPK14,
MAPKS, 86. MAPK9, 87. MAPK1, 88. MAPK3, 89. MAPK13,
MAPK12, 91. MAPK11l, 92. MAPK10, 93. MAPKSIP3, 94. MAPK9IP1,
MAPKS8IP1l, 96. MAPK8IP2, 97. CASP1, 98. CASP8, 99. RIPKI,
TRAF2, 101. TRAF3, 102. TRAF5, 103. TRAF6, 104. TANK,
TBK1, 106. IKBKE, 107. IKBKB, 108. CHUK, 109. RIPK3,
RIPK4, 111. CARDY9, 112. BIRC2, 113. BIRC3, 114. XIAP,
BCL2, 116. MCL1l, 117. BCL2L1l, 118. BIRC5, 119. CFLAR,
FADD, 121. TRADD, 122. RIPK1, 123. RIPK2, 124. MAP3KI,
UBE2N, 126. UBE2V1, 127. UBE2V2, 128. UBE2D1.

Human: Step 1

Yo

Res

u are a scilentist working on problems in drug discovery.

earch Problem: I'm planning to run a genome-wide CRISPR screen
to identify genes that regulate the production of Interferon-—
gamma (IFNG). There are 18,939 possible genes to perturb and
I can only perturb 128 genes at a time. For each perturbation,
I’'m able to measure out the log fold change in Interferon-—
gamma (IFNG) normalized read counts which will be referred to
as the score. I can only do a few rounds of experimentation.

Here is one strategy you can follow: Try to first focus a lot on

get

trying very diverse genes to
a sense of which types of genes affect the research problem
the most. From the observations,

update your beliefs quickly and smartly and then double down on

genes which you think shall be hits
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in

order to increase the cumulative hit rate.

Always respond in this format exactly:

1.
2.

Do

Reflection: Thoughts on previous results and next steps.

Research Plan: The full high level research plan, with current
status and reasoning behind each proposed approach. It should
be at most 5 sentences.

Gene Search: Name a gene to search for 50 most dissimilar genes
based on features. Only include the gene name itself after

"2. Gene Search:".

Solution: Propose a list of predicted genes to test separated
by commas in this format: 1. <Gene name 1>, 2. <Gene name 2>

not include any genes from this prompt (since they’re already
tested) .

Now let’s start!

This is not your first round. All tested genes and their measured

log fold change are:

Score
Gene
SMAD2 0.101575
UBE2V1 -0.025857
PIAS3 0.085304
LTA -0.187780
CASPS8 0.142034
MAPK10 -0.008140
MAPK9 0.206474
SOCS2 -0.006300
MAPK11 0.022875
PTPN22 0.339770
MAPK8IP1 -0.208230
IL18 0.064003
UBE2V2 -0.095655
IRF7 0.178988
IL12B 0.106245
CXCL9 -0.013024
TBK1 0.013595
IRF8 -0.284585
SMAD4 0.080494
BCL2 0.016410
SOCS1 0.185722
STATZ2 -0.121285
TANK -0.016199
UBE2N 0.126805
SMAD3 0.122430
STATS5B 0.010015
IRFS5 -0.042555
PTPN4 0.024984
NFKBIE 0.215400
IL12A 0.128751
MCL1 -0.062024
CARD11 -0.313452
IRF1 -0.029467
CXCL10 -0.010432
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MAPKS -0.094135
JAK2 0.132444
CARDY 0.117949
MAP2K4 -0.024708
MAPK13 0.146087
TRAFS -0.140703
PIM2 0.059805
IRF2 -0.094631
MAP3K8 -0.181561
TGFB1 0.032735
MAP3K14 -0.366105
IL6 0.064360
RIPK2 -0.210654
CFLAR -0.336920
MAPK8IP3 0.160541
TGFBR2 0.013636
SMADS5 -0.129476
NFKBIL1 -0.129973
TRAF3 0.109792
STAT4 -0.282660
TGFBR1 -0.060750
IL15 -0.035326
MAP3K5 -0.224920
STAT1 -0.023106
BIRC2 0.003260
PIM3 0.017550
MAPK12 0.138772
PTPN11 0.136000
TAB2 0.367535
SMAD7 0.284655
PTPN2 0.072855
RIPK4 0.068350
MAP2K3 -0.166365
UBE2D3 0.224675
STATS5A 0.070219
IRFO -0.126400
MAP3K3 0.220350
NEKBIA 0.344135
IRF3 -0.237845
MAP3K1 0.199285
MAPK8IP2 -0.022033
IRF4 0.059575
TNF 0.272485
PIAS1 -0.113202
MAPK14 —0.244472
RIPK3 0.010906
BIRC3 0.193885
IL1B -0.008130
NFKB1 0.125557
PTPNG6 0.247855
UBE2D4 0.087250
FADD 0.107290
CASP1 -0.064096
PIAS2 0.247420
MAP2K1 -0.209255
XIAP -0.342415
BIRCS -0.082685
PIAS4 0.038910
PTPN1 0.188203
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BIRC7 -0.005555
MAP3K15 -0.086644
UBE2C -0.072150
MAP4K5 0.058382
UBE20Q1 0.001715
UBE20Q2 -0.251546
UBE2T 0.279460
UBE2G1 0.034193
UBEZ2H 0.287118
UBE2J1 -0.278075
UBEZ2W 0.111455

