
Approximate Message Passing for Bayesian Neural Networks

Anonymous Author(s)

Affiliation
Address
email

Abstract

1 Bayesian methods have the ability to consider model uncertainty within a single
2 framework and provide a powerful tool for decision-making. Bayesian neural
3 networks (BNNs) hold great potential for better uncertainty quantification and data
4 efficiency, making them promising candidates for more trustworthy AI in critical
5 applications, and as backbones in data-constrained settings such as real-world
6 reinforcement learning. However, current approaches often face limitations such as
7 overconfidence, sensitivity to hyperparameters, and posterior collapse, highlighting
8 the need for alternative approaches. In this paper, we introduce a novel method
9 that leverages message passing (MP) to model the predictive posterior of BNNs
10 as a factor graph. Unlike previous MP-based methods, our framework is the first
11 to support convolutional neural networks (CNNs) while addressing the issue of
12 double-counting training data, which has been a key source of overconfidence in
13 prior work. Multiple open datasets are used to demonstrate the general applicability
14 of the method and to illustrate its differences to existing inference methods.

15 1 Introduction

16 Deep learning models have achieved impressive results across various domains, including natural
17 language processing [Vaswani et al., 2023], computer vision [Ravi et al., 2024], and autonomous
18 systems [Bojarski et al., 2016]. Yet, they often produce overconfident but incorrect predictions,
19 particularly in ambiguous or out-of-distribution scenarios. Without the ability to effectively quantify
20 uncertainty, this can foster both overreliance and underreliance on models, as users stop trusting
21 their outputs entirely [Zhang et al., 2024], and in high-stakes domains like healthcare or autonomous
22 driving, its application can be dangerous [Henne et al., 2020]. To ensure safer deployment in these
23 settings, models must not only predict outcomes but also express how uncertain they are about those
24 predictions to allow for informed decision-making.

25 Bayesian neural networks (BNNs) offer a principled way to quantify uncertainty by capturing a
26 posterior distribution over the model’s weights, rather than relying on point estimates as in traditional
27 neural networks (NNs). This allows BNNs to express epistemic uncertainty, the model’s lack of
28 knowledge about the underlying data distribution. Current methods for posterior approximation
29 largely fall into two categories: sampling-based methods, such as Hamiltonian Monte Carlo (HMC),
30 and deterministic approaches like variational inference (VI). While sampling methods are usually
31 computationally expensive, VI has become increasingly scalable [Shen et al., 2024]. However, VI
32 is not without limitations: It often struggles with overconfidence [Papamarkou et al., 2024], and it
33 can struggle to break symmetry when multiple modes are close [Zhang et al., 2018]. Mean-field
34 approaches, commonly used in VI, are prone to posterior collapse [Kurle et al., 2022, Coker et al.,
35 2022]. Additionally, VI often requires complex hyperparameter tuning [Osawa et al., 2019], which
36 complicates its practical deployment in real-world settings. These challenges motivate the need for
37 alternative approaches that can address shortcomings of VI while maintaining its scalability.

38 In contrast, message passing (MP) [Minka, 2001] is a probabilistic inference technique that suffers
 39 less from these problems. Belief propagation [Kschischang et al., 2001], the basis for many MP
 40 algorithms, integrates over variables of a joint density $p(x_1, \dots, x_n)$ that factorize into a product of
 41 functions f_j on subsets of random variables x_1, \dots, x_n . The corresponding factor graph is bipartite
 42 and connects these factors f_j with the variables they depend on. The following recursive equations
 43 yield a computationally efficient algorithm to compute all marginals $p(x_i)$ for acyclic factor graphs:

$$p(x) = \prod_{f \in N_x} m_{f \rightarrow x}(x) \quad \text{and} \quad m_{f \rightarrow x}(x) = \int f(N_f) \prod_{y \in N_f \setminus \{x\}} m_{y \rightarrow f}(y) d(N_f \setminus \{x\}),$$

44 where N_v denotes the neighborhood of vertex v and $m_{y \rightarrow f}(y) = \prod_{f' \in N_y \setminus \{f\}} m_{f' \rightarrow y}(y)$. Since exact
 45 messages are often intractable and factor graphs are rarely acyclic, belief propagation typically cannot
 46 be applied directly. Instead, messages $m_{f \rightarrow X}(\cdot)$ and marginals $p_X(\cdot)$ are typically approximated by
 47 some family of distributions that has few parameters (e.g., Gaussians). However, applying MP in
 48 practice presents two main challenges for practitioners: the need to derive (approximate) message
 49 equations when $m_{f \rightarrow x}$ falls outside the approximating family, and the complexity of implementing
 50 MP compared to other methods.

51 **Contributions** Our contributions can be summarized as follows:

- 52 1. We propose a novel message-passing (MP) framework for BNNs and derive message equations
 53 for various factors, which can benefit factor graph modeling across domains.
- 54 2. We implement our method in Julia for both CPU and GPU, and demonstrate its general applicability
 55 to convolutional neural networks (CNNs) and multilayer perceptrons (MLPs) while avoiding the
 56 double-counting problem.
- 57 3. Having advantages for cases with few data (due to the Bayesian framework), we find that that our
 58 method is overall competitive with the SOTA baselines AdamW and IVON.
- 59 4. To the best of our knowledge, this is the first MP method to handle CNNs and to avoid double-
 60 counting training data, thereby preventing overconfidence and, eventually, posterior collapse.

61 2 Related Work

62 As the exact posterior is intractable for most practical NNs, approximate methods are essential for
 63 scalable BNNs. These methods generally fall into two categories: sampling-based approaches and
 64 those that approximate the posterior with parameterized distributions.

65 **Markov Chain Monte Carlo** (MCMC) methods attempt to draw representative samples from
 66 posterior distributions. Although methods such as Hamiltonian Monte Carlo are asymptotically exact,
 67 they become computationally prohibitive for large NNs due to their high-dimensional parameter
 68 spaces and complex energy landscapes [Coker et al., 2022]. An adaptation of Gibbs sampling has
 69 been scaled to MNIST, but on a very small network with only 8,180 parameters [Papamarkou, 2023].
 70 Approximate sampling methods can be faster but still require a large number of samples, which
 71 complicates both training and inference. Although approaches like knowledge distillation [Korattikara
 72 et al., 2015] attempt to speed up inference, MCMC remains generally too inefficient for large-scale
 73 deep learning applications [Khan and Rue, 2024].

74 **Variational Inference** (VI) aims to approximate the intractable posterior distribution $p(\theta | \mathcal{D})$ by
 75 a variational posterior $q(\theta)$. The parameters of q are optimized using gradients with respect
 76 to an objective function, which is typically a generalized form of the reverse KL divergence
 77 $D_{\text{KL}}[q(\theta) \| p(\theta | \mathcal{D})]$. Early methods like [Graves, 2011] and Bayes By Backprop [Blundell et al.,
 78 2015] laid the foundation for applying VI to NNs, but suffer from slow convergence and severe under-
 79 fitting, especially for large models or small dataset sizes [Osawa et al., 2019]. More recently, VOGN
 80 [Osawa et al., 2019] achieved Adam-like results on ImageNet LSVRC by applying a Gauss-Newton
 81 approximation to the Hessian matrix. IVON [Shen et al., 2024] improved upon VOGN by using
 82 cheaper Hessian approximations and training techniques like gradient clipping, achieving Adam-like
 83 performance on large-scale models such as GPT-2 while maintaining similar runtime costs. Despite
 84 recent advancements, VI continues to face challenges such as overconfidence, posterior collapse,
 85 and complex hyperparameter tuning (see introduction), motivating the exploration of alternative
 86 approaches [Zhang et al., 2018].

87 **Message Passing (MP) for Neural Networks:** MP is a general framework that unifies several
 88 algorithms [Kschischang et al., 2001, Minka, 2001], but its direct application to NNs has been limited.
 89 Expectation backpropagation (EBP) [Soudry et al., 2014] approximates the posterior of 3-layer MLPs
 90 by combining expectation propagation, an approximate MP algorithm, with gradient backpropagation.
 91 Similarly, probabilistic backpropagation (PBP) [Hernández-Lobato and Adams, 2015] combines
 92 belief propagation with gradient backpropagation and was found to produce better approximations
 93 than EBP [Ghosh et al., 2016]. However, PBP treats the data as new examples in each consecutive
 94 epoch (double-counting), which makes it prone to overconfidence. Furthermore, EBP and PBP were
 95 both only deployed on small datasets and rely on gradients instead of pure MP. In contrast, Lucibello
 96 et al. [2022] applied MP to larger architectures by modeling the posterior over NN weights as a
 97 factor graph, but faced posterior collapse to a point measure due to also double-counting data. Their
 98 experiments were mostly restricted to three-layer MLPs without biases and with binary weights. Our
 99 approach builds on this by introducing an MP framework for BNNs that avoids double-counting,
 100 scales to CNNs, and effectively supports continuous weights.

101 3 Theoretical Model

102 Our goal is to model the predictive posterior of a BNN as a factor graph and find a Gaussian
 103 approximation of the predictive posterior via belief propagation. Essentially, factor graphs are
 104 probabilistic modelling tools for approximating the marginals of joint distributions, provided that they
 105 factorize sufficiently. For a more comprehensive introduction on factor graphs and the sum-product
 106 algorithm, refer to Kschischang et al. [2001] BNNs, on the other hand, treat the parameters Θ of
 107 a model $f_\Theta : \mathbb{R}^d \rightarrow \mathbb{R}^o$ as random variables with prior beliefs $p(\Theta)$. Given a training dataset
 108 $\mathcal{D} = \{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^n$ of i.i.d. samples, a likelihood relationship $p(\mathbf{y} | \mathbf{x}, \Theta) = p(\mathbf{y} | f_\Theta(\mathbf{x}))$, and a new
 109 input sample \mathbf{x} , the goal is to approximate the predictive posterior distribution $p(\mathbf{y} | \mathbf{x}, \mathcal{D})$, which can
 110 be written as:

$$p(\mathbf{y} | \mathbf{x}, \mathcal{D}) = \int p(\mathbf{y} | \mathbf{x}, \Theta) p(\Theta | \mathcal{D}) d\Theta. \quad (1)$$

111 This means that the density of the predictive posterior is the expected likelihood under the posterior
 112 distribution $p(\Theta | \mathcal{D})$, which is proportional¹ to the product of the prior and dataset likelihood:

$$p(\Theta | \mathcal{D}) \propto p(\Theta) \prod_{i=1}^n p(\mathbf{y}_i | f_\Theta(\mathbf{x})). \quad (2)$$

113 The integrand in Equation (1) exhibits a factorized structure that is well-suited to factor graph
 114 modeling. However, directly modelling the relationship $\mathbf{o} = f_\Theta(\mathbf{x})$ with a single Dirac delta factor
 115 $\delta(\mathbf{o} - f_\Theta(\mathbf{x}))$ does not yield feasible message equations. Therefore, we model the NN at scalar level
 116 by introducing intermediate latent variables connected by elementary Dirac delta factors. Figure 1
 117 illustrates this construction for a simple MLP with independent weight matrices a priori. While the
 118 abstract factor graph in the figure uses vector variables for simplicity, we actually derive message
 119 equations where each vector component is treated as a separate scalar variable and all Dirac deltas
 120 depend only on scalar variables. For instance, if $d = 2$, the conceptual factor $\delta(\mathbf{o} - \mathbf{W}_2 \mathbf{a})$ is replaced
 121 by four scalar factors: $\delta(p_{jk} - w_{jk} a_k)$ for $j, k = 1, 2$, with intermediate variables p_{jk} , and two
 122 factors $\delta(o_j - (p_{j1} + p_{j2}))$. By multiplying all factors in this expanded factor graph and integrating
 123 over intermediate results, we obtain a function in $\mathbf{x}, \mathbf{y}, \Theta$ that is proportional to the integrand in
 124 Equation (1). Hence, the marginal of the unobserved target \mathbf{y} is proportional to $p(\mathbf{y} | \mathbf{x}, \mathcal{D})$. When \mathbf{y}
 125 connects to only one factor, its marginal matches its incoming message.

126 4 Approximations

127 Calculating a precise representation of the message to the target of an unseen input is intractable for
 128 large networks and datasets. The three primary reasons are, that a) nonlinearities and multiplication
 129 produce highly complex exact messages which are difficult to represent and propagate, b) the
 130 enormous size of the factor graph for large datasets, and c) the presence of various cycles in the
 131 graph. These challenges shape the message approximations as well as the design of our training and
 132 prediction procedures, which we address in the following sections.

¹with a proportionality constant of $1/p(\mathcal{D})$

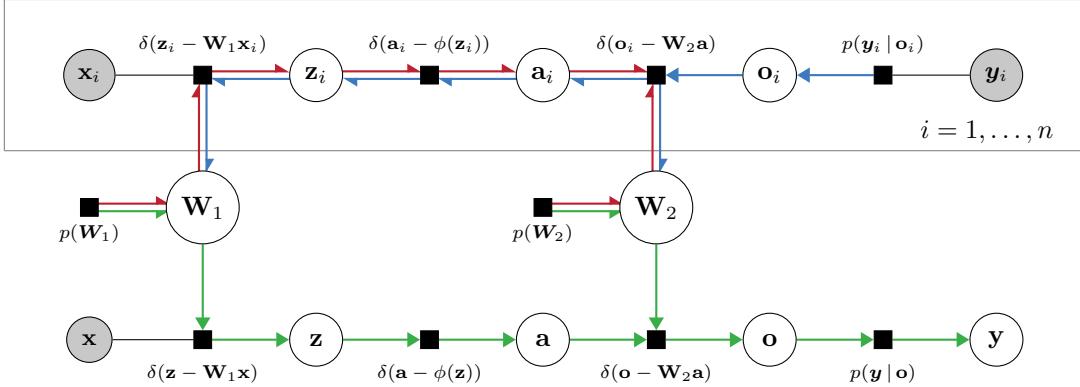


Figure 1: Conceptual vector-valued factor graph for a simple MLP. Each training example has its own “branch” (a copy of the network), while predictions for an unlabeled input \mathbf{x} are computed on a separate prediction branch. All branches are connected by the shared model parameters. Grayed-out variables are conditioned on (observed). Colored arrows indicate the three iteration orders: a **forward / backward** pass on training examples, and a forward pass for **prediction**.

133 **4.1 Approximating Messages via Gaussian Densities**

134 To work around the highly complex exact messages, we approximate them with a parameterized class
 135 of functions. We desire this class to be closed under pointwise multiplication, as variable-to-factor
 136 messages are the product of incoming messages from other factors. We choose positive scalar
 137 multiples of one-dimensional Gaussian densities as our approximating family. Their closedness
 138 follows immediately from the exponential function’s characteristic identity $\exp(x)\exp(y) = \exp(x+y)$ and the observation that for any $s_1, s_2 > 0$ and $\mu_1, \mu_2 \in \mathbb{R}$, the function $s_1(x-\mu_1)^2 + s_2(x-\mu_2)^2$
 139 in x can be represented as $s(x-\mu)^2 + c$ for some $s > 0$ and $\mu, c \in \mathbb{R}$. The precise relation between
 140 two scaled Gaussian densities and its product can be neatly expressed with the help of the so-
 141 called natural (re-)parameterization. Given a Gaussian $\mathcal{N}(\mu, \sigma^2)$, we call $\rho = 1/\sigma^2$ the precision
 142 and $\tau = \mu/\sigma^2$ the precision-mean. Collectively, (τ, ρ) are the Gaussian’s natural parameters,
 143 $\mathbb{G}(x; \tau, \rho) := \mathcal{N}(x; \mu, \sigma^2)$, $x \in \mathbb{R}$. For $\mu_1, \mu_2 \in \mathbb{R}$ and $\sigma_1, \sigma_2 > 0$ with corresponding natural
 144 parameters $\rho_i = 1/\sigma_i^2$ and $\tau_i = \mu_i \rho_i$, $i = 1, 2$, multiplying Gaussian densities simplifies to:
 145

$$\mathcal{N}(\mu_1; \mu_2, \sigma_1^2 + \sigma_2^2) \cdot \mathbb{G}(x; \tau_1 + \tau_2, \rho_1 + \rho_2)$$

146 for all $x \in \mathbb{R}$. Thus, multiplying Gaussian densities simplifies to the pointwise addition of their
 147 natural parameters, aside from a multiplicative constant. Since we are only interested in the marginals,
 148 which are re-normalized, this constant does not affect the final result.

149 Next, we present our message approximations for three factor types, each representing a deterministic
 150 relationship between variables: (i) the sum of variables weighted by constants, (ii) the application of
 151 a nonlinearity, and (iii) the multiplication of two variables. As we model the factor graph on a scalar
 152 level, these three factors suffice to model complex modern network architectures such as ConvNeXt
 153 Liu et al. [2022]². In Appendix F, we provide a comprehensive table of message equations, including
 154 additional factors for modeling training labels.

