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Abstract

Bayesian methods have the ability to consider model uncertainty within a single1

framework and provide a powerful tool for decision-making. Bayesian neural2

networks (BNNs) hold great potential for better uncertainty quantification and data3

efficiency, making them promising candidates for more trustworthy AI in critical4

applications, and as backbones in data-constrained settings such as real-world5

reinforcement learning. However, current approaches often face limitations such as6

overconfidence, sensitivity to hyperparameters, and posterior collapse, highlighting7

the need for alternative approaches. In this paper, we introduce a novel method8

that leverages message passing (MP) to model the predictive posterior of BNNs9

as a factor graph. Unlike previous MP-based methods, our framework is the first10

to support convolutional neural networks (CNNs) while addressing the issue of11

double-counting training data, which has been a key source of overconfidence in12

prior work. Multiple open datasets are used to demonstrate the general applicability13

of the method and to illustrate its differences to existing inference methods.14

1 Introduction15

Deep learning models have achieved impressive results across various domains, including natural16

language processing [Vaswani et al., 2023], computer vision [Ravi et al., 2024], and autonomous17

systems [Bojarski et al., 2016]. Yet, they often produce overconfident but incorrect predictions,18

particularly in ambiguous or out-of-distribution scenarios. Without the ability to effectively quantify19

uncertainty, this can foster both overreliance and underreliance on models, as users stop trusting20

their outputs entirely [Zhang et al., 2024], and in high-stakes domains like healthcare or autonomous21

driving, its application can be dangerous [Henne et al., 2020]. To ensure safer deployment in these22

settings, models must not only predict outcomes but also express how uncertain they are about those23

predictions to allow for informed decision-making.24

Bayesian neural networks (BNNs) offer a principled way to quantify uncertainty by capturing a25

posterior distribution over the model’s weights, rather than relying on point estimates as in traditional26

neural networks (NNs). This allows BNNs to express epistemic uncertainty, the model’s lack of27

knowledge about the underlying data distribution. Current methods for posterior approximation28

largely fall into two categories: sampling-based methods, such as Hamiltonian Monte Carlo (HMC),29

and deterministic approaches like variational inference (VI). While sampling methods are usually30

computationally expensive, VI has become increasingly scalable [Shen et al., 2024]. However, VI31

is not without limitations: It often struggles with overconfidence [Papamarkou et al., 2024], and it32

can struggle to break symmetry when multiple modes are close [Zhang et al., 2018]. Mean-field33

approaches, commonly used in VI, are prone to posterior collapse [Kurle et al., 2022, Coker et al.,34

2022]. Additionally, VI often requires complex hyperparameter tuning [Osawa et al., 2019], which35

complicates its practical deployment in real-world settings. These challenges motivate the need for36

alternative approaches that can address shortcomings of VI while maintaining its scalability.37
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In contrast, message passing (MP) [Minka, 2001] is a probabilistic inference technique that suffers38

less from these problems. Belief propagation [Kschischang et al., 2001], the basis for many MP39

algorithms, integrates over variables of a joint density p(x1, . . . , xn) that factorize into a product of40

functions fj on subsets of random variables x1, . . . , xn. The corresponding factor graph is bipartite41

and connects these factors fj with the variables they depend on. The following recursive equations42

yield a computationally efficient algorithm to compute all marginals p(xi) for acyclic factor graphs:43

p(x) =
∏
f∈Nx

mf→x(x) and mf→x(x) =

∫
f(Nf )

∏
y∈Nf\{x}

my→f (y) d(Nf \ {x}),

where Nv denotes the neighborhood of vertex v and my→f (y) =
∏

f ′∈Ny\{f} mf ′→y(y). Since exact44

messages are often intractable and factor graphs are rarely acyclic, belief propagation typically cannot45

be applied directly. Instead, messages mf→X(·) and marginals pX(·) are typically approximated by46

some family of distributions that has few parameters (e.g., Gaussians). However, applying MP in47

practice presents two main challenges for practitioners: the need to derive (approximate) message48

equations when mf→x falls outside the approximating family, and the complexity of implementing49

MP compared to other methods.50

Contributions Our contributions can be summarized as follows:51

1. We propose a novel message-passing (MP) framework for BNNs and derive message equations52

for various factors, which can benefit factor graph modeling across domains.53

2. We implement our method in Julia for both CPU and GPU, and demonstrate its general applicability54

to convolutional neural networks (CNNs) and multilayer perceptrons (MLPs) while avoiding the55

double-counting problem.56

3. Having advantages for cases with few data (due to the Bayesian framework), we find that that our57

method is overall competitive with the SOTA baselines AdamW and IVON.58

4. To the best of our knowledge, this is the first MP method to handle CNNs and to avoid double-59

counting training data, thereby preventing overconfidence and, eventually, posterior collapse.60

2 Related Work61

As the exact posterior is intractable for most practical NNs, approximate methods are essential for62

scalable BNNs. These methods generally fall into two categories: sampling-based approaches and63

those that approximate the posterior with parameterized distributions.64

Markov Chain Monte Carlo (MCMC) methods attempt to draw representative samples from65

posterior distributions. Although methods such as Hamiltonian Monte Carlo are asymptotically exact,66

they become computationally prohibitive for large NNs due to their high-dimensional parameter67

spaces and complex energy landscapes [Coker et al., 2022]. An adaptation of Gibbs sampling has68

been scaled to MNIST, but on a very small network with only 8,180 parameters [Papamarkou, 2023].69

Approximate sampling methods can be faster but still require a large number of samples, which70

complicates both training and inference. Although approaches like knowledge distillation [Korattikara71

et al., 2015] attempt to speed up inference, MCMC remains generally too inefficient for large-scale72

deep learning applications [Khan and Rue, 2024].73

Variational Inference (VI) aims to approximate the intractable posterior distribution p(θ | D) by74

a variational posterior q(θ). The parameters of q are optimized using gradients with respect75

to an objective function, which is typically a generalized form of the reverse KL divergence76

DKL [ q(θ) ∥ p(θ | D) ]. Early methods like [Graves, 2011] and Bayes By Backprop [Blundell et al.,77

2015] laid the foundation for applying VI to NNs, but suffer from slow convergence and severe under-78

fitting, especially for large models or small dataset sizes [Osawa et al., 2019]. More recently, VOGN79

[Osawa et al., 2019] achieved Adam-like results on ImageNet LSVRC by applying a Gauss-Newton80

approximation to the Hessian matrix. IVON [Shen et al., 2024] improved upon VOGN by using81

cheaper Hessian approximations and training techniques like gradient clipping, achieving Adam-like82

performance on large-scale models such as GPT-2 while maintaining similar runtime costs. Despite83

recent advancements, VI continues to face challenges such as overconfidence, posterior collapse,84

and complex hyperparameter tuning (see introduction), motivating the exploration of alternative85

approaches [Zhang et al., 2018].86
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Message Passing (MP) for Neural Networks: MP is a general framework that unifies several87

algorithms [Kschischang et al., 2001, Minka, 2001], but its direct application to NNs has been limited.88

Expectation backpropagation (EBP) [Soudry et al., 2014] approximates the posterior of 3-layer MLPs89

by combining expectation propagation, an approximate MP algorithm, with gradient backpropagation.90

Similarly, probabilistic backpropagation (PBP) [Hernández-Lobato and Adams, 2015] combines91

belief propagation with gradient backpropagation and was found to produce better approximations92

than EBP [Ghosh et al., 2016]. However, PBP treats the data as new examples in each consecutive93

epoch (double-counting), which makes it prone to overconfidence. Furthermore, EBP and PBP were94

both only deployed on small datasets and rely on gradients instead of pure MP. In contrast, Lucibello95

et al. [2022] applied MP to larger architectures by modeling the posterior over NN weights as a96

factor graph, but faced posterior collapse to a point measure due to also double-counting data. Their97

experiments were mostly restricted to three-layer MLPs without biases and with binary weights. Our98

approach builds on this by introducing an MP framework for BNNs that avoids double-counting,99

scales to CNNs, and effectively supports continuous weights.100

3 Theoretical Model101

Our goal is to model the predictive posterior of a BNN as a factor graph and find a Gaussian102

approximation of the predictive posterior via belief propagation. Essentially, factor graphs are103

probabilistic modelling tools for approximating the marginals of joint distributions, provided that they104

factorize sufficiently. For a more comprehensive introduction on factor graphs and the sum-product105

algorithm, refer to Kschischang et al. [2001] BNNs, on the other hand, treat the parameters θ of106

a model fθ : Rd −→ Ro as random variables with prior beliefs p(θ). Given a training dataset107

D = {xi,yi}ni=1 of i.i.d. samples, a likelihood relationship p(y |x,θ) = p(y | fθ(x)), and a new108

input sample x, the goal is to approximate the predictive posterior distribution p(y |x,D), which can109

be written as:110

p(y |x,D) =

∫
p(y |x,θ) p(θ | D) dθ. (1)

This means that the density of the predictive posterior is the expected likelihood under the posterior111

distribution p(θ | D), which is proportional1 to the product of the prior and dataset likelihood:112

p(θ | D) ∝ p(θ)
∏n

i=1
p(yi | fθ(x)). (2)

The integrand in Equation (1) exhibits a factorized structure that is well-suited to factor graph113

modeling. However, directly modelling the relationship o = fθ(x) with a single Dirac delta factor114

δ(o− fθ(x)) does not yield feasible message equations. Therefore, we model the NN at scalar level115

by introducing intermediate latent variables connected by elementary Dirac delta factors. Figure 1116

illustrates this construction for a simple MLP with independent weight matrices a priori. While the117

abstract factor graph in the figure uses vector variables for simplicity, we actually derive message118

equations where each vector component is treated as a separate scalar variable and all Dirac deltas119

depend only on scalar variables. For instance, if d = 2, the conceptual factor δ(o−W2a) is replaced120

by four scalar factors: δ(pjk − wjkak) for j, k = 1, 2, with intermediate variables pjk, and two121

factors δ(oj − (pj1 + pj2)). By multiplying all factors in this expanded factor graph and integrating122

over intermediate results, we obtain a function in x,y,θ that is proportional to the integrand in123

Equation (1). Hence, the marginal of the unobserved target y is proportional to p(y |x,D). When y124

connects to only one factor, its marginal matches its incoming message.125

4 Approximations126

Calculating a precise representation of the message to the target of an unseen input is intractable for127

large networks and datasets. The three primary reasons are, that a) nonlinearities and multiplication128

produce highly complex exact messages which are difficult to represent and propagate, b) the129

enormous size of the factor graph for large datasets, and c) the presence of various cycles in the130

graph. These challenges shape the message approximations as well as the design of our training and131

prediction procedures, which we address in the following sections.132

1with a proportionality constant of 1/p(D)
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Figure 1: Conceptual vector-valued factor graph for a simple MLP. Each training example has its
own “branch” (a copy of the network), while predictions for an unlabeled input x are computed on a
separate prediction branch. All branches are connected by the shared model parameters. Grayed-out
variables are conditioned on (observed). Colored arrows indicate the three iteration orders: a forward
/ backward pass on training examples, and a forward pass for prediction.