You have successfully identified 24 hits so far over all
experiment cycles! The results for the hits are:

Score

Gene

TRAF6 -1.865400

S0OCS3 0.536160

BCL2L1 -0.460815

MAPK1 -0.449405

NFKB2 1.584300

STAT3 -1.048600

IFNGR1 -0.898070

JAK1 -1.389050
MAPK3 -0.734105
CHUK -0.833950

IFNGR2 -0.975910

MALT1I -1.063740

RELA -0.840910

PRKCQ -0.442575

IKBKE 0.487890

IKBKB -0.922680

MAP2K2 -0.402665

MAP2K7 -0.446480

TRADD -0.623995

NFKBIB 0.495810

RIPK1 0.606570

MAP3K7 -1.305750

BCL10 -0.869020

IKBKG -0.853900

Based on these results and prior knowledge of biology, make the
best possible prediction of the first 128 genes that I should
test to maximize the score. Use HGNC gene naming convention.
DO NOT PREDICT GENES THAT HAVE ALREADY BEEN TESTED

You have done some literature review till now and have the
following information at your disposal which you may use to
make your predictions:

Overexpressing Long Noncoding RNAs Using Gene—-activating CRISPR.
Here is a summary of the information that can help with the
research problem:

The passage describes a technique called activating CRISPR that
can be used to overexpress long noncoding RNAs (1ncRNAs) in
cells. As an example, they use this technique to overexpress
the 1IncRNA IFNG-AS1 in Jurkat T cells, a human T lymphocyte
cell line. Overexpressing IFNG-AS1 led to a greater than 20-
fold increase in its expression (lines 6-7).
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Since IFNG-AS1 is associated with inflammatory bowel disease,
overexpressing it in T cells could affect interferon gamma
production. The activating CRISPR technique targets
transcription factors to the promoter region of a gene to
upregulate its expression (lines 4-5). This suggests that
perturbing transcription factors involved in regulating IFNG
expression could impact interferon gamma levels.

In this segment, I cannot find specific genes to target in the
first round of experiments. The passage does not provide that
level of detail. However, based on the information provided,
transcription factors and 1ncRNAs associated with interferon
gamma regulation and production could be good candidates to
screen first. An initial broad screen of diverse candidates
from these groups could help identify the types of genes that
have the biggest impact on the research problem. The results
could then inform a more focused second round of screening.

Human tryptophanyl-tRNA synthetase is an IFN- -inducible entry
factor for Enterovirus.
Here is a summary of the information provided:

The passage describes the identification of human tryptophanyl-
tRNA synthetase (hWARS) as an interferon-gamma (IFN- )-
inducible cellular entry factor for Enterovirus A71 (EV-A71).
hWARS expression was found to be required for productive
infection of EV-A71 as well as other human enteroviruses like
coxsackievirus Al6 and EV-D68 (lines 1-3).

High levels of IFN- were detected in patients with severe EV-AT1
infection, suggesting that hWARS expression upon IFN-
stimulation may contribute to EV-A71 pathogenicity (lines
15-17) .

In this segment, I cannot find specific genes that regulate IFNG
production. The passage focuses on hWARS as an entry factor
for EV-A71 that is induced by IFN-

For the research problem, I would suggest:

1) Focusing initial experiments on diverse genes involved in
pathways related to IFN- signaling or production, such as
the JAK-STAT pathway or genes involved in T helper cell
differentiation. Observing the effects of perturbing these
genes could provide insights into which gene types most impact

IFNG levels.

