
Under review as a conference paper at ICLR 2024

DITTO: QUANTIZATION-AWARE SECURE INFERENCE
OF TRANSFORMERS UPON MPC

Anonymous authors
Paper under double-blind review

ABSTRACT

Due to the rising privacy concerns on sensitive client data and trained models like
Transformers, secure multi-party computation (MPC) techniques are employed to
enable secure inference despite attendant overhead. Existing works attempt to re-
duce the overhead using more MPC-friendly non-linear function approximations.
However, the integration of quantization widely used in plaintext inference into
the MPC domain remains unclear. To bridge this gap, we propose the framework
named Ditto to enable more efficient quantization-aware secure Transformer
inference. Concretely, we first incorporate an MPC-friendly quantization into
Transformer inference and employ a quantization-aware distillation procedure to
maintain the model utility. Then, we propose MPC primitives to support the type
conversions that are essential in quantization and enable the quantization-aware
MPC execution of secure quantized inference. As a result, the computation and
communication overhead are reduced, thus enhancing the overall efficiency. We
conduct extensive experiments on Bert and GPT2 models to evaluate the perfor-
mance of Ditto. The results demonstrate that Ditto is about 3.14 ∼ 4.40×
faster than MPCFormer (ICLR 2023) and 1.44 ∼ 2.35× faster than the state-of-
the-art work PUMA with negligible utility degradation.

1 INTRODUCTION

The recent achievements of pre-trained Transformer Vaswani et al. (2017) models in domains like
visual recognition Dosovitskiy et al. (2021); Chen et al. (2021) and natural language processing De-
vlin et al. (2019); Radford et al. (2019) have led to their widespread adoption for machine learning
(ML) inference services. However, despite their increasing popularity, a major concern revolves
around data security. In ML services like ChatGPT Brown et al. (2020), the model owner offers
an API that receives user prompts as input and generates answers in return. However, this process
involves sending user prompts to the server in plaintext, potentially exposing sensitive information.
An alternative approach is to employ secure multi-party computation (MPC) techniques Shamir
(1979); Yao (1986) based on cryptographic primitives to offer provable security.

However, the huge computation and communication overhead introduced by MPC techniques hin-
ders the application of MPC-based secure Transformer inference. For one thing, non-linear func-
tions like GeLU are frequently invoked, which are extremely expensive in MPC. For another, the
overhead is amplified in Transformers due to their large model size. In general, Transformers have
millions to billions of parameters and are orders of magnitude larger than traditional ML models.
As to the former problem, Chou et al. (2018); Li et al. (2023); Akimoto et al. (2023); Liu & Liu
(2023) replace these non-linear functions with MPC-friendly approximations. Regarding the latter,
there have been practices in plaintext inference Dettmers et al. (2022); Kim et al. (2021) that lever-
age mixed-precision quantization to quantize the model parameters to lower bits and employ low-bit
integer arithmetic, thus reducing the memory requirement and accelerating the inference. However,
plaintext quantization cannot be trivially incorporated into secure inference upon MPC. It is
worth noting that there are several cross-domain gaps between the worlds of ML and MPC since

• ML experts mainly focus on designing delicate quantization methods to improve infer-
ence efficiency, which, however, may not be MPC-friendly. The essential type conversions
between data types like INT8 and FP16 in plaintext quantization are not trivial in MPC.
Besides, applying quantization directly may result in a substantial model utility drop.

1

Under review as a conference paper at ICLR 2024

• MPC experts mainly focus on constructing efficient underlying primitives and may not
be aware of employing mixed-precision quantization to enhance end-to-end inference effi-
ciency, thus lacking the capability to support quantization-aware secure inference.

Therefore, the problem naturally arises:

Can we perform quantization-aware secure inference with negligible utility degradation?

As an answer to the above question, we develop Ditto, an easy-to-deploy framework for secure and
efficient Transformer inference based on a co-design of novel MPC primitives and ML quantization.
Specifically, our contributions are as follows:

• MPC-friendly Quantization-Aware Distillation. We propose to incorporate static dyadic
quantization (i.e., from floating-point to fixed-point representation) to avoid CPU-cheap yet
MPC-expensive dynamic quantization operations like clip and min/max. With lower
quantization precision, a smaller bitwidth is required, thus reducing the computation and
communication overhead in secure inference. Besides, we utilize knowledge distillation to
perform quantization-aware distillation on pre-trained models to retain the model utility.

• Secure Quantized Inference Framework. To the best of our knowledge, Ditto is the
first framework that supports the MPC execution of quantization-aware secure inference.
Concretely, the layer-wise quantized computations are automatically mapped to secure
computations over different data types. To do so, we propose MPC primitives to support
the interchangeable type conversions. We will open-source the code once accepted.

• Empirical Evaluations. We evaluate the performance of Ditto in secure inference over
several commonly used Transformer models, i.e., Bert and GPT2. The performance is
mainly evaluated from two metrics: the model utility and efficiency. The evaluation results
indicate that efficiency improvement can be achieved without a significant utility drop.
Compared to prior works, Ditto is about 3.14 ∼ 4.40× faster than MPCFormer Li et al.
(2023) and 1.44 ∼ 2.35× faster than PUMA Dong et al. (2023).

2 RELATED WORK

Transformer-based models have gained significant attention in different scenarios Devlin et al.
(2019); Radford et al. (2019); Dosovitskiy et al. (2021), especially after the popularity of large
language models Touvron et al. (2023); OpenAI (2023). With their superior performance, Trans-
formers are widely used in machine learning inference services Bommasani et al. (2021); openai.
To guarantee the security of input data and trained model parameters, secure inference based on
secure multi-party computation (MPC) has been extensively studied.

MPC originates from the Billionaire problem Yao (1986); Shamir (1979) and aims to enable mul-
tiple untrusted parties to jointly compute a function while keeping the inputs private. There have
been many prior works working on privacy-preserving machine learning (mainly focusing on con-
volutional neural networks), including two-party computation (2PC) setting Mohassel & Zhang
(2017); Patra et al. (2021); Huang et al. (2022), 3PC setting Mohassel & Rindal (2018); Tan et al.
(2021); Wagh et al. (2021) and even 4PC setting Byali et al. (2020); Dalskov et al. (2021). Re-
cent works Li et al. (2023); Hao et al. (2022); Akimoto et al. (2023); Liang et al. (2023); Liu &
Liu (2023); Dong et al. (2023) further study the secure inference of more complex Transformer
models. These approaches mainly use MPC-friendly approximations for non-linear functions. We
take the first step towards leveraging MPC-friendly quantization to enhance the efficiency. Among
these works, 3PC in semi-honest and honest-majority setting Li et al. (2023); Dong et al. (2023)
achieves the overall best efficiency. In this work, we also adopt this setting.