Weighted Sum: The density transformation property of the Dirac delta allows us to compute the exact
 message without approximation. For the relationship $s = \mathbf{c}^\top \mathbf{v}$ modeled by the factor $f := \delta(s - \mathbf{c}^\top \mathbf{v})$,

$$m_{f \rightarrow s}(s) = \int \delta(s - \mathbf{c}^\top \mathbf{v}) \prod_{i=1}^k m_{v_i \rightarrow f}(v_i) dv_1 \dots v_k$$

is simply the density of $\mathbf{c}^\top \mathbf{v}$, where $\mathbf{v} \sim \prod_{i=1}^k m_{v_i \rightarrow f}(v_i)$. If $m_{v_i \rightarrow f}(v_i) = \mathcal{N}(v_i; \mu_i, \sigma_i^2)$ are
 Gaussian, then $\mathbf{v} \sim \mathcal{N}(\boldsymbol{\mu}, \text{diag}(\boldsymbol{\sigma}^2))$ and $m_{f \rightarrow s}(s)$ becomes a scaled multivariate Gaussian:

$$m_{f \rightarrow s}(s) = \mathcal{N}(s; \mathbf{c}^\top \boldsymbol{\mu}, (\mathbf{c}^2)^\top \boldsymbol{\sigma}^2).$$

155 The backward messages $m_{f \rightarrow v_i}$ can be derived similarly without approximation.

²with the exception of layer normalization, which can be substituted by orthogonal initialization schemes Xiao et al. [2018] or specific hyperparameters of a corresponding normalized network Nguyen et al. [2023]

156 **Nonlinearity:** We model the application of a nonlinearity $\phi : \mathbb{R} \rightarrow \mathbb{R}$ as a factor $f := \delta(a - \phi(z))$.
 157 However, the forward and backward messages are problematic and require approximation—even for
 158 well-behaved, injective ϕ such as LeakyReLU $_{\alpha}$:

$$m_{a \rightarrow f}(a) = \text{pdf}_{\phi(Z)}(a) \text{ for } Z \sim \mathcal{N}$$

$$m_{f \rightarrow z}(z) = \int \delta(a - \phi(z)) \cdot m_{a \rightarrow f}(a) da = m_{a \rightarrow f}(\phi(z)) = \mathcal{N}(\phi(z); \mu_a, \sigma_a^2).$$

For values of $\alpha \neq 1$, the forward message is non-Gaussian and the backward message does not even integrate to 1. For ReLU ($\alpha = 0$), it is clearly not even integrable. Instead, we use *moment matching* to fit a Gaussian approximation. Given any factor f and variable v , we can approximate the message $m_{f \rightarrow v}$ directly with a Gaussian if the moments $m_k := \int v^k m_{f \rightarrow v}(v) dv$ exist for $k = 0, 1, 2$ and can be computed efficiently via $m_{f \rightarrow v}(v) = \mathcal{N}(v; m_1/m_0, m_2/m_0 - (m_1/m_0)^2)$. However, direct moment matching of the message is impossible for non-integrable messages or when the m_k are expensive to find. Instead, we can apply moment matching to the updated *marginal* of v . Let m_0, m_1, m_2 be the moments of the “true” marginal

$$m(v) = \int f(v, v_1, \dots, v_k) dv_1 \dots dv_k \cdot \prod_i m_{g_i \rightarrow v}(v),$$

159 which is the product of the true message from f and the approximated messages from other factors
 160 g_i . Then we can approximate m with a Gaussian and obtain a message approximation

$$m_{f \rightarrow v}(v) := \mathcal{N}(v; \mu_v, \sigma_v^2) / m_{v \rightarrow f}(v),$$

161 which approximates $m_{f \rightarrow v}$ so that it changes v ’s marginal in the same way as the actual message.³
 162 Since $m_{v \rightarrow f}(v)$ is a Gaussian density, we can compute $m_{f \rightarrow v}(v)$ efficiently by applying Gaussian
 163 division in natural parameters, similar to Section 4.1. For LeakyReLU $_{\alpha}$, we found efficient direct
 164 and marginal approximations that are each applicable to both the forward and backward message
 165 when $\alpha \neq 0$. The marginal approximation remains applicable even for the ReLU case of $\alpha = 0$. We
 166 provide detailed derivations in Appendix B.2.

167 **Product** For the relationship $c = ab$, we employ variational MP as in Stern et al. [2009], in order to
 168 break the vast number of symmetries in the true posterior of a BNN. By combining the variational
 169 message equations for scalar products with the weighted sum, we can also construct efficient higher-
 170 order multiplication factors such as inner vector products, see Appendix F for detailed equations.

171 4.2 Training Procedure & Prediction

172 In pure belief propagation, the product of incoming messages for any variable equals its marginal
 173 under the true posterior. With our aforementioned approximations, we can reasonably expect to
 174 converge on a diagonal Gaussian \check{q} that approximates one of the various permutation modes of the
 175 true posterior by aligning the first two moments of the marginal. This concept can be elegantly
 176 interpreted through the lens of relative entropy. As shown in A.2, among diagonal Gaussians
 177 $q(\theta) = q_1(\theta_1) \cdots q_k(\theta_k)$, the relative entropy from the true posterior to q is minimized for \check{q} :

$$\check{q} = \operatorname{argmin}_q D_{\text{KL}} [p(\theta | \mathcal{D}) | q(\theta)]. \quad (3)$$

178 Another challenge in finding \check{q} arises from cyclic dependencies. In acyclic factor graphs, each message
 179 depends only on previous messages from its subtree, allowing for exact propagation. However, our
 180 factor graph contains several cycles due to two primary reasons: (i) multiple training branches
 181 interacting with shared parameters across linear layers, and (ii) the scalar-level modeling of matrix-
 182 vector multiplication in architectures with more than one hidden layer. These loops create circular
 183 dependencies among messages. To address these challenges, we adopt loopy belief propagation,
 184 where belief propagation is performed iteratively until messages converge. While exact propagation
 185 works in acyclic graphs, convergence is then only guaranteed under certain conditions (e.g., Simon’s
 186 condition [Ihler et al., 2005]) that are difficult to verify. Instead, we pass messages in an iteration
 187 order that largely avoids loops by alternating forward and backward passes similarly to deterministic
 188 NNs. Our message schedule is visualized in Figure 1.

³This is the central idea behind expectation propagation as defined in Minka [2001].

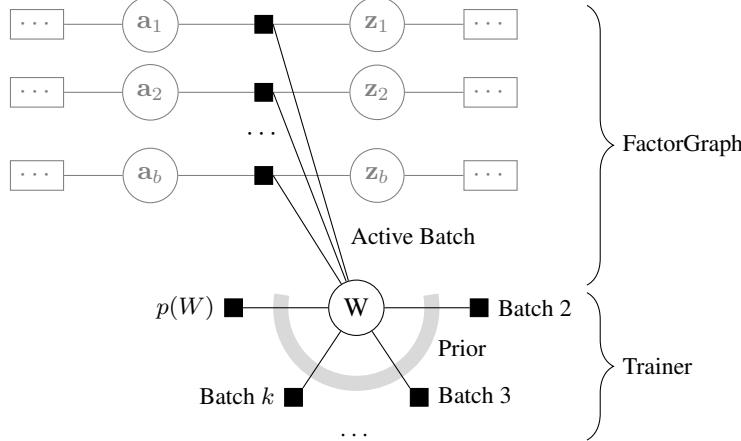


Figure 2: A full FactorGraph models all messages for one batch of training examples. To iterate, we only need one joint message summarizing the prior and all other examples. When switching to a new batch, we aggregate messages from the previous batch and store them in the Trainer.

189 **Batching:** As the forward and backward messages depend on each other, we must store them to
 190 compute message updates during message passing. Updating our messages in a sweeping “pass”
 191 over a branch and running backward passes immediately after the forward pass on the same branch,
 192 allows us to store many messages only temporarily, reducing memory requirements. This schedule
 193 also ensures efficient propagation of updated messages despite the presence of loops. However,
 194 some messages must still be retained permanently⁴, leading to significant memory demand when
 195 storing them for all n training examples. To address this, we adopt a batching strategy: Instead of
 196 maintaining n training branches simultaneously, we update the factor graph using a batch (subset) of
 197 b examples at a time. The factor graph then models b messages to the weights W , while the messages
 198 to W from the remaining (inactive) examples are aggregated into batch-wise products and stored in a
 199 trainer object. Figure 2 illustrates this setup. When switching batches, we divide the marginals by
 200 the batch’s old aggregate message and multiply the updated messages into the marginal, ensuring
 201 that data is not double-counted. Within each batch, we iterate through the examples and perform
 202 a forward and backward pass on each in sequence. After all examples have been processed once,
 203 we call it an “iteration”. Depending on the training stage, we either repeat this process within the
 204 same batch or move to the next batch. As training progresses, we gradually increase the number of
 205 iterations per batch to allow for finer updates as the overall posterior comes closer to convergence.

206 **Prediction:** Ultimately, our goal is to compute the marginal of the unobserved target y for some
 207 unseen input x . Since the prediction branch in Figure 1 introduces additional loops, obtaining an
 208 accurate approximation would require iterating over the entire factor graph, including the training
 209 branches. In NN terms, this translates to retraining the whole network for every test input. Instead,
 210 we pass messages only on the training branches in the batch-wise setup described above. At test
 211 time, messages from the training branches are propagated to the prediction branch, but not vice versa.
 212 Specifically, messages from the weights to the prediction branch are computed as the product of the
 213 prior and the incoming messages from the training branches. This can be interpreted as approximating
 214 the posterior over weights, $p(\theta | \mathcal{D})$, with a diagonal Gaussian $\tilde{q}(\theta)$ used as prior during inference.

215 4.3 Implementation

216 Scaling the approach to deep networks, the following challenges need to be addressed.

217 **Factor Graph Implementation** While batching effectively reduces memory requirements for large
 218 datasets, a direct implementation of a factor graph still scales poorly for deep networks. Explicitly
 219 modeling each scalar variable and factor as an instance is computationally expensive. To address this,
 220 we propose the following design optimizations: First, rather than modeling individual elements of
 221 the factor graph, we represent entire layers of the network. MP between layers is orchestrated by
 222 an outer training loop. Second, each layer instance operates across all training branches within the

⁴For example, the backward message of the linear layer is needed to compute the marginal of the inputs, which the forward message depends on.

223 active batch, removing the need to duplicate layers for each example. Third, factors are stateless
224 functions, not objects. Each layer is responsible for computing its forward and backward messages
225 by calling the required functions. In this design, layer instances maintain their own state, but MP
226 and batching are managed in the outer loop. The stateless message equations are optimized for both
227 performance and numerical stability. As a result, the number of layer instances scales linearly with
228 network depth but remains constant regardless of layer size or batch size. This approach significantly
229 reduces computational and memory overhead—our implementation is approximately 300x faster
230 than a direct factor graph model in our tests. Additionally, we optimized our implementation for
231 GPU execution by leveraging Julia’s CUDA.jl and Tullio.jl libraries. Since much of the runtime
232 is spent on linear algebra operations (within linear or convolutional layers), we built a reusable,
233 GPU-compatible library for Gaussian multiplication. This design makes the implementation both
234 scalable and extendable.

235 **Numerical Stability** Maintaining numerical stability in the MP process is critical, particularly
236 as model size increases. Backward messages often exhibit near-infinite variances when individual
237 weights have minimal impact on the likelihood. Therefore, we compute them directly in natural
238 parameters, which also simplifies the equations. Special care is needed for LeakyReLU, as its
239 messages can easily diverge. To mitigate this, we introduced guardrails: when normalization constants
240 become too small, precision turns negative, or variance in forward messages increases, we revert to
241 either $\mathbb{G}(0, 0)$ or use moment matching on messages instead of marginals (see Appendix F for details).
242 Another trick is to periodically recompute the weight marginals from scratch to maintain accuracy. By
243 leveraging the properties of Gaussians, we save memory by recomputing variable-to-factor messages
244 as needed⁵. However, incremental updates to marginals can accumulate errors, so we perform a
245 full recompilation once per batch iteration. Lastly, we apply light message damping through an
246 exponential moving average to stabilize the training, but, importantly, only on the aggregated batch
247 messages, not on the individual messages of the active batch.

248 **Weight Priors** A zero-centered diagonal Gaussian prior with variance σ_p^2 is a natural choice for
249 the prior over weights. However, as in traditional deep learning, setting all means to zero prevents
250 messages from breaking symmetry. To resolve this, we sample prior means according to spectral
251 parametrization [Yang et al., 2024], which facilitates feature learning independent of the network
252 width. Another challenge in prior choice is managing exploding variances. In a naive setup with
253 $\sigma_p^2 = 1$, forward message variances grow exponentially with the network depth. To find a principled
254 choice of σ_p^2 , our initialization scheme is based on experimental data, see Appendix D.

255 5 Numerical Evaluation

256 **Experiment 1: Application on MNIST dataset.** In our experiments on the MNIST dataset, we
257 compare regression and classification-based versions of our message passing (MP) and SGD. Table 1
258 compares the test accuracy of MP and SGD for 3-layer MLPs and the LeNet-5 architecture [Lecun
259 et al., 1998] over a range of training set sizes. We found that R-MP is generally more effective
260 than AM-MP and that both consistently yield better accuracy than SGD, in particular for limited
261 training data. For instance, our regression-based MP (R-MP) achieves 85.69% accuracy on the
262 MLP with only 640 training samples, significantly outperforming softmax-based SGD’s (SM-SGD)
263 58.85%. We also trained a 3-layer MLP of width 2,000 with 5.6 million parameters, which reached a
264 test accuracy of 98.04%, whereas at width 256 the accuracy was 98.33%. Among related work on
265 message passing, results for MNIST-sized datasets were only published by Lucibello et al. [2022].
266 Their method reached only 97.4% test accuracy and they published no metrics for evaluating their
267 predictive uncertainty. For VI, Bayes By Backprop reported an accuracy of 98.18% for their Gaussian
268 model and 98.64% for their mixture model, which are similar to the accuracy achieved by MP.

269 A key strength of our approach lies in the performance of its predictive uncertainty. Figure 3a
270 shows that for a training dataset of size 640, counterintuitively, SGD is underconfident (ECE of
271 0.3695) whereas R-MP and AM-MP are both decently calibrated with an ECE of 0.0216 and 0.0251
272 respectively. All methods achieve good calibration when trained on the whole training data, with
273 calibration errors of 0.0019 for SGD, 0.0014 for AM-MP, and 0.001 for R-MP. However, since most
274 examples have high confidence levels, calibration becomes less informative at larger dataset sizes.

⁵Each layer stores factor-to-weight-variable messages and the marginal, which is an aggregate that is continuously updated as individual messages change.

	Num Data	80	160	320	640	1,280	2,560	5,120	10,240	60,000
MLP	R-MP	30.01	61.79	77.61	85.69	88.95	91.72	94.85	96.25	98.33
	AM-MP	31.88	61.08	80.79	85.50	87.92	91.56	94.08	95.72	98.21
	R-SGD	10.11	11.45	14.89	29.66	49.78	67.01	76.41	83.00	92.22
	SM-SGD	21.47	30.38	46.18	58.83	76.67	85.55	89.10	91.17	96.36
LeNet-5	R-MP	27.75	25.58	38.02	94.72	95.36	96.32	97.40	98.12	99.02
	AM-MP	17.32	10.42	10.28	93.48	96.19	96.44	97.70	98.05	98.95
	R-SGD	14.06	14.51	14.07	13.99	16.02	31.16	49.43	69.84	94.12
	SM-SGD	18.57	19.54	21.03	22.15	39.36	82.30	90.92	95.04	98.55

Table 1: Comparison of accuracies on MNIST (% correct). Our method (MP) consistently achieves better accuracy than SGD (Torch). Abbreviations: Regression (R), Argmax (AM), and Softmax (SM).

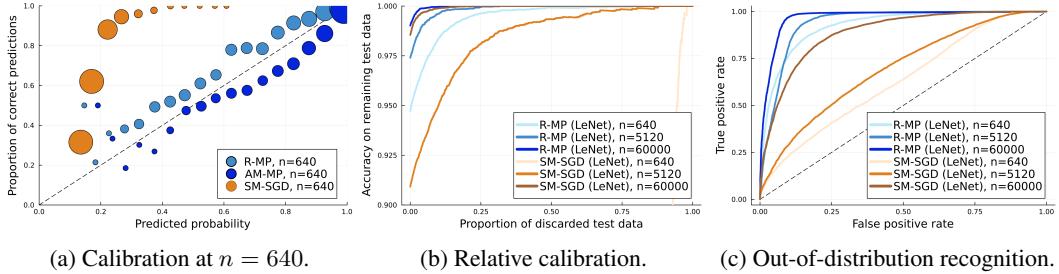


Figure 3: Uncertainty metrics for models trained on MNIST.

275 Thus, we employ relative calibration curves to assess uncertainty further⁶. Figure 3b compares the
276 relative calibration of R-MP and SM-SGD for LeNet-5. Overall, the R-MP predictions show excellent
277 relative calibration with an area under the curve (AUC) of 0.9949, 0.9986, 0.9998 for 640, 5120,
278 and 60 000 datapoints, whereas SM-SGD only achieved 0.4451, 0.9845, and 0.9995 respectively.
279 Finally, we evaluated out-of-distribution (OOD) recognition by training a model on MNIST and
280 then predicting on mixed examples from FashionMNIST and MNIST. Figure 3c shows the receiver
281 operating characteristic (ROC) curve for detecting OOD samples by the entropy of their predicted
282 class distribution. R-MP achieved an AUC of 0.9675 when trained on full MNIST and 0.9242 for
283 n = 640, whereas SM-SGD only achieved 0.8872 even with the full training data.

284 A key strength of our approach lies in the performance of its predictive uncertainty. Figure 4a
285 shows that for a training dataset of size 640, counterintuitively, SGD is underconfident (ECE of
286 0.3695) whereas R-MP and AM-MP are both decently calibrated with an ECE of 0.0216 and 0.0251
287 respectively. All methods achieve good calibration when trained on the whole training data, with
288 calibration errors of 0.0019 for SGD, 0.0014 for AM-MP, and 0.001 for R-MP. However, since most
289 examples have high confidence levels, calibration becomes less informative at larger dataset sizes.
290 Thus, we employ relative calibration curves to assess uncertainty further⁶. Figure 4b compares the
291 relative calibration of R-MP and SM-SGD for LeNet-5. Overall, the R-MP predictions show excellent
292 relative calibration with an area under the curve (AUC) of 0.9949, 0.9986, 0.9998 for 640, 5120,
293 and 60 000 datapoints, whereas SM-SGD only achieved 0.4451, 0.9845, and 0.9995 respectively.
294 Finally, we evaluated out-of-distribution (OOD) recognition by training a model on MNIST and
295 then predicting on mixed examples from FashionMNIST and MNIST. Figure 4c shows the receiver
296 operating characteristic (ROC) curve for detecting OOD samples by the entropy of their predicted
297 class distribution. R-MP achieved an AUC of 0.9675 when trained on full MNIST and 0.9242 for
298 n=640, whereas SM-SGD only achieved 0.8872 even with the full training data.