2) Based on initial observations, select genes that appear to have
the largest effects on IFNG for follow-up experiments. This
could help increase the cumulative "hit rate" of genes that
regulate IFNG production.

3) Considering genes encoding other components of the IFN-
response pathway in addition to hWARS, such as IFNGR1 and
IFNGR2 which encode the IFN- receptor subunits. Perturbing
these genes may also impact IFNG levels.
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Genome-wide and targeted CRISPR screens identify RNF213 as a
mediator of interferon gamma-dependent pathogen restriction in
human cells.
Here is a summary of the information provided in the partial file
and strategies for the research problem:

In this segment, I cannot find specific genes to target in the
first round of experiments. The passage does not provide that
level of detail. However, based on the information provided,
transcription factors and 1ncRNAs associated with interferon
gamma regulation and production could be good candidates to
screen first. An initial broad screen of diverse candidates
from these groups could help identify the types of genes that
have the biggest impact on the research problem. The results
could then inform a more focused second round of screening.

In this segment, I cannot find specific genes that regulate IFNG
production. The passage focuses on hWARS as an entry factor
for EV-A71 that is induced by IFN-

For the research problem, I would suggest:

1) Focusing initial experiments on diverse genes involved in
pathways related to IFN- signaling or production, such as
the JAK-STAT pathway or genes involved in T helper cell
differentiation. Observing the effects of perturbing these
genes could provide insights into which gene types most impact

IFNG levels.

2) Based on initial observations, select genes that appear to have
the largest effects on IFNG for follow-up experiments. This
could help increase the cumulative "hit rate" of genes that
regulate IFNG production.

3) Considering genes encoding other components of the IFN-
response pathway in addition to hWARS, such as IFNGR1 and
IFNGR2 which encode the IFN- receptor subunits. Perturbing
these genes may also impact IFNG levels.

Correction: In vitro CRISPR screening uncovers CRTC3 as a
regulator of IFN- -induced ferroptosis of hepatocellular
carcinoma.

Here is a summary of the information provided in the passages and
a suggested strategy for the research problem:

In the first passage, activating CRISPR was used to overexpress
the 1IncRNA IFNG-AS1l, which led to a greater than 20-fold
increase in its expression (lines 6-7). Since IFNG-AS1 is
associated with inflammatory bowel disease, perturbing
transcription factors involved in regulating IFNG expression
could impact interferon gamma levels (lines 4-5).

In the second passage, hWARS was identified as an IFN- -inducible
entry factor for EV-A71 (lines 1-3). High levels of IFN-

were detected in patients with severe EV-A71 infection,
suggesting hWARS expression upon IFN-— stimulation may

contribute to EV-A71 pathogenicity (lines 15-17).
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For the research problem:

In this segment, I cannot find specific genes to target in the
first round of experiments.

I would suggest:

1) Focusing initial experiments on diverse genes involved in
pathways related to IFN- signaling or production, such as
the JAK-STAT pathway or genes involved in T helper cell
differentiation. Observing the effects of perturbing these
genes could provide insights into which gene types most impact

IFNG levels.

2) Based on initial observations, select genes that appear to have
the largest effects on IFNG for follow-up experiments. This
could help increase the cumulative "hit rate" of genes that
regulate IFNG production.

3) Considering genes encoding other components of the IFN-
response pathway in addition to hWARS, such as IFNGR1l and
IFNGR2. Perturbing these genes may also impact IFNG levels.

Single-cell functional genomics reveals determinants of
sensitivity and resistance to natural killer cells in blood
cancers.

Here is a summary of the information provided in the file from
lines 1 to 7:

In this segment, I cannot find specific genes to target in the
first round of experiments. The passage describes a single-
cell functional genomics approach to study interactions
between natural killer (NK) cells and blood cancer cells.
CRISPR screens identified genes regulating cancer cell
sensitivity and resistance to NK cell-mediated killing,
including adhesion-related glycoproteins, protein fucosylation

genes, and transcriptional regulators, in addition to antigen
presentation and death receptor signaling pathways (lines
3-5). A single-cell transcriptomic readout provided insight
into regulation of IFN- signaling in cancer cells and NK
cell activation states (lines 6-7).