3 BACKGROUND

In this section, we briefly introduce the Transformer models and the technology of underlying MPC
protocols, specifically 2-out-of-3 replicated secret sharing (RSS). Finally, we introduce the quanti-
zation methods, along with the fixed-point quantization used in this work.

2

Under review as a conference paper at ICLR 2024

3.1 TRANSFORMER AND ITS VARIANTS

Transformer models generally consist of three parts: 1) the Embedding module that maps a dis-
crete token to its continuous hidden vector representation; 2) a stack of Transformer Block; 3) the
last Prediction module that maps the hidden vector to task-specific representation. For Trans-
former Block, it typically has Attention and Feed-Forward Network (FFN) modules.

Attention module can be formulated as Softmax(Q · K⊤ + M) · V, where Q,K,V denote the
vectors obtained by the matrix multiplication of input activation and three weight matrices, and M
denotes the attention mask. The two widely-used variants, i.e., Bert and GPT, use different masks.

FFN module can be formulated as Linear(GeLU(Linear(x,w0, b0)), w1, b1), where wi, bi denote the
parameters for i-th linear layer. It consists of two linear layers and an activation function GeLU.

3.2 SECURE MULTI-PARTY COMPUTATION

2-out-of-3 replicated secret sharing (RSS) Araki et al. (2016); Mohassel & Rindal (2018), a widely-
used MPC technique, runs by splitting a secret value x into several random values (denoted as
shares) as JxK = {x0, x1, x2}, s.t., x = x0 + x1 + x2 mod 2ℓ, where ℓ denotes the ring size. All
the computations are performed over the ring Zℓ

2. In RSS, the three shares are distributed to three
computing parties P = {P0, P1, P2}, where Pi holds two shares {xi, xi+1} (x3 corresponds to x0).

In this paper, we use [[·]]ℓ to denote RSS over Z2ℓ . For ℓ ≥ 1 that supports arithmetic operations like
+,−, ·, we denote such type as arithmetic sharing. In the case of ℓ = 1 that only supports boolean
operations like bit-wise ⊕ and ∧, we refer to this type as boolean sharing.

In order to incorporate floating-point arithmetic, which is extensively used in ML, into MPC that op-
erates over a ring, we employ fixed-point quantization to encode floating-point numbers as integers.
This approach can be considered as a branch of quantization techniques (refer to Section 3.3).

Linear Algebra. Let a, b, c be public constants and JxK, JyK be arithmetic-shared values. aJxK +
bJyK + c only involves addition and multiplication by a public constant. Hence, Jax + by + cK can
be computed as (ax0 + by0 + c, ax1 + by1, ax2 + by2) locally. While for the multiplication of
two shared values, Jx · yK can be decomposed into (x0 + x1 + x2) · (y0 + y1 + y2) =

∑2
i=0 zi =

(xiyi+xi+1yi+xiyi+1), with Pi computes zi. To obtain Jx ·yK, the parties should perform re-share
zi Mohassel & Rindal (2018), which requires communication with each other.

Non-linear Functions. In addition to linear algebra operations, non-linear functions such as Soft-
max and Layer Normalization are commonly employed in Transformer inference. To implement
these functions, we leverage several underlying MPC computation primitives proposed in prior
works Mohassel & Rindal (2018). We omit the descriptions for primitives like comparison, which
are used as black boxes, and only present the functionalities of primitives explicitly mentioned in
this paper. We refer to Dong et al. (2023); Lu et al. (2020) to construct Exp(JxK) = JexK and
rSqrt(JxK) = J1/

√
xK.

3.3 MODEL QUANTIZATION

Quantization Gholami et al. (2021) refers to converting floating-point numbers to low-bit integer
representation like 8-bit integer (INT8). This can be formulated as x̂ = Int(Clip(x,min,max)/S),
where min,max denote the clipping bound and S denotes the quantization scale. Generally, quan-
tization methods can be divided into two categories: post-training quantization (PTQ) Yao et al.
(2022); Dettmers et al. (2022); Frantar et al. (2023) and quantization-aware training (QAT) Kim
et al. (2021); Yao et al. (2021). The former PTQ methods allow one-shot quantization while requir-
ing more complex quantization schemes, e.g., more fine-grained token-wise quantization Yao et al.
(2022) that uses different S or dynamic quantization Dettmers et al. (2022) that requires computing
min,max. The latter QAT methods allow for more diverse quantization by quantizing the weights
and activations during the training of the model. Hence, cheaper quantization methods like static
quantization are feasible despite the cost of re-training the model.

Most of the quantization methods utilize floating-point scales to achieve adequate precision. Among
these works, dyadic quantization Yao et al. (2021); Kim et al. (2021) is a typical class for integer-
only quantization, where the scale S is a dyadic number c/2f , c is an integer and f is the precision

3

Under review as a conference paper at ICLR 2024

bit. In this paper, we employ a modified version called fixed-point quantization (S = 1/2f , with
c = 1) to accommodate floating-point computations into fixed-point arithmetic, which is crucial in
the context of MPC. Fixed-point quantization involves converting floating-point numbers into ℓ-bit
integers using two’s complement representation, where the f lower bits represent the fractional part.
Mathematically, this can be expressed as x̂ = FXPf

ℓ (x) = ⌊x ∗ 2f⌉ mod 2ℓ.

4 DESIGN

In this section, we begin by introducing the high-level workflow of Ditto. Then we elaborate on
two ingredients in Ditto: 1) the MPC-friendly quantization and distillation of Transformers; 2)
the quantization-aware secure inference of the quantized and distilled model upon MPC.

4.1 HIGH-LEVEL WORKFLOW

Setting. In this paper, we consider the inference scenario, where the model owner provides a trained
model M, and the client provides input data x for the inference task. The inference computation
can be formulated as y = Mθ(x), where θ denotes the parameters for the model M. The security
concern is that both the parameters θ and input data x are unknown to each other, along with potential
attackers. Only the inference result y can be revealed to the client.

Similar to prior works Li et al. (2023); Dong et al. (2023), we consider the secure outsourced 3PC
setting. That is, we offload the inference computation to an MPC system consisting of three com-
puting parties P = {P0, P1, P2}. The client encrypts JxK using RSS and sends the shares to corre-
sponding computing parties. Similarly, the model owner encrypts the model parameters θ and sends
JθK to P . The computing parties P then carry out the secure inference and obtain the inference result
JyK. P then sends all the shares of y to the client, who can reveal the plaintext of y.

Security Model. In the MPC system, we consider semi-honest and honest-majority adversary Dong
et al. (2023); Tan et al. (2021), where the adversary corrupts no more than half of the computing
parties (one exactly in 3PC) and strictly follow the underlying protocol to perform computations
but might try to crack sensitive information by collecting and analyzing the messages they receive.
We note that output privacy, where the inference outputs can be utilized to infer information like
membership Shokri et al. (2017), is beyond the scope.

