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Abstract

Inverse design aims to design the input variables of a physical system to optimize
a specified objective function, typically formulated as a search or optimization
problem. However, in 3D domains, the design space grows exponentially, rendering
exhaustive grid-based searches infeasible. Recent advances in deep learning have
accelerated inverse design by providing powerful generative priors and differen-
tiable surrogate models. Nevertheless, current methods tend to approximate the
3D design space using 2D projections or fine-tune existing 3D shapes. These
approaches sacrifice volumetric detail and constrain design exploration, preventing
true 3D design from scratch. In this paper, we propose a 3D Inverse Design (3DID)
framework that directly navigates the 3D design space by coupling a continuous
latent representation with a physics-aware optimization strategy. We first learn a
unified physics—geometry embedding that compactly captures shape and physical
field data in a continuous latent space. Then, we introduce a two-stage strategy to
perform physics-aware optimization. In the first stage, a gradient-guided diffusion
sampler explores the global latent manifold. In the second stage, an objective-
driven, topology-preserving refinement further sculpts each candidate toward the
target objective. This enables 3DID to generate high-fidelity 3D geometries, out-
performing existing methods in both solution quality and design versatility.

1 Introduction

Inverse design seeks to identify the initial variables of a physical system that, under given constraints,
optimizes a specified objective function. This fundamental challenge occurs across many scientific
and engineering disciplines, such as materials science, mechanical engineering, aerospace design,
and supports applications ranging from automotive body shaping [1] and nano-photonic device
engineering [2] to mechanical materials design [3| 4] and physics detector development [5]].

Despite its broad impact, efficiently exploring the design space toward a target objective presents
significant challenges. First, inverse design must contend with the inherent complexity of simulating
physical systems for evaluation. These simulations are often nonlinear and high-dimensional, requir-
ing fine discretizations that dominate computational resources [6}[7]. Second, the design landscape
is extremely large, inherently nonconvex, and riddled with local minima, making exhaustive global
search infeasible [§} 9]. In 3D domains, where inverse design usually involves direct geometry
optimization, the number of degrees of freedom grows exponentially [[10]. This rapid growth in
geometric complexity drives up simulation expense and intensifies the search challenge.

To tackle inverse design in the 3D domain, various techniques have been proposed [[1,[11}[12]], yet they

fall short of addressing the above challenges. Traditional approaches such as adjoint-based gradient

methods [13} 14} [15] and Bayesian optimization [16} [17]] provide broad applicability but depend on
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repeated high-fidelity simulations that incur pro-
hibitive computational cost. With recent ad-
vances in deep learning, pretrained surrogate
models [18 [19} 20, 21] can efficiently approx-
imate the forward physical process and support
end-to-end backpropagation to update design
variables, speeding up convergence by orders
of magnitude. However, many prior methods
adopt two simplifications. One replaces the 3D
design with 2D proxies [} [11]] (multi-view ren-
derings or silhouettes), which removes geome-
try information. The other requires an initial
geometry as the starting point for subsequent re-
finement [22] 23| 24]]. In practice, both assump-
tions restrict design exploration and hinder a thor-
ough search of complex 3D design spaces (see
Fig.[I). As aresult, they cannot support the full
exploration of complex three-dimensional design
spaces, limiting coverage to a narrow subset of
feasible geometries.

We identify two primary challenges in 3D inverse
design. 1) The high dimensionality of 3D physics-
geometry-coupled spaces impedes exploration.
Inverse design must simultaneously optimize ge-
ometric structures while accurately evaluating
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Figure 1: Motivation of 3DID. Existing 3D
inverse-design methods either rely on reduced-
dimensional representations (2D projections or
fixed parameterizations) that constrain design
freedom, or require an initial geometry as a start-
ing point for local refinement, which highly con-
strains the search space. In contrast, 3DID over-

comes these limitations by directly exploring the
full 3D design space from random initialization.

their resulting physical properties. This coupling,
combined with the continuous high-resolution na-
ture of both shape and physical fields, makes the
direct 3D exploration extraordinarily difficult. 2) The lack of optimization strategies that balance
the exploration—validity trade-off. Refining a baseline geometry with a surrogate model ensures
constraint compliance and design validity, but it confines the search to a local neighborhood and can
introduce adversarial artifacts when driven too far [25][26]]. On the other hand, sampling candidates
with a generative model offers broader exploration yet leaves results vulnerable to biases in the
training data [27]]. Consequently, samples stay tethered to the prior and tend to imitate prevalent
patterns rather than pushing toward novel optima.

To address these challenges, we introduce 3DID, a 3D inverse-design framework that explores the
design space without relying on simplified parameterizations or predefined shapes. Rather than
directly searching the prohibitively large, continuous physics-geometry-coupled space, we first learn
a continuous physics—geometry unified latent representation. This compact embedding preserves
fine-grained shape and physical field variations while dramatically reducing both dimensionality and
computational cost, thereby overcoming the dual obstacles of large-scale shape optimization and
physics-aware simulation. Building on this latent space, we then deploy a two-stage optimization
pipeline to tackle the exploration—validity trade-off. It begins with a gradient-guided diffusion
sampler that traverses the manifold from pure noise to generate diverse, physics-informed candidates
by steering sampling toward high-performance regions using objective gradients. Each candidate
then undergoes topology-preserving optimization, which further improves objective performance
under strict mesh-quality and connectivity constraints, ensuring geometric integrity and preventing
adversarial artifacts. Together, these components enable 3DID to discover novel, high-fidelity 3D
designs that reliably meet target objectives. In summary, our contributions are threefold:

(1) We propose a continuous latent embedding that jointly encodes detailed 3D geometry and
high-fidelity physical fields, enabling an efficient, unified search within a compact latent manifold.

(2) We develop a two-stage optimization pipeline that begins with gradient-guided diffusion sampling
for global exploration and followed by topology-preserving refinement, optimizing each candidate
toward the desired objective while strictly maintaining structural integrity.



(3) We validate our 3DID framework on aerodynamic shape optimization, demonstrating that it
consistently generates novel geometries whose superior performance is confirmed through surrogate
evaluations and high-fidelity CFD simulations, significantly surpassing baseline methods.