For the research problem, I would suggest:

1) Focusing initial experiments on diverse genes involved in
pathways related to IFN- signaling or production, such as
the JAK-STAT pathway or genes involved in T helper cell
differentiation. Observing the effects of perturbing these
genes could provide insights into which gene types most impact

IFNG levels.

2) Based on initial observations, select genes that appear to have
the largest effects on IFNG for follow-up experiments. This
could help increase the cumulative "hit rate" of genes that
regulate IFNG production.

3) Considering genes encoding other components of the IFN-
response pathway in addition to hWARS, such as IFNGR1l and
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IFNGR2 which encode the IFN- receptor subunits.

Perturbing
these genes may also impact IFNG levels.

CRISPR screening identifies the deubiquitylase ATXN3 as a PD-L1-
positive regulator for tumor immune evasion.

Here is a summary of information that can help with the research
problem:

In this segment, I cannot find specific genes to target in the

first round of experiments. The passage describes a CRISPR
screening technique to identify ATXN3 as a regulator of PD-L1

expression (lines 1-3). ATXN3 promotes PD-L1 transcription
through multiple pathways, including in response to IFN- (
lines 8-9).

For the research problem, I would suggest:

1) Focusing initial experiments on diverse genes involved in
pathways related to IFN- signaling or production, such as
the JAK-STAT pathway or genes involved in T helper cell
differentiation. Observing the effects of perturbing these
genes could provide insights into which gene types most impact

IFNG levels.

2) Based on initial observations, selecting genes that appear to
have the largest effects on IFNG for follow-up experiments.
This could help increase the cumulative "hit rate" of genes
that regulate IFNG production.

3)

Considering ATXN3 as a candidate gene given its role in
regulating PD-L1 expression in response to IFN- (lines 8-9).
Perturbing ATXN3 may impact IFNG levels.

In this segment, I cannot find specific genes that regulate IFNG

production. The passage focuses on ATXN3 as a regulator of PD-
L1 expression.

Assistant:

claude-1 response (2000)=====================
1. Reflection:

I have identified diverse candidate genes involved
in IFN-gamma signaling and production based on the provided
literature. An initial broad screen of these candidates could
help determine which gene types have the biggest impact on

IFNG levels before focusing on specific genes in follow-up
experiments.

2. Research Plan: I will perform an initial CRISPR screen of 128
diverse candidate genes involved in IFN-gamma signaling or

production to observe their effects on IFNG levels. Based on
the results, I will select genes with the largest impacts on

IFNG for follow-up screening to increase the cumulative hit
rate.

2. Gene Search: ATF2
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Gene Search Result:RACK1, GTF2H4, RPS27A, FAU, DDX49, DDB1, TSR2,
WDR43, PFDN2, PAK1IP1l, TSR1, PRPF19, CDC45, TRNT1, CDC123,
RPS19, RPS3A, SS18L2, BUB3, LUC7L3, TXNL4A, TBC1D3B, GPN2, DTL
, DDX10, CCT4, RPL10, CDC5L, EIF3G, THOC7, RPS15, CICF, RPS20,

