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Abstract

Common object-centric learning models learn a set of representations, or “slots”.
Recent advancements in object-centric learning have introduced autoregressive
decoders to decode slots into features or images, allowing the model to learn
compositional representations from more complex and realistic datasets. However,
the autoregressive decoding process is time-consuming due to its sequential nature,
making it difficult to apply to downstream tasks such as video generation. In this
paper, we introduce MaskSDT, a masked bidirectional transformer that decodes
all slots simultaneously. Our experiments on the 3D Shapes and CLEVR datasets
demonstrate that our model shows improvement in reconstruction performance and
generation speed, as well as comparable results in compositional generation.

1 Introduction
Learning compositional representations has attracted interest both within and outside the field of
computer science, as it relates to how humans perceive their surroundings in terms of objects and their
relationships [29, 30]. A common architecture used in object-centric learning is representing each
object in an image or video as a set of representations, often referred to as “slots” [18, 2]. Due to its
ability to represent the scene in a compositional manner, object-centric learning has been found useful
for multiple downstream tasks, such as reasoning [20, 36, 37], planning [32, 22], and reinforcement
learning [39, 7].

Slot Attention [18] is a commonly used architecture that extracts patch-level features from a CNN
encoder, then applies iterative attention over features to extract slots, and decodes the slots using
Spatial Broadcast Decoder [34]. In recent years, improvements for all modules have been proposed.
Some works have replaced the CNN encoder with discretized encoders [10] or pretrained Vision
Transformers (ViT) [31, 6] to scale to more realistic datasets [26, 28, 25, 41]. Different decoder
choices have also been explored such as autoregressive transformers or diffusion models [26, 28, 37].
For example, SLATE [26] uses an autoregressive transformer that reconstructs patches from slots
instead of the original image, improving object-wise disentanglement and compositional generation.
Finally, several works have explored improving Slot Attention, such as optimizing the iterative
attention algorithm [12] or learning quantized slot representations [27, 35].

However, using decoders other than Spatial Broadcast Decoder leads to issues with computation
requirements. For example, when using an autoregressive transformer, generation requires (# of
patches) steps per image. This is especially challenging in object-centric learning because the patch
size is typically smaller compared to when using patches directly for downstream tasks, as the
objects in the scene may vary in sizes or be partially occluded. The autoregressive property limits
its suitability for downstream tasks, such as high-resolution image generation or extended video
generation.

In this work, we present MaskSDT (Masked Slot Decoding Transformer), which replaces the
autoregressive transformer with a bidirectional transformer. Inspired by [3], we train MaskSDT using
masked token prediction. We conduct experiments using the 3D Shapes and CLEVR datasets, and
show that our model improves reconstruction and generation speed. We also show that our model
achieves qualitatively comparable performance on the compositional generation task.
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Figure 1: Generation process using SLATE (left) and MaskSDT (right). SLATE decodes L tokens
one by one and take L steps per image to generate. MaskSDT generates all tokens at once with
T (≪ L) steps of iterative mask update.

2 Related Works
Learning to represent objects in the scene using “slots” [18] has been long explored in the literature.
Several works have used discretization methods to scale to more realistic datasets [26, 28] or to
improve the factorization of the learned representations [27, 35]. Using a transformer decoder has
been explored both to decode tokens, used by works mentioned above, or images [23]. More recent
improvements for scaling include using pretrained encoders [25, 41, 5] and using diffusion-based
decoders [37, 13, 17].

Autoregressive decoding is known to suffer from the slow inference speed and sequential error
accumulation, and have been extensively studied in the field of natural language processing. Non-
autoregressive generation algorithms has emerged to address the challenges of autoregressive decod-
ing, with masked token prediction recognized as a variant of this approach [4, 8, 19]. Application to
images has also been explored, in which MaskGIT [3] improved largely by introducing a novel draft-
and-revise algorithm [16]. MaskGIT has been applied for different tasks, such as video prediction [38],
video generation [40, 33], and multimodal models [21].

3 Method
MaskSDT (Figure 1) consists of two encoder-decoder architecture in a nested structure, one to
extract patch-level representations (“tokens”) from images and the other to extract object-centric
reprensentations (“slots”) from tokens. Our model architecture mainly follows SLATE [26], while
replacing the slot-to-token decoder with a transformer decoder trained with masked token prediction
scheme. Motivated by its rapid generation capabilities and strong performance across a wide range
of domains, we utilize the architecture and masking scheme of MaskGIT [3]. We first review the
architecture of SLATE, and then introduce our model.