2 Related work

2.1 Inverse Design

Compared with the forward PDE problem, which predicts the physical response of a given design
using numerical solvers or learned surrogates [28], [29} 130} 31} 32, [33]], inverse design seeks the
design variables that achieve a target objective under engineering constraints [26, [18| 34]. Inverse
design is a fundamental problem in many domains of science and engineering disciplines, including
mechanical engineering [35} 36], material science [37} 38} 139], chemical engineering [40], medical
engineering [41], and aerospace engineering [22, 6, 42]. Classical approaches typically combine
high fidelity physics solvers with sampling-based optimization methods such as the Cross Entropy
Method [43]] or Gaussian-process model with Bayesian optimization [44] to explore the design space.
With the advent of differentiable simulators, inverse design can be posed directly as a gradient-
based optimization problem [41} 45]. More recently, deep learning driven methods have shown
great promise by learning surrogate models that approximate forward physics and allow end-to-end
backpropagation [18}[19]. Furthermore, generative models, including variational autoencoders [46],
GAN [47,148]] and diffusion models [26},/49] have been applied to inverse design. While prior methods
mainly excel in 2D or low-dimensional settings, we propose a framework that directly navigates the
full 3D design space via physics-aware optimization.

2.2 Aerodynamic Shape Optimization

Aerodynamic shape optimization is a classical inverse design task that seeks geometries minimizing
drag while satisfying constraints on lift, stability, and other performance criteria [50} 51} 52| [53].
Generally, effective optimization critically depends on two key components: shape representation
and optimization strategy. Traditional approaches typically employ simplified, low-dimensional
representations such as 2D projections [[L1, 154} 1] or spline-based parameterizations [S5, 56, 57]] to
reduce dimensionality and computational costs. Optimization is then performed using gradient-based
adjoint solvers for efficient local refinement [24, 58| 59]. Additionally, to accelerate convergence,
many methods optimize from a pre-selected baseline geometry [22} 23| 24]]. In contrast, we propose
a guided diffusion model over a latent shape representation, enabling the design of unconstrained 3D
geometries directly from noise, without relying on initial shapes or 2D profiles.

3 Methods

In this section, we first formalize the 3D inverse design problem (Section [3.T). We then introduce
our physics—geometry unified representation (Section [3.2)), describe the gradient-guided diffusion
sampling process (Section[3.3), and detail the topology-preserving refinement stage (Section [3.4).
Finally, we provide our implementation details (Section [3.3).

3.1 Problem Formulation

We consider the problem of 3D inverse design, where the goal is to identify a solid input geometry
M for a physical system that optimizes specified performance objectives while satisfying geometric
constraints. Formally, let M C R? denote a solid geometry, and let 7 (M) be the corresponding
steady-state physical field (e.g., pressure or temperature distribution) governed by a partial differential
equation (PDE) or an ordinary differential equation (ODE). We define the design objective as:

J(M) = J(M,F(M)), M
which may measure quantities such as drag, lift, and structural compliance. Specifically, J depends
on M in two ways: implicitly, via the resulting physical field 7(M ) on which 7 is evaluated, and
explicitly, via direct geometric properties defined on M. The classical inverse design aims to solve:

M* = argrr]{}[n j(M,]:(M))

)
st. C(M,F(M)) <0,
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Figure 2: The overview of PG-VAE. We use transformers to encode the design geometry and its
associated physical field, along with learnable tokens, into a compact triplane latent representation
z. A decoder then upsamples the latent z into high-resolution triplane feature maps, which can be
reshaped into three orthogonal planes. Finally, a physics—geometry mapping network is applied to
reconstruct both the occupancy field and the corresponding physical field from these feature maps.

where the solution M* is the geometry that minimizes the performance objective, C' aggregates
design constraints, such as volume, manufacturability, and boundary conditions.

3.2 Physics-Geometry Unified Representation

To compactly encode 3D geometry and its physical field, we adopt a triplane representation learned
via our Physics-Geometry VAE (PG-VAE). As shown in Figure[Z] it includes: (1) A physics—geometry
encoder that maps input geometry and physical field into a latent code. (2) A latent-to-triplane
decoder that reconstructs triplane feature maps from the latent code. (3) A physics—geometry mapping
network that recovers the 3D geometry and physical field from the triplane.

Physics-Geometry Encoder. The physics—geometry encoder comprises two parallel branches: one
for processing raw 3D geometry, and the other for encoding the associated physical field. Inspired
by [60], each branch uses learnable tokens to capture both local and global context. For the geometry
branch, given uniformly sampled point clouds P, € RN9*% from the geometry, where N, is the
number of points and C, represents features including normalized positions and surface normals,
we utilize Fourier features [61] to encode positional structure. Then, a set of learnable tokens
eg € RGxrxr)xde gueries information from these points via cross-attention and self-attention
layers, resulting in geometry latent tokens z, € R(3X7x7)xd= The physical-field branch follows
the same structure, processing uniformly sampled physical-field points P, € RN»*Cp where N,
is the number of points and C,, is the dimension of physical-field features. Learnable tokens e, €
RGxrxr)xde yndergo similar attention layers to produce physical-field latents z, € RGx7xr)xd:
Finally, geometry and physical tokens are concatenated and passed through MLP layers to form the
unified latent representation z = MLP(Concat(z,, z,)), where z € RGX7x7)xd=,

Latent-to-Triplane Decoder. After obtaining the unified physics—geometry latent representation,
we apply a decoder to formulate the triplane representation. Prior to decoding, we reshape the latent
tokens by vertically concatenating three planes, yielding the reshaped latent tensor z € R™* (3x7)xd=
following [[62]. Subsequently, the latent tensor is passed through a series of convolutional layers for
upsampling. The output is then reshaped into the final triplane features T, 1., Ty € REXRxd:
where R denotes the resolution of each plane and d; is the feature dimension per pixel.
Physics-Geometry Mapping Network. The mapping network serves to reconstruct 3D geometry
and the associated physical field from the learned triplane representation. We utilize two parallel
MLP branches: one for predicting geometric occupancy and one for estimating the physical field.
Given a query point ¢ € R?, we project it onto the three orthogonal planes and extract features. The
aggregated feature is computed as t; = Ty (quy) + T2 (qz2) + Ty2(qyz). Where guy, ¢uz, ¢y- denote
the 2D projections of ¢ onto the respective planes. The aggregated feature ¢, is then fed into the MLP
branches to predict the occupancy field and physical field values at the corresponding point q.
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Figure 3: The optimization framework of 3DID. Starting from noise, we guide diffusion using
objective gradients to steer the latent toward high-performance regions. The decoded triplane then
yields an initial mesh M, and its surface physical field ¢, which is then refined via backpropagation
over a free-form deformation lattice to improve performance while preserving topology.