CCT3, RPL7A, PRPF38B, RPS25, GEMIN5, RPL15, TOMM40, ETF1,
CHAF1B, HSPA9, GTF2A2, CHMP6, SF1, GINS2, RPL32, XRCC6, ZNHIT2

4. Solution: [’/SPC24’, 'CDC123’, 'MEDS’, ’'DUT’, ’SAP30BP’, '
CFAP298’, 'KIF11’, 'NUP93’, ’'ATP6VOC’, 'RPL37’, ’SOCS5’, ’
UBE2M’, ’UBE2L3’, ’STAT6’, ’'UBE2S’, ’'UBE2E3’, 'UBE2Z’, ’'UBE2B
r, 'UBE2L6’, ’'UBE2D2’, ’'TAB3’, ’'UBE2R2’, 'UBE2J2’, 'UBE2E2’, '’
MYD88’, ’'UBE2D1’, ’IRAK1’, 'TYK2’, 'RELB’, ’IRAK4’, ’'S0OCS6’, '
UBE2K’, 'UBE2El’, 'UBE2A’, 'UBE20’, ’'UBE2G2’, 'MEIGl’, ’'PPEF1
v, "ZNF582’, 'ATAD1’, ’ZNF282’, 'ZNF280A’, ’'GPRASP1’, ’'ZNF286A
v, "ZNF331’, 'MAGED2’, ’'AKAIN1’, ’TSHZ1’, 'ZNF157’, ’'ClOorf7l
v, '"IGFL1l’, ’'ZNF280D’, ’'ODAM’, ’'OR51L1’, ’SH2D1A’, ’'LUzP4’, '
ZNF281’, 'KRBOX4’, ’IFNBl’, ’ZNF292’, 'OR10Z1’, ’'MGST1’, '
FOXD4L4', 'ZNF287’, 'CLEC7A’, ’'ACSM2B’, 'STX17’, 'POTEE’, '
FAM83B’, ’'RD3L’, ’ZNF611’, ’'ZNF286B’, ’'NELL1l’, ’ZNF280B’, '
ARMCX4’, 'CCDC54’, ’'ATXN3L’, 'ZNF283’, 'TBC1D19’, 'ZNF721’, '
ZNF729’, 'ZNF182’, ’'EQTN’, ’IFNA10’, 'AP1S2’, ’'SMCP’, ’'STEAP1
r, 'GUCY2F’, ’BIN3’, ’'ZNF280C’, ’GOLT1A’, ’'CXCR4’, ’'CCR8’, '
CX3CR1’, ’CXCL1l1’, 'CCR6’, ’'IL1A’, ’'CCR3’, ’ILI1R1’, ’CCL5’, '
CXCL5’, ’CXCL2’, 'CXCL12’, 'CCR2’, ’'CCR5’, ’'CXCR5’, ’CXCRl’, '
CCL4’, ’'CXCR3’, ’CXCL6’, 'CCR1’, ’'CCL2’, 'CCL3’, ’'CXCL3’, '
CCR7’, ’'IL1R2’, 'CXCL8’, 'CXCR6’, 'CXCR2’, ’'ATF3’, ’'CCL1ll’, '
CXCL1l’, 'ATF6B’, 'CXCL13’, ’'INCENP’, ’POLR3A’, 'RPL11’, ’ATF2
14

]

Human: You are a scientist working on problems in drug discovery.

Research Problem: I’'m planning to run a genome-wide CRISPR screen
to identify genes that regulate the production of Interferon-
gamma (IFNG). There are 18,939 possible genes to perturb and
I can only perturb 128 genes at a time. For each perturbation,

I'm able to measure out the log fold change in Interferon-
gamma (IFNG) normalized read counts which will be referred to
as the score. I can only do a few rounds of experimentation.

All tested genes so far and their measured log fold change are:

Score
Gene
SMAD2 0.101575
UBE2V1 -0.025857
PIAS3 0.085304
LTA -0.187780
CASPS8 0.142034
MAPK10 -0.008140
MAPKO9 0.206474
SOCS2 -0.006300
MAPK11 0.022875
PTPN22 0.339770
MAPK8IP1 -0.208230
IL18 0.064003
UBE2V2 -0.095655
IRF7 0.178988
IL12B 0.106245
CXCL9 -0.013024
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TBK1 0.013595
IRFS8 -0.284585
SMAD4 0.080494
BCL2 0.016410
SOCS1 0.185722
STAT2 -0.121285
TANK -0.016199
UBE2N 0.126805
SMAD3 0.122430
STATS5B 0.010015
IRFS -0.042555
PTPN4 0.024984
NFKBIE 0.215400
IL12A 0.128751
MCL1 -0.062024
CARD11 —-0.313452
IRF1 -0.029467
CXCL10 -0.010432
MAPKS -0.094135
JAK2 0.132444
CARDS 0.117949
MAP2K4 -0.024708
MAPK13 0.146087
TRAFS -0.140703
PIM2 0.059805
IRF2 -0.094631
MAP3K8 -0.181561
TGFB1 0.032735
MAP3K14 -0.366105
IL6 0.064360
RIPK2 -0.210654
CFLAR -0.336920
MAPK8IP3 0.160541
TGFBR2 0.013636
SMADS5 -0.129476
NFKBIL1 -0.129973
TRAF3 0.109792
STAT4 -0.282660
TGFBR1 -0.060750
IL15 -0.035326
MAP3K5 -0.224920
STAT1 -0.023106
BIRC2 0.003260
PIM3 0.017550
MAPK12 0.138772
PTPN11 0.136000
TAB2 0.367535
SMAD7 0.284655
PTPN2 0.072855
RIPK4 0.068350
MAP2K3 -0.166365
UBE2D3 0.224675
STATS5A 0.070219
IRFO -0.126400
MAP3K3 0.220350
NEKBIA 0.344135
IRF3 -0.237845
MAP3K1 0.199285