299 **Experiment 2: Application on CIFAR-10.** To evaluate the applicability of our method on the
300 CIFAR-10 dataset, we trained a 6 layer deep convolutional network with roughly 890k parameters on
301 the full training dataset. As baseline methods we used the SOTA optimizers AdamW [Loshchilov
302 and Hutter, 2017] and IVON [Shen et al., 2024] each with a cosine annealing learning rate schedule
303 [Loshchilov and Hutter, 2016]. Across all methods, including ours, we trained for 25 epochs. In

⁶We order the test examples by their predicted max-class probability. For each uncertainty cutoff, we then plot the accuracy on the remaining (more certain) test set. The area under this curve is also reported under the name AUROC by Osawa et al. [2019].

	Acc. \uparrow	Top-5 Acc. \uparrow	NLL \downarrow	ECE \downarrow	Brier \downarrow	OOD-AUROC \uparrow
AdamW	0.783	0.984	1.736	0.046	0.38	0.792
IVON@mean	0.772	0.983	1.494	0.041	0.387	0.819
IVON	0.772	0.983	1.316	0.035	0.37	0.808
MP (Ours)	0.773	0.977	0.997	0.029	0.361	0.810

Table 2: Comparison of various validation statistics for a convolutional network of roughly 890k parameters trained on CIFAR-10. Out-of-distribution (OOD) detection was tested with SVHN. For IVON we used 100 samples for prediction at test time. IVON@mean are the results obtained from evaluating the model at the means of the learned distributions of the individual parameters.

304 Appendix C, we give extensive details on the network architecture and the experimental setup in
 305 general. Table 2 compares the performance of our method (MP) against AdamW and IVON across a
 306 variety of standard metrics. In general, we see that MP can compete with these two strong baselines.
 307 In the expected calibration error, our method even has a notable edge. The fact that the metrics are
 308 overall worse than what is reported by Shen et al. [2024] is probably due to a difference in architecture;
 309 Shen et al. only conduct experiments on ResNets equipped with filter response normalization [Singh
 310 and Krishnan, 2019]. Neither residual connections nor normalization layers are yet implemented in
 311 our factor graph library. Nevertheless, the potential of the approach becomes already visible.

312 **Experiment 3: Further Evaluations on Tabular Benchmark Data.** We use the UCI machine
 313 learning repository, cf. Dua and Graff [2017], for various regression tasks. The results, see Ap-
 314 pendix E.1, show that our method is general applicable and effectively avoids overfitting.

315 6 Summary, Limitations & Future Work

316 **Summary** We presented a novel framework that advances message-passing (MP) for BNNs by
 317 modeling the predictive posterior as a factor graph. To the best of our knowledge, this is the first
 318 MP method to handle CNNs while avoiding double-counting training data, a limitation in previous
 319 MP approaches like Soudry et al. [2014], Hernández-Lobato and Adams [2015], Lucibello et al.
 320 [2022]. In our experiments on different datasets, our method proved to be competitive with the SOTA
 321 baselines AdamW and IVON, even showing an edge in terms of calibration.

322 **Limitations** Despite recent advances, VI methods like IVON remain ahead in scale and performance
 323 on larger datasets. Our approach’s runtime and memory requirements scale linearly with model
 324 parameters and dataset size. While our inference at test time can keep up with IVON’s sampling
 325 approach in terms of speed and memory requirements, training is up to two orders of magnitude
 326 slower and more GPU-memory intensive compared to training deterministic networks using PyTorch
 327 with optimizers like AdamW. The memory overhead stems from two key factors: First, each training
 328 example stores messages proportional to the model’s parameter count, unlike AdamW’s batch-level
 329 intermediate representations. Second, each parameter requires two 8-byte floating-point numbers,
 330 contrasting with more efficient 4-byte or smaller formats. Runtime inflation results from several
 331 performance bottlenecks: Our training schedule lacks parallel forward passes, our Tullio-based
 332 CUDA kernel generation misses memory-layout and GPU optimizations present in mature libraries
 333 like Torch, message equations involve complex computations beyond standard matrix multiplications,
 334 and we use Julia’s default FP64 precision, which GPUs process less efficiently.

335 **Future Work** Regarding training efficiency, an altered message-update schedule with actual batched
 336 computations would significantly reduce training time. Implementing our library in CUDA C++ with
 337 efficiency in mind could also drastically cut down computational overhead. On the architectural front,
 338 we deem it likely that our approach can be extended to most modern deep learning architectures.
 339 Residual connections are straightforward to implement as they boil down to simple sum factors. For
 340 normalization layers at the scalar level, only a division factor is missing, which can be approximated
 341 by a “rotated” product factor. This would suffice to model ResNet-like architectures and more modern
 342 convolutional networks like ConvNeXt. For transformers, the last ingredient needed is an efficient
 343 softargmax factor. Given the division factor, only an exp factor is missing to model softargmax at the
 344 scalar level.

345 **Reproducibility** All code is available at <https://github.com/neurips-submission-19866/submission>.

346 **References**

347 Heart Failure Clinical Records. UCI Machine Learning Repository, 2020. DOI:
348 <https://doi.org/10.24432/C5Z89R>.

349 Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in neural
350 networks, 2015. URL <https://arxiv.org/abs/1505.05424>.

351 Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon Goyal,
352 Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin Zhang, Jake Zhao, and Karol Zieba.
353 End to end learning for self-driving cars, 2016. URL <https://arxiv.org/abs/1604.07316>.

354 Beau Coker, Wessel P. Bruinsma, David R. Burt, Weiwei Pan, and Finale Doshi-Velez. Wide mean-field bayesian
355 neural networks ignore the data, 2022. URL <https://arxiv.org/abs/2202.11670>.

356 Paulo Cortez and Anbal Morais. Forest Fires. UCI Machine Learning Repository, 2007. DOI:
357 <https://doi.org/10.24432/C5D88D>.

358 Paulo Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis. Wine Quality. UCI Machine Learning Repository,
359 2009. DOI: <https://doi.org/10.24432/C56S3T>.

360 Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and Philipp Hennig.
361 Laplace redux – effortless bayesian deep learning, 2022. URL <https://arxiv.org/abs/2106.14806>.

362 Dheeru Dua and Casey Graff. Uci machine learning repository, 2017. URL <http://archive.ics.uci.edu/ml>.

364 Hadi Fanaee-T. Bike Sharing. UCI Machine Learning Repository, 2013. DOI: <https://doi.org/10.24432/C5W894>.

365 Soumya Ghosh, Francesco Delle Fave, and Jonathan Yedidia. Assumed density filtering methods for learning
366 bayesian neural networks. *Proceedings of the AAAI Conference on Artificial Intelligence*, 30(1), Feb. 2016. doi:
367 [10.1609/aaai.v30i1.10296](https://doi.org/10.1609/aaai.v30i1.10296). URL <https://ojs.aaai.org/index.php/AAAI/article/view/10296>.

368 Alex Graves. Practical variational inference for neural networks. In J. Shawe-Taylor, R. Zemel, P. Bartlett,
369 F. Pereira, and K.Q. Weinberger, editors, *Advances in Neural Information Processing Systems*, volume 24.
370 Curran Associates, Inc., 2011. URL https://proceedings.neurips.cc/paper_files/paper/2011/file/7eb3c8be3d411e8ebfab08eba5f49632-Paper.pdf.

372 Maximilian Henne, Adrian Schwaiger, Karsten Roscher, and Gereon Weiss. Benchmarking uncertainty estimation
373 methods for deep learning with safety-related metrics. In *SafeAI@ AAAI*, pages 83–90, 2020.

374 José Miguel Hernández-Lobato and Ryan P. Adams. Probabilistic backpropagation for scalable learning of
375 bayesian neural networks, 2015. URL <https://arxiv.org/abs/1502.05336>.

376 Alexander Ihler, John III, and Alan Willsky. Loopy belief propagation: Convergence and effects of message
377 errors. *Journal of Machine Learning Research*, 6:905–936, 05 2005.

378 Mohammad Emtiyaz Khan and Håvard Rue. The bayesian learning rule, 2024. URL <https://arxiv.org/abs/2107.04562>.

380 Anoop Korattikara, Vivek Rathod, Kevin Murphy, and Max Welling. Bayesian dark knowledge, 2015. URL
381 <https://arxiv.org/abs/1506.04416>.

382 F.R. Kschischang, B.J. Frey, and H.-A. Loeliger. Factor graphs and the sum-product algorithm. *IEEE Transactions on Information Theory*, 47(2):498–519, 2001. doi: [10.1109/18.910572](https://doi.org/10.1109/18.910572).

384 Richard Kurle, Ralf Herbrich, Tim Januschowski, Yuyang Wang, and Jan Gasthaus. On the detrimental effect of
385 invariances in the likelihood for variational inference, 2022. URL <https://arxiv.org/abs/2209.07157>.

386 Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
387 *Proceedings of the IEEE*, 86(11):2278–2324, 1998. doi: [10.1109/5.726791](https://doi.org/10.1109/5.726791).

388 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. A convnet
389 for the 2020s, 2022. URL <https://arxiv.org/abs/2201.03545>.

390 Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with restarts. *CoRR*, abs/1608.03983,
391 2016. URL [http://arxiv.org/abs/1608.03983](https://arxiv.org/abs/1608.03983).

392 Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. *CoRR*, abs/1711.05101, 2017.
393 URL [http://arxiv.org/abs/1711.05101](https://arxiv.org/abs/1711.05101).

394 Carlo Lucibello, Fabrizio Pittorino, Gabriele Perugini, and Riccardo Zecchina. Deep learning via message
 395 passing algorithms based on belief propagation. *Machine Learning: Science and Technology*, 3(3):035005,
 396 jul 2022. doi: 10.1088/2632-2153/ac7d3b. URL <https://dx.doi.org/10.1088/2632-2153/ac7d3b>.

397 Thomas P. Minka. Expectation propagation for approximate bayesian inference. In *Proceedings of the*
 398 *Seventeenth Conference on Uncertainty in Artificial Intelligence*, UAI'01, page 362–369, San Francisco, CA,
 399 USA, 2001. Morgan Kaufmann Publishers Inc. ISBN 1558608001.

400 Warwick Nash, Tracy Sellers, Simon Talbot, Andrew Cawthorn, and Wes Ford. Abalone. UCI Machine Learning
 401 Repository, 1994. DOI: <https://doi.org/10.24432/C55C7W>.

402 Khanh-Binh Nguyen, Jaehyuk Choi, and Joon-Sung Yang. Eunnet: Efficient un-normalized convolution layer for
 403 stable training of deep residual networks without batch normalization layer. *IEEE Access*, 11:76977–76988,
 404 2023. doi: 10.1109/ACCESS.2023.3244072.

405 Cameron Nugent. California housing prices, 2017. URL <https://www.kaggle.com/datasets/camnugent/california-housing-prices>. Dataset derived from the 1990 U.S. Census, originally published by Pace,
 406 R. Kelley, and Ronald Barry in "Sparse Spatial Autoregressions", *Statistics and Probability Letters*, 33 (1997)
 407 291–297.

409 Kazuki Osawa, Siddharth Swaroop, Anirudh Jain, Runa Eschenhagen, Richard E. Turner, Rio Yokota, and
 410 Mohammad Emtiyaz Khan. Practical deep learning with bayesian principles, 2019. URL <https://arxiv.org/abs/1906.02506>.

412 Theodore Papamarkou. Approximate blocked gibbs sampling for bayesian neural networks, 2023. URL
 413 <https://arxiv.org/abs/2208.11389>.

414 Theodore Papamarkou, Maria Skouliaridou, Konstantina Palla, Laurence Aitchison, Julyan Arbel, David Dunson,
 415 Maurizio Filippone, Vincent Fortuin, Philipp Hennig, José Miguel Hernández-Lobato, Aliaksandr Hubin,
 416 Alexander Immer, Theofanis Karaletsos, Mohammad Emtiyaz Khan, Agustinus Kristiadi, Yingzhen Li,
 417 Stephan Mandt, Christopher Nemeth, Michael A. Osborne, Tim G. J. Rudner, David Rügamer, Yee Whye
 418 Teh, Max Welling, Andrew Gordon Wilson, and Ruqi Zhang. Position: Bayesian deep learning is needed in
 419 the age of large-scale ai, 2024. URL <https://arxiv.org/abs/2402.00809>.

420 Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham Khedr,
 421 Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Vasudev Alwala, Nicolas
 422 Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollár, and Christoph Feichtenhofer. Sam 2: Segment anything
 423 in images and videos, 2024. URL <https://arxiv.org/abs/2408.00714>.

424 Yuesong Shen, Nico Daheim, Bai Cong, Peter Nickl, Gian Maria Marconi, Clement Bazan, Rio Yokota, Iryna
 425 Gurevych, Daniel Cremers, Mohammad Emtiyaz Khan, and Thomas Möllenhoff. Variational learning is
 426 effective for large deep networks, 2024. URL <https://arxiv.org/abs/2402.17641>.

427 Saurabh Singh and Shankar Krishnan. Filter response normalization layer: Eliminating batch dependence in
 428 the training of deep neural networks. *CoRR*, abs/1911.09737, 2019. URL <http://arxiv.org/abs/1911.09737>.

430 Daniel Soudry, Itay Hubara, and Ron Meir. Expectation backpropagation: parameter-free training of multilayer
 431 neural networks with continuous or discrete weights. In *Proceedings of the 27th International Conference on*
 432 *Neural Information Processing Systems - Volume 1*, NIPS'14, page 963–971, Cambridge, MA, USA, 2014.
 433 MIT Press.

434 David Stern, Ralf Herbrich, and Thore Graepel. Matchbox: Large scale bayesian recommendations. In *Proceed-
 435 ings of the 18th International World Wide Web Conference*, January 2009. URL <https://www.microsoft.com/en-us/research/publication/matchbox-large-scale-bayesian-recommendations/>.

437 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser,
 438 and Illia Polosukhin. Attention is all you need, 2023. URL <https://arxiv.org/abs/1706.03762>.

439 Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel S. Schoenholz, and Jeffrey Pennington. Dynamical
 440 isometry and a mean field theory of cnns: How to train 10,000-layer vanilla convolutional neural networks,
 441 2018. URL <https://arxiv.org/abs/1806.05393>.

442 Greg Yang, James B. Simon, and Jeremy Bernstein. A spectral condition for feature learning, 2024. URL
 443 <https://arxiv.org/abs/2310.17813>.

444 I-Cheng Yeh. Real Estate Valuation. UCI Machine Learning Repository, 2018. DOI:
 445 <https://doi.org/10.24432/C5J30W>.

446 Cheng Zhang, Judith Butepage, Hedvig Kjellstrom, and Stephan Mandt. Advances in variational inference, 2018.
447 URL <https://arxiv.org/abs/1711.05597>.

448 Zelun Tony Zhang, Sebastian S Feger, Lucas Dullenkopf, Rulu Liao, Lukas Süsslin, Yuanting Liu, and Andreas
449 Butz. Beyond recommendations: From backward to forward ai support of pilots' decision-making process.
450 *arXiv preprint arXiv:2406.08959*, 2024.

451 **A Proof of Global Minimization Objective**

452 **A.1 Moment-Matched Gaussians Minimize Cross-Entropy**

453 Consider a scalar density p and a Gaussian $q(\theta) = \mathcal{N}(\theta, \mu, \sigma)$. Then

$$\min H(p, q) = \min \left(\int p(\theta) \log \left(\frac{p(\theta)}{q(\theta)} \right) d\theta \right) = \min \left(\frac{1}{2\sigma^2} \int p(\theta)(\theta - \mu)^2 d\theta + \frac{\log(2\pi\sigma^2)}{2} \right).$$

454 It is well known that expectations minimize the expected mean squared error. In other words, the
455 integral is minimized by setting μ to the expectation of p and is then equal to the variance of p . The
456 necessary condition of a local minimum then yields that σ^2 must be the variance of p .

457 **A.2 Proof of Equation (3) Global Minimization Objective**

458 Let p be an arbitrary probability density on \mathbb{R}^k with marginals $p_i(\theta_i) := \int p(\theta) d(\theta \setminus \theta_i)$ and denote
459 by \mathcal{Q} the set of diagonal Gaussians. Then for every $q(\theta) = \prod_{i=1}^k q_i(\theta_i) \in \mathcal{Q}$ we can write the
460 relative entropy from p to q as

$$\begin{aligned} D_{\text{KL}}[p \parallel q] &= \int p(\theta) \log \left(\frac{p(\theta)}{q(\theta)} \right) d\theta = - \sum_{i=1}^k \int p(\theta) \log(q_i(\theta_i)) d\theta - H(p) \\ &= - \sum_{i=1}^k \int_{\theta_i} \log(q_i(\theta_i)) \int_{\theta \setminus \theta_i} p(\theta) d(\theta \setminus \theta_i) - H(p) = \sum_{i=1}^k H(p_i, q_i) - H(p). \end{aligned}$$

461 This shows that $D_{\text{KL}}[p \parallel q]$ is minimized by independently minimizing the summands $H(p_i, q_i)$. In
462 combination with A.1 this completes the proof.

463 **B Derivations of Message Equations**

464 **B.1 ReLU**

465 A common activation function is the Rectified Linear Unit $\text{ReLU} : \mathbb{R} \rightarrow \mathbb{R}, z \mapsto \max(0, z)$.