End-to-End Training. Our VAE model is trained end-to-end to jointly reconstruct 3D geometry
and the associated physical field. For occupancy field reconstruction, we employ the Binary Cross-
Entropy (BCE) loss Lgcg to supervise the predicted occupancy. To reconstruct the physical field, we
utilize the Mean Squared Error (MSE) loss Lysg. Additionally, we incorporate a KL divergence loss
Lk to regularize the latent space. Overall, our training loss can be formulated as:

Lpc.vae = ABceLBcE + AmseLmse + Ak Lk, 3)

where Agce, AMsg, AL are weighting coefficients.

3.3 Objective Guided Diffusion

Once the PG-VAE is trained, it provides a compact, expressive latent code z that jointly captures 3D
geometry and its physical field. We then train a diffusion model [63. /64] on these latents, enabling
direct generation of samples on the learned manifold from pure noise. To drive inverse design, we
inject gradients of the task objective 7 into the diffusion sampling, as shown in Figure 3]

In standard diffusion sampling, each denoising step predicts noise via the learned score function:

€o(z,t) = —vV1—ay Vy, logp(z), %)

where V, log p(z:) denotes the score function, i.e., the gradient of the log-probability density of the
latent variable z;. By iteratively denoising, the model guides samples toward high-probability regions
of the data manifold. In our case, we need to consider not only guiding the noise towards the feasible
data manifold, but we also need to incorporate optimization of .7 during the sampling. Therefore,
inspired by [65} [66]], we replace the unconditional score with the conditional score V, log p(z: | J).
By Bayes’ rule, we can derive:

V. dogp(z | J) o< Vi, logp(z) + V2, log p(T | z)- (5)

Here, V., log p(z:) corresponds to the standard score function learned by the diffusion model, while
V., logp(J | z) acts as an additional guidance term that incorporates the influence of the design
objective. Since V, logp(J | ;) is unknown, we approximate it by:

Ve logp(J | z) = V2, logp(T | Zo(2)) o =V, T (%0(21)), (©)

where Zy(z;) denotes the estimate of the clean latent code given the noisy latent z;, following [66].
Accordingly, we adjust the predicted noise to incorporate the influence of the design objective 7,
resulting in the guided noise prediction:

E;(Ztv t) = €¢(Zt7 t) + erth’ (7)

where E:b is the modified noise prediction, and -y is a scaling coefficient that controls the strength of
the guidance. This objective-aware adjustment steers the sampling trajectory toward latent regions
that both conform to the learned data distribution and advance the target design objective J.



3.4 Topology-Preserving Refinement

After objective-guided diffusion, we obtain an optimized latent code z*, which is reshaped into
triplane feature maps and decoded by the physics—geometry mapping network to generate an initial
3D mesh M with vertex set Vo = {v;}7_, and its associated physical field ¢ = {go]} Y |, as shown
in Flgurel Although guided by the de§1gn objective, the generated designs remain hlghly biased
by the prior distribution of designs from the training data [27]. We introduce a topology-preserving
refinement stage based on free-form deformation (FFD) [67, 68]], controlled by gradient descent.

Specifically, we first wrap M, in a 3D lattice of control points C = {¢;}X . These control points
form a flexible control grid that allows smooth and structured adjustment of the mesh shape while
preserving its topology. The deformation of each vertex v; is computed as:

K
! C) = ZBi(Uj)Cia (8)
=1

where B;(v;) denotes the i-th trivariate Bernstein basis function [68]] evaluated at the normalized
parametric coordinate of vertex v;. These basis functions provide smooth, localized influence from
the control points, enabling flexible yet coherent deformation across the mesh.

At the beginning of the refinement process, the control points are unmodified, so v} (C) = v,. The
initial vertex—field pairs {(v;(C), ;) } are then fed into a pretrained GNN surrogate fonn which
estimates the current design objective based on the mesh geometry and physical attributes:

J(©) = fexn (€))7, ) - ©

With this differentiable surrogate model, we optimize the control points to improve the design
objective. The overall refinement loss is defined as:

£(C) = T(C) + smooﬁhZHAczu oY (7 ) (10)

OI‘]
cells g

where Ac; are control-point dlsplacements, and the term weighted by Agmootn penalizes large
displacements for smooth deformations, while the term weighted by A, penalizes cell-wise volume
changes to ensure geometric consistency. Control points are updated via:

ct) = —pveLc®), (11)

We optimize using AdamW with a cosine-annealed learning rate 7. Iteration continues until an
iteration count T, is reached. The resulting vertices V* = {v }, obtained via the FFD mapping
(Eq.[8), define the refined mesh M*, which preserves topology and improves target performance.

3.5 Implementation Details

To train our PG-VAE, we sample N; = N,, = 50,000 points as input and use the physics—geometry
encoder with one cross-attention layer and 8 self-attention layers with 12 heads and d, = 64, plus
r = 64 learnable tokens of dimension d. = 768, yielding a latent code of d, = 32. The decoder
upsamples via one self-attention layer and five ResNet blocks [[69]] to a triplane with R = 256 and
channel d; = 64. Each branch’s mapping network has five linear layers with a hidden dimension
of 32. We train the VAE model with loss weights Agcg = 1073, Aygg = 107°, Akp, = 1076,
During training, we sample 50,000 points from the unit domain to supervise both occupancy and
physical-field predictions. For occupancy, we adopt the semi-continuous formulation following [60].
We use a learning rate of 1e — 4, a batch size of 8 per GPU, and train for 100K steps. For the diffusion
model, we employ 10 layers of DiT blocks [[70], each with 16 attention heads of dimension 72. We
train the diffusion model with 1000 denoising steps. For objective-guided sampling, an auxiliary
U-Net surrogate predicts the task objective directly in latent code z. To train the diffusion model, we
use a learning rate of 5e — 5, a batch size of 4 per GPU, and train for 300K. In topology-preserving
refinement, we deform candidates via a 20x6x6 control-point grid along the x, y, and z axes. For the
surrogate model fonn, we adopt MeshGraphNet [30] as our surrogate given its strong performance
in mesh-based physical simulations. The surrogate is trained to predict aerodynamic drag from paired
samples of geometry and ground-truth physical fields collected from the dataset. The model is trained
with a learning rate of 1e — 5, a batch size of 8 per GPU, and trained for 100K. All models are trained
with AdamW optimizer [71]. More training details of 3DID are included in the Appendix.