MAPK8IP2 -0.022033
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IRF4 0.059575
TNF 0.272485
PIAS] -0.113202
MAPK14 -0.244472
RIPK3 0.010906
BIRC3 0.193885
IL1B -0.008130
NEFKB1 0.125557
PTPN6 0.247855
UBE2D4 0.087250
FADD 0.107290
CASP1 -0.064096
PIAS2 0.247420
MAP2K1 -0.209255
XIAP -0.342415
BIRCS -0.082685
PIAS4 0.038910
PTPN1 0.188203
BIRC7 -0.005555
MAP3K15 -0.086644
UBE2C -0.072150
MAP4K5 0.058382
UBE2Q1 0.001715
UBE2Q2 -0.251546
UBE2T 0.279460
UBE2G1 0.034193
UBEZ2H 0.287118
UBE2J1 -0.278075
UBE2W 0.111455
The results for the hits are:
Score
Gene

TRAF6 -1.865400
SOCS3 0.536160
BCL2L1 -0.460815
MAPK1 -0.449405
NFKB2 1.584300
STAT3 -1.048600
IFNGR1 -0.898070

JAK1 -1.389050
MAPK3 -0.734105
CHUK -0.833950

IFNGR2 -0.975910
MALT1I -1.063740
RELA -0.840910
PRKCQ -0.442575
IKBKE 0.487890
IKBKB -0.922680
MAP2K2 -0.402665
MAP2K7 -0.446480
TRADD -0.623995
NFKBIB 0.495810
RIPK1 0.606570
MAP3K7 -1.305750
BCL10 -0.869020
IKBKG -0.853900

Now for the next round of experiment your students are planning on
testing the following genes:
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[/spc24’, ’CDC123’, ’'MED8’, 'DUT’, ’SAP30BP’, ’'CFAP298’, 'KIF11l’,
"NUP93’, ’'ATP6VOC’, 'RPL37’, ’SOCS5’, ’'UBE2M’, 'UBE2L3’, '
STAT6’, 'UBE2S’, ’'UBE2E3’, ’'UBE2Z’, 'UBE2B’, 'UBE2L6’, ’'UBE2D2
r, 'TAB3’, 'UBE2R2’, 'UBE2J2’, 'UBE2E2’, 'MYyD88’, ’'UBE2D1’, '’
IRAK1’, 'TYK2’, 'RELB’, ’'IRAK4’, ’'SOCS6’, 'UBE2K’, 'UBE2El’, ’
UBE2A’, ’'UBE20’, 'UBE2G2’, 'MEIGl’, ’'PPEF1l’, ’ZNF582’, ’'ATADI
r, "ZNF282’, ’'ZNF280A’, ’'GPRASP1’, ’ZNF286A’, ’ZNF331’, '
MAGED2’, ’'AKAIN1’, ’TSHZ1l’, 'ZNF157’, 'ClOorf71’, 'IGFL1’, '
ZNF280D’, 'ODAM’, ’'ORS51L1’, ’SH2D1A’, ’'LUZP4’, 'ZNF281’, '
KRBOX4’, 'IFNB1l’, ’ZNF292’, 'OR10%Z1’, ’'MGST1’, 'FOXD4L4’, '
ZNF287’, 'CLEC7A’, ’'ACSM2B’, 'STX17’, 'POTEE’, ’'FAM83B’, ’RD3L
v, "ZNF611l’, 'ZNF286B’, ’'NELL1’, ’ZNF280B’, ’'ARMCX4’, ’CCDC54
v, 'ATXN3L’, ’ZNF283’, ’'TBC1D19’, 'ZNF721’, ’'ZNF729’, ’ZNF182
v, "EQTIN’, ’IFNA1Q’, 'AP1S2’, ’SMCP’, ’'STEAP1’, ’'GUCY2F’, ’
BIN3’, ’ZNF280C’, ’GOLT1A’, ’'CXCR4’, ’'CCR8’, ’'CX3CR1l’, ’CXCL11
r, 'CCR6’, "IL1A’, 'CCR3’, 'IL1R1’, ’'CCL5’, ’'CXCL5’, ’CXCL2’,
"CXCL12’, 'CCR2’, 'CCR5’, ’CXCR5’, 'CXCR1l’, ’'CCL4’, ’'CXCR3’, ’
CXCL6’, ’'CCR1’, ’CCL2’, 'CCL3’, 'CXCL3’, 'CCR7’, 'IL1R2’, '
CXCL8’, ’'CXCR6’, 'CXCR2’, 'ATF3’, 'CCL11l’, ’'CXCL1l’, 'ATF6B’, '
CXCL13’, ’INCENP’, 'POLR3A’, ’'RPL11’, 'FAU’]