3.1 Preliminary: Slot-based object-centric learning using SLATE

SLATE uses Discrete VAE (DVAE) [10] to extract tokens from images. An input image x, is processed
through an encoder, fϕ, to calculate log probabilities, o, for a categorical distribution with V classes.
To train DVAE, a “soft” one-hot encoding zsoft is sampled from a relaxed categorical distribution [11],
and decoded via a decoder, gθ. Denoting the temperature of the relaxed categorical distribution as τ ,
the entire process can be written as,

x̃ = gθ(zsoft) where zsoft ∼ RelaxedCategorical(o; τ), o = fϕ(x). (1)

To compute slots, the tokens from the DVAE encoder are first mapped to embeddings, e, using a
learned dictionary. Learned positional embeddings, pϕ, are added to the embeddings to incorporate
positional information of the tokens. Then, the embeddings are fed to Slot Attention [18] encoder to
extract K slots, s1:K . This process can be written as,

s1:K = SlotAttention(e) where e = Dictionaryϕ(z) + pϕ, z ∼ Categorical(o). (2)
Then, the slots are decoded back into tokens using an autoregressive transformer [31]. Beginning
with a [BOS] token, the tokens are predicted one by one, which can be expressed as,

ẑl = arg max
v∈[1,V ]

ôl where ôl = Transformerθ(ê<l; s1:K), (3)
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Table 1: Evaluation of image reconstruction performance. We report MSE and FID score.

Dataset MSE (↓) FID (↓)
SLATE MaskSDT (Ours) SLATE MaskSDT (Ours)

3D Shapes 9.88 8.84 48.67 44.53
CLEVR 8.85 8.52 51.39 46.86

where ê<l = Dictionaryϕ(ẑl) + pϕ,l. The predicted tokens can then be used to generate images via
the DVAE decoder, gθ.

Overall, DVAE is trained using reconstruction loss, LDVAE =
∑N

i=1(x̃i − xi)2, and Slot Attention
and the transformer are trained using cross-entropy loss, LST =

∑N
i=1

∑L
l=1 CE(zi,l, ôi,l), where

L denotes the number of tokens. The entire model is trained together. Please refer to [26] for more
information on training details. Index i is omitted in the equations above for brevity.

3.2 MaskSDT
Autoregressive generation is especially a bottleneck for object-centric learning, as the smaller patches
are typically preferred for Slot Attention to attend to smaller objects that may be present in the scene.
MaskSDT replaces the autoregressive transformer with a bidirectional transformer [4] trained on
masked token prediction. Using a bidirectional transformer enables the decoder to better capture
the global information between tokens. Moreover, sampling is more efficient, as multiple tokens are
generated at the same time.

During training, a binary mask, [ml]
L
l=1, is generated using a masking scheduler function, γ(r) ∈

(0, 1]. A masking ratio is first sampled, then uniformly selected γ(r) · L tokens are masked and
replaced with a special [MASK] token. The token, zl, is replaced with a [MASK] token if ml = 1,
otherwise unmasked. The cross-entropy loss is replaced with a masked version, such that the loss is
computed only for the masked tokens.

To generate new scenes, we start with a blank canvas with all tokens masked out and operate the
following procedures iteratively for T steps; (1) Predict the log probabilities, ôl, for all the masked
locations. (2) Sample a token based on the predicted probabilities. (3) Update masking using the
mask scheduler function. (4) Obtain mask for the next iteration using the schedule from (3) and the
probabilities used as “confidence” score.

In our experiments, we find that replacing the embeddings with a masked value leads to better
performance compared to masking the token with a learned [MASK] token. We also remove the
[BOS] token used in SLATE. For the mask scheduler function, we use the cosine function which was
reported to perform best [3].

Compositional Generation. The masked transformer is conditioned on the slots extracted by Slot
Attention. Therefore, following [26], we can build a visual concept library from the extracted slots,
then compose concepts from the library and generate new images.

We follow the implementation of SLATE and generate new images compositionally via the following
steps: (1) Collect slots from all training images. (2) Apply K-means clustering to find K concepts
using cosine similarity as the distance metric. (3) To generate a new image, pick concepts from the
library and randomly select a slot per concept, and decode using MaskSDT and DVAE decoder.

4 Experiments
We evaluate MaskSDT in terms of (1) image reconstruction ability, (2) computational efficiency,
and (3) compositional generation ability. We compare our model with SLATE [26], which uses the
same transformer-based decoder with autoregressive prediction. The evaluation is conducted on two
datasets: the 3D Shapes dataset [1] and the CLEVR dataset [14]. 3D Shapes dataset consists of 400K
training images of 3D objects procedurally generated from 6 ground truth independent latent factors,
such as color, size, and shape. CLEVR dataset consists of 200K images of multiple objects with
random colors and shapes under photorealistic lighting conditions. The images are size 64× 64 and
128× 128, respectively. Hyperparameters and training details are summarized in Appendix A.1.

4.1 Reconstruction

Table 1 shows the reconstruction performance and Figure 3 shows the attention maps of all models.
We report MSE to evaluate how well the models preserve the contents of the original image, and
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Table 2: Comparison of computation requirements using 3D
Shapes dataset. All metrics were computed on a single Tesla
V100 GPU using a batch size of 1.