Table 1: Quantitative comparison for aerodynamic vehicle design. The confidence interval
information is detailed in the Appendix. Note that our method shows a slight drop in coverage,
mainly because the topology-preserving refinement pushes designs beyond the original distribution
to achieve better aerodynamic performance.

Method Pred-Drag| Sim-Drag| Novelty Coveraget
GP, Voxel 0.2997 0.4254 1.0399 0.5200
GP, Voxel+PCA 0.3059 0.4363 0.9734 0.5850
CEM, Voxel 0.2951 0.4097 0.9792 0.4350
CEM, Voxel+PCA 0.3088 0.4393 0.9864 0.5100
CEM, TripNet 0.3154 0.4161 1.0399 0.6050
Backprop, Voxel 0.2979 0.4146 0.9860 0.4750
Backprop, Voxel+PCA 0.3061 0.4614 0.9798 0.4950
Backprop, TripNet 0.3153 0.4170 1.0294 0.5900
3DID-NoTopoRefine (ours) 0.2623 0.3766 0.9195 0.6950
3DID (ours) 0.2607 0.3536 1.1709 0.4300

4 Experiments

In the experiments, we aim to answer the following questions: (1) Does 3DID outperform traditional,
sampling-based, and backpropagation methods in finding high-quality designs? (2) Does our unified
physics—geometry triplane representation yield better objectives than alternative latent or purely
geometric embeddings? (3) Does our two-stage pipeline outperform single-stage diffusion sampling
and other standard optimization methods? To answer these questions, we evaluate our method on the
vehicle aerodynamic shape optimization task, a representative example of 3D inverse design.

In the following sections, we first introduce our dataset and evaluation metrics (Section @) Next,
we describe our experimental setup and compare against baseline methods (Section[4.2). Finally, we
present two ablation studies: one on the unified physics-geometry representation (Section4.3) and
one on the two-stage optimization strategy (Section [4.4).

4.1 Dataset and Evaluation Details

Dataset. We conduct our experiments on the DrivAerNet++ dataset [72} 73], the largest available
collection for aerodynamic car design, comprising over 8,000 diverse geometries paired with high-
fidelity CFD simulations. For training, we use the entire dataset. We first normalize each geometry to
fit within a unit cube and apply the same scaling to the simulation fields. We then uniformly sample
surface point clouds with corresponding normals from the geometry. Finally, for both the occupancy
field and the physical field, we adopt the data extraction strategy of Park et al. [74], using a grid
resolution of 256. Further details of our data preparation are given in the Appendix.

Evaluation Metrics. We evaluate 3DID using four metrics. Pred-Drag is the drag coefficient
estimated by a trained surrogate model, offering an approximation of the design objective. Sim-Drag
is the drag coefficient obtained via high-fidelity CFD simulation, delivering an unbiased evaluation
of aerodynamic performance. Novelty computes the average nearest neighbor distance from each
generated design to its closest training example, indicating how distinct the designs are from existing
ones. Coverage captures how well the generated designs cover the training distribution by measuring,
for each training sample, the distance to its nearest generated design (using a k-nearest neighbor
lookup) and reporting the fraction of training examples that fall within a predefined threshold. To
extract features from the generated geometries, we use the pretrained PointNet model from [75].
Detailed evaluation procedures and simulation parameters are provided in the Appendix.

4.2 3D Vehicle Aerodynamic Design

In this experiment, we evaluate each inverse-design method on the aerodynamic shape optimization
task, where the objective 7 is to reduce the drag force of the designed vehicles. All methods are
trained on the same collection of car geometries paired with high-fidelity CFD simulations. As base-
lines, we compare against the Cross-Entropy Method(CEM) [43]], the Gaussian-process surrogate with
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Figure 4: Qualitative comparisons of different representations. Each row shows four candidates
with geometry (left) and simulated velocity field (right) with Sim-Drag in the top-right. Despite equal
resolution, voxel methods incur higher drag and often yield non-watertight shapes (red box) due to
coarse discretization. Our continuous latent representation produces watertight, smooth designs with
superior aerodynamic performance, outperforming both voxel-based and geometry-only approaches.

Table 2: Ablation study on representation choices.

Method Pred-Drag| Sim-Drag| Novelty! Coverage?
Voxel 0.2722 0.4318 1.0683 0.3450
Voxel+PCA 0.2720 0.4565 0.9858 0.5750
TripNet 0.2698 0.4066 1.0580 0.5500
3DID-NoTopoRefine (ours) 0.2623 0.3766 0.9195 0.6950
3DID (ours) 0.2607 0.3536 1.1709 0.4300

Bayesian optimization(GP) [44]], and the gradient-based backpropagation method(Backprop) [18]].
To evaluate the impact of 3D encoding, the optimizer is instantiated with three representations: a
dense voxel grid [[76], a PCA-compressed voxel grid (Voxel+PCA) [22]], and a pure geometry triplane
network (TripNet) [21]]. GP with the triplane representation is omitted due to its high computational
cost. For fairness, we generate 64 candidate designs per method and report the average performance
in Table[T} Architectures of baselines and training details are provided in the Appendix.

From Table[I] it can be observed that 3DID delivers the best drag force result for both pred-drag and
sim-drag compared to all baselines. Specifically, our full 3DID model reduces simulated drag by
13.6% relative to the strongest baseline. These results demonstrate the effectiveness of our pipeline in
discovering high-performance designs. Furthermore, our method achieves the highest novelty score
(1.1709), indicating its ability to explore diverse design variations. Note that the drop in coverage
occurs because topology-preserving refinement pushes designs beyond the training distribution to
boost aerodynamic performance. A detailed ablation on the cascade optimization strategy is presented
in Section[4.4] More visualization results and evaluation are presented in the Appendix.