Forward Message: Since ReLU is not injective, we cannot apply the density transformation property of the Dirac delta to the forward message

$$m_{f \rightarrow a}(a) = \int_{z \in \mathbb{R}} \delta(a - \text{ReLU}(z)) m_{z \rightarrow f}(z) dz.$$

In fact, the random variable $\text{ReLU}(Z)$ with $Z \sim m_{z \rightarrow f}$ does not even have a density. A positive amount of weight, namely $\Pr[Z \leq 0]$, is mapped to 0. Therefore

$$m_{f \rightarrow a}(0) = \lim_{t \rightarrow 0} \int_{z \in \mathbb{R}} \mathcal{N}(\text{ReLU}(z); 0, t^2) m_{z \rightarrow f}(z) dz \geq \lim_{t \rightarrow 0} \mathcal{N}(0; 0, t^2) \min_{z \in [-1, 0]} m_{z \rightarrow f}(z) = \infty.$$

466 Apart from 0, the forward message is well defined everywhere, and technically null sets do not matter
467 under the integral. However, moment-matching $m_{z \rightarrow f}$ while truncating at 0 does not seem reasonable
468 as it completely ignores the weight of $m_{z \rightarrow f}$ on $\mathbb{R}_{\leq 0}$. Therefore, we refrain from moment-matching
469 the forward message of ReLU .

470 As an alternative, we consider a marginal approximation. That means, we derive formulas for

$$m_k := \int_{a \in \mathbb{R}} a^k m_{a \rightarrow f}(a) m_{f \rightarrow a}(a) da, \quad k \in \{0, 1, 2\} \tag{4}$$

and then set

$$m_{f \rightarrow a}(a) := \mathcal{N}(a; m_1/m_0, m_2/m_0 - (m_1/m_0)^2) / m_{a \rightarrow f}(a).$$

471 By changing the integration order, we obtain

$$\begin{aligned} m_k &= \int_{a \in \mathbb{R}} a^k m_{a \rightarrow f}(a) \int_{z \in \mathbb{R}} \delta(a - \text{ReLU}(z)) m_{z \rightarrow f}(z) dz da \\ &= \int_{z \in \mathbb{R}} m_{z \rightarrow f}(z) \int_{a \in \mathbb{R}} \delta(a - \text{ReLU}(z)) a^k m_{a \rightarrow f}(a) da dz \\ &= \int_{z \in \mathbb{R}} m_{z \rightarrow f}(z) \text{ReLU}^k(z) m_{a \rightarrow f}(\text{ReLU}(z)) dz \end{aligned}$$

472 Note that we end up with a well-defined and finite integral. Similar integrals arise in later derivations.

473 For this reason we encapsulate part of the analysis in basic building blocks.

Building Block 1. We can efficiently approximate integrals of the form

$$\int_0^\infty z^k \mathcal{N}(z; \mu_1, \sigma_1^2) \mathcal{N}(z; \mu_2, \sigma_2^2) dz$$

474 where $\mu_1, \mu_2 \in \mathbb{R}, \sigma_1, \sigma_2 > 0$ and $k = 0, 1, 2$.

475 *Proof.* By Section 4.1 the integral is equal to

$$\begin{aligned} S^+ &= \mathcal{N}(\mu_1; \mu_2, \sigma_1^2 + \sigma_2^2) \int_0^\infty z^k \mathcal{N}(z; \mu, \sigma^2) dz \\ &= \mathcal{N}(\mu_1; \mu_2, \sigma_1^2 + \sigma_2^2) \begin{cases} \mathbb{E}[\text{ReLU}^k(\mathcal{N}(\mu, \sigma^2))] & \text{for } k = 1, 2 \\ \Pr[-Z \leq 0] = \phi(\mu/\sigma) & \text{for } k = 0 \end{cases} \end{aligned}$$

where

$$\mu = \frac{\tau}{\rho}, \quad \sigma^2 = \frac{1}{\rho}, \quad \tau = \frac{\mu_1}{\sigma_1^2} + \frac{\mu_2}{\sigma_2^2} \quad \text{and} \quad \rho = \frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}.$$

476 \square

477 This motivates the derivation of efficient formulas for the moments of an image of a Gaussian variable under ReLU.

478 *Building Block 2.* Let $Z \sim \mathcal{N}(\mu, \sigma^2)$. The first two moments of $\text{ReLU}(Z)$ are then given by

$$\mathbb{E}[\text{ReLU}(Z)] = \sigma \varphi(x) + \mu \phi(x) \quad (5)$$

$$\mathbb{E}[\text{ReLU}^2(Z)] = \sigma \mu \varphi(x) + (\sigma^2 + \mu^2) \phi(x), \quad (6)$$

480 where $x = \mu/\sigma$ and φ, ϕ denote the pdf and cdf of the standard normal distribution, respectively.

481 *Proof.* The basic idea is to apply $\int z e^{-z^2/2} dz = -e^{-z^2/2}$. Together with a productive zero, one obtains

$$\begin{aligned} \sqrt{2\pi}\sigma \mathbb{E}[\text{ReLU}(Z)] &= \int_0^\infty z e^{-\frac{(z-\mu)^2}{2\sigma^2}} dz = \sigma^2 \int_0^\infty \frac{(z-\mu)}{\sigma^2} e^{-\frac{(z-\mu)^2}{2\sigma^2}} dz + \mu \int_0^\infty e^{-\frac{(z-\mu)^2}{2\sigma^2}} dz \\ &= \sigma^2 \left[-e^{-\frac{(z-\mu)^2}{2\sigma^2}} \right]_0^\infty + \sqrt{2\pi}\sigma \mu \Pr[Z \geq 0] \\ &= \sigma^2 e^{-\frac{\mu^2}{2\sigma^2}} + \sqrt{2\pi}\sigma \mu \Pr \left[\frac{-Z + \mu}{\sigma} \leq \frac{\mu}{\sigma} \right] \\ &= \sqrt{2\pi}\sigma^2 \varphi(x) + \sqrt{2\pi}\sigma \mu \phi(x). \end{aligned}$$

483 Rearranging yields the desired formula for the first moment. For the second moment, we need to complete the square and perform integration by parts:

$$\begin{aligned} \mathbb{E}[\text{ReLU}^2(Z)] &= \frac{1}{\sqrt{2\pi}\sigma} \int_0^\infty z^2 e^{-\frac{(z-\mu)^2}{2\sigma^2}} dz \\ &= \frac{1}{\sqrt{2\pi}\sigma} \left(\sigma^2 \int_0^\infty (z-\mu) \frac{z-\mu}{\sigma^2} e^{-\frac{(z-\mu)^2}{2\sigma^2}} dz + 2\mu \int_0^\infty z e^{-\frac{(z-\mu)^2}{2\sigma^2}} dz - \mu^2 \int_0^\infty e^{-\frac{(z-\mu)^2}{2\sigma^2}} dz \right) \\ &= \frac{\sigma^2}{\sqrt{2\pi}\sigma} \left(\left[-(z-\mu) e^{-\frac{(z-\mu)^2}{2\sigma^2}} \right]_0^\infty + \int_0^\infty e^{-\frac{(z-\mu)^2}{2\sigma^2}} dz \right) + 2\mu \mathbb{E}[\text{ReLU}(Z)] - \mu^2 \phi(x) \\ &= -\sigma \mu \varphi(x) + \sigma^2 \phi(x) + 2\mu \mathbb{E}[\text{ReLU}(Z)] - \mu^2 \phi(x) = \sigma \mu \varphi(x) + (\sigma^2 + \mu^2) \phi(x). \end{aligned}$$

□

Building Block 3. Integrals of the form

$$S^- := \int_{-\infty}^0 z^k \mathcal{N}(z; \mu_1, \sigma_1^2) \mathcal{N}(0; \mu_2, \sigma_2^2) dz$$

486 where $\mu_1, \mu_2 \in \mathbb{R}, \sigma_1, \sigma_2 > 0$ and $k = 0, 1, 2$ can be efficiently approximated.

487 *Proof.* Employing the substitution $z = -t$ gives

$$\begin{aligned} S^- &= \mathcal{N}(0; \mu_2, \sigma_2^2) \int_0^\infty (-1)^k t^k \mathcal{N}(-t; \mu_1, \sigma_1^2) dt = (-1)^k \mathcal{N}(0; \mu_2, \sigma_2^2) \int_0^\infty t^k \mathcal{N}(t; -\mu_1, \sigma_1^2) dt \\ &= (-1)^k \mathcal{N}(0; \mu_2, \sigma_2^2) \begin{cases} \mathbb{E}[\text{ReLU}(\mathcal{N}(-\mu_1, \sigma_1^2))] & \text{for } k = 1, 2 \\ \Pr[-Z \geq 0] = \phi(-\mu_1/\sigma_1) & \text{for } k = 0. \end{cases} \end{aligned}$$

□

Now let $m_{z \rightarrow f}(z) = \mathcal{N}(z; \mu_z, \sigma_z^2)$, $m_{a \rightarrow f}(a) = \mathcal{N}(a; \mu_a, \sigma_a^2)$ and consider the decomposition

$$m_k = \underbrace{\int_0^\infty z^k \mathcal{N}(z; \mu_z, \sigma_z^2) \mathcal{N}(z; \mu_a, \sigma_a^2) dz}_{S^+} + \underbrace{\int_{-\infty}^0 \text{ReLU}^k(z) \mathcal{N}(z; \mu_z, \sigma_z^2) \mathcal{N}(0; \mu_a, \sigma_a^2) dz}_{S^-}.$$

489 Note that S^+ falls under Building Block 1 for any $k = 0, 1, 2$. The other addend S^- is equal to 0 for
490 $k = 1, 2$, and is handled by Building Block 3 for $k = 0$.

Backward Message: By definition of the Dirac delta, the backward message is equal to

$$m_{f \rightarrow z}(z) = \int_{a \in \mathbb{R}} \delta(a - \text{ReLU}(z)) m_{a \rightarrow f}(a) da = m_{a \rightarrow f}(\text{ReLU}(z))$$

which is, of course, not integrable, so it cannot be interpreted as a scaled density. Instead, we apply marginal approximation by deriving formulas for

$$m_k := \int_{z \in \mathbb{R}} z^k m_{z \rightarrow f}(z) m_{f \rightarrow z}(z) dz, \quad k \in \{0, 1, 2\}$$

and then setting

$$m_{f \rightarrow z}(z) := \mathcal{N}(z; m_1/m_0, m_2/m_0 - (m_1/m_0)^2) / m_{z \rightarrow f}(z).$$

To this end, let $m_{z \rightarrow f}(z) = \mathcal{N}(z; \mu_z, \sigma_z^2)$ and $m_{a \rightarrow f}(a) = \mathcal{N}(a; \mu_a, \sigma_a^2)$. Then we have

$$m_k = \underbrace{\int_0^\infty z^k \mathcal{N}(z; \mu_z, \sigma_z^2) \mathcal{N}(z; \mu_a, \sigma_a^2) dz}_{S^+} + \underbrace{\int_{-\infty}^0 z^k \mathcal{N}(z; \mu_z, \sigma_z^2) \mathcal{N}(0; \mu_a, \sigma_a^2) dz}_{S^-}.$$

491 The two addends S^+ and S^- are handled by Building Block 1 and Building Block 3, respectively.

492 **B.2 Leaky ReLU**

Another common activation function is the Leaky Rectified Linear Unit

$$\text{LeakyReLU}_\alpha : \mathbb{R} \rightarrow \mathbb{R}, z \mapsto \begin{cases} z & \text{for } z \geq 0 \\ \alpha z & \text{for } z < 0. \end{cases}$$

493 It is parameterized by some $\alpha > 0$ that is typically small, such as $\alpha = 0.1$. In contrast to ReLU, it is
494 injective (and even bijective). For this reason the forward and backward messages are both integrable
495 and can be approximated by both direct and marginal moment matching. The notation is shown in
496 Figure 4.

Figure 4: A deterministic factor corresponding to the LeakyReLU_α activation function.

Forward Message: It is easy to show that the density of $\text{LeakyReLU}_\alpha(\mathcal{N}(\mu_z, \sigma_z^2))$ is given by

$$p(a) = \mathcal{N}(\text{LeakyReLU}_{1/\alpha}(a); \mu_z, \sigma_z^2) \begin{cases} 1 & \text{for } z \geq 0 \\ 1/\alpha & \text{for } z < 0 \end{cases}$$

497 which only has one discontinuity point, namely 0. In particular, it is continuous almost everywhere.
498 So by the density transformation property of Dirac's delta, we have $m_{f \rightarrow a}(a) = p(a)$ for almost all
499 a . Under the integral we can therefore replace $m_{f \rightarrow a}(a)$ by $p(a)$. This justifies that the moments of
500 $m_{f \rightarrow a}$ are exactly the moments of $(\text{LeakyReLU}_\alpha)_* \mathcal{N}(\mu_z, \sigma_z^2)$. Its expectation is equal to

$$\begin{aligned} \mathbb{E}[\text{LeakyReLU}_\alpha(\mathcal{N}(\mu_z, \sigma_z^2))] &= \int_{-\infty}^0 \alpha z \mathcal{N}(z; \mu_z, \sigma_z^2) dz + \int_0^\infty z \mathcal{N}(z; \mu_z, \sigma_z^2) dz \\ &= -\alpha \int_0^\infty t \mathcal{N}(t; -\mu_z, \sigma_z^2) dt + \int_0^\infty z \mathcal{N}(z; \mu_z, \sigma_z^2) dz \\ &= -\alpha \mathbb{E}[\text{ReLU}(\mathcal{N}(-\mu_z, \sigma_z^2))] + \mathbb{E}[\text{ReLU}(Z)]. \end{aligned}$$

501 Both addends are handled by Building Block 2. Yet we can get more insight by further substitution:

$$\begin{aligned} \mathbb{E}[\text{LeakyReLU}_\alpha(Z)] &= -\alpha(\sigma_z \varphi(-\mu_z/\sigma_z) - \mu_z \phi(-\mu_z/\sigma_z)) + \sigma_z \varphi(\mu_z/\sigma_z) + \mu_z \phi(\mu_z/\sigma_z) \\ &= (1 - \alpha)(\sigma_z \varphi(\mu_z/\sigma_z) + \mu_z \phi(\mu_z/\sigma_z)) + \alpha \mu_z \\ &= (1 - \alpha) \mathbb{E}[\text{ReLU}(Z)] + \alpha \mathbb{E}[Z]. \end{aligned}$$

502 In the second to last equation, we use the identities $\varphi(-x) = \varphi(x)$ and $\phi(-x) = 1 - \phi(x)$. As such,
503 the mean of $\text{LeakyReLU}_\alpha(Z)$ is a convex combination of the mean of $\text{ReLU}(Z)$ and the mean of Z .
504 The function LeakyReLU_1 is the identity, and its mean is accordingly the mean of Z . For $\alpha = 0$, we
505 recover the mean of $\text{ReLU}(Z)$.

506 The second moment of $\text{LeakyReLU}_\alpha(Z)$ decomposes to

$$\begin{aligned} \mathbb{E}[\text{LeakyReLU}_\alpha^2(Z)] &= \int_{-\infty}^0 \alpha^2 z^2 \mathcal{N}(z; \mu_z, \sigma_z^2) dz + \int_0^\infty z^2 \mathcal{N}(z; \mu_z, \sigma_z^2) dz \\ &= \alpha^2 \int_0^\infty z^2 \mathcal{N}(z; -\mu_z, \sigma_z^2) dz + \int_0^\infty z^2 \mathcal{N}(z; \mu_z, \sigma_z^2) dz \\ &= \alpha^2 \mathbb{E}[\text{ReLU}^2(\mathcal{N}(-\mu_z, \sigma_z^2))] + \mathbb{E}[\text{ReLU}^2(\mathcal{N}(\mu_z, \sigma_z^2))]. \end{aligned}$$

507 Again, both addends are covered by Building Block 2, so approximating the forward message via
508 direct moment matching is feasible.

509 A marginal approximation can also be found. For all $k = 0, 1, 2$ we have

$$\begin{aligned} \int_{a \in \mathbb{R}} a^k m_{a \rightarrow f}(a) m_{f \rightarrow a}(a) da &= \int_{a \in \mathbb{R}} a^k m_{a \rightarrow f}(a) p(a) da \\ &= \underbrace{\frac{1}{\alpha} \int_{-\infty}^0 a^k \mathcal{N}(a; \mu_a, \sigma_a^2) \mathcal{N}(a/\alpha; \mu_z, \sigma_z^2) da}_{S^-} + \underbrace{\int_0^\infty a^k \mathcal{N}(a; \mu_a, \sigma_a^2) \mathcal{N}(a; \mu_z, \sigma_z^2) da}_{S^+} \end{aligned}$$

510 The term S^+ is handled by Building Block 1. The term S^- is equal to

$$\begin{aligned} S^- &= \int_{-\infty}^0 a^k \mathcal{N}(a; \mu_a, \sigma_a^2) \mathcal{N}(a; \alpha \mu_z, (\alpha \sigma_z)^2) da \\ &= (-1)^k \int_0^\infty a^k \mathcal{N}(a; -\mu_a, \sigma_a^2) \mathcal{N}(a; -\alpha \mu_z, (\alpha \sigma_z)^2) da \end{aligned}$$

511 and therefore also covered by Building Block 1.