4.1 Approximating Messages via Gaussian Densities133

To work around the highly complex exact messages, we approximate them with a parameterized class134

of functions. We desire this class to be closed under pointwise multiplication, as variable-to-factor135

messages are the product of incoming messages from other factors. We choose positive scalar136

multiples of one-dimensional Gaussian densities as our approximating family. Their closedness137

follows immediately from the exponential function’s characteristic identity exp(x) exp(y) = exp(x+138

y) and the observation that for any s1, s2 > 0 and µ1, µ2 ∈ R, the function s1(x−µ1)
2+s2(x−µ2)

2139

in x can be represented as s(x− µ)2 + c for some s > 0 and µ,c ∈ R. The precise relation between140

two scaled Gaussian densities and its product can be neatly expressed with the help of the so-141

called natural (re-)parameterization. Given a Gaussian N (µ, σ2), we call ρ = 1/σ2 the precision142

and τ = µ/σ2 the precision-mean. Collectively, (τ, ρ) are the Gaussian’s natural parameters,143

G(x; τ, ρ) := N (x;µ, σ2), x ∈ R. For µ1, µ2 ∈ R and σ1, σ2 > 0 with corresponding natural144

parameters ρi = 1/σ2
i and τi = µiρi, i = 1, 2, multiplying Gaussian densities simplifies to:145

N (µ1;µ2, σ
2
1 + σ2

2) ·G(x; τ1 + τ2, ρ1 + ρ2)

for all x ∈ R. Thus, multiplying Gaussian densities simplifies to the pointwise addition of their146

natural parameters, aside from a multiplicative constant. Since we are only interested in the marginals,147

which are re-normalized, this constant does not affect the final result.148

Next, we present our message approximations for three factor types, each representing a deterministic149

relationship between variables: (i) the sum of variables weighted by constants, (ii) the application of150

a nonlinearity, and (iii) the multiplication of two variables. As we model the factor graph on a scalar151

level, these three factors suffice to model complex modern network architectures such as ConvNeXt152

Liu et al. [2022]2. In Appendix F, we provide a comprehensive table of message equations, including153

additional factors for modeling training labels.154

Weighted Sum: The density transformation property of the Dirac delta allows us to compute the exact
message without approximation. For the relationship s = c⊺v modeled by the factor f := δ(s−c⊺v),

mf→s(s) =

∫
δ(s− c⊺v)

∏k

i=1
mvi→f (vi) dv1 . . . vk

is simply the density of c⊺v, where v ∼
∏k

i=1 mvi→f (vi). If mvi→f (vi) = N (vi;µi, σ
2
i ) are

Gaussian, then v ∼ N (µ, diag(σ2)) and mf→s(s) becomes a scaled multivariate Gaussian:

mf→s(s) = N (s; c⊺µ, (c2)⊺σ2).

The backward messages mf→vi can be derived similarly without approximation.155

2with the exception of layer normalization, which can be substituted by orthogonal initialization schemes
Xiao et al. [2018] or specific hyperparameters of a corresponding normalized network Nguyen et al. [2023]
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Nonlinearity: We model the application of a nonlinearity ϕ : R → R as a factor f := δ(a − ϕ(z)).156

However, the forward and backward messages are problematic and require approximation–even for157

well-behaved, injective ϕ such as LeakyReLUα:158

ma→f (a) = pdfϕ(Z)(a) for Z ∼ N

mf→z(z) =
∫

δ(a − ϕ(z)) ·ma→f (a) da = ma→f (ϕ(z)) = N (ϕ(z);µa, σ
2
a ).

For values of α ̸= 1, the forward message is non-Gaussian and the backward message does not even
integrate to 1. For ReLU (α = 0), it is clearly not even integrable. Instead, we use moment matching
to fit a Gaussian approximation. Given any factor f and variable v, we can approximate the message
mf→v directly with a Gaussian if the moments mk :=

∫
vkmf→v(v) dv exist for k = 0, 1, 2 and

can be computed efficiently via mf→v(v) = N (v;m1/m0,m2/m0 − (m1/m0)
2). However, direct

moment matching of the message is impossible for non-integrable messages or when the mk are
expensive to find. Instead, we can apply moment matching to the updated marginal of v. Let m0, m1,
m2 be the moments of the “true” marginal

m(v) =
∫

f(v, v1, ..., vk) dv1...dvk ·
∏

i
mgi→v(v),

which is the product of the true message from f and the approximated messages from other factors159

gi. Then we can approximate m with a Gaussian and obtain a message approximation160

mf→v(v) := N (v;µv, σ
2
v )/mv→f (v) ,

which approximates mf→v so that it changes v’s marginal in the same way as the actual message.3161

Since mv→f (v) is a Gaussian density, we can compute mf→v(v) efficiently by applying Gaussian162

division in natural parameters, similar to Section 4.1. For LeakyReLUα, we found efficient direct163

and marginal approximations that are each applicable to both the forward and backward message164

when α ̸= 0. The marginal approximation remains applicable even for the ReLU case of α = 0. We165

provide detailed derivations in Appendix B.2.166

Product For the relationship c = ab, we employ variational MP as in Stern et al. [2009], in order to167

break the vast number of symmetries in the true posterior of a BNN. By combining the variational168

message equations for scalar products with the weighted sum, we can also construct efficient higher-169

order multiplication factors such as inner vector products, see Appendix F for detailed equations.170

4.2 Training Procedure & Prediction171

In pure belief propagation, the product of incoming messages for any variable equals its marginal172

under the true posterior. With our aforementioned approximations, we can reasonably expect to173

converge on a diagonal Gaussian q̌ that approximates one of the various permutation modes of the174

true posterior by aligning the first two moments of the marginal. This concept can be elegantly175

interpreted through the lens of relative entropy. As shown in A.2, among diagonal Gaussians176

q(θ) = q1(θ1) · · · qk(θk), the relative entropy from the true posterior to q is minimized for q̌:177

q̌ = argminq DKL [ p(θ | D) | q(θ) ] . (3)

Another challenge in finding q̌ arises from cyclic dependencies. In acyclic factor graphs, each message178

depends only on previous messages from its subtree, allowing for exact propagation. However, our179

factor graph contains several cycles due to two primary reasons: (i) multiple training branches180

interacting with shared parameters across linear layers, and (ii) the scalar-level modeling of matrix-181

vector multiplication in architectures with more than one hidden layer. These loops create circular182

dependencies among messages. To address these challenges, we adopt loopy belief propagation,183

where belief propagation is performed iteratively until messages converge. While exact propagation184

works in acyclic graphs, convergence is then only guaranteed under certain conditions (e.g., Simon’s185

condition [Ihler et al., 2005]) that are difficult to verify. Instead, we pass messages in an iteration186

order that largely avoids loops by alternating forward and backward passes similarly to deterministic187

NNs. Our message schedule is visualized in Figure 1.188

3This is the central idea behind expectation propagation as defined in Minka [2001].
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Figure 2: A full FactorGraph models all messages for one batch of training examples. To iterate, we
only need one joint message summarizing the prior and all other examples. When switching to a new
batch, we aggregate messages from the previous batch and store them in the Trainer.

Batching: As the forward and backward messages depend on each other, we must store them to189

compute message updates during message passing. Updating our messages in a sweeping “pass”190

over a branch and running backward passes immediately after the forward pass on the same branch,191

allows us to store many messages only temporarily, reducing memory requirements. This schedule192

also ensures efficient propagation of updated messages despite the presence of loops. However,193

some messages must still be retained permanently4, leading to significant memory demand when194

storing them for all n training examples. To address this, we adopt a batching strategy: Instead of195

maintaining n training branches simultaneously, we update the factor graph using a batch (subset) of196

b examples at a time. The factor graph then models b messages to the weights W , while the messages197

to W from the remaining (inactive) examples are aggregated into batch-wise products and stored in a198

trainer object. Figure 2 illustrates this setup. When switching batches, we divide the marginals by199

the batch’s old aggregate message and multiply the updated messages into the marginal, ensuring200

that data is not double-counted. Within each batch, we iterate through the examples and perform201

a forward and backward pass on each in sequence. After all examples have been processed once,202

we call it an “iteration”. Depending on the training stage, we either repeat this process within the203

same batch or move to the next batch. As training progresses, we gradually increase the number of204

iterations per batch to allow for finer updates as the overall posterior comes closer to convergence.205

Prediction: Ultimately, our goal is to compute the marginal of the unobserved target y for some206

unseen input x. Since the prediction branch in Figure 1 introduces additional loops, obtaining an207

accurate approximation would require iterating over the entire factor graph, including the training208

branches. In NN terms, this translates to retraining the whole network for every test input. Instead,209

we pass messages only on the training branches in the batch-wise setup described above. At test210

time, messages from the training branches are propagated to the prediction branch, but not vice versa.211

Specifically, messages from the weights to the prediction branch are computed as the product of the212

prior and the incoming messages from the training branches. This can be interpreted as approximating213

the posterior over weights, p(θ | D), with a diagonal Gaussian q̌(θ) used as prior during inference.214

4.3 Implementation215

Scaling the approach to deep networks, the following challenges need to be addressed.216

Factor Graph Implementation While batching effectively reduces memory requirements for large217

datasets, a direct implementation of a factor graph still scales poorly for deep networks. Explicitly218

modeling each scalar variable and factor as an instance is computationally expensive. To address this,219

we propose the following design optimizations: First, rather than modeling individual elements of220

the factor graph, we represent entire layers of the network. MP between layers is orchestrated by221

an outer training loop. Second, each layer instance operates across all training branches within the222

4For example, the backward message of the linear layer is needed to compute the marginal of the inputs,
which the forward message depends on.
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active batch, removing the need to duplicate layers for each example. Third, factors are stateless223

functions, not objects. Each layer is responsible for computing its forward and backward messages224

by calling the required functions. In this design, layer instances maintain their own state, but MP225

and batching are managed in the outer loop. The stateless message equations are optimized for both226

performance and numerical stability. As a result, the number of layer instances scales linearly with227

network depth but remains constant regardless of layer size or batch size. This approach significantly228

reduces computational and memory overhead—our implementation is approximately 300x faster229

than a direct factor graph model in our tests. Additionally, we optimized our implementation for230

GPU execution by leveraging Julia’s CUDA.jl and Tullio.jl libraries. Since much of the runtime231

is spent on linear algebra operations (within linear or convolutional layers), we built a reusable,232

GPU-compatible library for Gaussian multiplication. This design makes the implementation both233

scalable and extendable.234

Numerical Stability Maintaining numerical stability in the MP process is critical, particularly235

as model size increases. Backward messages often exhibit near-infinite variances when individual236

weights have minimal impact on the likelihood. Therefore, we compute them directly in natural237

parameters, which also simplifies the equations. Special care is needed for LeakyReLU, as its238

messages can easily diverge. To mitigate this, we introduced guardrails: when normalization constants239

become too small, precision turns negative, or variance in forward messages increases, we revert to240

either G(0, 0) or use moment matching on messages instead of marginals (see Appendix F for details).241

Another trick is to periodically recompute the weight marginals from scratch to maintain accuracy. By242

leveraging the properties of Gaussians, we save memory by recomputing variable-to-factor messages243

as needed5. However, incremental updates to marginals can accumulates errors, so we perform a244

full recomputation once per batch iteration. Lastly, we apply light message damping through an245

exponential moving average to stabilize the training, but, importantly, only on the aggregated batch246

messages, not on the individual messages of the active batch.247

Weight Priors A zero-centered diagonal Gaussian prior with variance σ2
p is a natural choice for248

the prior over weights. However, as in traditional deep learning, setting all means to zero prevents249

messages from breaking symmetry. To resolve this, we sample prior means according to spectral250

parametrization [Yang et al., 2024], which facilitates feature learning independent of the network251

width. Another challenge in prior choice is managing exploding variances. In a naive setup with252

σ2
p = 1, forward message variances grow exponentially with the network depth. To find a principled253

choice of σ2
p, our initialization scheme is based on experimental data, see Appendix D.254

5 Numerical Evaluation255

Experiment 1: Application on MNIST dataset. In our experiments on the MNIST dataset, we256

compare regression and classification-based versions of our message passing (MP) and SGD. Table 1257

compares the test accuracy of MP and SGD for 3-layer MLPs and the LeNet-5 architecture [Lecun258

et al., 1998] over a range of training set sizes. We found that R-MP is generally more effective259

than AM-MP and that both consistently yield better accuracy than SGD, in particular for limited260

training data. For instance, our regression-based MP (R-MP) achieves 85.69% accuracy on the261

MLP with only 640 training samples, significantly outperforming softmax-based SGD’s (SM-SGD)262

58.85%. We also trained a 3-layer MLP of width 2,000 with 5.6 million parameters, which reached a263

test accuracy of 98.04%, whereas at width 256 the accuracy was 98.33%. Among related work on264

message passing, results for MNIST-sized datasets were only published by Lucibello et al. [2022].265

Their method reached only 97.4% test accuracy and they published no metrics for evaluating their266

predictive uncertainty. For VI, Bayes By Backprop reported an accuracy of 98.18% for their Gaussian267

model and 98.64% for their mixture model, which are similar to the accuracy achieved by MP.268

A key strength of our approach lies in the performance of its predictive uncertainty. Figure 3a269

shows that for a training dataset of size 640, counterintuitively, SGD is underconfident (ECE of270

0.3695) whereas R-MP and AM-MP are both decently calibrated with an ECE of 0.0216 and 0.0251271

respectively. All methods achieve good calibration when trained on the whole training data, with272

calibration errors of 0.0019 for SGD, 0.0014 for AM-MP, and 0.001 for R-MP. However, since most273

examples have high confidence levels, calibration becomes less informative at larger dataset sizes.274

5Each layer stores factor-to-weight-variable messages and the marginal, which is an aggregate that is
continuously updated as individual messages change.
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Num Data 80 160 320 640 1,280 2,560 5,120 10,240 60,000

M
L

P

R-MP 30.01 61.79 77.61 85.69 88.95 91.72 94.85 96.25 98.33
AM-MP 31.88 61.08 80.79 85.50 87.92 91.56 94.08 95.72 98.21
R-SGD 10.11 11.45 14.89 29.66 49.78 67.01 76.41 83.00 92.22
SM-SGD 21.47 30.38 46.18 58.83 76.67 85.55 89.10 91.17 96.36

L
eN

et
-5 R-MP 27.75 25.58 38.02 94.72 95.36 96.32 97.40 98.12 99.02

AM-MP 17.32 10.42 10.28 93.48 96.19 96.44 97.70 98.05 98.95
R-SGD 14.06 14.51 14.07 13.99 16.02 31.16 49.43 69.84 94.12
SM-SGD 18.57 19.54 21.03 22.15 39.36 82.30 90.92 95.04 98.55

Table 1: Comparison of accuracies on MNIST (% correct). Our method (MP) consistently achieves
better accuracy than SGD (Torch). Abbreviations: Regression (R), Argmax (AM), and Softmax (SM).