With the setting and security model in mind, we hereby present the high-level workflow of Ditto
in Figure 1. In general, this is a two-step inference scheme via a co-design of ML quantization and
efficient MPC computation. The first step (the upper left part) is quantizing and distilling the model
to a more MPC-friendly version (Section 4.2). This step is performed by the model owner locally
using plaintext computation. The second step (the bottom part) involves quantization-aware secure
inference of the MPC-friendly model obtained from the first step. We design novel MPC primitives
to support essential type conversion in quantization (Section 4.3). This step is conducted by the
MPC framework, with the model owner and data holder providing inputs.

Fine-tuned
Transformer

Model Owner Data Holder

Plaintext Ciphertext

MPC Framework

Quantized &
Approximated Model

Downstream
Dataset

① MPC-friendly Quantization

Full-precision &
Accurate Model

Distilled Model

② Quantization-aware
Distillation

Hidden States

Logits
Personal Data

"

Encrypted Data
"Model

Quantization Config
Model

Parameters

Encrypted Model
ℳ

③ Quantization-aware
MPC Execution

ℳ (/)

I am Julia and …
I am going to school…

Figure 1: High-level workflow of Ditto.

4

Under review as a conference paper at ICLR 2024

4.2 MPC-FRIENDLY MODEL QUANTIZATION AND DISTILLATION

4.2.1 MPC-FRIENDLY FIXED-POINT MODEL QUANTIZATION

The necessity of model quantization is amplified in secure inference upon MPC. Concretely, the
MPC-based secure inference requires communicating messages between the computing parties. The
communication size depends on the bitwidth of messages. Therefore, by employing quantization to
reduce the bitwidth, the overall communication size can be theoretically reduced, leading to im-
proved inference efficiency. The feasibility of using low-precision quantization is also evidenced
in previous works. As observed in Bombari et al. (2022), the neural network models are typi-
cally over-parameterized, thus leaving room for reducing the precision and computing with lower
bitwidth while maintaining the model utility. The recent success of quantization in large language
models Dettmers et al. (2022); Frantar et al. (2022) also prove the feasibility of quantization in more
complex and deeper models. Whereas most existing works focus on plaintext inference, there exist
several gaps between plaintext quantized inference and secure quantized inference.

Gap 1: Non-linear functions are different in MPC. Most existing plaintext quantization methods
use simulated quantization, where the computation of non-linear functions like GeLU and Softmax
still operates over floating point arithmetic, thus requiring de-quantizing the quantized integer in-
puts Bai et al. (2021). Furthermore, the quantization scales are typically stored in floating-point
numbers, thus involving complex floating-point arithmetic to convert between different scales. This
is not feasible in MPC since all the computations, including non-linear functions and scale conver-
sions, should be computed using integer-only arithmetic over rings.

Solution. To facilitate integer-only computations, we employ an modified dyadic quantiza-
tion Kim et al. (2021); Yao et al. (2021) to quantize all the weights and activations into fixed-
point numbers, where the quantization scale is in the form of 1/2f . In this way, the lower f bits
denote the fractional part, and the conversion between different scales can be implemented using
left-shift or right-shift (aka. truncation Mohassel & Rindal (2018); Escudero et al. (2020)), which is
much cheaper in MPC. Although there is support for secure floating-point computation Rathee et al.
(2023), its efficiency is significantly lower compared to secure fixed-point computation.

Gap 2: Dynamic quantization is expensive in MPC. The state-of-the-art plaintext quantization
works Dettmers et al. (2022); Frantar et al. (2023) allow the entire inference to be carried out using
low-bit integers like INT8 or even INT4. Despite achieving considerable speed up, tailored quanti-
zation operations are required, like dynamically computing the min/max/outlier to obtain the scaling
factor S and calculating ⌊x ∗ S⌉ with clipping. Such operations frequently invoke comparisons that
are quite expensive in MPC. In this case, directly applying the existing quantization strategy in the
secure inference of neural networks is not promising, where the overhead to perform quantization
alone even outweighs the communication overhead reduction brought by quantization.

Solution. To mitigate this issue, we adopt static dyadic quantization to avoid dynamically comput-
ing scale in inference. We also adopt layer-wise quantization. That is, we use different quantization
scales for different layers. By enabling a smaller quantization scale for linear layers that are not
sensitive to precision, we can improve efficiency. While for those non-linear layers like layer nor-
malization, we use a larger scale to avoid a significant accuracy drop. Micikevicius et al. (2017) 1.

Gap 3: Type conversions are difficult in MPC. In plaintext quantization, linear operations are
carried out with INT8 and accumulated in INT32 in case of overflow. For non-linear functions,
the computations operate over FP32/INT32 to achieve adequate precision. Therefore, the end-
to-end model inference involves type conversions to avoid overflow and significant precision drop.
However, we note that these type conversions between INT8 and INT32 are straightforward in
plaintext but present a novel challenge in MPC, where a ℓ-bit integer operates over the ring Z2ℓ and
type conversion involves converting shares among different rings, which cannot be done locally.

Solution. To bridge this gap, we propose efficient type conversion MPC primitives (Section 4.3.1).
Besides, to avoid frequent type conversions, we use uniform low-bitwidth fixed-point encoding
(FXP8

32) in intermediate Transformer blocks for linear operations. For the non-linear functions and
the last prediction layer, we instead use a higher-bitwidth fixed-point encoding (FXP18

64) for the sake

1Similar precision practices are also used in PyTorch: https://pytorch.org/docs/stable/amp.html#cuda-ops-
that-can-autocast-to-float16

5

https://pytorch.org/docs/stable/amp.html#cuda-ops-that-can-autocast-to-float16
https://pytorch.org/docs/stable/amp.html#cuda-ops-that-can-autocast-to-float16

Under review as a conference paper at ICLR 2024

of adequate precision. We note that 32/64-bit integers can accommodate the activation range, of
which the distribution is illustrated in Appendix A.6, thus avoiding overflow to ensure correctness.

To summarize, we quantize all the weights and activations into fixed-point numbers using layer-
wise static quantization with dyadic scales. We provide an illustration of the difference between
fixed-point inference and traditional floating-point inference in Appendix A.7. In the following, we
describe the computation of non-linear functions using fixed-point only polynomial approximation.
The formulated algorithms are presented in Appendix A.2.

GeLU. The original GeLU function computes GeLU(x) = x
2 ·(1+tanh(

√
2/π·(x+0.044715·x3))).