Backward Message: By the sifting property of the Dirac delta, the backward message is equal to

$$m_{f \rightarrow z}(z) = \int_{a \in \mathbb{R}} \delta(a - \text{LeakyReLU}_\alpha(z)) m_{a \rightarrow f}(a) da = m_{a \rightarrow f}(\text{LeakyReLU}_\alpha(z)).$$

512 As opposed to ReLU, the backward message is integrable. That means, we can also apply direct
513 moment matching: For all $k = 0, 1, 2$ we have

$$\begin{aligned} m_{f \rightarrow z}(z) &= \int_{-\infty}^0 z^k \mathcal{N}(\alpha z; \mu_a, \sigma_a^2) dz + \int_0^\infty z^k \mathcal{N}(z; \mu_a, \sigma_a^2) dz \\ &= \frac{(-1)^k}{\alpha} \int_0^\infty z^k \mathcal{N}(z; -\mu_a/\alpha, (\sigma_a/\alpha)^2) dz + \int_0^\infty z^k \mathcal{N}(z; \mu_a, \sigma_a^2) dz \end{aligned}$$

For $k = 1$ or $k = 2$, the integrals fall under Building Block 2 again. If $k = 0$, then

$$m_{f \rightarrow z}(z) = \frac{(-1)^k}{\alpha} \phi(-\mu_a/\sigma_a) + \phi(\mu_a/\sigma_a).$$

514 Again, we can also find a marginal approximation as well. For all $k = 0, 1, 2$, we can write

$$\begin{aligned} &\int_{z \in \mathbb{R}} z^k m_{z \rightarrow f}(z) m_{f \rightarrow z}(z) dz \\ &= \int_{-\infty}^0 z^k \mathcal{N}(z; \mu_z, \sigma_z^2) \mathcal{N}(\alpha z; \mu_a, \sigma_a^2) dz + \int_0^\infty z^k \mathcal{N}(z; \mu_z, \sigma_z^2) \mathcal{N}(z; \mu_a, \sigma_a^2) dz \\ &= \frac{(-1)^k}{\alpha} \int_0^\infty z^k \mathcal{N}(z; -\mu_z, \sigma_z^2) \mathcal{N}(z; -\mu_a/\alpha, (\sigma_a/\alpha)^2) dz + \int_0^\infty z^k \mathcal{N}(z; \mu_z, \sigma_z^2) \mathcal{N}(z; \mu_a, \sigma_a^2) dz \end{aligned}$$

515 Since both integrals are covered by Building Block 1 we have derived direct and marginal approxima-
516 tions of LeakyReLU messages using moment matching.

517 B.3 Softmax

We model the soft(arg)max training signal as depicted in Table 6. For the forward message on the prediction branch, we employ the so-called ‘‘probit approximation’’ [Daxberger et al., 2022]:

$$m_{f \rightarrow c}(i) = \int \text{softmax}(\mathbf{a})_i \mathcal{N}(\mathbf{a}; \boldsymbol{\mu}, \text{diag}(\boldsymbol{\sigma}^2)) d\mathbf{a} \approx \text{softmax}(\mathbf{t})_i,$$

518 where $t_j = \mu_j/(1 + \frac{\pi}{8}\sigma_j^2)$, $j = 1, \dots, d$. For the backward message on a training branch, to say
519 a_d , we use marginal approximation. We hence need to compute the moments m_0, m_1, m_2 of the
520 marginal of a_d via:

$$\begin{aligned} m_k &= \int a_d^k \text{softmax}(\mathbf{a})_c \mathcal{N}(\mathbf{a}; \boldsymbol{\mu}, \text{diag}(\boldsymbol{\sigma}^2)) d\mathbf{a} \\ &= \int_{a_d} a_d^k \mathcal{N}(a_d; \mu_d, \sigma_d^2) \int_{\mathbf{a} \setminus a_d} \text{softmax}(\mathbf{a})_i \prod_{j \neq i} \mathcal{N}(a_j; \mu_j, \sigma_j^2) d(\mathbf{a} \setminus a_d) da_d. \end{aligned}$$

521 We can reduce the inner integral to the probit approximation by regarding the point distribution δ_{a_d} as
522 the limit of a Gaussian with vanishing variance:

$$\begin{aligned} &\int_{\mathbf{a} \setminus a_d} \text{softmax}(\mathbf{a})_i \prod_{j \neq i} \mathcal{N}(a_j; \mu_j, \sigma_j^2) d(\mathbf{a} \setminus a_d) \\ &= \int_{\mathbf{a} \setminus a_d} \int_{\tilde{a}_d} \delta(\tilde{a}_d - a_d) \text{softmax}(a_1, \dots, a_{d-1}, \tilde{a}_d) \prod_{j \neq d} \mathcal{N}(a_j; \mu_j, \sigma_j^2) d\tilde{a}_d d(\mathbf{a} \setminus a_d) \\ &= \int_{\tilde{\mathbf{a}} \setminus \tilde{a}_d} \lim_{\sigma \rightarrow 0} \int_{\tilde{a}_i} \text{softmax}(\tilde{\mathbf{a}})_i \mathcal{N}(\tilde{a}_d; a_d, \sigma^2) \prod_{j \neq d} \mathcal{N}(\tilde{a}_j; \mu_j, \sigma_j^2) d\tilde{a}_i d\tilde{\mathbf{a}}_i \end{aligned}$$

523 By Lebesgue's dominated convergence theorem we obtain equality to

$$\lim_{\sigma \rightarrow 0} \int_{\tilde{\mathbf{a}}} \text{softmax}(\tilde{\mathbf{a}})_c \mathcal{N}(\tilde{a}_d; a_d, \sigma^2) \prod_{j \neq i} \mathcal{N}(\tilde{a}_j; \mu_j, \sigma_j^2) d\tilde{\mathbf{a}}$$

$$\approx \lim_{\sigma \rightarrow 0} \text{softmax}(\mathbf{t})_i = \text{softmax}(t_1, \dots, t_{d-1}, a_d) \quad \text{where} \quad t_j = \begin{cases} \mu_j / (1 + \frac{\pi}{8} \sigma_j^2) & \text{for } j \neq d \\ a_d / (1 + \frac{\pi}{8} \sigma^2) & \text{for } j = d. \end{cases}$$

Hence, we can approximate m_k by one-dimensional numerical integration of

$$m_k \approx \int_{a_d} a_d^k \mathcal{N}(a_d; \mu_d, \sigma_d^2) \text{softmax}(t_1, \dots, t_{d-1}, a_d) da_d.$$

524 C Experimental Setup

Synthetic Data - Depth Scaling: We generated a dataset of 200 points by randomly sampling x values from the range $[0, 2]$. The true data-generating function was

$$f(x) = 0.5x + 0.2 \sin(2\pi \cdot x) + 0.3 \sin(4\pi \cdot x).$$

The corresponding y values were sampled by adding Gaussian noise: $f(x) + \mathcal{N}(0, 0.05^2)$. For the architecture, we used a three-layer NN with the structure:

$$[\text{Linear}(1, 16), \text{LeakyReLU}(0.1), \text{Linear}(16, 16), \text{LeakyReLU}(0.1), \text{Linear}(16, 1)].$$

525 A four-layer network has one additional $[\text{Linear}(16, 16), \text{LeakyReLU}(0.1)]$ block in the middle, and
 526 a five-layer network has two additional blocks. For the regression noise hyperparameter, we used the
 527 true noise $\beta^2 = 0.05^2$. The models were trained for 500 iterations over one batch (as all data was
 528 processed in a single active batch).

Synthetic Data - Uncertainty Evaluation: The same data-generation process was used as in the depth-scaling experiment, but this time, x values were drawn from the range $[-0.5, 0.5]$. The network architecture remained the same as the three-layer network, but the width of the layers was increased to 32. We trained 100 networks with different random seeds on the same dataset. We define a p -credible interval for $0 \leq p \leq 1$ as:

$$[\text{cdf}^{-1}(0.5 - \frac{p}{2}), \text{cdf}^{-1}(0.5 + \frac{p}{2})].$$

529 For each credible interval mass p (ranging from 0 to 1 in steps of 0.01), we measured how many of
 530 the p -credible intervals (across the 100 posterior approximations) covered the true data-generating
 531 function. This evaluation was done at each possible x value (ranging from -20 to 20 in steps of 0.05),
 532 generating a coverage rate for each combination of p and x . For each p , we then computed the median
 533 for $x > 10$ and the median for $x < -10$. If we correlate the p values with the medians, we found
 534 that for the median obtained from positive x values the correlation was 0.96, for negative x it was
 535 0.99, and for the combined set of medians it was 0.9.

536 **CIFAR-10:** For our CIFAR-10 experiments, we used the default train-test split and trained the
 537 following feed-forward network:

```
538 class Net(nn.Module):
539     def __init__(self):
540         super(Net, self).__init__()
541         self.model = nn.Sequential(
542             # Block 1
543             nn.Conv2d(3, 32, 3, padding=0),
544             nn.LeakyReLU(0.1),
545             nn.Conv2d(32, 32, 3, padding=0),
546             nn.LeakyReLU(0.1),
547             nn.MaxPool2d(2),
548             # Block 2
549             nn.Conv2d(32, 64, 3, padding=0),
550             nn.LeakyReLU(0.1),
```

```

551     nn.Conv2d(64, 64, 3, padding=0),
552     nn.LeakyReLU(0.1),
553     nn.MaxPool2d(2),
554     # Head
555     nn.Flatten(),
556     nn.Linear(64 * 5 * 5, 512),
557     nn.LeakyReLU(0.1),
558     nn.Linear(512, 10),
559 )
560
561 def forward(self, x):
562     return self.model(x)

```

563 In the case of AdamW and IVON we trained with a cross-entropy loss on the softargmax of the
564 network output. For our message passing method we used our argmax factor as a training signal
565 instead of softargmax, see Appendix F. The reason is that for softargmax we only have message
566 approximations relying on rather expensive numerical integration. In our library this factor graph can
567 be constructed via

```

568     fg = create_factor_graph([
569         size(d.X_train)[1:end-1], # (3, 32, 32)
570         # First Block
571         (:Conv, 32, 3, 0), # (32, 30, 30)
572         (:LeakyReLU, 0.1),
573         (:Conv, 32, 3, 0), # (32, 28, 28)
574         (:LeakyReLU, 0.1),
575         (:MaxPool, 2), # (32, 14, 14)
576         # Second Block
577         (:Conv, 64, 3, 0), # (64, 12, 12)
578         (:LeakyReLU, 0.1),
579         (:Conv, 64, 3, 0), # (64, 10, 10)
580         (:LeakyReLU, 0.1),
581         (:MaxPool, 2), # (64, 5, 5)
582         # Head
583         (:Flatten,), # (64*5*5 = 1600)
584         (:Linear, 512), # (512)
585         (:LeakyReLU, 0.1),
586         (:Linear, 10), # (10)
587         (:Argmax, true)
588     ], batch_size)

```

589 For all methods we used a batch size of 128 and trained for 25 epochs with a cosine annealing
590 learning rate schedule. Concerning hyperparameters: For AdamW we found the standard parameters
591 of $lr = 10^{-3}$, $\beta_1 = 0.9$, $\beta_2 = 0.999$, $\epsilon = 10^{-8}$ and $\delta = 10^{-4}$ to work best. For IVON we followed
592 the practical guidelines given in the Appendix of Shen et al. [2024].

593 To measure calibration, we used 20 bins that were split to minimize within-bin variance. For OOD
594 recognition, we predicted the class of the test examples in CIFAR-10 (in-distribution) and SVHN
595 (OOD) and computed the entropy over softmax probabilities for each example. We then sort them by
596 negative entropy and test the true positive and false positive rates for each possible (binary) decision
597 threshold. The area under this ROC curve is computed in the same way as for relative calibration.

598 D Prior Analysis

599 The strength of the prior determines the amount of data needed to obtain a useful posterior that fits
600 the data. Our goal is to draw prior means and set prior variances so that the computed variances
601 of all messages are on the order of $\mathcal{O}(1)$ regardless of network width and depth. It is not entirely
602 clear if this would be a desirable property; after all, adding more layers also makes the network more
603 expressive and more easily able to model functions with very high or low values. However, if we
604 let the predictive prior grow unrestricted, it will grow exponentially, leading to numerical issues.

605 In the following, we analyze the predictive prior under simplifying assumptions to derive a prior
 606 initialization that avoids exponential variance explosion. While we fail to achieve this goal, our
 607 current prior variances are still informed by this analysis.

608 In the following, we assume that the network inputs are random variables. Then, the parameters of
 609 messages also become random variables, as they are derived from the inputs according to the message
 610 equations. Our goal is to keep the expected value of the variance parameter of the outgoing message
 611 at a constant size. We also assume that the means of the prior are sampled according to spectral
 612 initialization, as described in Section 4.3.

613 **FirstGaussianLinearLayer - Input is a Constant**

614 Each linear layer transforms some d_1 -dimensional input \mathbf{x} to some d_2 -dimensional output \mathbf{y} according
 615 to $\mathbf{y} = W\mathbf{x} + \mathbf{b}$. In the first layer, \mathbf{x} is the input data. For this analysis, we assume each element x_i
 616 to be drawn independently from $x_i \sim \mathcal{N}(0, 1)$. Let \mathbf{x} be a d_1 -dimensional input vector, \mathbf{m}_w be the
 617 prior messages from one column of W , and $z = \mathbf{w}'\mathbf{x}$ be the vector product before adding the bias.

During initialization of the weight prior, we draw the prior means using spectral parametrization and
 set the prior variances to a constant:

$$m_{w_i} = \mathcal{N}(\mu_{w_i}, \sigma_w^2) \text{ with } \mu_{w_i} \sim \mathcal{N}(0, l^2),$$

$$l = \frac{1}{\sqrt{k}} \cdot \min(1, \sqrt{\frac{d_2}{d_1}}).$$

By applying the message equations, we then approximate the forward message to the output with a
 normal distribution

$$m_z = \mathcal{N}(\mu_z, \sigma_z^2).$$

618 Because σ_z^2 depends on the random variables x_i , it is also a random variable that follows a scaled
 619 chi-squared distribution

$$\sigma_z^2 = \sum_{i=1}^{d_1} x_i^2 \cdot \sigma_w^2$$

$$\sigma_z^2 \sim \chi_{d_1}^2 \cdot \sigma_w^2$$

and its expected value is

$$\mathbb{E}[\sigma_z^2] = d_1 \cdot \sigma_w^2.$$

620 We conclude that we can control the magnitude of the variance parameter by choosing $\mathbb{E}[\sigma_z^2]$ and
 621 setting $\sigma_w^2 = \frac{\mathbb{E}[\sigma_z^2]}{d_1}$.

622 **GaussianLinearLayer - Input is a Variable**

In subsequent linear layers, the input \mathbf{x} is not observed and we receive an approximate forward
 message that consists of independent normal distributions

$$m_{x_i} = \mathcal{N}(\mu_{x_i}, \sigma_{x_i}^2).$$

623 Following the message equations, the outgoing forward message to z then has a variance

$$\begin{aligned} \sigma_z^2 &= \sum_{i=1}^{d_1} (\sigma_{x_i}^2 + \mu_{x_i}^2) \cdot (\sigma_w^2 + \mu_{w_i}^2) - (\mu_{x_i}^2 * \mu_{w_i}^2) \\ &= \sum_{i=1}^{d_1} \underbrace{\sigma_{x_i}^2 \cdot \sigma_w^2}_\text{I} + \underbrace{\sigma_{x_i}^2 \cdot \mu_{w_i}^2}_\text{II} + \underbrace{\mu_{x_i}^2 \cdot \sigma_w^2}_\text{III} \end{aligned}$$

624 The layer's prior variance σ_w^2 is a constant, whereas all other elements are random variables according
 625 to our assumptions. To make further analysis tractable, we also have to assume that the variances

626 $\sigma_{x_i}^2$ of the incoming forward messages are identical constants for all i , not random variables. We
627 furthermore assume that the means are drawn i.i.d. from:

$$\begin{aligned}\mu_{w_i} &\sim \mathcal{N}(0, l^2) \\ \mu_{x_i} &\sim \mathcal{N}(\mu_{\mu_x}, \sigma_{\mu_x}^2).\end{aligned}$$

The random variable σ_z^2 then follows a generalized chi-squared distribution

$$\sigma_z^2 \sim \left(\underbrace{\sum_{i=1}^{d_1} \sigma_x^2 \cdot l^2 \cdot \chi^2(1, 0^2)}_{\text{II}} + \underbrace{\sigma_w^2 \cdot \sigma_{\mu_x}^2 \cdot \chi^2(1, \mu_{\mu_x}^2)}_{\text{III}} \right) + \underbrace{d_1 \cdot \sigma_w^2 \cdot \sigma_x^2}_{\text{I}}$$

628 and its expected value is

$$\begin{aligned}\mathbb{E}[\sigma_z^2] &= \left(\sum_{i=1}^{d_1} \sigma_x^2 \cdot l^2 \cdot (1 + 0^2) + \sigma_w^2 \cdot \sigma_{\mu_x}^2 \cdot (1 + \mu_{\mu_x}^2) \right) + d_1 \cdot \sigma_w^2 \cdot \sigma_x^2 \\ &= d_1 \cdot \left(\sigma_x^2 \cdot l^2 + \sigma_w^2 \cdot \sigma_{\mu_x}^2 \cdot (1 + \mu_{\mu_x}^2) + \sigma_w^2 \cdot \sigma_x^2 \right) \\ &= \underbrace{d_1 \cdot \sigma_x^2 \cdot l^2}_{\text{II}} + \underbrace{d_1 \cdot (\sigma_{\mu_x}^2 \cdot (1 + \mu_{\mu_x}^2) + \sigma_x^2) \cdot \sigma_w^2}_{\text{I+III}}.\end{aligned}$$

As σ_w^2 has to be positive, we conclude that if we choose $\mathbb{E}[\sigma_z^2] > d_1 \cdot \sigma_x^2 \cdot l^2$, then we can set

$$\sigma_w^2 = \frac{\mathbb{E}[\sigma_z^2] - d_1 \cdot \sigma_x^2 \cdot l^2}{d_1 \cdot (\sigma_{\mu_x}^2 \cdot (1 + \mu_{\mu_x}^2) + \sigma_x^2)}.$$

629 We know (or choose) d_1 , l^2 , and $\mathbb{E}[\sigma_z^2]$, but we require values for σ_x^2 , $\mu_{\mu_x}^2$, and $\sigma_{\mu_x}^2$ to be able to
630 choose σ_w^2 . We will find empirical values for these parameters in the next section.