SLATE MaskSDT (Ours)

Train # of parameters 3.6M 3.7M
Time [s] 0.891 0.080

Test Time [s] 1.844 0.286
Table 3: Evaluation of compositional generation performance.
We report FID and IS score.

Dataset FID (↓) IS (↑)
SLATE MaskSDT (Ours) SLATE MaskSDT (Ours)

3D Shapes 55.34 115.88 3.36 3.57
CLEVR 124.57 254.75 2.75 2.06

Figure 2: Comparison of com-
positional generation task on 3D
Shapes.

Figure 3: Visualization of attention masks for 3D Shapes dataset (left) and CLEVR dataset (right).
MaskSDT produces slightly better masks for CLEVR dataset which include smaller objects and
possible object occlusions.

Fréchet Inception Distance (FID) [9] to evaluate how realistic the reconstructed images are in terms
of distribution distance . As the table show, our model improves both MSE and FID compared to the
baseline model. MaskSDT improves especially in terms of FID as using a bidirectional transformer
leads the model to capture the global context of the image while decoding. We also observe that
our model improves FID score for more difficult dataset, CLEVR. We leave qualitative analysis of
learned masks for future work.

4.2 Computation Efficiency
The computation requirements of the two models are summarized in Table 2. We report the number
of parameters and time per training step. We also report the generation time to generate a single
image. All metrics were measured on a single Tesla V100 GPU. As the table shows, our model has
slightly more parameters as MaskSDT learns a separate dictionary to predict the tokens. However,
our model improves training and generation speed by a large margin. This is due to our generation
scheme which samples all tokens simultaneously. Although the sampling of the tokens requires
T = 5 iterations, MaskSDT can generate scenes more efficiently.

4.3 Compositional Generation
We report the performance on compositional generation task described in section 3.2 in Table 3 and
Figure 2. For this task, we report FID and Inception Score (IS) [24]. As the table shows, SLATE
shows better scores except for IS on 3D Shapes dataset. However, Figure 2 shows that our model
can produce realistic images in some cases. We observe that the failure case of our model is mainly
wrong choice of the tokens, which may be improved by tuning hyperparameters or training setup.

5 Conclusion
In this paper, we presented MaskSDT , an object-centric model using bidirectional transformer
trained on masked token prediction. We evaulated our model on three tasks, image reconstruction,
computation efficiency, and compositional generation tasks, using 3D Shapes and CLEVR dataset.
The results showed that while our model exceeds the baseline model for the former two tasks,
optimization is needed to improve generation ability. We also leave exploring masking scheme for
slots to improve out-of-domain generalization, scaling the model for more realistic datasets, and
applying the model to further downstream tasks for future work.
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A Appendix / supplemental material

A.1 Hyperparameters and Training Details

The hyperparameters used for our experiments are reported in Table 4. We followed the implementa-
tion of SLATE [26] and changed only the transformer decoder architecture. Although MaskGIT [3]
uses a larger transformer decoder, with 24 layers, 8 attention heads, 768 embedding dimensions
and 3072 hidden dimensions, we kept our hyperparameters similar to the transformer decoder used
by SLATE to measure performance fairly. The model was trained using Adam optimizer [15] with
β1 = 0.9, β2 = 0.999.

We reproduced the results for the baseline model, SLATE, as only the code on 3D Shapes dataset was
available. For CLEVR dataset, we also trained SLATE for the same amount of epochs.

Table 4: Hyperparameters of MaskSDT.

Dataset 3D Shapes CLEVR

Batch Size 50 50
Epochs 20 100

Learning Rate Warmup Steps 30000 30000
Max Learning Rate 1e-4 1e-4
Gradient Clipping 1.0 1.0

Encoder Image Size 64 128
# of Tokens 256 1024

DVAE

Vocabulary Size 1024 4096
Max Temperature 1.0 1.0
Min Temperature 0.1 0.1

Temp. Anneal Steps 30000 30000
Learning Rate (w/o warmup) 3e-4 3e-4

Slot Attention
# of Slots 3 12

# of Iterations 3 7
Slot Dimension 192 192

MaskSDT

# of Layers 4 8
# of Heads 8 8

Embedding Dimension 192 192
Hidden Dimension 192 192

T (# of sampling iterations) 5 5

A.2 Ablations

As reported in MaskGIT, generation performance do not linearly increase with the number of iterations
of token sampling, T . We conducted ablation using 3D Shapes dataset to investigate how FID and IS
score changes with different number of iterations. As Figure 4 shows, we observed a similar trend of
the score reaching a “sweet spot” then worsening again for FID. For IS score, we did not observe a
similar trend. We opted to use T = 5 as we got reasonably low FID score with the second highest IS
score. We leave further ablation of masking function and sampling iteration number for future work.

Figure 4: FID and IS score for different number of sampling iterations of MaskSDT.
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