To precisely compute GeLU, we first try to use high-order chebyshev polynomial to approximate
tanh. However, it requires several multiplication, thus leading to significant overhead. Inspired
by Li et al. (2023), we use a quantized polynomial to directly approximate GeLU(x) = 0.125x2 +
0.25x + 0.5 over FXP8

32. The Quad approximation is worth mentioning as it evaluates a two-order
polynomial, allowing it to be computed with lower precision.

Softmax. We use Softmax to map the inputs into the range (0, 1) as Softmax(x) = exi∑
i e

xi
. For

numerical stability, we first ‘normalize’ the input by computing x = x − maxi(x). Since max
does not require a high precision, we compute this part using FXP8

32. For the following exponential
and division, we use existing protocols Exp (tailored approximation for Softmax, detailed in Ap-
pendix A.10) and Recip Catrina & Saxena (2010). These two functions are computed over FXP18

64 to
maintain adequate precision. We refrain from using approximations such as 2Relu or 2Quad Li et al.
(2023) due to a noticeable drop in accuracy in Li et al. (2023) (in Table 2) and our experiments 5.1.

Layer Normalization. Given a vector of x as input, LayerNorm = x−µ√
σ+ϵ

· g + b, where µ and σ

denote mean and variance, g,b denote scale and bias, and ϵ is a small constant. To avoid significant
precision loss, we upcast the inputs and perform the layer normalization with a relatively higher
precision FXP18

64. The final outputs are downcasted back to FXP8
32 for subsequent computations.

4.2.2 QUANTIZATION-AWARE DISTILLATION

Despite the efficiency gain from the above MPC-friendly quantization and approximation, these two
steps can cause the precision drop. We illustrate the loss between the outputs from the original
model and the quantized and approximated model in Appendix A.5. Consequently, the converted
model M is of low utility. In order to compensate for the error introduced by these two methods,
we adopt the methodology of knowledge distillation (KD) Jiao et al. (2020); Li et al. (2023).

Without special declaration, we denote the original model as T and the converted model as M. All
the computations in M use integer-only arithmetic. We leverage layer-wise distillation, considering
that we use layer-wise quantization. Concretely, we capture the hidden states of all the Transformer
layers from both T and M and use the Mean Squared Error loss (MSE) between these two outputs
to measure the distillation loss. Furthermore, we use Cross-Entropy loss (CE) between the logits
from M and the target labels as the task-specific loss. Combining these two losses, we obtain the
final objective function as L = LMSE(hM, hT) + LCE(logitsM, y).

As to the initialization of M, we quantize the weights of T in the layer-wise granularity without
fine-tuning. The quantized weights of low precision serve as the initialed weights of M.

4.3 SECURE MODEL INFERENCE UPON MPC

For the end-to-end secure inference in Ditto, we rely on existing MPC protocols to perform most
of the secure computations. Regarding the type conversions essential in supporting layer-wise quan-
tization, we propose efficient MPC primitives to bridge this gap.

4.3.1 TYPE CONVERSION MPC PRIMITIVES

The type conversion can be divided into upcast and downcast. Upcast refers to converting values
from a smaller fixed-point representation to a larger fixed-point representation, while downcast is
the opposite. In MPC, type conversions additionally involves share conversions among different
rings. We consider convert the input JxKℓ from FXPf

ℓ to FXPf ′

ℓ′ . Due to page limitation, we defer the
formulated protocols, along with the correctness analysis and security proof to Appendix A.2∼A.4.

6

Under review as a conference paper at ICLR 2024

Downcast (ℓ > ℓ′, f > f ′). It suffices to a right-shift followed by a modulo operation as Jx′Kℓ′ =
DownCast(JxKℓ) = xi ≫ (f − f ′) mod 2ℓ

′
for i ∈ {0, 1, 2}. The local right-shift by (f − f ′)

bits first lowers the precision to 2f
′
. The subsequent local modulo operation, i.e., dropping the most

significant (ℓ− ℓ′) bits, converts the shares to a smaller ring, s.t., x/2f = x′/2f
′
.

Upcast (ℓ < ℓ′, f < f ′). It suffices to convert JxK from Z2ℓ to Z2ℓ′ , followed by a left-shift
operation. The left-shift can be implemented directly by left-shifting the shares locally. While for
the ring conversion, it is not trivial. As shown in Equation 1, there may be potential wrap w of the
sum of xi modulo 2ℓ, i.e., w = ⌊(x0+x1+x2)/2

ℓ⌋. w cannot be implicitly erased since ℓ < ℓ′ and
w · 2ℓ mod 2ℓ

′
does not equal 0 for sure. However, directly computing w is expensive in MPC.

x mod 2ℓ = (x0 + x1 + x2 − w · 2ℓ) mod 2ℓ

= (x0 mod 2ℓ
′
) + (x1 mod 2ℓ

′
) + (x2 mod 2ℓ

′
)− (w · 2ℓ) mod 2ℓ

′ (1)

We here take the intuition of mask-and-open that goes as x = ((x + r) mod 2ℓ + ŵ · 2ℓ − r)

mod 2ℓ
′
, where ŵ = (x+ r)

?
> 2ℓ. The problem now reduces to compute another potential wrap ŵ

of the sum of x+ r, which is easier than computing w. To facilitate the computation, we add a large
bias to the input to make sure the input is positive. Then we can compute ŵ = rℓ−1 ∧¬yℓ−1, where
y = x + r mod 2ℓ. To finalize the computation, we also need the sharing of r over both Z2ℓ and
Z2ℓ′ , which can be implemented using DownCast. Detailed construction is shown in Appendix A.2.

4.3.2 QUANTIZATION-AWARE MPC EXECUTION

With the underlying MPC primitives ready, we proceed to implement an end-to-end secure
quantization-aware inference framework. We build on top of SecretFlow-SPU Ma et al.
(2023), a framework that supports compiling the front-end models into a privacy-preserving
version. To comply with the quantized inference scheme, we make several modifications to
SecretFlow-SPU. Firstly, we introduce support for dynamic rings in the system runtime. This
allows the execution of protocols over different rings, corresponding to underlying data types such
as INT32 or INT64. Secondly, we modify the compiler to capture the plaintext variable type and
compute type assigned to each operator. During the inference, the variables are automatically con-
verted over different rings by invoking the type conversion MPC primitives. For example, given an
operator (e.g., Exp) defined with input type FXP32 and compute type FXP64, an UpCast operator
will be automatically invoked to convert the input to FXP64 for subsequent computations.

5 EXPERIMENTS

We evaluate Dittomainly from three aspects: 1) model utility (Section 5.1); 2) inference efficiency
(Section 5.2); 3) extensive experiments of scalability and ablation studies (Section 5.3).