As an advisor, please critique this plan and suggest some changes
to it. Use this format:

1. Critique: include all relevant details of the critique.

2. Updated Solution: Give an updated selection of 128 genes based
on the critique separated by commas in this format:: 1. <Gene
name 1>, 2. <Gene name 2>

Try to first focus a lot on trying very diverse genes to

get a sense of which types of genes affect the research problem
the most. From the observations,

update your beliefs quickly and smartly and then double down on
genes which you think shall be hits

in order to increase the cumulative hit rate.

Please do not critique/make a lot of changes if there is no need
to make a change.

Assistant:
===================claude-1 response (2000)=====================
1. Critique: The proposed gene list is quite diverse which is
good for an initial exploratory screen. However, based on the
results from the previous screen, genes involved in the NF-

kB and JAK-STAT signaling pathways seem to be enriched for
hits. I would suggest focusing more on these pathways for the
next round of screening.

2. Updated Solution: Here is an updated list of 128 genes to test
next:

MYD88,
IRAK1,
IRAK4,
TYK2,
RELB,
S0Cse,
TAB3,

oUW
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8. NFKBIB,
9. RIPKI,
10. BCL10,
11. IKBKG,
12. TRAF6,
13. MAPKI,
14. NFKB2,
15. STAT3,
16. IFNGRI1,
17. JAKI1,
18. MAPK3,
19. CHUK,
20. IFNGR2,
21. MALTI,
22. REILA,
23. PRKCQ,
24. IKBKE,
25. IKBKB,

26. MAP2K2,
27. MAP2K7,

28. TRADD,
29. TLR9
30. TLR7
31. TLRS
32. TLR3
33. IRAK2
34. UBE2S
35. UBE2E3
36. UBE2Z
37. UBE2B
38. UBE2L6
39. ZNF281
40. ZNF292
41. ZNF287
42. ZNF611

43. ZNF286B
44. ZNF280B

45. ZNF283
46. ZNF721
47. ZNFT729
48. ZNF182
49. ZNF280C
50. SOCS5
51. SpC24
52. CDC123
53. MEDS8
54. DUT

55. SAP30BP
56. CFAP298

57. KIF1ll
58. NUP93
59. ATP6VOC
60. RPL37
61. UBE2M
62. UBE2L3
63. STATG6
64. TAB3
65. UBE2R2
66. UBE2J2
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67. UBE2E2
68. CLEC7A
69. ACSM2B
70. MYDS8S8
71. UBE2D1
72. IRAK1
73. TYK2
74 . RELB
75. IRAK4
76. SOCS6
77. UBE2K
78. UBEZ2E1
79. UBE2A
80. UBE20
81. UBE2G2
82. MEIGI1
83. PPEF1
84. ATADI1
85. MAGED2
86. TSHZ1
87. ClOorf71
88. IGFL1
89. ODAM
90. IFNB1
91. MGST1
92. FOXD4L4
93. ZNF287
94. STX17
95. POTEE
96. FAM83B
97. RD3L
98. ZNF611
99. ZNF286B
100. NELL1

101. ZNF280B
102. ARMCX4
103. CCDC54
104. ATXN3L
105. ZNF283
106. TBC1D19
107. ZNF721
108. ZNF729
109. ZNF182

110. EQTN
111. IFNAILO
112. AP1S2
113. SMCP

114. STEAP1
115. GUCY2ZF
116. BIN3
117. ZNF280C
118. GOLT1A
119. CXCR4
120. CCRS8
121. CX3CR1
122. CXCL1l1

123. CCR6
124. IL1A
125. CCR3
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126. IL1R1
127. CCL5
128. CXCL5

The subsequent steps follow the same format, the agent predicts a batch of genes based on previous
round predictions and hit results, literature review, and diverse gene tool. The prediction list is
updated using the critic agent which is not provided with any additional information on literature
review or gene diversity, but only the research problem, previous round experimental results, and
current proposed gene list by the primary agent.
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