(a) Calibration at n = 640. (b) Relative calibration. (c) Out-of-distribution recognition.

Figure 3: Uncertainty metrics for models trained on MNIST.

Thus, we employ relative calibration curves to assess uncertainty further6. Figure 3b compares the275

relative calibration of R-MP and SM-SGD for LeNet-5. Overall, the R-MP predictions show excellent276

relative calibration with an area under the curve (AUC) of 0.9949, 0.9986, 0.9998 for 640, 5120,277

and 60 000 datapoints, whereas SM-SGD only achieved 0.4451, 0.9845, and 0.9995 respectively.278

Finally, we evaluated out-of-distribution (OOD) recognition by training a model on MNIST and279

then predicting on mixed examples from FashionMNIST and MNIST. Figure 3c shows the receiver280

operating characteristic (ROC) curve for detecting OOD samples by the entropy of their predicted281

class distribution. R-MP achieved an AUC of 0.9675 when trained on full MNIST and 0.9242 for282

n = 640, whereas SM-SGD only achieved 0.8872 even with the full training data.283

A key strength of our approach lies in the performance of its predictive uncertainty. Figure 4a284

shows that for a training dataset of size 640, counterintuitively, SGD is underconfident (ECE of285

0.3695) whereas R-MP and AM-MP are both decently calibrated with an ECE of 0.0216 and 0.0251286

respectively. All methods achieve good calibration when trained on the whole training data, with287

calibration errors of 0.0019 for SGD, 0.0014 for AM-MP, and 0.001 for R-MP. However, since most288

examples have high confidence levels, calibration becomes less informative at larger dataset sizes.289

Thus, we employ relative calibration curves to assess uncertainty further6. Figure 4b compares the290

relative calibration of R-MP and SM-SGD for LeNet-5. Overall, the R-MP predictions show excellent291

relative calibration with an area under the curve (AUC) of 0.9949, 0.9986, 0.9998 for 640, 5120,292

and 60 000 datapoints, whereas SM-SGD only achieved 0.4451, 0.9845, and 0.9995 respectively.293

Finally, we evaluated out-of-distribution (OOD) recognition by training a model on MNIST and294

then predicting on mixed examples from FashionMNIST and MNIST. Figure 4c shows the receiver295

operating characteristic (ROC) curve for detecting OOD samples by the entropy of their predicted296

class distribution. R-MP achieved an AUC of 0.9675 when trained on full MNIST and 0.9242 for297

n=640, whereas SM-SGD only achieved 0.8872 even with the full training data.298

Experiment 2: Application on CIFAR-10. To evaluate the applicability of our method on the299

CIFAR-10 dataset, we trained a 6 layer deep convolutional network with roughly 890k parameters on300

the full training dataset. As baseline methods we used the SOTA optimizers AdamW [Loshchilov301

and Hutter, 2017] and IVON [Shen et al., 2024] each with a cosine annealing learning rate schedule302

[Loshchilov and Hutter, 2016]. Across all methods, including ours, we trained for 25 epochs. In303

6We order the test examples by their predicted max-class probability. For each uncertainty cutoff, we then
plot the accuracy on the remaining (more certain) test set. The area under this curve is also reported under the
name AUROC by Osawa et al. [2019].
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Acc. ↑ Top-5 Acc. ↑ NLL ↓ ECE ↓ Brier ↓ OOD-AUROC ↑
AdamW 0.783 0.984 1.736 0.046 0.38 0.792
IVON@mean 0.772 0.983 1.494 0.041 0.387 0.819
IVON 0.772 0.983 1.316 0.035 0.37 0.808
MP (Ours) 0.773 0.977 0.997 0.029 0.361 0.810

Table 2: Comparison of various validation statistics for a convolutional network of roughly 890k
parameters trained on CIFAR-10. Out-of-distribution (OOD) detection was tested with SVHN. For
IVON we used 100 samples for prediction at test time. IVON@mean are the results obtained from
evaluating the model at the means of the learned distributions of the individual parameters.

Appendix C, we give extensive details on the network architecture and the experimental setup in304

general. Table 2 compares the performance of our method (MP) against AdamW and IVON across a305

variety of standard metrics. In general, we see that MP can compete with these two strong baselines.306

In the expected calibration error, our method even has a notable edge. The fact that the metrics are307

overall worse than what is reported by Shen et al. [2024] is probably due to a difference in architecture;308

Shen et al. only conduct experiments on ResNets equipped with filter response normalization [Singh309

and Krishnan, 2019]. Neither residual connections nor normalization layers are yet implemented in310

our factor graph library. Nevertheless, the potential of the approach becomes already visible.311

Experiment 3: Further Evaluations on Tabular Benchmark Data. We use the UCI machine312

learning repository, cf. Dua and Graff [2017], for various regression tasks. The results, see Ap-313

pendix E.1, show that our method is general applicable and effectively avoids overfitting.314

6 Summary, Limitations & Future Work315

Summary We presented a novel framework that advances message-passing (MP) for BNNs by316

modeling the predictive posterior as a factor graph. To the best of our knowledge, this is the first317

MP method to handle CNNs while avoiding double-counting training data, a limitation in previous318

MP approaches like Soudry et al. [2014], Hernández-Lobato and Adams [2015], Lucibello et al.319

[2022]. In our experiments on different datasets, our method proved to be competitive with the SOTA320

baselines AdamW and IVON, even showing an edge in terms of calibration.321

Limitations Despite recent advances, VI methods like IVON remain ahead in scale and performance322

on larger datasets. Our approach’s runtime and memory requirements scale linearly with model323

parameters and dataset size. While our inference at test time can keep up with IVON’s sampling324

approach in terms of speed and memory requirements, training is up to two orders of magnitude325

slower and more GPU-memory intensive compared to training deterministic networks using PyTorch326

with optimizers like AdamW. The memory overhead stems from two key factors: First, each training327

example stores messages proportional to the model’s parameter count, unlike AdamW’s batch-level328

intermediate representations. Second, each parameter requires two 8-byte floating-point numbers,329

contrasting with more efficient 4-byte or smaller formats. Runtime inflation results from several330

performance bottlenecks: Our training schedule lacks parallel forward passes, our Tullio-based331

CUDA kernel generation misses memory-layout and GPU optimizations present in mature libraries332

like Torch, message equations involve complex computations beyond standard matrix multiplications,333

and we use Julia’s default FP64 precision, which GPUs process less efficiently.334

Future Work Regarding training efficiency, an altered message-update schedule with actual batched335

computations would significantly reduce training time. Implementing our library in CUDA C++ with336

efficiency in mind could also drastically cut down computational overhead. On the architectural front,337

we deem it likely that our approach can be extended to most modern deep learning architectures.338

Residual connections are straightforward to implement as they boil down to simple sum factors. For339

normalization layers at the scalar level, only a division factor is missing, which can be approximated340

by a “rotated” product factor. This would suffice to model ResNet-like architectures and more modern341

convolutional networks like ConvNeXt. For transformers, the last ingredient needed is an efficient342

softargmax factor. Given the division factor, only an exp factor is missing to model softargmax at the343

scalar level.344

Reproducibility All code is available at https://github.com/neurips-submission-19866/submission.345
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A Proof of Global Minimization Objective451

A.1 Moment-Matched Gaussians Minimize Cross-Entropy452

Consider a scalar density p and a Gaussian q(θ) = N (θ, µ, σ). Then453

minH(p, q) = min

(∫
p(θ) log

(
p(θ)

q(θ)

)
dθ

)
= min

(
1

2σ2

∫
p(θ)(θ − µ)2 dθ +

log(2πσ2)

2

)
.

It is well known that expectations minimize the expected mean squared error. In other words, the454

integral is minimized by setting µ to the expectation of p and is then equal to the variance of p. The455

necessary condition of a local minimum then yields that σ2 must be the variance of p.456

A.2 Proof of Equation (3) Global Minimization Objective457

Let p be an arbitrary probability density on Rk with marginals pi(θi) :=
∫
p(θ) d(θ \ θi) and denote458

by Q the set of diagonal Gaussians. Then for every q(θ) =
∏k

i=1 qi(θi) ∈ Q we can write the459

relative entropy from p to q as460

DKL[ p || q ] =
∫

p(θ) log

(
p(θ)

q(θ)

)
dθ = −

k∑
i=1

∫
p(θ) log(q(θi))dθ −H(p)

= −
k∑

i=1

∫
θi

log(qi(θi))

∫
θ\θi

p(θ)d(θ \ θi)−H(p) =

k∑
i=1

H(pi, qi)−H(p).

This shows that DKL[ p || q ] is minimized by independently minimizing the summands H(pi, qi). In461

combination with A.1 this completes the proof.462

B Derivations of Message Equations463

B.1 ReLU464

A common activation function is the Rectified Linear Unit ReLU : R → R, z 7→ max(0, z).465

Forward Message: Since ReLU is not injective, we cannot apply the density transformation
property of the Dirac delta to the forward message

mf→a(a) =
∫

z∈R
δ(a − ReLU(z))mz→f (z) dz.

In fact, the random variable ReLU(Z) with Z ∼ mz→f does not even have a density. A positive
amount of weight, namely Pr[Z ≤ 0], is mapped to 0. Therefore

mf→a(0) = lim
t→0

∫
z∈R

N (ReLU(z); 0, t2)mz→f (z) dz ≥ lim
t→0

N (0; 0, t2) min
z∈[−1,0]

mz→f (z) = ∞.

Apart from 0, the forward message is well defined everywhere, and technically null sets do not matter466

under the integral. However, moment-matching mz→f while truncating at 0 does not seem reasonable467

as it completely ignores the weight of mz→f on R≤0. Therefore, we refrain from moment-matching468

the forward message of ReLU.469

As an alternative, we consider a marginal approximation. That means, we derive formulas for470

mk :=

∫
a∈R

akma→f (a)mf→a(a) da, k ∈ {0, 1, 2} (4)

and then set
mf→a(a) := N (a;m1/m0,m2/m0 − (m1/m0)

2) /ma→f (a).
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By changing the integration order, we obtain471

mk =

∫
a∈R

akma→f (a)
∫
z∈R

δ(a − ReLU(z))mz→f (z) dz da

=

∫
z∈R

mz→f (z)

∫
a∈R

δ(a − ReLU(z))akma→f (a) da dz

=

∫
z∈R

mz→f (z)ReLUk(z)ma→f (ReLU(z)) dz

Note that we end up with a well-defined and finite integral. Similar integrals arise in later derivations.472

For this reason we encapsulate part of the analysis in basic building blocks.473

Building Block 1. We can efficiently approximate integrals of the form∫ ∞

0

zkN (z;µ1, σ
2
1)N (z;µ2, σ

2
2) dz

where µ1, µ2 ∈ R, σ1, σ2 > 0 and k = 0, 1, 2.474

Proof. By Section 4.1 the integral is equal to475

S+ = N (µ1;µ2, σ
2
1 + σ2

2)

∫ ∞

0

zkN
(
z;µ, σ2

)
dz

= N (µ1;µ2, σ
2
1 + σ2

2)

{
E[ReLUk(N (µ, σ2))] for k = 1, 2

Pr[−Z ≤ 0] = ϕ(µ/σ) for k = 0

where
µ =

τ

ρ
, σ2 =

1

ρ
, τ =

µ1

σ2
1

+
µ2

σ2
2

and ρ =
1

σ2
1

+
1

σ2
2

.