Experimental setup. We implement Ditto upon the framework SecretFlow-SPU 2 that sup-
ports privacy-preserving machine learning. We use pure fixed-point arithmetic during the quantiza-
tion and distillation procedure, similar to the integer-only arithmetic Kim et al. (2021). We conduct
the experiments on one CentOS 8 machine equipped with one AMD Ryzen CPU (32 cores and
3.60GHz) and 256GB of RAM. We consider two network environments: 1) LAN setting with a
bandwidth of 5Gbps and 0.4ms round-trip time; 2) WAN setting with a bandwidth of 400Mbps and
40ms round-trip time. We simulate the network environments using the Linux tc tool.

Model architectures and datasets. We use the pre-trained Bert models and GPT models in Hug-
ging Face Wolf et al. (2020). For Bert, we use Bert-base and Bert-large pre-trained over Book-
Corpus Zhu et al. (2015) and English Wikipedia Wikipedia contributors (2004) datasets. For GPT,
we use pre-trained GPT2-base and GPT2-medium pre-trained over the Wikitext-103 dataset Merity
et al. (2016). We measure the performance of Bert over RTE, CoLA, QQP and QNLI from GLUE
benchmarks Wang et al. (2019), and GPT2 performance on the validation set of Wikitext-103. The
detailed hyper-parameter choices for fine-tuning and distillation are in Appendix A.8.

Baselines. We adopt secure inference upon SecretFlow-SPU as the vanilla baseline. The ab-
lation models are denoted as Dittow/o{a} with quantization, and Ditto with both quantization

2SecretFlow-SPU: https://github.com/secretflow/spu.

7

https://github.com/secretflow/spu

Under review as a conference paper at ICLR 2024

and non-linear function approximation. To make a more comprehensive comparison, we compare
with two state-of-the-art work MPCFormer Li et al. (2023) and PUMA Dong et al. (2023), which
are similar to our setting.

5.1 UTILITY EVALUATION

The evaluation of model utility is based on various accuracy metrics for downstream tasks. Con-
cretely, we adopt Accuracy for RTE and QNLI, Matthews correlation for CoLA, F1 score for QQP,
and Perplexity for Wikitext-103. In the GLUE benchmark, the input sequence length is set to 128 for
Bert-base and Bert-large. For Wikitext-103, the input sequence length is set to 50 for GPT2-base and
GPT2-medium. Regarding MPCFormer, we explore two variants: Quad-alone and Quad+2ReLU.
For PUMA, the GeLU function is computed using their Poly approximation (cf. Appendix A.9).

The results are provided in Table 1. In general, without approximating Softmax using 2ReLU,
Ditto (Quad) achieves similar results to that of MPCFormer (Quad) and slightly lower than the
baseline without any quantization or approximation. The utility degradation is negligible on most
datasets, except CoLA. The lower utility of both MPCFormer and Ditto on CoLA could be at-
tributed to its smaller size, leading to unstable distillation performance. However, we observe that
with 2ReLU approximation, both MPCFormer and Ditto incur noticeable utility drops in Bert
tasks. This is in line with the results reported in MPCFormer, thus indicating that Softmax is more
sensitive to precision. Regarding PUMA, it is worth noting that it incurs almost no accuracy drop
due to the usage of a more accurate Polynomial approximation. However, as demonstrated in the
following experiment, this improved accuracy comes at the cost of more communication overhead.
To balance between utility and efficiency, we mainly use Quad approximation for GeLU in Ditto.

Table 1: Model utility on GLUE benchmark for Bert and on Wikitext-103 dataset for GPT2.
Method Approx. Bert-base Bert-large GPT2-base GPT2-medium

RTE CoLA QQP QNLI (↑) RTE CoLA QQP QNLI (↑) Wikitext-103 (↓)

Baseline - 68.59 57.06 87.96 91.62 72.56 63.09 88.52 92.58 12.25 10.60

MPCFormer Quad 67.85 54.47 87.76 91.68 71.86 57.53 88.34 92.53 - -
Quad+2ReLU 64.30 52.75 86.95 90.76 70.29 55.53 87.64 91.85 - -

PUMA Poly 68.47 56.96 87.95 91.48 72.56 62.60 88.50 92.55 12.25 10.49

Dittow/o{a} - 67.87 54.17 87.15 91.74 72.55 56.25 88.22 92.58 12.99 10.61

Ditto
Quad 67.82 54.52 87.72 91.78 71.84 56.45 88.23 92.58 13.78 11.35

Quad+2ReLU 63.89 52.78 86.92 87.71 71.48 51.69 87.51 87.53 - -

5.2 EFFICIENCY EVALUATION

To evaluate the efficiency of secure inference, we measure the end-to-end runtime in seconds and
the concrete communication size in GB in the LAN setting. The experiments are conducted with
a batch size of 1. For Bert models, the input sequence length is set to 128, and the output is the
classification result. We choose the CoLA task as a representative since other tasks share the same
model architecture as CoLA, resulting in similar inference overhead. As for GPT2 models, we
generate 1 new token with an input length of 32. We run experiments for MPCFormer 3 and Ditto
with and without the Quad approximation of GeLU for a comprehensive comparison.

In Figure 2, the left and right axes represent communication size (Bar chart) and runtime (Line
chart), respectively. On the four models, Ditto (marked in Red) generally has the lowest commu-
nication size and runtime. One exception is that MPCFormer incurs lower communication size
on GPT2-base. This may be because GPT2 models have a larger vocabulary size, thus lead-
ing to a much higher communication overhead in the embedding layer for Ditto 4. Regarding
communication size, Dittow/o{a} incurs 1.37 ∼ 2.25× lower communication than PUMA, and
1.25 ∼ 1.66× than MPCFormer. When combined with Quad approximation, both MPCFormer
(Quad) and Ditto incur lower communication than PUMA. Concretely, the communication size
of Ditto is 1.28 ∼ 1.70× lower than MPCFormer (Quad) and 2.37 ∼ 3.43× than PUMA. Owing
to the reduction of communication size, Ditto is 3.14 ∼ 4.40× and 1.44 ∼ 2.35× faster than
MPCFormer (Quad) and PUMA, respectively.

3It is worth noting that MPCFormer is also configured to run on CPU for a fair comparison.
4We convert the input token ids to one-hot vectors using MPC, while MPCFormer performs the conversion

in the client locally.

8

Under review as a conference paper at ICLR 2024

Bert-base Bert-large GPT2-base GPT2-medium
0

10

20

30

40

C
om

m
. S

iz
e

(G
B

)

Baseline MPCFormer MPCFormer (Quad) PUMA Dittow/o{a} Ditto

100

200

R
un

tim
e

(s
)

Figure 2: Efficiency evaluation for Bert and GPT2 models.

5.3 EXTENSIVE EXPERIMENTS

In this section, we evaluate the inference efficiency with varying input sequence length. The experi-
ments for varying batch size and different network environments are presented in Appendix A.1.