631 Empirical Parameters + LeakyReLU

632 To inform the choice of the prior variances of the inner linear layers, we also need to analyze
633 LeakyReLU. We assume the network is an MLP that alternates between linear layers and LeakyReLU.
634 As the message equations of LeakyReLU are too complicated for analysis, we instead use empirical
635 approximation. Let $m_a = \mathcal{N}(\mu_a, \sigma_a^2)$ be an incoming message (from the pre-activation variable to
636 LeakyReLU). We assume that $\sigma_a^2 = t$ is a constant and that $\mu_a \sim \mathcal{N}(0, 1)$ is a random variable. By
637 sampling multiple means and then computing the outgoing messages (after applying LeakyReLU), we
638 can approximate the average variance of the outgoing messages, as well as the average and empirical
639 variance over means of the outgoing messages.

640 We computed these statistics for 101 different leak settings with 100 million samples each, and found
641 that the relationship between leak and μ_{μ_x} (average mean of the outgoing message) is approximately
642 linear, while the relationships between leak and $\sigma_{\mu_x}^2$ or $\mu_{\sigma_x^2}$ are approximately quadratic. Using these
643 samples, we fitted coefficients with an error margin below $5 \cdot 10^{-5}$. For our network, we chose a
644 target variance of 1.5 and a leak of 0.1, resulting in

$$\begin{aligned}\sigma_x^2 &= 0.8040586726631379 \\ \sigma_{\mu_x}^2 \cdot (1 + \mu_{\mu_x}^2) &= 0.44958619556324186.\end{aligned}$$

645 These values are sufficient for now setting the prior variances of the inner linear layer according to
646 the equations above. Finally, we set the prior variance of the biases to 0.5, so that the output of each
647 linear layer achieves an overall target prior predictive variance of approximately $t = 1.5 + 0.5 = 2.0$.

648 Results in Practice

649 In practice, we found that the variance of the predictive posterior still goes up exponentially with
650 the depth of the network despite our derived prior choices. However, if we lower the prior variance
651 further to avoid this explosion, the network is overly restricted and unable to obtain a good fit during
652 training. We therefore set the prior variances as outlined here, but acknowledge that choosing a good
653 prior is a general known problem.

654 **E Evaluation: Analysis on Tabular Data**

655 **E.1 Goal, Setup & Methods**

656 In the following, we benchmark the proposed Bayesian neural network (BNN) approach using
657 approximate message passing on a suite of classical regression tasks yet. It is crucial to understand
658 the behavior of BNNs on classic regression tasks of medium difficulty. Our goal is to assess the
659 strengths and weaknesses of BNNs, especially regarding performance and overfitting behavior.

660 We will analyze if our Bayesian neural networks keep their promise of delivering a good calibration,
661 in particular if the estimated uncertainty matches the errors we are seeing. We are using a suite of
662 regression problems mainly from the widespread UCI machine learning repository Dua and Graff
663 [2017]. This repository contains hundreds of publicly available datasets that are used by researchers
664 as standard benchmarks to test new algorithm approaches. We focus on regression tasks with up to
665 20 features. Here are the datasets used in our analysis:

- 666 • California Housing: The California Housing dataset comprises 8 numerical features derived
667 from the 1990 U.S. Census data. The aim is to estimate the median house value in a
668 specific area, based on nine features with information about the neighborhood. These
669 features include median income, median house age, total number of rooms, total number of
670 bedrooms, population, number of households, latitude, longitude, and a categorical variable
671 for ocean proximity. It has the options “near bay” (San Francisco Bay), “near ocean”, “less
672 than one hour to the ocean”, and “inland”. Challenges in modeling this dataset involve
673 capturing non-linear relationships and spatial dependencies, as well as influencing factors
674 that are not included in the feature set. Nugent [2017]
- 675 • Abalone: The Abalone dataset is about predicting the age of these specific snakes by
676 measurements. It contains 4,177 instances with 8 input features: one categorical feature
677 (sex) and seven continuous features (length, diameter, height, whole weight, shucked weight,
678 viscera weight, and shell weight). The target variable is the number of rings, which correlates
679 with the age of the abalone. A significant challenge is the non-linear relationship between
680 the physical measurements and age, as well as the presence of outliers and multicollinearity
681 among features. Nash et al. [1994]
- 682 • Wine Quality: This dataset includes two subsets related to red and white "Vinho Verde"
683 wines from Portugal, each with 11 physicochemical input variables such as fixed acidity,
684 volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, total sulfur dioxide,
685 density, pH, sulphates, and alcohol. All of these variables are continuous. Furthermore, there
686 is one binary variable indicating if the sample is a white or red wine. The target variable
687 is the wine quality score (0–10) rated by wine tasters. Challenges include class imbalance,
688 as most wines have medium quality scores, and the subjective nature of the quality ratings.
689 Cortez et al. [2009]
- 690 • Bike Sharing: The Bike Sharing dataset is about predicting the usage of rental bikes in an
691 area based on seasonal information, weather, and usage profiles. Specifically, it contains
692 contains hourly and daily counts of rental bikes in the Capital Bikeshare system from
693 2011 to 2012, along with 12 features including season, year, month, day, weekday, hour,
694 holiday, working day, weather situation, temperature, "feels like" temperature, humidity,
695 wind speed, number of casual users, and number of registered users. The target variable is
696 the count of total rental bikes. Modeling challenges involve capturing complex temporal
697 patterns, handling missing data, and accounting for external factors like weather and holidays.
698 Fanaee-T [2013]
- 699 • Forest Fires: This dataset comprises 517 instances with 12 features: spatial coordinates
700 (X, Y), temporal variables (month, day), and meteorological data (FFMC, DMC, DC, ISI,
701 temperature, relative humidity, wind, and rain). The target is to predict the burned area of the
702 forest (in hectares) in the northeast region of Portugal in wild fires. The primary challenge is
703 the high skewness of the target variable, with many instances having a burned area of zero,
704 making it difficult to model and evaluate performance accurately. Cortez and Morais [2007]
- 705 • Heart Failure: The Heart Failure Clinical Records dataset includes 299 patient records with
706 13 clinical features such as age, anaemia, high blood pressure, creatinine phosphokinase,
707 diabetes, ejection fraction, platelets, serum creatinine, serum sodium, sex, smoking, time,

708 and death event. The target variable is a binary indicator of death occurrence. Challenges
 709 include the small dataset size, potential class imbalance, and missing values, which can
 710 affect the generalizability of predictive models. hea [2020]

711 • Real Estate Taiwan: This dataset is about predicting house prices in New Taipei City, Taiwan.
 712 It contains 414 instances with 6 features: transaction date, house age, distance to the nearest
 713 MRT station, number of convenience stores, latitude, and longitude. The target variable
 714 is the house price per unit area. Challenges in modeling this dataset involve capturing the
 715 influence of location-based features and dealing with a low sample size. Yeh [2018]

Table 3: Summary of Regression Datasets

Dataset	Samples	Features	Feature Types
California Housing	20,640	9	Numerical: latitude, longitude, house median age, total rooms, total bedrooms, population, households, median income; categorical: ocean proximity
Abalone	4,177	8	1 categorical (sex), 7 numerical: length, diameter, height, whole weight, shucked weight, viscera weight, shell weight.
Wine Quality (Red)	1,599	11	All numerical: fixed acidity, volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, total sulfur dioxide, density, pH, sulphates, alcohol.
Wine Quality (White)	4,898	11	Same as red wine dataset.
Bike Sharing	17,379	12	Mix of categorical and numerical: season, year, month, hour, holiday, weekday, working day, weather situation, temperature, feels-like temperature, humidity, wind speed.
Forest Fires	517	12	2 categorical (month, day), 10 numerical: FFMC, DMC, DC, ISI, temperature, relative humidity, wind, rain, X, Y coordinates.
Heart Failure	299	13	Mix of binary and numerical: age, anaemia, high blood pressure, creatinine phosphokinase, diabetes, ejection fraction, platelets, serum creatinine, serum sodium, sex, smoking, time, death event.
Real Estate Taiwan	414	6	All numerical: transaction date, house age, distance to nearest MRT station, number of convenience stores, latitude, longitude.

716 For a quick comparison, the number of features and samples are shown in Table 3. As we can see,
 717 the datasets have very different sizes. This is an important challenge where we want to evaluate the
 718 Bayesian neural network.

719 For our training, we normalize the values in all columns. In particular, for each column c , we subtract
 720 the mean of c from each entry, and divide by the empiric standard deviation. This applies to both
 721 feature and target columns. The primary reason for us to do this is the fact that the BNN is designed
 722 to handle input with a mean of zero and a standard deviation of one best. Standard neural networks
 723 perform best with numbers in this range as well. Furthermore, normalization helps with the common
 724 problem that different columns have values in different orders of magnitude before normalization,
 725 for example tens of thousands for yearly income, and small numbers for number of bathrooms in
 726 the case of California housing. An additional advantage is that performance can be compared across
 727 datasets (approximately), highlighting strengths and weaknesses across different settings.

728 On these datasets, we apply a random split into training and test dataset, where we dedicate 80%
 729 on the training dataset and 20% on the test dataset. Then, we run a pipeline where we evaluate the
 730 performance on for each dataset both on the Bayesian neural network implemented in Julia, and on
 731 the standard neural network implemented in PyTorch.

732 The Julia implementation uses a neural network with two hidden layers, and 64 neurons per layer.
 733 LeakyReLy is the activation function, and the default standard deviation at the last layer is set to 0.4.
 734 The PyTorch network uses two hidden layers with 64 neurons per hidden layer as well. The only
 735 difference in terms of architecture to the BNN is the fact that standard ReLu is used. We train with
 736 the same learning rate of $3 \cdot 10^{-3}$. When training with these static datasets which are relatively small,
 737 overfitting is a huge challenge. It is especially the challenge of overfitting, that should be addressed
 738 by our Bayesian neural networks. As the results will show, overfitting is a significant problem on
 739 these datasets for the PyTorch network. To tackle overfitting, several regularization techniques have
 740 been proposed. However, overfitting remains a fundamental flaw of the classical neural networks. To
 741 aim for a fair comparison, we add a weight-decay regularization to the default setup of the PyTorch
 742 networks. The specific weight decay parameter is $1 \cdot 10^{-4}$.
 743 For both candidates, we use a batch size of 256. Training is done over a horizon of 500 epochs
 744 which corresponds to very different training lengths, due to the different sizes of the datasets.
 745 Hyperparameter tuning was done for none of the datasets.
 746 The primary metric to rate performance on our regression datasets is the root mean squared error
 747 between the labels and the predicted values. Because we have a standardized output, trivial bench-
 748 marks like the constant zero function give an RMSE of one. Hence, we expect RMSE values from
 749 the model to substantially improve over one.

750 E.2 Results

751 When running the training an evaluation pipeline, we measure the RMSE of the train and validation
 752 dataset after each batch. That naturally comes with small fluctuations, and a slightly uneven-looking
 753 learning curve. On the larger datasets, that implies a substantially lower variance of the loss estimation
 754 for the validation dataset, and a much smoother learning curve. On the smaller datasets, the evaluation
 755 set is quite small, and therefore, the variance is high.

Dataset	BNN Train	BNN Val	PyTorch Train	PyTorch Val	BNN Val / PyTorch Val (%)
Abalone	0.5748	0.5965	0.4643	0.6668	89.46%
Wine	0.7682	0.8095	0.3198	0.7722	104.83%
Quality					
California	0.5455	0.5764	0.3427	0.4278	134.73%
Housing					
Bike Sharing	0.2219	0.2432	0.1557	0.216	112.58%
Forest	1.0537	1.2015	0.0302	0.4113	292.14%
Fires					
Heart Failure	0.9957	0.9605	0.0034	0.9107	105.47%
Real					
Estate	0.6229	0.5823	0.1438	0.5431	107.22%
Taiwan					

Table 4: Comparison of minimum RMSE for BNN (Julia) and PyTorch approaches. The data was obtained by running the respective training scripts for 500 epochs and measuring the root mean squared error on training and validation splits.

756 In Table 4, the best performances on the datasets along a training run are reported. For each of the
 757 metrics, we are taking the minimum value over all trained batches. Due to the variance of these
 758 estimations, the minimum underestimates the true minimal loss. But the calculation and batch sizes
 759 are the same for both setups, training and loss, so it does not affect the viability of the comparison.
 760 Note that the minimum for train and test are not necessarily obtained at the same step.
 761 As the comparison column in Table 4 show, the minimal root mean squared errors are similar for many
 762 datasets. On *wine quality*, and *California housing*, *bike sharing*, and *real estate Taiwan*, the PyTorch
 763 neural network has advantages in terms of pure regression performance, but only for California

764 housing this difference is considered strong. On the other datasets, PyTorch’s performance advantage
765 is only slight, and within the range of hyperparameter tuning. As we will see in the later analysis,
766 the BNN has not finished to learn after 500 epochs. Our experiment for 5,000 epochs reveals that
767 the performance difference actually shrinks to x percent. On Abalone, the BNN’s pure performance
768 is even superior. For *forest fires*, we see that the Bayesian neural network was not able to solve the
769 regression problem in this setup (RMSE is larger than 1), but PyTorch achieved respectable predictive
770 power. Neither of the two models was capable to actually solve the *heart failure* dataset, where both
771 models gave only slightly better RMSE performance than one. The detailed learning curves for these
772 four datasets with similar performance are plotted in Figure 5.

773 A general trend that is visible both in Table 4 and in Figure 5 is the fact BNNs show a minimal level
774 of overfitting, even without further regularization. Depending on the dataset, PyTorch shows high or
775 very high levels of overfitting, even though regularization was applied.

776 As one would expect, PyTorch’s overfitting problem is the least serious on California housing and
777 bike sharing (Figure 5a and 5d), the datasets with the most available samples (California housing
778 has 16,512 training samples, and bike sharing has 13,903 training samples). Over the course of the
779 training, the root mean squared error of the validation and train dataset decrease together, but at
780 around 1/5 of the entire training run, the validation loss stalls, and the training loss decreases further –
781 the model is just overfitting.

782 The BNN’s training on these datasets stays above PyTorch’s learning curves after the rapid first initial
783 improvement, and slowly improves towards PyTorch’s level. While it matches PyTorch’s performance
784 on bike sharing after 500 epochs, it still has a performance disadvantage on California Housing of
785 34%. Nevertheless, with additional training, this performance difference shrinks down to only x
786 percent after 5,000 epochs, a very respectable performance. However, the most notable feature on
787 these two training runs is the observation that the BNN only shows minimal overfitting. The training
788 and validation curve decrease on-par, the existing and expected slight overfitting does not increase
789 by time. The minimal train RMSE is 0.546 compared to a validation RMSE of 0.576 on California
790 housing in the first 500 epochs, only 5%!⁷ On PyTorch, we see 20% overfitting with increasing trend.
791 On bike sharing, the BNN overfits by 9% compared to 28% for the PyTorch network. The fact that
792 overfitting is not more severe on these datasets is thanks to the large number of samples, around three
793 to four times more than the number of parameters of the model.⁷

794 Wine quality and abalone both have roughly the same sample size as number of parameters. Therefore,
795 we would expect that overfitting becomes a much more severe issue for these datasets. As Figure 5b
796 and 5c show, the overfitting problem on these two datasets has increased to a severe level. In both
797 cases, the overfitting starts right from the beginning, with a steady improvement of the train loss, but
798 a validation loss that soon finds its minimum, and increases again. In the case of wine quality, this
799 behavior is significant, but stable and smooth. On abalone however, the validation loss behaves very
800 unstable, and never comes close to the BNN’s performance.

801 The BNN gets close to its optimal performance very rapidly in both cases. The overall training is
802 much faster than for California housing. Again, we see minimal levels of overfitting, a behavior that
803 is very similar to the analysis of the previous two datasets. Moreover, the existing overfitting does not
804 increase with time but stays at a similar level throughout the training horizon of 500 epochs.

805 The last three datasets, forest fires, heart failure and real estate Taiwan, are quite important, and also
806 difficult to analyze. They only have a few hundred data points, and tend to be very imbalanced. On
807 the UCI repo and in the literature, they are marked as very difficult datasets. For example, most
808 samples in forest fires contain a fire with zero acres burned, and only very few samples with a high
809 amount of burned wood. Additionally, the validation datasets get so small, that biases could easily
810 find their way into the validation dataset. The concrete performance numbers must therefore be
811 treated with care, and the strange effect of smaller validation loss than train loss can be observed for
812 both PyTorch and BNN on some of the runs. For example, it seems very likely that PyTorch’s good
813 performance on forest fires was obtained randomly by lucky parameter initialization instead of actual
814 performance. Hence, based on Figure 5e, Figure 5f, and Table 4, we consider the forest fire dataset
815 and the heart failure datasets unsolved by both models. As we would expect for a model with more
816 than 10x more parameter than training samples, the train loss goes to zero for the PyTorch model.

⁷The models have two fully connected hidden layers, one transition to the first layer, and the transition to the regression output. Hence, the models have $64 + 64^2 + 64 = 4224$ weights.