476

This motivates the derivation of efficient formulas for the moments of an image of a Gaussian variable477

under ReLU.478

Building Block 2. Let Z ∼ N (µ, σ2). The first two moments of ReLU(Z) are then given by479

E[ReLU(Z)] = σφ(x) + µϕ(x) (5)

E[ReLU2(Z)] = σµφ(x) + (σ2 + µ2)ϕ(x), (6)
where x = µ/σ and φ, ϕ denote the pdf and cdf of the standard normal distribution, respectively.480

Proof. The basic idea is to apply
∫
ze−z2/2 dz = −e−z2/2. Together with a productive zero, one481

obtains482
√
2πσE[ReLU(Z)] =

∫ ∞

0

ze−
(z−µ)2

2σ2 dz = σ2

∫ ∞

0

(z − µ)

σ2
e−

(z−µ)2

2σ2 dz + µ

∫ ∞

0

e−
(z−µ)2

2σ2 dz

= σ2

[
−e−

(z−µ)2

2σ2

]∞
0

+
√
2πσµPr[Z ≥ 0]

= σ2e−
µ2

2σ2 +
√
2πσµPr

[
−Z + µ

σ
≤ µ

σ

]
=

√
2πσ2φ(x) +

√
2πσµϕ(x).

Rearranging yields the desired formula for the first moment. For the second moment, we need to483

complete the square and perform integration by parts:484

E[ReLU2(Z)] =
1√
2πσ

∫ ∞

0

z2e−
(z−µ)2

2σ2 dz

=
1√
2πσ

(
σ2

∫ ∞

0

(z − µ)
z − µ

σ2
e−

(z−µ)2

2σ2 dz + 2µ

∫ ∞

0

ze−
(z−µ)2

2σ2 dz − µ2

∫ ∞

0

e−
(z−µ)2

2σ2 dz

)
=

σ2

√
2πσ

([
−(z − µ)e−

(z−µ)2

2σ2

]∞
0

+

∫ ∞

0

e−
(z−µ)2

2σ2

)
+ 2µE[ReLU(Z)]− µ2ϕ(x)

= −σµφ(x) + σ2ϕ(x) + 2µE[ReLU(Z)]− µ2ϕ(x) = σµφ(x) + (σ2 + µ2)ϕ(x).
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485

Building Block 3. Integrals of the form

S− :=

∫ 0

−∞
zkN (z;µ1, σ

2
1)N (0;µ2, σ

2
2) dz

where µ1, µ2 ∈ R, σ1, σ2 > 0 and k = 0, 1, 2 can be efficiently approximated.486

Proof. Employing the substitution z = −t gives487

S− = N (0;µ2, σ
2
2)

∫ ∞

0

(−1)ktkN (−t;µ1, σ
2
1) dt = (−1)kN (0;µ2, σ

2
2)

∫ ∞

0

tkN (t;−µ1, σ
2
1) dt

= (−1)kN (0;µ2, σ
2
2)

{
E[ReLU(N (−µ1, σ

2
1))] for k = 1, 2

Pr[−Z ≥ 0] = ϕ(−µ1/σ1) for k = 0.

488

Now let mz→f (z) = N (z;µz, σ
2
z),ma→f (a) = N (a;µa, σ

2
a ) and consider the decomposition

mk =

∫ ∞

0

zkN (z;µz, σ
2
z)N (z;µa, σ

2
a ) dz︸ ︷︷ ︸

S+

+

∫ 0

−∞
ReLUk(z)N (z;µz, σ

2
z)N (0;µa, σ

2
a ) dz︸ ︷︷ ︸

S−

.

Note that S+ falls under Building Block 1 for any k = 0, 1, 2. The other addend S− is equal to 0 for489

k = 1, 2, and is handled by Building Block 3 for k = 0.490

Backward Message: By definition of the Dirac delta, the backward message is equal to

mf→z(z) =

∫
a∈R

δ(a − ReLU(z))ma→f (a) da = ma→f (ReLU(z))

which is, of course, not integrable, so it cannot be interpreted as a scaled density. Instead, we apply
marginal approximation by deriving formulas for

mk :=

∫
z∈R

zkmz→f (z)mf→z(z) dz, k ∈ {0, 1, 2}

and then setting

mf→z(z) := N (z;m1/m0,m2/m0 − (m1/m0)
2) /mz→f (z).

To this end, let mz→f (z) = N (z;µz, σ
2
z) and ma→f (a) = N (a;µa, σ

2
a ). Then we have

mk =

∫ ∞

0

zkN (z;µz, σ
2
z)N (z;µa, σ

2
a) dz︸ ︷︷ ︸

S+

+

∫ 0

−∞
zkN (z;µz, σ

2
z)N (0;µa, σ

2
a) dz︸ ︷︷ ︸

S−

.

The two addends S+ and S− are handled by Building Block 1 and Building Block 3, respectively.491

B.2 Leaky ReLU492

Another common activation function is the Leaky Rectified Linear Unit

LeakyReLUα : R → R, z 7→
{
z for z ≥ 0

αz for z < 0.

It is parameterized by some α > 0 that is typically small, such as α = 0.1. In contrast to ReLU, it is493

injective (and even bijective). For this reason the forward and backward messages are both integrable494

and can be approximated by both direct and marginal moment matching. The notation is shown in495

Figure 4.496
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a
δ(a − LeakyReLUα(z))

z
N (µa, σ

2
a ) N (µz, σ

2
z )

Figure 4: A deterministic factor corresponding to the LeakyReLUα activation function.

Forward Message: It is easy to show that the density of LeakyReLUα(N (µz, σ
2
z)) is given by

p(a) = N (LeakyReLU1/α(a);µz, σ
2
z)

{
1 for z ≥ 0

1/α for z < 0

which only has one discontinuity point, namely 0. In particular, it is continuous almost everywhere.497

So by the density transformation property of Dirac’s delta, we have mf→a(a) = p(a) for almost all498

a. Under the integral we can therefore replace mf→a(a) by p(a). This justifies that the moments of499

mf→a are exactly the moments of (LeakyReLUα)∗N (µz, σ
2
z). Its expectation is equal to500

E [LeakyReLUα(N (µz, σ
2
z))] =

∫ 0

−∞
αzN (z;µz, σ

2
z) dz +

∫ ∞

0

zN (z;µz, σ
2
z) dz

= −α

∫ ∞

0

tN (t;−µz, σ
2
z) dt+

∫ ∞

0

zN (z;µz, σ
2
z) dz

= −αE[ReLU(N (−µz, σ
2
z))] + E[ReLU(Z)].

Both addends are handled by Building Block 2. Yet we can get more insight by further substitution:501

E[LeakyReLUα(Z)] = −α(σzφ(−µz/σz)− µzϕ(−µz/σz)) + σzφ(µz/σz) + µzϕ(µz/σz)

= (1− α)(σzφ(µz/σz) + µzϕ(µz/σz)) + αµz

= (1− α)E[ReLU(Z)] + αE[Z].

In the second to last equation, we use the identities φ(−x) = φ(x) and ϕ(−x) = 1− ϕ(x). As such,502

the mean of LeakyReLUα(Z) is a convex combination of the mean of ReLU(Z) and the mean of Z.503

The function LeakyReLU1 the identity, and its mean is accordingly the mean of Z. For α = 0, we504

recover the mean of ReLU(Z).505

The second moment of LeakyReLUα(Z) decomposes to506

E[LeakyReLU2
α(Z)] =

∫ 0

−∞
α2z2N (z;µz, σ

2
z) dz +

∫ ∞

0

z2N (z;µz, σ
2
z) dz

= α2

∫ ∞

0

z2N (z;−µz, σ
2
z) dz +

∫ ∞

0

z2N (z;µz, σ
2
z) dz

= α2E[ReLU2(N (−µz, σ
2
z))] + E[ReLU2(N (µz, σ

2
z))].

Again, both addends are covered by Building Block 2, so approximating the forward message via507

direct moment matching is feasible.508

A marginal approximation can also be found. For all k = 0, 1, 2 we have509 ∫
a∈R

akma→f (a)mf→a(a) da =

∫
a∈R

akma→f (a)p(a) da

=
1

α

∫ 0

−∞
akN (a;µa, σ

2
a)N (a/α;µz, σ

2
z) da︸ ︷︷ ︸

S−

+

∫ ∞

0

akN (a;µa, σ
2
a)N (a;µz, σ

2
z) da︸ ︷︷ ︸

S+

The term S+ is handled by Building Block 1. The term S− is equal to510

S− =

∫ 0

−∞
akN (a;µa, σ

2
a)N (a;αµz, (ασz)

2) da

= (−1)k
∫ ∞

0

akN (a;−µa, σ
2
a)N (a;−αµz, (ασz)

2) da

and therefore also covered by Building Block 1.511
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Backward Message: By the sifting property of the Dirac delta, the backward message is equal to

mf→z(z) =

∫
a∈R

δ(a− LeakyReLUα(z))ma→f (a) da = ma→f (LeakyReLUα(z)).

As opposed to ReLU, the backward message is integrable. That means, we can also apply direct512

moment matching: For all k = 0, 1, 2 we have513

mf→z(z) =

∫ 0

−∞
zkN (αz;µa, σ

2
a) dz +

∫ ∞

0

zkN (z;µa, σ
2
a) dz

=
(−1)k

α

∫ ∞

0

zkN (z;−µa/α, (σa/α)
2) dz +

∫ ∞

0

zkN (z;µa, σ
2
a) dz

For k = 1 or k = 2, the integrals fall under Building Block 2 again. If k = 0, then

mf→z(z) =
(−1)k

α
ϕ(−µa/σa) + ϕ(µa/σa).

Again, we can also find a marginal approximation as well. For all k = 0, 1, 2, we can write514 ∫
z∈R

zkmz→f (z)mf→z(z) dz

=

∫ 0

−∞
zkN (z;µz, σ

2
z)N (αz;µa, σ

2
a) dz +

∫ ∞

0

zkN (z;µz, σ
2
z)N (z;µa, σ

2
a) dz

=
(−1)k

α

∫ ∞

0

zkN (z;−µz, σ
2
z)N (z;−µa/α, (σa/α)

2) dz +

∫ ∞

0

zkN (z;µz, σ
2
z)N (z;µa, σ

2
a) dz

Since both integrals are covered by Building Block 1 we have derived direct and marginal approxima-515

tions of LeakyReLU messages using moment matching.516

B.3 Softmax517

We model the soft(arg)max training signal as depicted in Table 6. For the forward message on the
prediction branch, we employ the so-called “probit approximation” [Daxberger et al., 2022]:

mf→c(i) =

∫
softmax(a)iN (a;µ, diag(σ2) da ≈ softmax(t)i,

where tj = µj/(1 +
π
8σ

2
j ), j = 1, . . . , d. For the backward message on a training branch, to say518

ad, we use marginal approximation. We hence need to compute the moments m0,m1,m2 of the519

marginal of ad via:520

mk =

∫
akd softmax(a)c N (a;µ, diag(σ2) da

=

∫
ad

akd N (ad;µd, σ
2
d)

∫
a\ad

softmax(a)i
∏
j ̸=i

N (aj ;µj , σ
2
j ) d(a \ ad)dad.