Varying Input Sequence Length. The language models typically have conversation sentences
as inputs, thus having different input lengths. We hereby conduct experiments with input length
∈ {32, 64, 128, 256} on Bert-base and GPT2-base to make a more comprehensive evaluation.

The results are shown in Table 2 (the speedup numbers are against PUMA). In general, the com-
munication size of Ditto is about 2 ∼ 3× lower than the state-of-the-art PUMA. Owing to the
communication reduction, Ditto achieves a speedup of about 1.4 ∼ 1.8× against PUMA and a
speedup of about 2.9 ∼ 4.8× against MPCFormer.

Table 2: Inference efficiency on Bert-base and GPT2-base with varying input sequence length.

Model Method
#Input Length

32 64 128 256

Comm. Time Comm. Time Comm. Time Comm. Time

Bert-base

Baseline 2.79 13.57 6.24 27.32 15.12 53.17 40.65 114.83

MPCFormer 2.08 35.15 3.02 63.94 6.70 124.81 19.12 253.20

PUMA 2.16 12.97 4.65 22.59 10.59 43.98 26.07 88.70

Ditto
0.72 7.36 1.68 14.80 4.35 30.58 12.78 62.48

3.00× 1.76× 2.77× 1.53× 2.43× 1.44× 2.04× 1.42×

GPT2-base

Baseline 8.88 37.88 12.50 52.63 22.03 84.04 47.91 157.47

MPCFormer 3.05 57.57 4.01 104.97 7.73 182.20 20.24 403.85

PUMA 8.61 35.22 11.95 48.33 17.57 73.77 33.00 131.33

Ditto
3.59 19.52 5.18 29.41 8.25 49.93 17.44 93.52

2.40× 1.80× 2.31× 1.64× 2.13× 1.48× 1.89× 1.40×

Ablation Studies. We study the effects of quantization and approximation on Bert models. As
shown in Table 3, the quantization with the Quad approximation for GeLU generally results in
negligible degradation in utility. The speedup achieved against the vanilla baseline is approximately
1.41 ∼ 1.56× with quantization alone and 1.74 ∼ 2.09× with the additional GeLU approximation.

Table 3: Ablation studies of Ditto on Bert models.
Method Approx. Bert-base Bert-large

RTE CoLA QQP QNLI Speedup RTE CoLA QQP QNLI Speedup

Baseline - 68.59 57.06 87.96 91.62 - 72.56 63.09 88.52 92.58 -

Dittow/o{a} - 67.87 54.17 87.15 91.74 1.41× 72.55 56.25 88.22 92.58 1.56×
Ditto Quad 67.82 54.52 87.72 91.78 1.74× 71.84 56.45 88.23 92.57 2.09×

6 CONCLUSION

In this paper, we propose a framework Ditto to enable secure quantization-aware inference of
Transformer models. By incorporating MPC-friendly ML quantization and quantization-aware MPC
execution, Ditto reduces the overhead and enhances the inference efficiency compared to prior
works. In the future, we plan to investigate adopting more aggressive quantization methods, i.e.,
using lower bits in secure inference.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Y. Akimoto, K. Fukuchi, Y. Akimoto, and J. Sakuma. Privformer: Privacy-preserving transformer
with mpc. In 2023 IEEE 8th European Symposium on Security and Privacy (EuroSP), pp. 392–
410, Los Alamitos, CA, USA, 2023. IEEE Computer Society. doi: 10.1109/EuroSP57164.2023.
00031. URL https://doi.ieeecomputersociety.org/10.1109/EuroSP57164.2023.00031.

Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara. High-throughput
semi-honest secure three-party computation with an honest majority. In Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi (eds.), Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria,
October 24-28, 2016, pp. 805–817. ACM, 2016. doi: 10.1145/2976749.2978331. URL https:
//doi.org/10.1145/2976749.2978331.

Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jin Jin, Xin Jiang, Qun Liu, Michael R. Lyu, and
Irwin King. Binarybert: Pushing the limit of BERT quantization. In Chengqing Zong, Fei Xia,
Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6, 2021, pp.
4334–4348. Association for Computational Linguistics, 2021. doi: 10.18653/v1/2021.acl-long.
334. URL https://doi.org/10.18653/v1/2021.acl-long.334.

Simone Bombari, Mohammad Hossein Amani, and Marco Mondelli. Memorization and opti-
mization in deep neural networks with minimum over-parameterization. In NeurIPS, 2022.
URL http://papers.nips.cc/paper files/paper/2022/hash/323746f0ae2fbd8b6f500dc2d5c5f898-
Abstract-Conference.html.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ B. Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson,
Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri S. Chatterji, Annie S. Chen, Kathleen
Creel, Jared Quincy Davis, Dorottya Demszky, Chris Donahue, Moussa Doumbouya, Esin Dur-
mus, Stefano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor
Gale, Lauren Gillespie, Karan Goel, Noah D. Goodman, Shelby Grossman, Neel Guha, Tatsunori
Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang,
Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keel-
ing, Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark S. Krass, Ranjay Krishna, Rohith Ku-
ditipudi, and et al. On the opportunities and risks of foundation models. CoRR, abs/2108.07258,
2021. URL https://arxiv.org/abs/2108.07258.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

Megha Byali, Harsh Chaudhari, Arpita Patra, and Ajith Suresh. FLASH: fast and robust frame-
work for privacy-preserving machine learning. Proc. Priv. Enhancing Technol., 2020(2):459–480,
2020. doi: 10.2478/popets-2020-0036. URL https://doi.org/10.2478/popets-2020-0036.

Octavian Catrina and Amitabh Saxena. Secure computation with fixed-point numbers. In Radu
Sion (ed.), Financial Cryptography and Data Security, 14th International Conference, FC 2010,
Tenerife, Canary Islands, Spain, January 25-28, 2010, Revised Selected Papers, volume 6052 of
Lecture Notes in Computer Science, pp. 35–50. Springer, 2010. doi: 10.1007/978-3-642-14577-
3\ 6. URL https://doi.org/10.1007/978-3-642-14577-3 6.

Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vi-
sion transformers. In 2021 IEEE/CVF International Conference on Computer Vision, ICCV
2021, Montreal, QC, Canada, October 10-17, 2021, pp. 9620–9629. IEEE, 2021. doi: 10.1109/
ICCV48922.2021.00950. URL https://doi.org/10.1109/ICCV48922.2021.00950.