4.3 Ablation Study on Physics—Geometry Unified Representation

In this experiment, we evaluate the performance with different representations, including Voxel [76],
Voxel with PCA [22] and the pure geometry triplane (TripNet) [21]]. For Voxel and Voxel with PCA,
we first train a variational autoencoder (VAE) to embed the raw data into a compact latent space
and then learn a diffusion model within that space. Finally, we employ our two-stage optimization
pipeline consisting of gradient-guided diffusion sampling followed by topology-preserving refinement
to generate diverse design candidates. Because the baseline representations do not include physical
field information, we retrain a surrogate graph neural network that takes only geometry as input for
the refinement stage. The results are reported in Table 2]

As shown in Table 2} our 3DID method outperforms all baselines by a wide margin in both simulation
drag and novelty. Compared to the best baseline TripNet, 3DID reduces Sim Drag from 0.4066
to 0.3536, a 13.0% improvement, and lowers Pred Drag by 3.4% (from 0.2698 to 0.2607). It also
increases novelty from 1.0683 to 1.1709, a 9.6% gain. In Figure[5} our continuous latent representation
consistently yields watertight smooth geometries with superior aerodynamic performance, whereas
voxel-based methods suffer higher drag and non-watertight artifacts. Although TripNet embeds
continuous geometry, its optimized designs remain inferior. We attribute this to the absence of
physical field guidance, which weakens the optimization gradients in the refinement stage.
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Figure 5: Qualitative comparisons of topology-preserving refinement. Each row presents two
design candidates comparisons with their geometry and simulated velocity field heatmaps. Sim-Drag
values are shown in the top-right corner of each panel. Refined designs exhibit a more significant
fastback profile ( ), reduced low-velocity recirculation zones (blue box), and stronger
downward flow (green box), indicating improved aerodynamic performance.

Table 3: Ablation study on design strategies.

Method Pred-Drag| Sim-Drag| Novelty! Coverage!
CEM 0.3152 0.3987 1.0730 0.6800
GD 0.3023 0.4095 1.0878 0.5800
W/O Guidance 0.2971 0.3944 09177 0.7104
3DID-NoTopoRefine (ours) 0.2623 0.3766 0.9195 0.6950
3DID (ours) 0.2607 0.3536 1.1709 0.4300

4.4 Ablation Study on Two-Stage Optimization Strategy

In this experiment, we validate the effectiveness of our two-stage optimization pipeline by comparing
it against two alternative design strategies, including Cross-Entropy Method (CEM) and gradient
descent (GD), as well as a diffusion-only sampling approach without objective gradient guidance.
All methods are based on our physics-geometry unified representation.

From Table 3] we see that our full 3DID outperforms all baselines in Pred-Drag, Sim-Drag, and
Novelty. Notably, when designing without guidance, our diffusion model attains the highest coverage
value of 0.7104, as it captures the data manifold comprehensively. When generating without guidance,
the diffusion model tends to mimic the distribution of the dataset, which leads to an increase of
coverage but lacks the targeted optimization for aerodynamic performance and novelty that our
3DID method provides. Furthermore, to better validate the effectiveness of our topology-preserving
refinement stage, we provide side-by-side qualitative comparisons in Figure[5] It can be seen that after
the refinement stage, each candidate develops a more significant fastback profile, with diminished
low-velocity recirculation regions, and stronger downward flow patterns, all indicators of improved
aerodynamic performance as confirmed by the reduced Sim-Drag values.

5 Limitations

Limited to static physical fields. Despite the fact that 3DID achieves impressive results, a significant
limitation is its focus on static fields. The current framework does not support inverse design
involving time-dependent or dynamic physical fields. Time-dependent physical systems often
involve solid geometries coupled with evolving physical properties over time. This would pose
challenges for representation and optimization within our framework. Enhancing 3DID with time-
aware representations and models may address these limitations, which we leave as an important
direction for future work.



Limited to single objective optimization. In 3DID, we address the inverse problem with a single
objective, which may limit its applicability for broader scenarios. Although it is straightforward to
aggregate multiple objectives into a single composite loss, this approach may overlook potential con-
flicts and trade-offs between objectives. Extending 3DID to support true multi-objective optimization
is a promising direction for future research.

Limited to surrogate-based physics awareness. We incorporate physical fields via data-driven
surrogates and joint geometry—physics embeddings during generation and refinement, rather than
enforcing governing laws explicitly. This guides designs toward plausible, high-performing regions
but does not enforce hard physical constraints. Exploring hard-constraint mechanisms or tighter
PDE-consistent couplings is an important direction for future work.

6 Conclusion

In this paper, we tackle the problem of 3D inverse design, which faces challenges from the high-
dimensional physics-geometry coupling and the exploration—validity trade-off. To represent the
coupled space, we propose a physics-geometry unified representation that preserves fine-grained
shape details and physical-field information while significantly reducing dimensionality. Based on this
representation, we introduce a two-stage physics-aware optimization strategy that first explores the
latent manifold via gradient-guided diffusion sampling and then refines candidates through topology-
preserving refinement. Extensive experiments demonstrate that our 3DID framework generates
high-fidelity 3D models with greater versatility and superior performance on target objectives.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In this paper, we propose a novel 3D inverse-design framework that can directly
navigate the full 3D design space. Extensive experiments in aerodynamic shape optimization
demonstrate the effectiveness of our 3DID framework.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of 3DID are detailed in the main paper (Sec. 5).
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a full description of 3DID’s training setup and our dataset prepara-
tion pipeline in the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Our code will be open-sourced and available on GitHub upon publication.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The details of training and evaluation are included in Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: The confidence interval information is detailed in the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
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Appendix
In Appendix [A] we provide additional experiments results.

* In Appendix [A.T] we further provide the full results for 3D vehicle aerodynamic design.
* In Appendix we provide more visualization of design results.

* In Appendix[A.3] we provide more qualitative comparisons of topology-preserving refine-
ment.

Appendix [B} The implementation details of baseline methods.
Appendix |C} The dataset processing details.

Appendix [D} The implementation details of 3DID.
Appendix [E} The evaluation details of 3DID.

Appendix [F} The broader impact of 3DID.

Appendix |G} The licenses of datasets, codes, and models used in this paper.
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A Additional Results

A.1 Full Results for 3D Vehicle Aerodynamic Design

Here we present the full statistical results of our experiments, including 95% confidence intervals
for all compared methods, shown in Table[d A box plot of the simulation-derived drag coefficient
(Sim-Drag) is shown in Figure[6] illustrating the distribution, variability, and outlier behavior across
different approaches.

Table 4: Quantitative comparison for aerodynamic vehicle design.