We can reduce the inner integral to the probit approximation by regarding the point distribution δad as521

the limit of a Gaussian with vanishing variance:522 ∫
a\ad

softmax(a)c

∏
j ̸=d

N (aj ;µj , σ
2
j ) d(a \ ad)

=

∫
a\ad

∫
ãd

δ(ãd − ad) softmax(a1, . . . , ad−1, ãd)
∏
j ̸=d

N (aj ;µj , σ
2
j ) dãd d(a \ ad)

=

∫
ã\ãd

lim
σ→0

∫
ãi

softmax(ã)c N (ãd; ad, σ
2)

∏
j ̸=d

N (ãj ;µj , σ
2
j ) dãi dãi
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By Lebesgue’s dominated convergence theorem we obtain equality to523

lim
σ→0

∫
ã

softmax(ã)cN (ãd; ad, σ
2)

∏
j ̸=i

N (ãj ;µj , σ
2
j ) dã

≈ lim
σ→0

softmax(t)i = softmax(t1, . . . , td−1, ad) where tj =

{
µj/(1 +

π
8σ

2
j ) for j ̸= d

ad/(1 + π
8σ

2) for j = d.

Hence, we can approximate mk by one-dimensional numerical integration of

mk ≈
∫

ad
akd N (ad;µd, σ

2
d) softmax(t1, . . . , td−1, ad) dad.

C Experimental Setup524

Synthetic Data - Depth Scaling: We generated a dataset of 200 points by randomly sampling x
values from the range [0, 2]. The true data-generating function was

f(x) = 0.5x+ 0.2 sin(2π · x) + 0.3 sin(4π · x).

The corresponding y values were sampled by adding Gaussian noise: f(x) +N (0, 0.052). For the
architecture, we used a three-layer NN with the structure:

[Linear(1, 16),LeakyReLU(0.1),Linear(16, 16),LeakyReLU(0.1),Linear(16, 1)].

A four-layer network has one additional [Linear(16, 16),LeakyReLU(0.1)] block in the middle, and525

a five-layer network has two additional blocks. For the regression noise hyperparameter, we used the526

true noise β2 = 0.052. The models were trained for 500 iterations over one batch (as all data was527

processed in a single active batch).528

Synthetic Data - Uncertainty Evaluation: The same data-generation process was used as in the
depth-scaling experiment, but this time, x values were drawn from the range [−0.5, 0.5]. The network
architecture remained the same as the three-layer network, but the width of the layers was increased to
32. We trained 100 networks with different random seeds on the same dataset. We define a p-credible
interval for 0 ≤ p ≤ 1 as:

[cdf−1(0.5− p

2
), cdf−1(0.5 +

p

2
)].

For each credible interval mass p (ranging from 0 to 1 in steps of 0.01), we measured how many of529

the p-credible intervals (across the 100 posterior approximations) covered the true data-generating530

function. This evaluation was done at each possible x value (ranging from -20 to 20 in steps of 0.05),531

generating a coverage rate for each combination of p and x. For each p, we then computed the median532

for x > 10 and the median for x < −10. If we correlate the p values with the medians, we found533

that for the median obtained from positive x values the correlation was 0.96, for negative x it was534

0.99, and for the combined set of medians it was 0.9.535

CIFAR-10: For our CIFAR-10 experiments, we used the default train-test split and trained the536

following feed-forward network:537

c l a s s Net ( nn . Module ) :538

def _ _ i n i t _ _ ( s e l f ) :539

super ( Net , s e l f ) . _ _ i n i t _ _ ( )540

s e l f . model = nn . S e q u e n t i a l (541

# Block 1542

nn . Conv2d ( 3 , 32 , 3 , padd ing = 0) ,543

nn . LeakyReLU ( 0 . 1 ) ,544

nn . Conv2d ( 3 2 , 32 , 3 , padd ing = 0) ,545

nn . LeakyReLU ( 0 . 1 ) ,546

nn . MaxPool2d ( 2 ) ,547

# Block 2548

nn . Conv2d ( 3 2 , 64 , 3 , padd ing = 0) ,549

nn . LeakyReLU ( 0 . 1 ) ,550
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nn . Conv2d ( 6 4 , 64 , 3 , padd ing = 0) ,551

nn . LeakyReLU ( 0 . 1 ) ,552

nn . MaxPool2d ( 2 ) ,553

# Head554

nn . F l a t t e n ( ) ,555

nn . L i n e a r (64 * 5 * 5 , 5 1 2 ) ,556

nn . LeakyReLU ( 0 . 1 ) ,557

nn . L i n e a r ( 5 1 2 , 1 0 ) ,558

)559

560

def f o r w a r d ( s e l f , x ) :561

re turn s e l f . model ( x )562

In the case of AdamW and IVON we trained with a cross-entropy loss on the softargmax of the563

network output. For our message passing method we used our argmax factor as a training signal564

instead of softargmax, see Appendix F. The reason is that for softargmax we only have message565

approximations relying on rather expensive numerical integration. In our library this factor graph can566

be constructed via567

fg = c r e a t e _ f a c t o r _ g r a p h ( [568

s i z e ( d . X _ t r a i n ) [ 1 : end −1 ] , # ( 3 , 32 , 32)569

# F i r s t B lock570

( : Conv , 32 , 3 , 0 ) , # ( 3 2 , 30 , 30)571

( : LeakyReLU , 0 . 1 ) ,572

( : Conv , 32 , 3 , 0 ) , # ( 3 2 , 28 , 28)573

( : LeakyReLU , 0 . 1 ) ,574

( : MaxPool , 2 ) , # ( 3 2 , 14 , 14)575

# Second Block576

( : Conv , 64 , 3 , 0 ) , # ( 6 4 , 12 , 12)577

( : LeakyReLU , 0 . 1 ) ,578

( : Conv , 64 , 3 , 0 ) , # ( 6 4 , 10 , 10)579

( : LeakyReLU , 0 . 1 ) ,580

( : MaxPool , 2 ) , # ( 6 4 , 5 , 5 )581

# Head582

( : F l a t t e n , ) , # (64*5*5 = 1600)583

( : L inea r , 5 1 2 ) , # ( 5 1 2 )584

( : LeakyReLU , 0 . 1 ) ,585

( : L inea r , 1 0 ) , # ( 1 0 )586

( : Argmax , t r u e )587

] , b a t c h _ s i z e )588

For all methods we used a batch size of 128 and trained for 25 epochs with a cosine annealing589

learning rate schedule. Concerning hyperparameters: For AdamW we found the standard parameters590

of lr = 10−3, β1 = 0.9, β2 = 0.999, ϵ = 10−8 and δ = 10−4 to work best. For IVON we followed591

the practical guidelines given in the Appendix of Shen et al. [2024].592

To measure calibration, we used 20 bins that were split to minimize within-bin variance. For OOD593

recognition, we predicted the class of the test examples in CIFAR-10 (in-distribution) and SVHN594

(OOD) and computed the entropy over softmax probabilities for each example. We then sort them by595

negative entropy and test the true positive and false positive rates for each possible (binary) decision596

threshold. The area under this ROC curve is computed in the same way as for relative calibration.597

D Prior Analysis598

The strength of the prior determines the amount of data needed to obtain a useful posterior that fits599

the data. Our goal is to draw prior means and set prior variances so that the computed variances600

of all messages are on the order of O(1) regardless of network width and depth. It is not entirely601

clear if this would be a desirable property; after all, adding more layers also makes the network more602

expressive and more easily able to model functions with very high or low values. However, if we603

let the predictive prior grow unrestricted, it will grow exponentially, leading to numerical issues.604
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In the following, we analyze the predictive prior under simplifying assumptions to derive a prior605

initialization that avoids exponential variance explosion. While we fail to achieve this goal, our606

current prior variances are still informed by this analysis.607

In the following, we assume that the network inputs are random variables. Then, the parameters of608

messages also become random variables, as they are derived from the inputs according to the message609

equations. Our goal is to keep the expected value of the variance parameter of the outgoing message610

at a constant size. We also assume that the means of the prior are sampled according to spectral611

initialization, as described in Section 4.3.612

FirstGaussianLinearLayer - Input is a Constant613

Each linear layer transforms some d1-dimensional input x to some d2-dimensional output y according614

to y = Wx+ b. In the first layer, x is the input data. For this analysis, we assume each element xi615

to be drawn independently from xi ∼ N (0, 1). Let x be a d1-dimensional input vector, mw be the616

prior messages from one column of W , and z = w′x be the vector product before adding the bias.617

During initialization of the weight prior, we draw the prior means using spectral parametrization and
set the prior variances to a constant:

mwi
= N (µwi

, σ2
w) with µwi

∼ N (0, l2),

l =
1√
k
·min(1,

√
d2
d1

).

By applying the message equations, we then approximate the forward message to the output with a
normal distribution

mz = N (µz, σ
2
z).

Because σ2
z depends on the random variables xi, it is also a random variable that follows a scaled618

chi-squared distribution619

σ2
z =

d1∑
i=1

x2
i · σ2

w

σ2
z ∼ χ2

d1
· σ2

w

and its expected value is
E[σ2

z ] = d1 · σ2
w.

We conclude that we can control the magnitude of the variance parameter by choosing E[σ2
z ] and620

setting σ2
w =

E[σ2
z ]

d1
.621

GaussianLinearLayer - Input is a Variable622

In subsequent linear layers, the input x is not observed and we receive an approximate forward
message that consists of independent normal distributions

mxi = N (µxi , σ
2
xi
).

Following the message equations, the outgoing forward message to z then has a variance623

σ2
z =

d1∑
i=1

(σ2
xi

+ µ2
xi
) · (σ2

w + µ2
wi
)− (µ2

xi
∗ µ2

wi
)

=

d1∑
i=1

σ2
xi

· σ2
w︸ ︷︷ ︸

I

+σ2
xi

· µ2
wi︸ ︷︷ ︸

II

+µ2
xi

· σ2
w︸ ︷︷ ︸

III

The layer’s prior variance σ2
w is a constant, whereas all other elements are random variables according624

to our assumptions. To make further analysis tractable, we also have to assume that the variances625
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σ2
xi

of the incoming forward messages are identical constants for all i, not random variables. We626

furthermore assume that the means are drawn i.i.d. from:627

µwi ∼ N (0, l2)

µxi
∼ N (µµx

, σ2
µx
).

The random variable σ2
z then follows a generalized chi-squared distribution

σ2
z ∼

( d1∑
i=1

σ2
x · l2 · χ2(1, 02)︸ ︷︷ ︸

II

+σ2
w · σ2

µx
· χ2(1, µ2

µx
)︸ ︷︷ ︸

III

)
+ d1 · σ2

w · σ2
x︸ ︷︷ ︸

I

and its expected value is628

E[σ2
z ] =

( d1∑
i=1

σ2
x · l2 · (1 + 02) + σ2

w · σ2
µx

· (1 + µ2
µx
)

)
+ d1 · σ2

w · σ2
x

= d1 ·
(
σ2
x · l2 + σ2

w · σ2
µx

· (1 + µ2
µx
) + σ2

w · σ2
x

)
= d1 · σ2

x · l2︸ ︷︷ ︸
II

+ d1 · (σ2
µx

· (1 + µ2
µx
) + σ2

x) · σ2
w︸ ︷︷ ︸

I+III

.

As σ2
w has to be positive, we conclude that if we choose E[σ2

z ] > d1 · σ2
x · l2, then we can set

σ2
w =

E[σ2
z ]− d1 · σ2

x · l2

d1 · (σ2
µx

· (1 + µ2
µx
) + σ2

x)
.