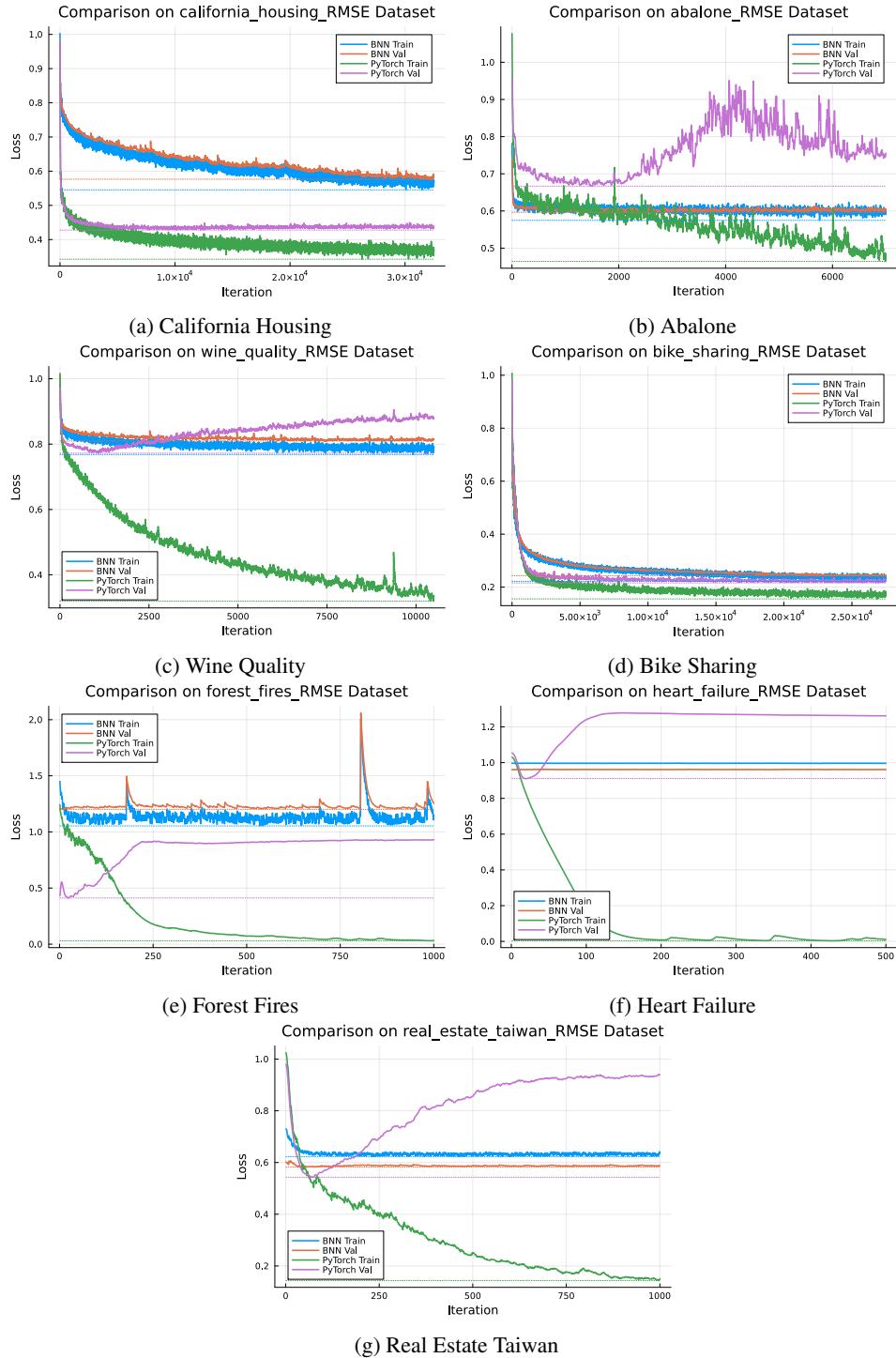


Figure 5: Learning curves of approximate message-passing Bayesian neural networks against PyTorch neural networks

817 The Bayesian neural network is unable to learn the datasets as well, but it does not overfit. Its training
818 loss never creates the impression that the loss was any lower than it actually is.

819 The dataset on estimating Taiwanese real estate (learning curve Figure 5g) is the only of the small
820 datasets that actually gets solved to an acceptable level by both models. Again, we see very heavy
821 overfitting by the PyTorch model, and no overfitting by the BNN. (Actually, this is one of the
822 cases where the validation loss is lower than the train loss, probably due to a biased train/test split.)
823 Moreover, the BNN achieves this performance after only a few epochs.

824 From this analysis, we can note the following learnings:

- 825 1. Our approximate message-passing Bayesian neural networks can achieve similar perfor-
826 mance like PyTorch neural networks with the same architecture. In most cases, they stay
827 slightly behind in terms of raw performance, but sometimes outperform the standard imple-
828 mentation.
- 829 2. Our Bayesian neural networks apparently do not share the fundamental flaw of overfitting.
830 Their train loss often is slightly lower than the validation loss, as it is expected from any type
831 of machine learning model, but the train and validation loss do not detach and differences in
832 these two curves remain low.
- 833 3. Bayesian neural networks learn fast on small datasets, and learn slower on larger datasets
834 like California housing.

835 The last point is worth some deeper investigation. Why does the model learn the Taiwanese real
836 estate after a few epochs, and requires many more epochs for California housing, although one single
837 epoch is already 40 times larger than on the Taiwanese real estate dataset? Bayesian model's learning
838 gets significantly slower over time. While the learning rate remains constant on the standard PyTorch
839 implementation, the speed of change of the weights in the BNN decreases with the variances of the
840 weights. And the variances decrease once more data has been learned. Therefore, a sample at the
841 end of a large dataset has less power to change the model's parameters, and learning slows down. As
842 a conclusion, the BNNs are especially valuable when only few training samples are available, and
843 when overfitting should be avoided.

844 **E.3 Can the BNNs estimate their own uncertainty?**

845 The absence of overfitting on BNNs is a side product of the metric that Bayesian methods traditionally
846 try to optimize, the calibration. In contrast to classic neural networks, our BNNs output their mean
847 $\mu(x)$ together with an estimated standard deviation $\sigma(x)$ expressing the uncertainty for an input x .
848 We can use the ground truth y_x to analyze how well the uncertainty was estimated. Because the
849 ground-truth values were normalized during pre-processing, we expect the μ s to also have a mean
850 close to zero, with a variance of roughly one.⁸ Specifically, we can calculate the z-score of the
851 observation as

$$852 z(x) = \frac{\mu(x) - y_x}{\sigma(x)}. \quad (7)$$

853 If the model was perfectly calibrated, these z-scores would follow a perfect standard normal distribu-
854 tion. That does not mean that the model perfectly predicts the ground truth, and it also does not mean
855 that the uncertainty estimation is correct every single time. Instead, it means that the errors follow the
856 same distribution as predicted by the model. As a rule of thumb, in 68% of the cases, y_x should be
857 within $[\mu(x) - \sigma(x), \mu(x) + \sigma(x)]$, in 95% of the cases within $[\mu(x) - 2\sigma(x), \mu(x) + 2\sigma(x)]$, and
858 in 99% within $[\mu(x) - 3\sigma(x), \mu(x) + 3\sigma(x)]$.

859 In our experiments, we take the model after 500 epochs for each of the datasets, and calculate
860 the z-scores. We can blindly take the last model because we do not see decreasing performance
861 or problematic overfitting for the BNNs. Then, we use kernel density estimation with Gaussian
862 kernels to obtain an empirical error distribution that is compared to the standard normal distribution.
863 To systematically compare the two distributions, we could report the approximate KL divergence.
864 However, few of our readers have an intuitive understanding of what specific KL numbers mean,
865 and we do not have a comparison partner. Hence, we illustrate the distributions in Figure 6 to best
866 communicate the calibration of the BNN.

⁸Of course, the empiric variance of these μ s should not be mixed up with $\sigma(x)$, which expresses a completely
different concept, and it is usually much smaller than zero.

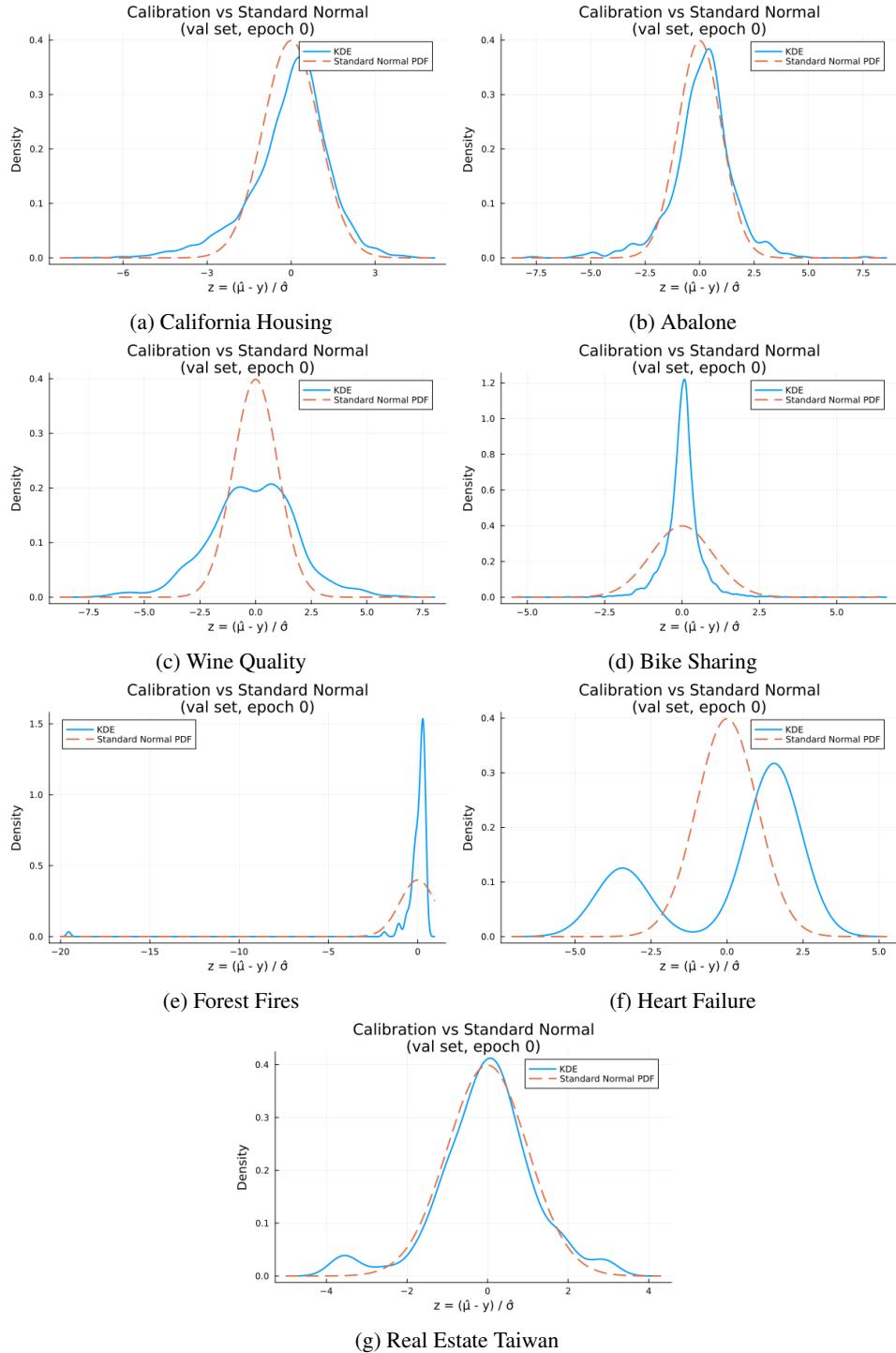


Figure 6: Calibration of the BNN: For each of the datasets, we plot the empiric z-score distribution and a standard normal distribution for reference. All plots are obtained for the validation dataset.

866 As we can see, the calibration is quite good on most of these datasets. When it comes to California
867 housing (Figure 6a), and abalone (Figure 6b), the uncertainty of the model matches the errors quite
868 well. On wine quality (Figure 6c), the model underestimates the errors, but the uncertainty estimation
869 is still usable. The opposite is true for the bike sharing dataset. As previously discussed, the model
870 solves this dataset very well, and the predicted uncertainties underestimate the true errors (Figure 6d).
871 The wine quality dataset and the bike sharing dataset cannot be solved by the BNN. Hence, the error
872 distributions are rather weak (Figure 6e and 6d). In contrast, we see very strong calibration on the
873 Taiwanese real estate dataset (Figure 6g), although there are a few more outliers than included in the
874 distribution.

875 We can conclude that the BNN manages the task of uncertainty prediction quite well. Hence, we
876 recommend it to practitioners who are not satisfied with just a prediction, but also want a well-
877 calibrated uncertainty estimation.

878 F Tables of Message Equations

879 In the following, we provide tables summarizing all message equations used throughout our model.
880 The tables are divided into three categories: linear algebra operations (Table 5), training signals
881 (Table 6), and activation functions (Table 7). Each table contains the relevant forward and backward
882 message equations, along with illustrations of the corresponding factor graph where necessary. These
883 summaries serve as a reference for the mathematical operations performed during inference and
884 training, and they will be valuable for factor graph modeling across various domains beyond NNs.

Product	$\mu = \mathbb{E}[a]\mathbb{E}[b] \quad \sigma^2 = \mathbb{E}[a^2]\mathbb{E}[b^2] - \mathbb{E}[a]^2\mathbb{E}[b]^2$ $\tau = \tau_z \mathbb{E}[a] \quad \rho = \rho_z \mathbb{E}[a^2]$
Weighted Sum	$\mu = a^T \mu \quad \sigma^2 = \sum_{i=1}^d a_i^2 \sigma_i^2$ $\mu = (\mu_z - \mu + a_d \mu_d)/a_d \quad \tau = a_d \frac{\tau_z - \rho_z(\mu - a_d \mu_d)}{1 + \rho_z(\sigma^2 - a_d^2 \sigma_d^2)}$ $\sigma^2 = (\sigma_z^2 + \sigma^2 - a_d^2 \sigma_d^2)/a_d^2 \quad \rho = \frac{a_d^2 \rho_z}{1 + \rho_z(\sigma^2 - a_d^2 \sigma_d^2)}$
Inner Product	$\mu = \mathbb{E}[a]^T \mathbb{E}[b] \quad \sigma^2 = \sum_{i=1}^d \mathbb{E}[a_i^2] \mathbb{E}[b_i^2] - \mathbb{E}[a_i]^2 \mathbb{E}[b_i]^2$ $\tau_{b_i} = \frac{\tau_z - \rho_z(\mu - \mathbb{E}[a_d]\mathbb{E}[b_d])}{\rho_i^*} \mathbb{E}[a_d]$ $\rho_{b_i} = \frac{\rho_z}{\rho_i^*} \mathbb{E}[a_d^2]$ $\text{where } \rho_i^* = 1 + \rho_z(\sigma^2 - \mathbb{E}[a_d^2]\mathbb{E}[b_d^2] + \mathbb{E}[a_d]^2\mathbb{E}[b_d]^2)$

Table 5: Message equations for linear algebra: Calculating backward messages in natural parameters is preferable as it handles edge cases like $a_d = 0$ or $\rho_z = 0$ where location-scale equations are ill-defined. This approach also enhances numerical stability by avoiding division by very small quantities. Note that the inner product messages are simply compositions of the product and weighted sum messages with $a_i = 1$, $i = 1, \dots, d$.

Regression	$\mathcal{N}(\mu_a, \sigma_a^2) \rightarrow a \xleftarrow{\mathcal{N}(a; y, \beta^2)} y$ $\mu = \mu_a \quad \sigma^2 = \sigma_a^2 + \beta^2$ $m_{f \rightarrow a}(a) = \begin{cases} \mathcal{N}(a; y, \beta^2) & \text{if } y \text{ is known (training branch)} \\ 1 & \text{if } y \text{ is unknown (prediction branch)} \end{cases}$
Softmax	$\mathcal{N}(\mu_1, \sigma_1^2) \rightarrow a_1 \xrightarrow{\text{softmax}(\mathbf{a})_c} c$ \vdots $\mathcal{N}(\mu_d, \sigma_d^2) \rightarrow a_d$ $c \in \{1, \dots, d\}$ $m_{f \rightarrow c}(i) = \int \text{softmax}(\mathbf{a})_i \mathcal{N}(\mathbf{a}; \boldsymbol{\mu}, \text{diag}(\boldsymbol{\sigma})^2) d\mathbf{a}$ $\approx \text{softmax}(\mathbf{t})_i \quad (\text{Daxberger et al. [2022]})$ $\text{where } t_j = \frac{\mu_j}{1 + \frac{\pi}{8} \sigma_j^2} \quad \text{and } j = 1, \dots, d$ $m_{f \rightarrow a_d}(a_d) = \frac{\mathcal{N}(a_d; m_1/m_0, m_2/m_0 - (m_1/m_0)^2)}{m_{a_d \rightarrow f}(a_d)}$ $\text{where } m_k = \int_{a_d} a_d^k \mathcal{N}(a_d; \mu_d, \sigma_d^2) \text{softmax}(t_1, \dots, t_{d-1}, a_d)_c da_d$ <p style="text-align: center;">is approximated via numerical integration</p>
Argmax	$\mathcal{N}(\mu_1, \sigma_1^2) \rightarrow a_1 \xrightarrow{\delta(z_1 - (a_c - a_1))} c \xleftarrow{1_{z_1 \geq 0}} z_1$ \vdots $\mathcal{N}(\mu_d, \sigma_d^2) \rightarrow a_d \xrightarrow{\delta(z_d - (a_c - a_d))} c \xleftarrow{1_{z_d \geq 0}} z_d$ $\int 1_{z_d \geq 0} \delta(z_d - (a_c - a_d)) \mathcal{N}(a_c; \mu_c, \sigma_c^2) \mathcal{N}(a_d; \mu_d, \sigma_d^2) da_c da_d dz$ $= \begin{cases} 1 & \text{for } c = d \\ \Pr[a_c \geq a_d] = \phi(0; \mu_d - \mu_c, \sigma_d^2 + \sigma_c^2) & \text{for } c \neq d \end{cases}$ <p>If c is known, many edges become constant and can be omitted. Assume w.l.o.g. $c = d$, then a_d is connected to $d - 1$ factors and all other a_i to only one each. The messages to a_1, \dots, a_d follow from the weighted sum factor, given Gaussian approximations of the messages from z_i. We derive these by moment-matching the marginals of z_i (see Building Block 2) and dividing by the message from the weighted sum factor. To stabilize training, we regularize the variance of $m_{f \rightarrow a_i}$ by a factor of $\phi(0; \mu_c - \mu_i, \sigma_i^2 + \sigma_c^2)$ and multiply $m_{f \rightarrow a_i}(a_i)$ by $\mathcal{N}(a_c; 1 \text{ if } i = c \text{ else } -1, \gamma^2)$, effectively mixing in one-hot regression factors during training.</p>

Table 6: Message equations for training signals. Note that the backward messages only apply in the case in which the target is known, i.e., on the training branches. On the prediction branch we only do forward passes.