Method Pred-Drag| Sim-Drag| Noveltyt Coverage?
GP, Voxel 0.299740.0436  0.4254 4+ 0.0351  1.039940.0572  0.520040.0675
GP, Voxel+PCA 0.305940.0490 0.4363 4+ 0.0425 0.973440.0195  0.585040.0675
CEM, Voxel 0.295140.0421  0.4097 4+ 0.0279  0.97924+0.0213  0.435040.0676
CEM, Voxel+PCA 0.3088+0.0478  0.4393 4+ 0.0469  0.9864+0.0250  0.510040.0600
CEM, TripNet 0.315440.0476  0.4161 +0.0415  1.039940.0323  0.6050+ 0.0725
Backprop, Voxel 0.297940.0314  0.4146 4+ 0.0244  0.986040.0204  0.475040.0675
Backprop, Voxel+PCA 0.3061+0.0576  0.4614 +0.0316  0.97984+0.0208  0.495040.0675
Backprop, TripNet 0.31534+0.0472  0.4170 4+ 0.0444  1.02944+0.0290  0.59004-0.0700
3DID-NoTopoRefine (ours) 0.26234+0.0373  0.3766 + 0.0393  0.9195+0.0213  0.6950+0.0627
3DID (ours) 0.2607+0.0331  0.3536+ 0.0313  1.1709+0.0282  0.430040.0650
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Figure 6: The box plot of the simulation-derived drag coefficient.

A.2 Visualization of 3DID Design

Additional visualizations of our designs are provided in Figure [7, where each design is shown
alongside its geometry and corresponding physical fields.

A.3 Comparisons of Topology-Preserving Refinement

We provide additional qualitative comparisons in Figure [§|to demonstrate the effectiveness of our
refinement stage. As shown, the design candidates consistently evolve toward a fastback profile
after refinement, exhibiting reduced low-velocity recirculation regions and enhanced downward flow
patterns, which indicate improved aerodynamic performance.
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Figure 7: Qualitative results of our 3DID. Each row displays a design candidate along with its
corresponding velocity and pressure field heatmaps.
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Figure 8: Qualitative comparisons of topology-preserving refinement. Each row presents two
design candidates comparisons with their geometry and simulated velocity field heatmaps.
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B Baseline implementation details

In our experiments, we compare our method against traditional sampling-based and backpropagation-
based approaches using various design representations. As baselines, we include the Cross-Entropy
Method(CEM) [43], the Gaussian-process surrogate with Bayesian optimization(GP) [44], and
the gradient-based backpropagation method(Backprop) [18]]. For representations, the optimizer
is instantiated with three representations: a dense voxel grid [76], a PCA-compressed voxel grid
(Voxel+PCA) [22]], and a pure geometry triplane network (TripNet) [21]]. For each representation,
we train a VAE model [77] to compress the high-dimensional geometry into a compact latent code,
which serves as the optimization space for inverse design.

B.1 Representation Baseline

Voxel. We train a voxel VAE [77] model directly on dense voxelized geometry to learn a latent
embedding, as demonstrated in Figure[9] To train the model, we utilize the entire DrivAerNet++ [[72]
dataset, and voxelize the provided geometry with 256 resolution. For the Encoder, we leverage a
sequence of 3D convolution layers followed by batch normalization and LeakyReLU to encode the
voxel grid into a compact latent 2y . For voxel decoder, the latent vector zyoxe 1s first projected
to a high-dimensional feature space and reshaped into a 3D tensor. A sequence of 3D transposed
convolutional layers is then applied to reconstruct the voxel grid from this intermediate representation.
Additionally, a separate drag prediction head, implemented as a multi-layer perceptron (MLP), is
applied to estimate the target drag coefficient. We train the VAE model with reconstruction 1088 Liecon
, KL loss Lki., and the drag coefficient prediction loss Lqr.e. The hyperparameters of the model and
training are provided in Table[3]

Encoder Decoder

Voxel Voxel

Predictor

Figure 9: The overview of Voxel-VAE.

Voxel-PCA. Our Voxel-PCA representation is based on the representation proposed by [22] with
modifications. In contrast to the Voxel-VAE, which directly uses voxel grids as input, the Voxel-PCA
model first applies a dimensionality reduction step before downstream processing, as shown in
Figure[I0] Specifically, given the voxel data, we perform PCA [[78] to obtain a compact representation
of each geometry. Then, with this representation, we leverage a series of MLPs to encode the reduced
features into a latent code zyoxel-pca- FOT reconstruction, an MLP decoder is first applied to reconstruct
the PCA features from the latent code, which are then projected back to the voxel grid using the
inverse PCA transformation. For drag prediction, similar to Voxel-VAE, a separate drag prediction
head is applied to estimate the target drag coefficient. Our Voxel-PCA model is also trained with
reconstruction 10ss Lrecon, KL loss Lx1. and drag prediction loss Lgrag. The hyperparameters of the
model and training are provided in Table[§]

TripNet. Our TripNet representation is a pure geometry-based triplane representation, similar to the
one proposed in [21], where it was used for forward prediction. The training procedure mirrors that
of our unified physics-geometry framework, but excludes the physical field prediction branch, as
illustrated in Figure[IT} To obtain the representation, we utilize transformers with learnable tokens to
extract features from the input point cloud. These features are then decoded using a transformer-based
decoder and a geometry mapping network to predict the occupancy field of the design geometry. We
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Figure 10: The overview of Voxel-PCA-VAE.

utilize the Binary Cross-Entropy loss Lgcg and KL loss Lg; to supervise the training of VAE. To
further predict the drag coefficient, we adopt the same U-Net architecture used in our objective-guided
diffusion model. The TripNet-VAE architecture adopts the same hyperparameter configuration as the
geometry branch of our PG-VAE. More training hyperparameters are provided in Table[7]
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Figure 11: The overview of TripNet-VAE.

B.2 Optimization Baseline

CEM. Cross Entropy Method is a traditional sampling-based optimization method widely used
in classical inverse design problems. It starts with an initial distribution, and in each iteration, it
samples multiple candidates from the current distribution. Then, these candidates are evaluated
against the target objective function to select a subset of elite samples with the best performance. The
distribution parameters are updated based on these elite samples. A smoothing coefficient controls
the rate of distribution updates between iterations. This process continues until convergence or a
maximum number of iterations is reached. In our experiment, we utilize a Gaussian distribution
derived from encoded randomly selected samples as the initial distribution to provide a valid starting
point.