We know (or choose) d1, l2, and E[σ2
z ], but we require values for σ2

x, µ2
µx

, and σ2
µx

to be able to629

choose σ2
w. We will find empirical values for these parameters in the next section.630

Empirical Parameters + LeakyReLU631

To inform the choice of the prior variances of the inner linear layers, we also need to analyze632

LeakyReLU. We assume the network is an MLP that alternates between linear layers and LeakyReLU.633

As the message equations of LeakyReLU are too complicated for analysis, we instead use empirical634

approximation. Let ma = N (µa, σ
2
a) be an incoming message (from the pre-activation variable to635

LeakyReLU). We assume that σ2
a = t is a constant and that µa ∼ N (0, 1) is a random variable. By636

sampling multiple means and then computing the outgoing messages (after applying LeakyReLU), we637

can approximate the average variance of the outgoing messages, as well as the average and empirical638

variance over means of the outgoing messages.639

We computed these statistics for 101 different leak settings with 100 million samples each, and found640

that the relationship between leak and µµx
(average mean of the outgoing message) is approximately641

linear, while the relationships between leak and σ2
µx

or µσ2
x

are approximately quadratic. Using these642

samples, we fitted coefficients with an error margin below 5 · 10−5. For our network, we chose a643

target variance of 1.5 and a leak of 0.1, resulting in644

σ2
x = 0.8040586726631379

σ2
µx

· (1 + µ2
µx
) = 0.44958619556324186.

These values are sufficient for now setting the prior variances of the inner linear layer according to645

the equations above. Finally, we set the prior variance of the biases to 0.5, so that the output of each646

linear layer achieves an overall target prior predictive variance of approximately t = 1.5 + 0.5 = 2.0.647

Results in Practice648

In practice, we found that the variance of the predictive posterior still goes up exponentially with649

the depth of the network despite our derived prior choices. However, if we lower the prior variance650

further to avoid this explosion, the network is overly restricted and unable to obtain a good fit during651

training. We therefore set the prior variances as outlined here, but acknowledge that choosing a good652

prior is a general known problem.653
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E Evaluation: Analysis on Tabular Data654

E.1 Goal, Setup & Methods655

In thefollowing, we benchmark the proposed Bayesian neural network (BNN) approach using656

approximate message passing on a suite of classical regression tasks yet. It is crucial to understand657

the behavior of BNNs on classic regression tasks of medium difficulty. Our goal is to assess the658

strengths and weaknesses of BNNs, especially regarding performance and overfitting behavior.659

We will analyze if our Bayesian neural networks keep their promise of delivering a good calibration,660

in particular if the estimated uncertainty matches the errors we are seeing. We are using a suite of661

regression problems mainly from the widespread UCI machine learning repository Dua and Graff662

[2017]. This repository contains hundreds of publicly available datasets that are used by researchers663

as standard benchmarks to test new algorithm approaches. We focus on regression tasks with up to664

20 features. Here are the datasets used in our analysis:665

• California Housing: The California Housing dataset comprises 8 numerical features derived666

from the 1990 U.S. Census data. The aim is to estimate the median house value in a667

specific area, based on nine features with information about the neighborhood. These668

features include median income, median house age, total number of rooms, total number of669

bedrooms, population, number of households, latitude, longitude, and a categorical variable670

for ocean proximity. It has the options “near bay” (San Francisco Bay), “near ocean”, “less671

than one hour to the ocean”, and “inland”. Challenges in modeling this dataset involve672

capturing non-linear relationships and spatial dependencies, as well as influencing factors673

that are not included in the feature set. Nugent [2017]674

• Abalone: The Abalone dataset is about predicting the age of these specific snakes by675

measurements. It contains 4,177 instances with 8 input features: one categorical feature676

(sex) and seven continuous features (length, diameter, height, whole weight, shucked weight,677

viscera weight, and shell weight). The target variable is the number of rings, which correlates678

with the age of the abalone. A significant challenge is the non-linear relationship between679

the physical measurements and age, as well as the presence of outliers and multicollinearity680

among features. Nash et al. [1994]681

• Wine Quality: This dataset includes two subsets related to red and white "Vinho Verde"682

wines from Portugal, each with 11 physicochemical input variables such as fixed acidity,683

volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, total sulfur dioxide,684

density, pH, sulphates, and alcohol. All of these variables are continuous. Furthermore, there685

is one binary variable indicating if the sample is a white or red whine. The target variable686

is the wine quality score (0–10) rated by wine tasters. Challenges include class imbalance,687

as most wines have medium quality scores, and the subjective nature of the quality ratings.688

Cortez et al. [2009]689

• Bike Sharing: The Bike Sharing dataset is about predicting the usage of rental bikes in an690

area based on seasonal information, weather, and usage profiles. Specifically, it contains691

contains hourly and daily counts of rental bikes in the Capital Bikeshare system from692

2011 to 2012, along with 12 features including season, year, month, day, weekday, hour,693

holiday, working day, weather situation, temperature, "feels like" temperature, humidity,694

wind speed, number of casual users, and number of registered users. The target variable is695

the count of total rental bikes. Modeling challenges involve capturing complex temporal696

patterns, handling missing data, and accounting for external factors like weather and holidays.697

Fanaee-T [2013]698

• Forest Fires: This dataset comprises 517 instances with 12 features: spatial coordinates699

(X, Y), temporal variables (month, day), and meteorological data (FFMC, DMC, DC, ISI,700

temperature, relative humidity, wind, and rain). The target is to predict the burned area of the701

forest (in hectares) in the northeast region of Portugal in wild fires. The primary challenge is702

the high skewness of the target variable, with many instances having a burned area of zero,703

making it difficult to model and evaluate performance accurately. Cortez and Morais [2007]704

• Heart Failure: The Heart Failure Clinical Records dataset includes 299 patient records with705

13 clinical features such as age, anaemia, high blood pressure, creatinine phosphokinase,706

diabetes, ejection fraction, platelets, serum creatinine, serum sodium, sex, smoking, time,707
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and death event. The target variable is a binary indicator of death occurrence. Challenges708

include the small dataset size, potential class imbalance, and missing values, which can709

affect the generalizability of predictive models. hea [2020]710

• Real Estate Taiwan: This dataset is about predicting house prices in New Taipei City, Taiwan.711

It contains 414 instances with 6 features: transaction date, house age, distance to the nearest712

MRT station, number of convenience stores, latitude, and longitude. The target variable713

is the house price per unit area. Challenges in modeling this dataset involve capturing the714

influence of location-based features and dealing with a low sample size. Yeh [2018]715

Table 3: Summary of Regression Datasets
Dataset Samples Features Feature Types
California Housing 20,640 9 Numerical: latitude, longitude, house median

age, total rooms, total bedrooms, population,
households, median income; categorical: ocean
proximity

Abalone 4,177 8 1 categorical (sex), 7 numerical: length, diame-
ter, height, whole weight, shucked weight, vis-
cera weight, shell weight.

Wine Quality (Red) 1,599 11 All numerical: fixed acidity, volatile acidity, cit-
ric acid, residual sugar, chlorides, free sulfur
dioxide, total sulfur dioxide, density, pH, sul-
phates, alcohol.

Wine Quality (White) 4,898 11 Same as red wine dataset.
Bike Sharing 17,379 12 Mix of categorical and numerical: season, year,

month, hour, holiday, weekday, working day,
weather situation, temperature, feels-like tem-
perature, humidity, wind speed.

Forest Fires 517 12 2 categorical (month, day), 10 numerical:
FFMC, DMC, DC, ISI, temperature, relative hu-
midity, wind, rain, X, Y coordinates.

Heart Failure 299 13 Mix of binary and numerical: age, anaemia, high
blood pressure, creatinine phosphokinase, dia-
betes, ejection fraction, platelets, serum creati-
nine, serum sodium, sex, smoking, time, death
event.

Real Estate Taiwan 414 6 All numerical: transaction date, house age, dis-
tance to nearest MRT station, number of conve-
nience stores, latitude, longitude.

For a quick comparison, the number of features and samples are shown in Table 3. As we can see,716

the datasets have very different sizes. This is an important challenge where we want to evaluate the717

Bayesian neural network.718

For our training, we normalize the values in all columns. In particular, for each column c, we subtract719

the mean of c from each entry, and divide by the empiric standard deviation. This applies to both720

feature and target columns. The primary reason for us to do this is the fact that the BNN is designed721

to handle input with a mean of zero and a standard deviation of one best. Standard neural networks722

perform best with numbers in this range as well. Furthermore, normalization helps with the common723

problem that different columns have values in different orders of magnitude before normalization,724

for example tens of thousands for yearly income, and small numbers for number of bathrooms in725

the case of California housing. An additional advantage is that performance can be compared across726

datasets (approximately), highlighting strengths and weaknesses across different settings.727

On these datasets, we apply a random split into training and test dataset, where we dedicate 80%728

on the training dataset and 20% on the test dataset. Then, we run a pipeline where we evaluate the729

performance on for each dataset both on the Bayesian neural network implemented in Julia, and on730

the standard neural network implemented in PyTorch.731
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The Julia implementation uses a neural network with two hidden layers, and 64 neurons per layer.732

LeakyReLy is the activation function, and the default standard deviation at the last layer is set to 0.4.733

The PyTorch network uses two hidden layers with 64 neurons per hidden layer as well. The only734

difference in terms of architecture to the BNN is the fact that stardard ReLu is used. We train with735

the same learning rate of 3 · 10−3. When training with these static datasets which are relatively small,736

overfitting is a huge challenge. It is especially the challenge of overfitting, that should be addressed737

by our Bayesian neural networks. As the results will show, overfitting is a significant problem on738

these datasets for the PyTorch network. To tackle overfitting, several regularization techniques have739

been proposed. However, overfitting remains a fundamental flaw of the classical neural networks. To740

aim for a fair comparison, we add a weight-decay regularization to the default setup of the PyTorch741

networks. The specific weight decay parameter is 1 · 10−4.742

For both candidates, we use a batch size of 256. Training is done over a horizon of 500 epochs743

which corresponds to very different training lengths, due to the different sizes of the datasets.744

Hyperparameter tuning was done for none of the datasets.745

The primary metric to rate performance on our regression datasets is the root mean squared error746

between the labels and the predicted values. Because we have a standardized output, trivial bench-747

marks like the constant zero function give an RMSE of one. Hence, we expect RMSE values from748

the model to substantially improve over one.749

E.2 Results750

When running the training an evaluation pipeline, we measure the RMSE of the train and validation751

dataset after each batch. That naturally comes with small fluctuations, and a slightly uneven-looking752

learning curve. On the larger datasets, that implies a substantially lower variance of the loss estimation753

for the validation dataset, and a much smoother learning curve. On the smaller datasets, the evaluation754

set is quite small, and therefore, the variance is high.755

Dataset BNN Train BNN Val PyTorch Train PyTorch Val BNN Val /
PyTorch Val
(%)

Abalone 0.5748 0.5965 0.4643 0.6668 89.46%
Wine
Quality

0.7682 0.8095 0.3198 0.7722 104.83%

California
Housing

0.5455 0.5764 0.3427 0.4278 134.73%

Bike Shar-
ing

0.2219 0.2432 0.1557 0.216 112.58%

Forest
Fires

1.0537 1.2015 0.0302 0.4113 292.14%

Heart Fail-
ure

0.9957 0.9605 0.0034 0.9107 105.47%

Real
Estate
Taiwan

0.6229 0.5823 0.1438 0.5431 107.22%

Table 4: Comparison of minimum RMSE for BNN (Julia) and PyTorch approaches. The data was
obtained by running the respective training scripts for 500 epochs and measuring the root mean
squared error on training and validation splits.