	<p>Auxiliary Equations</p> $\text{ReLU}\text{Moment}_k(\mu, \sigma^2) = \begin{cases} \mathbb{E}[\text{ReLU}(a)] \text{ with } a \sim \mathcal{N}(\mu, \sigma^2) & \text{for } k = 1 \\ \mathbb{E}[\text{ReLU}^2(a)] \text{ with } a \sim \mathcal{N}(\mu, \sigma^2) & \text{for } k = 2 \end{cases}$ $= \begin{cases} \sigma\varphi(x) + \mu\phi(x) & \text{for } k = 1 \\ \sigma\mu\varphi(x) + (\sigma^2 + \mu^2)\phi(x) & \text{for } k = 2 \end{cases}$ <p>where φ and ϕ denote the pdf and cdf of $\mathcal{N}(0, 1)$, respectively.</p> <hr/> $\zeta_k(\mu_1, \sigma_1, \mu_2, \sigma_2) := \int_0^\infty a^k \mathcal{N}(a; \mu_1, \sigma_1^2) \mathcal{N}(a; \mu_2, \sigma_2^2) da$ $= \mathcal{N}(\mu_1; \mu_2, \sigma_1^2 + \sigma_2^2) \cdot \begin{cases} \text{ReLU}\text{Moment}_k(\mu_m, \sigma_m^2) & \text{for } k = 1, 2 \\ \phi(\mu_m/\sigma_m) & \text{for } k = 0 \end{cases}$ <p>with $\tau_m = \frac{\mu_1}{\sigma_1^2} + \frac{\mu_2}{\sigma_2^2}$, $\rho_m = \frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}$, $\mu_m = \frac{\tau_m}{\rho_m}$, and $\sigma^2 = \frac{1}{\rho_m}$</p> <p>See Building Block 1 for the derivation of this equation.</p>
	<p>LeakyReLU</p> <p>We use marginal approximation while:</p> <ol style="list-style-type: none"> 1. The outputs are finite and not NaN 2. Forward message: Precision of $m_{f \rightarrow z}$ is \geq precision of $m_{a \rightarrow f}$, and $m_0 > 10^{-8}$ 3. Backward message: It has worked well to require $(\tau_z > 0) \vee (\rho_z > 2 \cdot 10^{-8})$ <p>Otherwise, we fall back to direct message approximation (forward) or $\mathbb{G}(0, 0)$ (backward).</p>
Marginal	<p>Direct</p> $\mu = (1 - \alpha) \cdot \text{ReLU}\text{Moment}_1(\mu_a, \sigma_a^2) + \alpha \cdot \mu_a$ $\sigma^2 = (1 - \alpha^2) \cdot \text{ReLU}\text{Moment}_2(\mu_a, \sigma_a^2) + \alpha^2 \cdot (\sigma_a^2 + \mu_a^2) - \mu^2.$ $m_{f \rightarrow z}(z) = \frac{\mathcal{N}(z; \frac{m_1}{m_0}, \frac{m_2}{m_0} - (\frac{m_1}{m_0})^2)}{m_{z \rightarrow f}(z)}$ <p>where $m_k = (-1)^k \cdot \zeta_k(-\mu_a, \sigma_a^2, -\alpha \cdot \mu_z, \alpha^2 \cdot \sigma_z^2) + \zeta_k(\mu_a, \sigma_a^2, \mu_z, \sigma_z^2)$</p> <p>To compute the marginal backward message, set $\alpha_{\text{back}} = \alpha^{-1}$ and swap $m_{a \rightarrow f}$ and $m_{z \rightarrow f}$ in the equation</p>

Table 7: Message equations for LeakyReLU with ReLU as the special case $\alpha = 0$.

885 NeurIPS Paper Checklist

886 1. Claims

887 Question: Do the main claims made in the abstract and introduction accurately reflect the
888 paper's contributions and scope?

889 Answer: [\[Yes\]](#)

890 Justification: We provide a novel method for message passing in Bayesian Neural Networks.
891 Guidelines:

- 892 • The answer NA means that the abstract and introduction do not include the claims
893 made in the paper.
- 894 • The abstract and/or introduction should clearly state the claims made, including the
895 contributions made in the paper and important assumptions and limitations. A No or
896 NA answer to this question will not be perceived well by the reviewers.
- 897 • The claims made should match theoretical and experimental results, and reflect how
898 much the results can be expected to generalize to other settings.
- 899 • It is fine to include aspirational goals as motivation as long as it is clear that these goals
900 are not attained by the paper.

901 **2. Limitations**

902 Question: Does the paper discuss the limitations of the work performed by the authors?

903 Answer: [\[Yes\]](#)

904 Justification: We discuss limitations in Section 6, page 9.

905 Guidelines:

- 906 • The answer NA means that the paper has no limitation while the answer No means that
907 the paper has limitations, but those are not discussed in the paper.
- 908 • The authors are encouraged to create a separate "Limitations" section in their paper.
- 909 • The paper should point out any strong assumptions and how robust the results are to
910 violations of these assumptions (e.g., independence assumptions, noiseless settings,
911 model well-specification, asymptotic approximations only holding locally). The authors
912 should reflect on how these assumptions might be violated in practice and what the
913 implications would be.
- 914 • The authors should reflect on the scope of the claims made, e.g., if the approach was
915 only tested on a few datasets or with a few runs. In general, empirical results often
916 depend on implicit assumptions, which should be articulated.
- 917 • The authors should reflect on the factors that influence the performance of the approach.
918 For example, a facial recognition algorithm may perform poorly when image resolution
919 is low or images are taken in low lighting. Or a speech-to-text system might not be
920 used reliably to provide closed captions for online lectures because it fails to handle
921 technical jargon.
- 922 • The authors should discuss the computational efficiency of the proposed algorithms
923 and how they scale with dataset size.
- 924 • If applicable, the authors should discuss possible limitations of their approach to
925 address problems of privacy and fairness.
- 926 • While the authors might fear that complete honesty about limitations might be used by
927 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
928 limitations that aren't acknowledged in the paper. The authors should use their best
929 judgment and recognize that individual actions in favor of transparency play an impor-
930 tant role in developing norms that preserve the integrity of the community. Reviewers
931 will be specifically instructed to not penalize honesty concerning limitations.

932 **3. Theory Assumptions and Proofs**

933 Question: For each theoretical result, does the paper provide the full set of assumptions and
934 a complete (and correct) proof?

935 Answer: [\[Yes\]](#)

936 Justification: See Appendix.

937 Guidelines:

- 938 • The answer NA means that the paper does not include theoretical results.
- 939 • All the theorems, formulas, and proofs in the paper should be numbered and cross-
940 referenced.
- 941 • All assumptions should be clearly stated or referenced in the statement of any theorems.
- 942 • The proofs can either appear in the main paper or the supplemental material, but if
943 they appear in the supplemental material, the authors are encouraged to provide a short
944 proof sketch to provide intuition.
- 945 • Inversely, any informal proof provided in the core of the paper should be complemented
946 by formal proofs provided in appendix or supplemental material.
- 947 • Theorems and Lemmas that the proof relies upon should be properly referenced.

948 **4. Experimental Result Reproducibility**

949 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
950 perimental results of the paper to the extent that it affects the main claims and/or conclusions
951 of the paper (regardless of whether the code and data are provided or not)?

952 Answer: [\[Yes\]](#)

953 Justification: We use reproducible problem examples and provide supplemental code.

954 Guidelines:

- 955 • The answer NA means that the paper does not include experiments.
- 956 • If the paper includes experiments, a No answer to this question will not be perceived
957 well by the reviewers: Making the paper reproducible is important, regardless of
958 whether the code and data are provided or not.
- 959 • If the contribution is a dataset and/or model, the authors should describe the steps taken
960 to make their results reproducible or verifiable.
- 961 • Depending on the contribution, reproducibility can be accomplished in various ways.
962 For example, if the contribution is a novel architecture, describing the architecture fully
963 might suffice, or if the contribution is a specific model and empirical evaluation, it may
964 be necessary to either make it possible for others to replicate the model with the same
965 dataset, or provide access to the model. In general, releasing code and data is often
966 one good way to accomplish this, but reproducibility can also be provided via detailed
967 instructions for how to replicate the results, access to a hosted model (e.g., in the case
968 of a large language model), releasing of a model checkpoint, or other means that are
969 appropriate to the research performed.
- 970 • While NeurIPS does not require releasing code, the conference does require all submis-
971 sions to provide some reasonable avenue for reproducibility, which may depend on the
972 nature of the contribution. For example
 - 973 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
974 to reproduce that algorithm.
 - 975 (b) If the contribution is primarily a new model architecture, the paper should describe
976 the architecture clearly and fully.
 - 977 (c) If the contribution is a new model (e.g., a large language model), then there should
978 either be a way to access this model for reproducing the results or a way to reproduce
979 the model (e.g., with an open-source dataset or instructions for how to construct
980 the dataset).
 - 981 (d) We recognize that reproducibility may be tricky in some cases, in which case
982 authors are welcome to describe the particular way they provide for reproducibility.
983 In the case of closed-source models, it may be that access to the model is limited in
984 some way (e.g., to registered users), but it should be possible for other researchers
985 to have some path to reproducing or verifying the results.

986 5. Open access to data and code

987 Question: Does the paper provide open access to the data and code, with sufficient instruc-
988 tions to faithfully reproduce the main experimental results, as described in supplemental
989 material?

990 Answer: [\[Yes\]](#)

991 Justification: We provide supplemental code and will make it open access.

992 Guidelines:

- 993 • The answer NA means that paper does not include experiments requiring code.
- 994 • Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 995 • While we encourage the release of code and data, we understand that this might not be
996 possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
997 including code, unless this is central to the contribution (e.g., for a new open-source
998 benchmark).
- 1000 • The instructions should contain the exact command and environment needed to run to
1001 reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 1002 • The authors should provide instructions on data access and preparation, including how
1003 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- 1004 • The authors should provide scripts to reproduce all experimental results for the new
1005 proposed method and baselines. If only a subset of experiments are reproducible, they
1006 should state which ones are omitted from the script and why.

1008 • At submission time, to preserve anonymity, the authors should release anonymized
1009 versions (if applicable).
1010 • Providing as much information as possible in supplemental material (appended to the
1011 paper) is recommended, but including URLs to data and code is permitted.

1012 **6. Experimental Setting/Details**

1013 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
1014 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
1015 results?

1016 Answer: **[Yes]**

1017 Justification: We explain all chosen hyperparameters.

1018 Guidelines:

1019 • The answer NA means that the paper does not include experiments.
1020 • The experimental setting should be presented in the core of the paper to a level of detail
1021 that is necessary to appreciate the results and make sense of them.
1022 • The full details can be provided either with the code, in appendix, or as supplemental
1023 material.

1024 **7. Experiment Statistical Significance**

1025 Question: Does the paper report error bars suitably and correctly defined or other appropriate
1026 information about the statistical significance of the experiments?

1027 Answer: **[Yes]**

1028 Justification: See Appendix.

1029 Guidelines:

1030 • The answer NA means that the paper does not include experiments.
1031 • The authors should answer "Yes" if the results are accompanied by error bars, confi-
1032 dence intervals, or statistical significance tests, at least for the experiments that support
1033 the main claims of the paper.
1034 • The factors of variability that the error bars are capturing should be clearly stated (for
1035 example, train/test split, initialization, random drawing of some parameter, or overall
1036 run with given experimental conditions).
1037 • The method for calculating the error bars should be explained (closed form formula,
1038 call to a library function, bootstrap, etc.)
1039 • The assumptions made should be given (e.g., Normally distributed errors).
1040 • It should be clear whether the error bar is the standard deviation or the standard error
1041 of the mean.
1042 • It is OK to report 1-sigma error bars, but one should state it. The authors should
1043 preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
1044 of Normality of errors is not verified.
1045 • For asymmetric distributions, the authors should be careful not to show in tables or
1046 figures symmetric error bars that would yield results that are out of range (e.g. negative
1047 error rates).
1048 • If error bars are reported in tables or plots, The authors should explain in the text how
1049 they were calculated and reference the corresponding figures or tables in the text.

1050 **8. Experiments Compute Resources**

1051 Question: For each experiment, does the paper provide sufficient information on the com-
1052 puter resources (type of compute workers, memory, time of execution) needed to reproduce
1053 the experiments?

1054 Answer: **[Yes]**

1055 Justification: See Appendix.

1056 Guidelines:

1057 • The answer NA means that the paper does not include experiments.

1058 • The paper should indicate the type of compute workers CPU or GPU, internal cluster,
1059 or cloud provider, including relevant memory and storage.
1060 • The paper should provide the amount of compute required for each of the individual
1061 experimental runs as well as estimate the total compute.
1062 • The paper should disclose whether the full research project required more compute
1063 than the experiments reported in the paper (e.g., preliminary or failed experiments that
1064 didn't make it into the paper).

1065 **9. Code Of Ethics**

1066 Question: Does the research conducted in the paper conform, in every respect, with the
1067 NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

1068 Answer: **[Yes]**

1069 Justification: Given the considered problem, there are no ethical issues.

1070 Guidelines:

1071 • The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
1072 • If the authors answer No, they should explain the special circumstances that require a
1073 deviation from the Code of Ethics.
1074 • The authors should make sure to preserve anonymity (e.g., if there is a special consid-
1075 eration due to laws or regulations in their jurisdiction).

1076 **10. Broader Impacts**

1077 Question: Does the paper discuss both potential positive societal impacts and negative
1078 societal impacts of the work performed?

1079 Answer: **[Yes]**

1080 Justification: We point to potential applications of the solution.

1081 Guidelines:

1082 • The answer NA means that there is no societal impact of the work performed.
1083 • If the authors answer NA or No, they should explain why their work has no societal
1084 impact or why the paper does not address societal impact.
1085 • Examples of negative societal impacts include potential malicious or unintended uses
1086 (e.g., disinformation, generating fake profiles, surveillance), fairness considerations
1087 (e.g., deployment of technologies that could make decisions that unfairly impact specific
1088 groups), privacy considerations, and security considerations.
1089 • The conference expects that many papers will be foundational research and not tied
1090 to particular applications, let alone deployments. However, if there is a direct path to
1091 any negative applications, the authors should point it out. For example, it is legitimate
1092 to point out that an improvement in the quality of generative models could be used to
1093 generate deepfakes for disinformation. On the other hand, it is not needed to point out
1094 that a generic algorithm for optimizing neural networks could enable people to train
1095 models that generate Deepfakes faster.
1096 • The authors should consider possible harms that could arise when the technology is
1097 being used as intended and functioning correctly, harms that could arise when the
1098 technology is being used as intended but gives incorrect results, and harms following
1099 from (intentional or unintentional) misuse of the technology.
1100 • If there are negative societal impacts, the authors could also discuss possible mitigation
1101 strategies (e.g., gated release of models, providing defenses in addition to attacks,
1102 mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
1103 feedback over time, improving the efficiency and accessibility of ML).

1104 **11. Safeguards**

1105 Question: Does the paper describe safeguards that have been put in place for responsible
1106 release of data or models that have a high risk for misuse (e.g., pretrained language models,
1107 image generators, or scraped datasets)?

1108 Answer: **[NA]**

1109 Justification: There are no such risks.

1110 Guidelines:

- 1111 • The answer NA means that the paper poses no such risks.
- 1112 • Released models that have a high risk for misuse or dual-use should be released with
- 1113 necessary safeguards to allow for controlled use of the model, for example by requiring
- 1114 that users adhere to usage guidelines or restrictions to access the model or implementing
- 1115 safety filters.
- 1116 • Datasets that have been scraped from the Internet could pose safety risks. The authors
- 1117 should describe how they avoided releasing unsafe images.
- 1118 • We recognize that providing effective safeguards is challenging, and many papers do
- 1119 not require this, but we encourage authors to take this into account and make a best
- 1120 faith effort.

1121 **12. Licenses for existing assets**

1122 Question: Are the creators or original owners of assets (e.g., code, data, models), used in
1123 the paper, properly credited and are the license and terms of use explicitly mentioned and
1124 properly respected?

1125 Answer: [NA]

1126 Justification: We cite relevant work.

1127 Guidelines:

- 1128 • The answer NA means that the paper does not use existing assets.
- 1129 • The authors should cite the original paper that produced the code package or dataset.
- 1130 • The authors should state which version of the asset is used and, if possible, include a
- 1131 URL.
- 1132 • The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- 1133 • For scraped data from a particular source (e.g., website), the copyright and terms of
- 1134 service of that source should be provided.
- 1135 • If assets are released, the license, copyright information, and terms of use in the
- 1136 package should be provided. For popular datasets, paperswithcode.com/datasets
- 1137 has curated licenses for some datasets. Their licensing guide can help determine the
- 1138 license of a dataset.
- 1139 • For existing datasets that are re-packaged, both the original license and the license of
- 1140 the derived asset (if it has changed) should be provided.
- 1141 • If this information is not available online, the authors are encouraged to reach out to
- 1142 the asset's creators.

1143 **13. New Assets**

1144 Question: Are new assets introduced in the paper well documented and is the documentation
1145 provided alongside the assets?

1146 Answer: [NA]

1147 Justification: The paper does not release new assets.

1148 Guidelines:

- 1149 • The answer NA means that the paper does not release new assets.
- 1150 • Researchers should communicate the details of the dataset/code/model as part of their
- 1151 submissions via structured templates. This includes details about training, license,
- 1152 limitations, etc.
- 1153 • The paper should discuss whether and how consent was obtained from people whose
- 1154 asset is used.
- 1155 • At submission time, remember to anonymize your assets (if applicable). You can either
- 1156 create an anonymized URL or include an anonymized zip file.

1157 **14. Crowdsourcing and Research with Human Subjects**

1158 Question: For crowdsourcing experiments and research with human subjects, does the paper
1159 include the full text of instructions given to participants and screenshots, if applicable, as
1160 well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.