GP. Gaussian-process surrogate with Bayesian optimization is a classical optimization method for
black-box optimization [[16} [17]]. Bayesian optimization (BO) operates by constructing a probabilistic
surrogate model, commonly a Gaussian-process model, to approximate the objective function based
on past observations. At each iteration, an acquisition function is used to balance exploration of
uncertain regions and exploitation of promising areas, guiding the selection of the next evaluation
point. This strategy enables efficient optimization in high-cost or sample-limited scenarios by focusing
evaluations on the most informative regions of the design space. While this method is effective in
low-dimensional settings, constructing an accurate GP model becomes computationally expensive
and challenging as the dimensionality of the design space increases. Therefore, GP-based Bayesian
optimization is typically limited to small-scale or low-dimensional problems, where the surrogate
can be reliably trained. In our experiment, our Gaussian process employs a Matérn kernel with
constant and white noise components to model the objective function. At each iteration, Expected
Improvement (EI) is used as the acquisition function.
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Backprop. With the trained surrogate models, end-to-end backpropagation enables efficient gradient-
based optimization of the design, leveraging the differentiability of the surrogate to guide updates 18|
19]. In our experiments, we use the trained drag predictor as the surrogate and update the latent code
using the Adam optimizer.

C Dataset processing details.

In this work, we conduct experiments on DrivAerNet++ [72]], which is the largest aerodynamic car
design dataset, comprising diverse car designs with corresponding CFD simulations. To train our
model, we use the dataset with 8085 car designs to extract the point cloud and physical field. We
first normalize each geometry of cars to fit within a unit cube, then uniformly sample 50,000 points
with corresponding normals from the geometry surface. For the physical field, we apply the same
scaling factor to ensure alignment with the normalized geometry. Subsequently, we randomly sample
50,000 points within the unit cube and interpolate the physical field values at each location. These
points serve as the input of our PG-VAE. For supervision, we additionally sample another 50,000
points, each annotated with both occupancy values and physical field data. In this work, we focus on
the pressure and velocity fields for the physical field representation, as wall shear stress is defined
only on the surface of the geometry and is thus not suitable for volumetric sampling. During physical
field interpolation, since some DrivAerNet++ samples are simulated using only half of the geometry,
we map each sampled point to its symmetric counterpart when necessary. For the U-Net and GNN
surrogate models used in guided diffusion sampling and topology-preserving optimization, we employ
the drag coefficient values provided by the DrivAerNet++ dataset as ground truth supervision during
training.

D Implementation details.

Our framework consists of three key components: the Physics—Geometry VAE (PG-VAE), Objective-
Guided Diffusion, and Topology-Preserving Refinement. Below, we provide detailed implementation
descriptions for each component.

PG-VAE. The PG-VAE serves to compress both the design geometry and the corresponding physical
field into a unified latent representation. We sample N, = N, = 50,000 points for the geometry
and physical field branches, respectively. The encoder consists of one cross-attention layer and
eight self-attention layers, each with 12 attention heads and an embedding dimension of d, = 64.
We use r = 64 for learnable tokens, and each with a channel dimension of d, = 768, to enhance
representation expressiveness. The latent code dimension is set to d, = 32. The decoder architecture
consists of one self-attention layer followed by five ResNet blocks [[69], which upsample the latent
vector into a triplane representation with resolution R = 256 and channel dimension d; = 64. The
output triplane is then queried using a mapping network composed of five fully connected layers
with a hidden size of 32 per branch. We adopt a semi-continuous occupancy formulation [60]
and supervise both occupancy and physical field predictions using 50,000 sampled points within
the normalized unit cube. We optimize the VAE using a combination of three loss terms: binary
cross-entropy loss (Apcg = 10~?), mean squared error for field regression (Ayvigg = 107°), and KL
divergence (A\k1, = 107°). Training is performed using the AdamW optimizer [71]] with a learning
rate of 1 x 104, batch size 8 per GPU, for 100,000 steps. We use four NVIDIA RTX A6000 GPUs
to train the model.

Objective-Guided Diffusion. To explore the latent design space efficiently, we employ a latent-space
diffusion model composed of 10 DiT blocks [[70], each containing 16 attention heads with a head
dimension of 72. The diffusion process includes 1,000 denoising steps. During inference, an auxiliary
U-Net surrogate network is used to predict the task objective directly from the latent code z, thereby
guiding the sampling process toward optimal designs. The diffusion model is trained using a learning
rate of 5 x 1075, batch size of 4 per GPU, for 300,000 steps with the AdamW optimizer. We use four
NVIDIA RTX A6000 GPUs to train the diffusion model.

Topology-Preserving Refinement. To refine the initial design candidates while maintaining mesh
topology, we apply a Free-Form Deformation (FFD) grid with 20 x 6 x 6 control points along the
X, y, and z axes, respectively. The deformation is guided by a surrogate model based on Mesh-
GraphNet [30], which comprises 8 message-passing blocks and operates on the surface mesh. The
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MeshGraphNet is trained to predict the drag force from a deformed mesh, serving as a differentiable
objective function during refinement. This model is trained with a learning rate of 1 x 10~°, batch
size of 8 per GPU, for 100,000 steps, using AdamW as the optimizer. We use two NVIDIA RTX
A6000 GPUs to train the MeshGraphNet.

E Evaluation details.

In our experiments, we evaluate the design candidates using four metrics: predicted drag force
(Pred-Drag), simulated drag force (Sim-Drag), novelty, and coverage.

Pred-Drag. We use the pretrained surrogate model to estimate the drag force of each candidate mesh.
Given the mesh of designed candidates M *, our surrogate model directly predict the objective drag

force j which can be formalized as:
j = -Fsurrogate(M*)a (12)

where Furrogae denotes the learned mapping from 3D mesh geometry to the predicted drag coefficient.
For our surrogate model, we adopt a MeshGraphNet [30] with 8 message passing blocks as the
surrogate model. Unlike the model used in our topology-preserving refinement stage, this predictor
operates solely on geometry, without requiring the associated physical field. To train the model, we
use the entire DrivAerNet++ [72] dataset. Given that different representations may produce varying
topological structures, we apply remeshing and simplification to all candidates for fair comparison.

Sim-Drag. To obtain an unbiased evaluation of the generated designs, we perform high-fidelity
Computational Fluid Dynamics (CFD) simulations and compute the corresponding drag coefficients.
Following DrivAerNet++ [72], we employ the OpenFOAM®V11 [79] to conduct steady-state
incompressible simulation using the k —w SST turbulence model, based on Menter’s formulation [80].
We performed a series of quality checks to ensure the generated geometries were simulation-ready
and properly aligned within the CFD domain. During simulation, considering the computation
cost, we set the maximum local cells to 10 million and the maximum global cells to 50 million in
snappyHexMesh. The simulation iterates for 1000s, and we use the final 30% simulation data to
calculate the average drag coefficient. The hyperparameters of our simulation are provided in Table (]

Novelty. To quantitatively assess how different the generated designs are from the training data, we
measure the novelty of each candidate. Specifically, novelty is computed as the average distance from
each generated design to its nearest neighbor in the training set, reflecting how distinct the generated

designs are from existing ones. Let {gi}f\;gl denote the set of generated designs and {t; };V:t 1 denote
the set of training designs in the feature space. The novelty is defined as:

N,

1 g
Novelty = — min d(g;, t;), 13
y Ng; in d(gi.t;) (13)

where d(-,-) denotes the distance between feature embeddings, computed using the pretrained
PointNet encoder [75]].