In Table 4, the best performances on the datasets along a training run are reported. For each of the756

metrics, we are taking the minimum value over all trained batches. Due to the variance of these757

estimations, the minimum underestimates the true minimal loss. But the calculation and batch sizes758

are the the same for both setups, training and loss, so it does not affect the viability of the comparison.759

Note that the minimum for train and test are not necessarily obtained at the same step.760

As the comparison column in Table 4 show, the minimal root mean squared errors are similar for many761

datasets. On wine quality, and California housing, bike sharing, and real estate Taiwan, the PyTorch762

neural network has advantages in terms of pure regression performance, but only for California763
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housing this difference is considered strong. On the other datasets, PyTorch’s performance advantage764

is only slight, and within the range of hyperparameter tuning. As we will see in the later analysis,765

the BNN has not finished to learn after 500 epochs. Our experiment for 5,000 epochs reveils that766

the performance difference actually shrinks to x percent. On Abalone, the BNN’s pure performance767

is even superior. For forest fires, we see that the Bayesian neural network was not able to solve the768

regression problem in this setup (RMSE is larger than 1), but PyTorch achieved respectable predictive769

power. Neither of the two models was capable to actually solve the heart failure dataset, where both770

models gave only slightly better RMSE performance than one. The detailed learning curves for these771

four datasets with similar performance are plotted in Figure 5.772

A general trend that is visible both in Table 4 and in Figure 5 is the fact BNNs show a minimal level773

of overfitting, even without further regularization. Depending on the dataset, PyTorch shows high or774

very high levels of overfitting, even though regularization was applied.775

As one would expect, PyTorch’s overfitting problem is the least serious on California housing and776

bike sharing (Figure 5a and 5d), the datasets with the most available samples (California housing777

has 16,512 training samples, and bike sharing has 13,903 training samples). Over the course of the778

training, the root mean squared error of the validation and train dataset decrease together, but at779

around 1/5 of the entire training run, the validation loss stalls, and the training loss decreases further –780

the model is just overfitting.781

The BNN’s training on these datasets stays above PyTorch’s learning curves after the rapid first initial782

improvement, and slowly improves towards PyTorch’s level. While it matches PyTorch’s performance783

on bike sharing after 500 epochs, it still has a performance disadvantage on California Housing of784

34%. Nevertheless, with additional training, this performance difference shrinks down to only x785

percent after 5,000 epochs, a very respectable performance. However, the most notable feature on786

these two training runs is the observation that the BNN only shows minimal overfitting. The training787

and validation curve decrease on-par, the existing and expected slight overfitting does not increase788

by time. The minimal train RMSE is 0.546 compared to a validation RMSE of 0.576 on California789

housing in the first 500 epochs, only 5%! On PyTorch, we see 20% overfitting with increasing trend.790

On bike sharing, the BNN overfits by 9% compared to 28% for the PyTorch network. The fact that791

overfitting is not more severe on these datasets is thanks to the large number of samples, around three792

to four times more than the number of parameters of the model.7793

Wine quality and abalone both have roughly the same sample size as number of parameters. Therefore,794

we would expect that overfitting becomes a much more severe issue for these datasets. As Figure 5b795

and 5c show, the overfitting problem on these two datasets has increased to a severe level. In both796

cases, the overfitting starts right from the beginning, with a steady improvement of the train loss, but797

a validation loss that soon finds its minimum, and increases again. In the case of wine quality, this798

behavior is significant, but stable and smooth. On abalone however, the validation loss behaves very799

unstable, and never comes close to the BNN’s performance.800

The BNN gets close to its optimal performance very rapidly in both cases. The overall training is801

much faster than for California housing. Again, we see minimal levels of overfitting, a behavior that802

is very similar to the analysis of the previous two datasets. Moreover, the existing overfitting does not803

increase with time but stays at a similar level throughout the training horizon of 500 epochs.804

The last three datasets, forest fires, heart failure and real estate Taiwan, are quite important, and also805

difficult to analyze. They only have a few hundred data points, and tend to be very imbalanced. On806

the UCI repo and in the literature, they are marked as very difficult datasets. For example, most807

samples in forest fires contain a fire with zero acres burned, and only very few samples with a high808

amount of burned wood. Additionally, the validation datasets get so small, that biases could easily809

find their way into the validation dataset. The concrete performance numbers must therefore be810

treated with care, and the strange effect of smaller validation loss than train loss can be observed for811

both PyTorch and BNN on some of the runs. For example, it seems very likely that PyTorch’s good812

performance on forest fires was obtained randomly by lucky parameter initialization instead of actual813

performance. Hence, based on Figure 5e, Figure 5f, and Table 4, we consider the forest fire dataset814

and the heart failure datasets unsolved by both models. As we would expect for a model with more815

than 10x more parameter than training samples, the train loss goes to zero for the PyTorch model.816

7The models have two fully connected hidden layers, one transition to the first layer, and the transition to the
regression output. Hence, the models have 64 + 642 + 64 = 4224 weights.

25



(a) California Housing (b) Abalone

(c) Wine Quality (d) Bike Sharing

(e) Forest Fires (f) Heart Failure

(g) Real Estate Taiwan

Figure 5: Learning curves of approximate message-passing Bayesian neural networks against PyTorch
neural networks
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The Bayesian neural network is unable to learn the datasets as well, but it does not overfit. Its training817

loss never creates the impression that the loss was any lower than it actually is.818

The dataset on estimating Taiwanese real estate (learning curve Figure 5g) is the only of the small819

datasets that actually gets solved to an acceptable level by both models. Again, we see very heavy820

overfitting by the PyTorch model, and no overfitting by the BNN. (Actually, this is one of the821

cases where the validation loss is lower than the train loss, probably due to a biased train/test split.)822

Moreover, the BNN achieves this performance after only a few epochs.823

From this analysis, we can note the following learnings:824

1. Our approximate message-passing Bayesian neural networks can achieve similar perfor-825

mance like PyTorch neural networks with the same architecture. In most cases, they stay826

slightly behind in terms of raw performance, but sometimes outperform the standard imple-827

mentation.828

2. Our Bayesian neural networks apparently do not share the fundamental flaw of overfitting.829

Their train loss often is slightly lower than the validation loss, as it is expected from any type830

of machine learning model, but the train and validation loss do not detach and differences in831

these two curves remain low.832

3. Bayesian neural networks learn fast on small datasets, and learn slower on larger datasets833

like California housing.834

The last point is worth some deeper investigation. Why does the model learn the Taiwanese real835

estate after a few epochs, and requires many more epochs for California housing, although one single836

epoch is already 40 times larger than on the Taiwanese real estate dataset? Bayesian model’s learning837

gets significantly slower over time. While the learning rate remains constant on the standard PyTorch838

implementation, the speed of change of the weights in the BNN decreases with the variances of the839

weights. And the variances decrease once more data has been learned. Therefore, a sample at the840

end of a large dataset has less power to change the model’s parameters, and learning slows down. As841

a conclusion, the BNNs are especially valuable when only few training samples are available, and842

when overfitting should be avoided.843

E.3 Can the BNNs estimate their own uncertainty?844

The absence of overfitting on BNNs is a side product of the metric that Bayesian methods traditionally845

try to optimize, the calibration. In contrast to classic neural networks, our BNNs output their mean846

µ(x) together with an estimated standard deviation σ(x) expressing the uncertainty for an input x.847

We can use the ground truth yx to analyze how well the uncertainty was estimated. Because the848

ground-truth values were normalized during pre-processing, we expect the µs to also have a mean849

close to zero, with a variance of roughly one.8 Specifically, we can calculate the z-score of the850

observation as851

z(x) =
µ(x)− yx

σ(x)
. (7)

If the model was perfectly calibrated, these z-scores would follow a perfect standard normal distribu-852

tion. That does not mean that the model perfectly predicts the ground truth, and it also does not mean853

that the uncertainty estimation is correct every single time. Instead, it means that the errors follow the854

same distribution as predicted by the model. As a rule of thumb, in 68% of the cases, yx should be855

within [µ(x)− σ(x), µ(x) + σ(x)], in 95% of the cases within [µ(x)− 2σ(x), µ(x) + 2σ(x)], and856

in 99% within [µ(x)− 3σ(x), µ(x) + 3σ(x)].857

In our experiments, we take the model after 500 epochs for each of the datasets, and calculate858

the z-scores. We can blindly take the last model because we do not see decreasing performance859

or problematic overfitting for the BNNs. Then, we use kernel density estimation with Gaussian860

kernels to obtain an empirical error distribution that is compared to the standard normal distribution.861

To systematically compare the two distributions, we could report the approximate KL divergence.862

However, few of our readers have an intuitive understanding of what specific KL numbers mean,863

and we do not have a comparison partner. Hence, we illustrate the distributions in Figure 6 to best864

communicate the calibration of the BNN.865

8Of course, the empiric variance of these µs should not be mixed up with σ(x), which expresses a completely
different concept, and it is usually much smaller than zero.
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(a) California Housing (b) Abalone

(c) Wine Quality (d) Bike Sharing

(e) Forest Fires (f) Heart Failure

(g) Real Estate Taiwan

Figure 6: Calibration of the BNN: For each of the datasets, we plot the empiric z-score distribution
and a standard normal distribution for reference. All plots are obtained for the validation dataset.
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As we can see, the calibration is quite good on most of these datasets. When it comes to California866

housing (Figure 6a), and abalone (Figure 6b), the uncertainty of the model matches the errors quite867

well. On wine quality (Figure 6c), the model underestimates the errors, but the uncertainty estimation868

is still usable. The opposite is true for the bike sharing dataset. As previously discussed, the model869

solves this dataset very well, and the predicted uncertainties underestimate the true errors (Figure 6d).870

The wine quality dataset and the bike sharing dataset cannot be solved by the BNN. Hence, the error871

distributions are rather weak (Figure 6e and 6d). In contrast, we see very strong calibration on the872

Taiwanese real estate dataset (Figure 6g), although there are a few more outliers than included in the873

distribution.874

We can conclude that the BNN manages the task of uncertainty prediction quite well. Hence, we875

recommend it to practitioners who are not satisfied with just a prediction, but also want a well-876

calibrated uncertainty estimation.877

F Tables of Message Equations878

In the following, we provide tables summarizing all message equations used throughout our model.879

The tables are divided into three categories: linear algebra operations (Table 5), training signals880

(Table 6), and activation functions (Table 7). Each table contains the relevant forward and backward881

message equations, along with illustrations of the corresponding factor graph where necessary. These882

summaries serve as a reference for the mathematical operations performed during inference and883

training, and they will be valuable for factor graph modeling across various domains beyond NNs.884
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Table 5: Message equations for linear algebra: Calculating backward messages in natural parameters
is preferable as it handles edge cases like ad = 0 or ρz = 0 where location-scale equations are
ill-defined. This approach also enhances numerical stability by avoiding division by very small
quantities. Note that the inner product messages are simply compositions of the product and weighted
sum messages with ai = 1, i = 1, . . . , d.
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If c is known, many edges become constant and can be omitted. Assume w.l.o.g. c = d,
then ad is connected to d − 1 factors and all other ai to only one each. The messages to
a1, . . . , ad follow from the weighted sum factor, given Gaussian approximations of the
messages from zi. We derive these by moment-matching the marginals of zi (see Building
Block 2) and dividing by the message from the weighted sum factor. To stabilize training,
we regularize the variance of mf→ai by a factor of ϕ(0;µc − µi, σ

2
i + σ2

c ) and multiply
mf→ai(ai) by N (ac; 1 if i = c else − 1, γ2), effectively mixing in one-hot regression
factors during training.