10

https://doi.ieeecomputersociety.org/10.1109/EuroSP57164.2023.00031
https://doi.org/10.1145/2976749.2978331
https://doi.org/10.1145/2976749.2978331
https://doi.org/10.18653/v1/2021.acl-long.334
http://papers.nips.cc/paper_files/paper/2022/hash/323746f0ae2fbd8b6f500dc2d5c5f898-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/323746f0ae2fbd8b6f500dc2d5c5f898-Abstract-Conference.html
https://arxiv.org/abs/2108.07258
https://doi.org/10.2478/popets-2020-0036
https://doi.org/10.1007/978-3-642-14577-3_6
https://doi.org/10.1109/ICCV48922.2021.00950

Under review as a conference paper at ICLR 2024

Edward Chou, Josh Beal, Daniel Levy, Serena Yeung, Albert Haque, and Li Fei-Fei. Faster cryp-
tonets: Leveraging sparsity for real-world encrypted inference. CoRR, abs/1811.09953, 2018.
URL http://arxiv.org/abs/1811.09953.

Anders P. K. Dalskov, Daniel Escudero, and Marcel Keller. Fantastic four: Honest-majority four-
party secure computation with malicious security. In Michael Bailey and Rachel Greenstadt
(eds.), 30th USENIX Security Symposium, USENIX Security 2021, August 11-13, 2021, pp. 2183–
2200. USENIX Association, 2021. URL https://www.usenix.org/conference/usenixsecurity21/
presentation/dalskov.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm.int8(): 8-bit matrix mul-
tiplication for transformers at scale. CoRR, abs/2208.07339, 2022. doi: 10.48550/arXiv.2208.
07339. URL https://doi.org/10.48550/arXiv.2208.07339.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–
4186. Association for Computational Linguistics, 2019. doi: 10.18653/v1/n19-1423. URL
https://doi.org/10.18653/v1/n19-1423.

Ye Dong, Wen-jie Lu, Yancheng Zheng, Haoqi Wu, Derun Zhao, Jin Tan, Zhicong Huang, Cheng
Hong, Tao Wei, and Wenguang Chen. PUMA: secure inference of llama-7b in five minutes.
CoRR, abs/2307.12533, 2023. doi: 10.48550/arXiv.2307.12533. URL https://doi.org/10.48550/
arXiv.2307.12533.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition
at scale. In 9th International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=
YicbFdNTTy.

Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Peter Scholl. Improved prim-
itives for MPC over mixed arithmetic-binary circuits. In Daniele Micciancio and Thomas Ris-
tenpart (eds.), Advances in Cryptology - CRYPTO 2020 - 40th Annual International Cryptology
Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part
II, volume 12171 of Lecture Notes in Computer Science, pp. 823–852. Springer, 2020. doi:
10.1007/978-3-030-56880-1\ 29. URL https://doi.org/10.1007/978-3-030-56880-1 29.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: accurate post-training
quantization for generative pre-trained transformers. CoRR, abs/2210.17323, 2022. doi: 10.
48550/arXiv.2210.17323. URL https://doi.org/10.48550/arXiv.2210.17323.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. OPTQ: accurate quantization
for generative pre-trained transformers. In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https:
//openreview.net/pdf?id=tcbBPnfwxS.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. CoRR, abs/2103.13630,
2021. URL https://arxiv.org/abs/2103.13630.

Meng Hao, Hongwei Li, Hanxiao Chen, Pengzhi Xing, Guowen Xu, and Tianwei Zhang. Iron:
Private inference on transformers. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=deyqjpcTfsG.

Zhicong Huang, Wen-jie Lu, Cheng Hong, and Jiansheng Ding. Cheetah: Lean and fast secure two-
party deep neural network inference. In Kevin R. B. Butler and Kurt Thomas (eds.), 31st USENIX

11

http://arxiv.org/abs/1811.09953
https://www.usenix.org/conference/usenixsecurity21/presentation/dalskov
https://www.usenix.org/conference/usenixsecurity21/presentation/dalskov
https://doi.org/10.48550/arXiv.2208.07339
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.48550/arXiv.2307.12533
https://doi.org/10.48550/arXiv.2307.12533
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://doi.org/10.1007/978-3-030-56880-1_29
https://doi.org/10.48550/arXiv.2210.17323
https://openreview.net/pdf?id=tcbBPnfwxS
https://openreview.net/pdf?id=tcbBPnfwxS
https://arxiv.org/abs/2103.13630
https://openreview.net/forum?id=deyqjpcTfsG

Under review as a conference paper at ICLR 2024

Security Symposium, USENIX Security 2022, Boston, MA, USA, August 10-12, 2022, pp. 809–
826. USENIX Association, 2022. URL https://www.usenix.org/conference/usenixsecurity22/
presentation/huang-zhicong.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun
Liu. Tinybert: Distilling BERT for natural language understanding. In Trevor Cohn, Yulan He,
and Yang Liu (eds.), Findings of the Association for Computational Linguistics: EMNLP 2020,
Online Event, 16-20 November 2020, volume EMNLP 2020 of Findings of ACL, pp. 4163–4174.
Association for Computational Linguistics, 2020. doi: 10.18653/v1/2020.findings-emnlp.372.
URL https://doi.org/10.18653/v1/2020.findings-emnlp.372.

Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, and Kurt Keutzer. I-BERT: integer-
only BERT quantization. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th In-
ternational Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, vol-
ume 139 of Proceedings of Machine Learning Research, pp. 5506–5518. PMLR, 2021. URL
http://proceedings.mlr.press/v139/kim21d.html.

Dacheng Li, Hongyi Wang, Rulin Shao, Han Guo, Eric Xing, and Hao Zhang. MPCFORMER:
FAST, PERFORMANT AND PRIVATE TRANSFORMER INFERENCE WITH MPC. In The
Eleventh International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=CWmvjOEhgH-.

Zi Liang, Pinghui Wang, Ruofei Zhang, Lifeng Xing, Nuo Xu, and Shuo Zhang. Merge: Fast private
text generation, 2023.

Xuanqi Liu and Zhuotao Liu. Llms can understand encrypted prompt: Towards privacy-computing
friendly transformers, 2023.

Wen-jie Lu, Yixuan Fang, Zhicong Huang, Cheng Hong, Chaochao Chen, Hunter Qu, Yajin Zhou,
and Kui Ren. Faster secure multiparty computation of adaptive gradient descent. In Benyu Zhang,
Raluca Ada Popa, Matei Zaharia, Guofei Gu, and Shouling Ji (eds.), PPMLP’20: Proceedings
of the 2020 Workshop on Privacy-Preserving Machine Learning in Practice, Virtual Event, USA,
November, 2020, pp. 47–49. ACM, 2020. doi: 10.1145/3411501.3419427. URL https://doi.org/
10.1145/3411501.3419427.