Coverage. The coverage metric (also known as recall) evaluates how well the generated designs
cover the training distribution by measuring, for each training sample, the distance to its nearest
generated design (using a k-nearest neighbor lookup) and reporting the fraction of training examples

that fall within a predefined threshold. Let {g; Z]-V:f’l denote the set of generated designs and {¢,} j-V:tl
denote the set of training designs in the feature space. The coverage is defined as:

Nt
1 .
Coverage = A Z 1[H1iln d(tj,gi) < 7] (14)

L5

where d(-, -) is a distance metric, 7 is a predefined threshold, and 1[-] is the indicator function that
equals 1 if the condition is true and O otherwise.

30



F Broader Impacts

Academic Impact. 3DID’s methodology, which enables direct navigation through 3D physics-
geometry space, simplifies the 3D inverse design process. With the unified physics-geometry
representation, the computation gap between 3D and lower-dimensional inverse design is narrowed,
allowing researchers to focus more on exploring cutting-edge inverse design strategies rather than
being constrained by computational limitations. With the two-stage optimization strategy, our method
balances between exploration and validity, offering researchers an effective approach for inverse
design involving 3D geometry.

Social Impact. The proposed 3D Inverse Design (3DID) framework extends the scope of geometry-
driven design by enabling direct optimization of full 3D structures from scratch. By combining unified
physics-geometry representations with physics-aware optimization, our method opens the door to
more efficient, automated design workflows in fields such as aerospace engineering, biomedicine,
additive manufacturing, and nanophotonics. In particular, 3DID can be applied to complex design
tasks that traditionally rely on expert-crafted initial geometries and time-consuming simulation-
based evaluations. In mechanical engineering, it can be used to optimize structural components for
strength, weight, and thermal performance without manual trial-and-error. In the medical field, 3DID
enables the fabrication of patient-specific implants by automatically generating geometries tailored to
individual physiological and functional requirements.

31



G License

The code will be publicly accessible. We use standard licenses from the community. We include the
following licenses for the codes, datasets, and models we used in this paper.
1. Dataset
¢ DrivAerNet++ [72]]: CC BY-NC 4.0
2. Codes
* NVIDIA PhysicsNeMo: Apache License 2.0
3. Evaluation
* OpenFOAM [79]: \ GNU General Public License

Table 5: Hyperparameters for Voxel-VAE

Hyperparameter name \ Value

Hyperparameters for Voxel-VAE architecture:

Input shape [8, 256, 256, 256]
Output shape [8, 256, 256, 256]
Number of 3D convolution layer 5

Dimension of latent zyoxe 512

Number of 3D transposed convolutional layer 5

Number of MLPs in drag predictor 5

Batch size 8

Dimension of encoder (1, 32, 64, 128, 256, 512)
Dimension of voxel decoder (512, 256, 128, 64, 32, 1)
Dimension of drag predictor (512,256, 128, 64, 32, 1)
Hyperparameters for Voxel-VAE training:

Optimizer AdamW

Learning rate le—4

Learning steps 100K

Learning rate adjustment strategy Cosine

Warm-up steps 5K

Lrecon Weight 10—3

Lx1, weight 10~4

Larae Weight 10~3
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Table 6: Hyperparameters for Voxel-PCA-VAE

Hyperparameter name

| Value

Hyperparameters for Voxel-PCA-VAE architecture:

PCA output dimension

Number of MLP layers in encoder
Dimension of latent zyoxel-pea
Number of MLP layers in decoder
Number of MLPs in drag predictor
Batch size

Dimension of encoder

Dimension of PCA decoder
Dimension of drag predictor

400
4

64

4

2

32

(400, 256, 128, 64, 64)
(64, 64, 128, 256, 400)
(64,32, 1)

Hyperparameters for Voxel-PCA-VAE training:

Optimizer

Learning rate

Learning steps

Learning rate adjustment strategy
Warm-up steps

Lecon Weight

L1 weight

Lrag Weight

AdamW
5e — 4
100K
Cosine
5K

10~2
1074
1073

Table 7: Hyperparameters for TripNet VAE

Hyperparameter name \ Value
Hyperparameters for TripNet-VAE training:

Batch size 8
Optimizer AdamW
Learning rate le—4
Learning steps 100K
Learning rate adjustment strategy Cosine
Warm-up steps 5K
LBCE weight 10—3
Ly weight 10~6

33



Table 8: CFD Simulation Parameters for OpenFOAM

Value
Parameter name
Solver Configuration:
OpenFOAM version vil
Solver incompressibleFluid
Algorithm SIMPLE
Turbulence model k-w-SST

Simulation type

Steady-state RANS

Flow Conditions:

Flow velocity (o) 30 m/s
Kinematic viscosity (1) 1.56 x 107° m?/s
Air density (p) 1.184 kg/m3
Turbulent kinetic energy (k) 0.375 m?/s?
Specific dissipation rate (w) 1.78 s71
Computational Domain:

Domain dimensions 44x8x6.4 m

Inlet distance
Outlet distance

12 m upstream
32 m downstream

Solver Tolerances:

Pressure absolute tolerance 1x 106
Pressure relative tolerance 3x 1072
Velocity absolute tolerance 1x1078
Velocity relative tolerance 5x 1073
Turbulence absolute tolerance 1x 108
Turbulence relative tolerance 1x 1073
Potential solver absolute tolerance 1x 1077
Potential solver relative tolerance 1x 1072
Mesh Refinement:

Surface refinement level 3-4
Feature refinement level 4
Regional refinement level 2

Wake refinement level 2
Boundary layers 5 layers
Layer expansion ratio 1.2

Final layer thickness 0.5
Force Calculation:

Reference length (I,¢) 4777 m
Reference area (A, ¢) 2.0 m?
Reference center 0,0,0)
Drag direction (1,0,0)
Lift direction 0,0, 1)
Simulation Control:

End time 1000 s
Time step Is
Write interval 100 steps
Force coeffs write interval 10 steps
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