Table 6: Message equations for training signals. Note that the backward messages only apply in the
case in which the target is known, i.e., on the training branches. On the prediction branch we only do
foward passes.
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See Building Block 1 for the derivation of this equation.
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To compute the marginal backward message, set αback = α−1

and swap ma→f and mz→f in the equation
Table 7: Message equations for LeakyReLU with ReLU as the special case α = 0.
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the paper has limitations, but those are not discussed in the paper.907

• The authors are encouraged to create a separate "Limitations" section in their paper.908

• The paper should point out any strong assumptions and how robust the results are to909

violations of these assumptions (e.g., independence assumptions, noiseless settings,910

model well-specification, asymptotic approximations only holding locally). The authors911

should reflect on how these assumptions might be violated in practice and what the912

implications would be.913

• The authors should reflect on the scope of the claims made, e.g., if the approach was914

only tested on a few datasets or with a few runs. In general, empirical results often915

depend on implicit assumptions, which should be articulated.916

• The authors should reflect on the factors that influence the performance of the approach.917

For example, a facial recognition algorithm may perform poorly when image resolution918

is low or images are taken in low lighting. Or a speech-to-text system might not be919

used reliably to provide closed captions for online lectures because it fails to handle920

technical jargon.921

• The authors should discuss the computational efficiency of the proposed algorithms922

and how they scale with dataset size.923

• If applicable, the authors should discuss possible limitations of their approach to924

address problems of privacy and fairness.925

• While the authors might fear that complete honesty about limitations might be used by926

reviewers as grounds for rejection, a worse outcome might be that reviewers discover927

limitations that aren’t acknowledged in the paper. The authors should use their best928

judgment and recognize that individual actions in favor of transparency play an impor-929

tant role in developing norms that preserve the integrity of the community. Reviewers930

will be specifically instructed to not penalize honesty concerning limitations.931

3. Theory Assumptions and Proofs932

Question: For each theoretical result, does the paper provide the full set of assumptions and933

a complete (and correct) proof?934

Answer: [Yes]935

Justification: See Appendix.936

Guidelines:937

• The answer NA means that the paper does not include theoretical results.938

• All the theorems, formulas, and proofs in the paper should be numbered and cross-939

referenced.940

• All assumptions should be clearly stated or referenced in the statement of any theorems.941

• The proofs can either appear in the main paper or the supplemental material, but if942

they appear in the supplemental material, the authors are encouraged to provide a short943

proof sketch to provide intuition.944

• Inversely, any informal proof provided in the core of the paper should be complemented945

by formal proofs provided in appendix or supplemental material.946

• Theorems and Lemmas that the proof relies upon should be properly referenced.947

4. Experimental Result Reproducibility948

Question: Does the paper fully disclose all the information needed to reproduce the main ex-949

perimental results of the paper to the extent that it affects the main claims and/or conclusions950

of the paper (regardless of whether the code and data are provided or not)?951

Answer: [Yes]952
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Justification: We use reproducible problem examples and provide supplemental code.953

Guidelines:954

• The answer NA means that the paper does not include experiments.955

• If the paper includes experiments, a No answer to this question will not be perceived956

well by the reviewers: Making the paper reproducible is important, regardless of957

whether the code and data are provided or not.958

• If the contribution is a dataset and/or model, the authors should describe the steps taken959

to make their results reproducible or verifiable.960

• Depending on the contribution, reproducibility can be accomplished in various ways.961

For example, if the contribution is a novel architecture, describing the architecture fully962

might suffice, or if the contribution is a specific model and empirical evaluation, it may963

be necessary to either make it possible for others to replicate the model with the same964

dataset, or provide access to the model. In general. releasing code and data is often965

one good way to accomplish this, but reproducibility can also be provided via detailed966

instructions for how to replicate the results, access to a hosted model (e.g., in the case967

of a large language model), releasing of a model checkpoint, or other means that are968

appropriate to the research performed.969

• While NeurIPS does not require releasing code, the conference does require all submis-970

sions to provide some reasonable avenue for reproducibility, which may depend on the971

nature of the contribution. For example972

(a) If the contribution is primarily a new algorithm, the paper should make it clear how973

to reproduce that algorithm.974

(b) If the contribution is primarily a new model architecture, the paper should describe975

the architecture clearly and fully.976

(c) If the contribution is a new model (e.g., a large language model), then there should977

either be a way to access this model for reproducing the results or a way to reproduce978

the model (e.g., with an open-source dataset or instructions for how to construct979

the dataset).980

(d) We recognize that reproducibility may be tricky in some cases, in which case981

authors are welcome to describe the particular way they provide for reproducibility.982

In the case of closed-source models, it may be that access to the model is limited in983

some way (e.g., to registered users), but it should be possible for other researchers984

to have some path to reproducing or verifying the results.985

5. Open access to data and code986

Question: Does the paper provide open access to the data and code, with sufficient instruc-987

tions to faithfully reproduce the main experimental results, as described in supplemental988

material?989

Answer: [Yes]990

Justification: We provide supplemental code and will make it open access.991

Guidelines:992

• The answer NA means that paper does not include experiments requiring code.993

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/994

public/guides/CodeSubmissionPolicy) for more details.995

• While we encourage the release of code and data, we understand that this might not be996

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not997

including code, unless this is central to the contribution (e.g., for a new open-source998

benchmark).999

• The instructions should contain the exact command and environment needed to run to1000

reproduce the results. See the NeurIPS code and data submission guidelines (https:1001

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.1002

• The authors should provide instructions on data access and preparation, including how1003

to access the raw data, preprocessed data, intermediate data, and generated data, etc.1004

• The authors should provide scripts to reproduce all experimental results for the new1005

proposed method and baselines. If only a subset of experiments are reproducible, they1006

should state which ones are omitted from the script and why.1007
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• At submission time, to preserve anonymity, the authors should release anonymized1008

versions (if applicable).1009

• Providing as much information as possible in supplemental material (appended to the1010

paper) is recommended, but including URLs to data and code is permitted.1011

6. Experimental Setting/Details1012

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1013

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1014

results?1015

Answer: [Yes]1016

Justification: We explain all chosen hyperparameters.1017

Guidelines:1018

• The answer NA means that the paper does not include experiments.1019

• The experimental setting should be presented in the core of the paper to a level of detail1020

that is necessary to appreciate the results and make sense of them.1021

• The full details can be provided either with the code, in appendix, or as supplemental1022

material.1023

7. Experiment Statistical Significance1024

Question: Does the paper report error bars suitably and correctly defined or other appropriate1025

information about the statistical significance of the experiments?1026

Answer: [Yes]1027

Justification: See Appendix.1028

Guidelines:1029

• The answer NA means that the paper does not include experiments.1030

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1031

dence intervals, or statistical significance tests, at least for the experiments that support1032

the main claims of the paper.1033

• The factors of variability that the error bars are capturing should be clearly stated (for1034

example, train/test split, initialization, random drawing of some parameter, or overall1035

run with given experimental conditions).1036

• The method for calculating the error bars should be explained (closed form formula,1037

call to a library function, bootstrap, etc.)1038

• The assumptions made should be given (e.g., Normally distributed errors).1039

• It should be clear whether the error bar is the standard deviation or the standard error1040

of the mean.1041

• It is OK to report 1-sigma error bars, but one should state it. The authors should1042

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis1043

of Normality of errors is not verified.1044

• For asymmetric distributions, the authors should be careful not to show in tables or1045

figures symmetric error bars that would yield results that are out of range (e.g. negative1046

error rates).1047

• If error bars are reported in tables or plots, The authors should explain in the text how1048

they were calculated and reference the corresponding figures or tables in the text.1049

8. Experiments Compute Resources1050

Question: For each experiment, does the paper provide sufficient information on the com-1051

puter resources (type of compute workers, memory, time of execution) needed to reproduce1052

the experiments?1053

Answer: [Yes]1054

Justification: See Appendix.1055

Guidelines:1056

• The answer NA means that the paper does not include experiments.1057
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1058

or cloud provider, including relevant memory and storage.1059

• The paper should provide the amount of compute required for each of the individual1060

experimental runs as well as estimate the total compute.1061

• The paper should disclose whether the full research project required more compute1062

than the experiments reported in the paper (e.g., preliminary or failed experiments that1063

didn’t make it into the paper).1064

9. Code Of Ethics1065

Question: Does the research conducted in the paper conform, in every respect, with the1066

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1067

Answer: [Yes]1068

Justification: Given the considered problem, there are no ethical issues.1069

Guidelines:1070

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1071

• If the authors answer No, they should explain the special circumstances that require a1072

deviation from the Code of Ethics.1073

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1074

eration due to laws or regulations in their jurisdiction).1075

10. Broader Impacts1076

Question: Does the paper discuss both potential positive societal impacts and negative1077

societal impacts of the work performed?1078

Answer: [Yes]1079

Justification: We point to potential applications of the solution.1080

Guidelines:1081

• The answer NA means that there is no societal impact of the work performed.1082

• If the authors answer NA or No, they should explain why their work has no societal1083

impact or why the paper does not address societal impact.1084

• Examples of negative societal impacts include potential malicious or unintended uses1085

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1086

(e.g., deployment of technologies that could make decisions that unfairly impact specific1087

groups), privacy considerations, and security considerations.1088

• The conference expects that many papers will be foundational research and not tied1089

to particular applications, let alone deployments. However, if there is a direct path to1090

any negative applications, the authors should point it out. For example, it is legitimate1091

to point out that an improvement in the quality of generative models could be used to1092

generate deepfakes for disinformation. On the other hand, it is not needed to point out1093

that a generic algorithm for optimizing neural networks could enable people to train1094

models that generate Deepfakes faster.1095

• The authors should consider possible harms that could arise when the technology is1096

being used as intended and functioning correctly, harms that could arise when the1097

technology is being used as intended but gives incorrect results, and harms following1098

from (intentional or unintentional) misuse of the technology.1099

• If there are negative societal impacts, the authors could also discuss possible mitigation1100

strategies (e.g., gated release of models, providing defenses in addition to attacks,1101

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1102

feedback over time, improving the efficiency and accessibility of ML).1103

11. Safeguards1104

Question: Does the paper describe safeguards that have been put in place for responsible1105

release of data or models that have a high risk for misuse (e.g., pretrained language models,1106

image generators, or scraped datasets)?1107

Answer: [NA]1108

Justification: There are no such risks.1109
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Guidelines:1110

• The answer NA means that the paper poses no such risks.1111

• Released models that have a high risk for misuse or dual-use should be released with1112

necessary safeguards to allow for controlled use of the model, for example by requiring1113

that users adhere to usage guidelines or restrictions to access the model or implementing1114

safety filters.1115

• Datasets that have been scraped from the Internet could pose safety risks. The authors1116

should describe how they avoided releasing unsafe images.1117

• We recognize that providing effective safeguards is challenging, and many papers do1118

not require this, but we encourage authors to take this into account and make a best1119

faith effort.1120

12. Licenses for existing assets1121

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1122

the paper, properly credited and are the license and terms of use explicitly mentioned and1123

properly respected?1124

Answer: [NA]1125

Justification: We cite relevant work.1126

Guidelines:1127

• The answer NA means that the paper does not use existing assets.1128

• The authors should cite the original paper that produced the code package or dataset.1129

• The authors should state which version of the asset is used and, if possible, include a1130

URL.1131

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1132

• For scraped data from a particular source (e.g., website), the copyright and terms of1133

service of that source should be provided.1134

• If assets are released, the license, copyright information, and terms of use in the1135

package should be provided. For popular datasets, paperswithcode.com/datasets1136

has curated licenses for some datasets. Their licensing guide can help determine the1137

license of a dataset.1138

• For existing datasets that are re-packaged, both the original license and the license of1139

the derived asset (if it has changed) should be provided.1140

• If this information is not available online, the authors are encouraged to reach out to1141

the asset’s creators.1142

13. New Assets1143

Question: Are new assets introduced in the paper well documented and is the documentation1144

provided alongside the assets?1145

Answer: [NA]1146

Justification: The paper does not release new assets.1147

Guidelines:1148

• The answer NA means that the paper does not release new assets.1149

• Researchers should communicate the details of the dataset/code/model as part of their1150

submissions via structured templates. This includes details about training, license,1151

limitations, etc.1152

• The paper should discuss whether and how consent was obtained from people whose1153

asset is used.1154

• At submission time, remember to anonymize your assets (if applicable). You can either1155

create an anonymized URL or include an anonymized zip file.1156

14. Crowdsourcing and Research with Human Subjects1157

Question: For crowdsourcing experiments and research with human subjects, does the paper1158

include the full text of instructions given to participants and screenshots, if applicable, as1159

well as details about compensation (if any)?1160
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Answer: [NA]1161

Justification: The paper does not involve crowdsourcing nor research with human subjects.1162

Guidelines:1163

• The answer NA means that the paper does not involve crowdsourcing nor research with1164

human subjects.1165

• Including this information in the supplemental material is fine, but if the main contribu-1166

tion of the paper involves human subjects, then as much detail as possible should be1167

included in the main paper.1168

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1169

or other labor should be paid at least the minimum wage in the country of the data1170

collector.1171

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1172

Subjects1173

Question: Does the paper describe potential risks incurred by study participants, whether1174

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1175

approvals (or an equivalent approval/review based on the requirements of your country or1176

institution) were obtained?1177

Answer: [NA]1178

Justification: The paper does not involve crowdsourcing nor research with human subjects.1179

Guidelines:1180

• The answer NA means that the paper does not involve crowdsourcing nor research with1181

human subjects.1182

• Depending on the country in which research is conducted, IRB approval (or equivalent)1183

may be required for any human subjects research. If you obtained IRB approval, you1184

should clearly state this in the paper.1185

• We recognize that the procedures for this may vary significantly between institutions1186

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1187

guidelines for their institution.1188

• For initial submissions, do not include any information that would break anonymity (if1189

applicable), such as the institution conducting the review.1190
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