Junming Ma, Yancheng Zheng, Jun Feng, Derun Zhao, Haoqi Wu, Wenjing Fang, Jin Tan, Chaofan
Yu, Benyu Zhang, and Lei Wang. Secretflow-spu: A performant and user-friendly framework
for privacy-preserving machine learning. In Julia Lawall and Dan Williams (eds.), 2023 USENIX
Annual Technical Conference, USENIX ATC 2023, Boston, MA, USA, July 10-12, 2023, pp. 17–
33. USENIX Association, 2023. URL https://www.usenix.org/conference/atc23/presentation/ma.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory F. Diamos, Erich Elsen, David Garcı́a,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. Mixed
precision training. CoRR, abs/1710.03740, 2017. URL http://arxiv.org/abs/1710.03740.

Payman Mohassel and Peter Rindal. Aby3: A mixed protocol framework for machine learn-
ing. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communica-
tions Security, pp. 35–52, New York, NY, USA, 2018. Association for Computing Machinery.
ISBN 9781450356930. doi: 10.1145/3243734.3243760. URL https://doi.org/10.1145/3243734.
3243760.

Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-preserving machine
learning. In 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA,
May 22-26, 2017, pp. 19–38. IEEE Computer Society, 2017. doi: 10.1109/SP.2017.12. URL
https://doi.org/10.1109/SP.2017.12.

openai. Openai api. https://openai.com/blog/openai-api, 2021. URL https://openai.com/blog/
openai-api.

12

https://www.usenix.org/conference/usenixsecurity22/presentation/huang-zhicong
https://www.usenix.org/conference/usenixsecurity22/presentation/huang-zhicong
https://doi.org/10.18653/v1/2020.findings-emnlp.372
http://proceedings.mlr.press/v139/kim21d.html
https://openreview.net/forum?id=CWmvjOEhgH-
https://openreview.net/forum?id=CWmvjOEhgH-
https://doi.org/10.1145/3411501.3419427
https://doi.org/10.1145/3411501.3419427
https://www.usenix.org/conference/atc23/presentation/ma
http://arxiv.org/abs/1710.03740
https://doi.org/10.1145/3243734.3243760
https://doi.org/10.1145/3243734.3243760
https://doi.org/10.1109/SP.2017.12
https://openai.com/blog/openai-api
https://openai.com/blog/openai-api
https://openai.com/blog/openai-api

Under review as a conference paper at ICLR 2024

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/arXiv.2303.08774.
URL https://doi.org/10.48550/arXiv.2303.08774.

Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame. ABY2.0: improved mixed-
protocol secure two-party computation. In Michael Bailey and Rachel Greenstadt (eds.),
30th USENIX Security Symposium, USENIX Security 2021, August 11-13, 2021, pp. 2165–
2182. USENIX Association, 2021. URL https://www.usenix.org/conference/usenixsecurity21/
presentation/patra.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Deevashwer Rathee, Anwesh Bhattacharya, Divya Gupta, Rahul Sharma, and Dawn Song. Secure
floating-point training. In Joseph A. Calandrino and Carmela Troncoso (eds.), 32nd USENIX Se-
curity Symposium, USENIX Security 2023, Anaheim, CA, USA, August 9-11, 2023. USENIX As-
sociation, 2023. URL https://www.usenix.org/conference/usenixsecurity23/presentation/rathee.

Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979. doi: 10.1145/359168.
359176. URL https://doi.org/10.1145/359168.359176.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference at-
tacks against machine learning models. In 2017 IEEE Symposium on Security and Privacy, SP
2017, San Jose, CA, USA, May 22-26, 2017, pp. 3–18. IEEE Computer Society, 2017. doi:
10.1109/SP.2017.41. URL https://doi.org/10.1109/SP.2017.41.

Sijun Tan, Brian Knott, Yuan Tian, and David J. Wu. Cryptgpu: Fast privacy-preserving machine
learning on the GPU. In 42nd IEEE Symposium on Security and Privacy, SP 2021, San Francisco,
CA, USA, 24-27 May 2021, pp. 1021–1038. IEEE, 2021. doi: 10.1109/SP40001.2021.00098.
URL https://doi.org/10.1109/SP40001.2021.00098.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient founda-
tion language models. CoRR, abs/2302.13971, 2023. doi: 10.48550/arXiv.2302.13971. URL
https://doi.org/10.48550/arXiv.2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ul-
rike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan,
and Roman Garnett (eds.), Advances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, pp. 5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, Prateek Mittal, and Tal Rabin.
Falcon: Honest-majority maliciously secure framework for private deep learning. Proc. Priv.
Enhancing Technol., 2021(1):188–208, 2021. doi: 10.2478/popets-2021-0011. URL https://doi.
org/10.2478/popets-2021-0011.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?id=rJ4km2R5t7.

Wikipedia contributors. Plagiarism — Wikipedia, the free encyclopedia, 2004. URL https://en.
wikipedia.org/w/index.php?title=Plagiarism&oldid=5139350. [Online; accessed 22-July-2004].

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. Association for
Computational Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.

13

https://doi.org/10.48550/arXiv.2303.08774
https://www.usenix.org/conference/usenixsecurity21/presentation/patra
https://www.usenix.org/conference/usenixsecurity21/presentation/patra
https://www.usenix.org/conference/usenixsecurity23/presentation/rathee
https://doi.org/10.1145/359168.359176
https://doi.org/10.1109/SP.2017.41
https://doi.org/10.1109/SP40001.2021.00098
https://doi.org/10.48550/arXiv.2302.13971
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.2478/popets-2021-0011
https://doi.org/10.2478/popets-2021-0011
https://openreview.net/forum?id=rJ4km2R5t7
https://en.wikipedia.org/w/index.php?title=Plagiarism&oldid=5139350
https://en.wikipedia.org/w/index.php?title=Plagiarism&oldid=5139350
https://www.aclweb.org/anthology/2020.emnlp-demos.6

Under review as a conference paper at ICLR 2024

Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th Annual
Symposium on Foundations of Computer Science, Toronto, Canada, 27-29 October 1986, pp.
162–167. IEEE Computer Society, 1986. doi: 10.1109/SFCS.1986.25. URL https://doi.org/10.
1109/SFCS.1986.25.

Zhewei Yao, Zhen Dong, Zhangcheng Zheng, Amir Gholami, Jiali Yu, Eric Tan, Leyuan Wang,
Qijing Huang, Yida Wang, Michael W. Mahoney, and Kurt Keutzer. HAWQ-V3: dyadic neural
network quantization. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th Inter-
national Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, vol-
ume 139 of Proceedings of Machine Learning Research, pp. 11875–11886. PMLR, 2021. URL
http://proceedings.mlr.press/v139/yao21a.html.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yux-
iong He. Zeroquant: Efficient and affordable post-training quantization for large-scale
transformers. In NeurIPS, 2022. URL http://papers.nips.cc/paper files/paper/2022/hash/
adf7fa39d65e2983d724ff7da57f00ac-Abstract-Conference.html.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and
Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by watching
movies and reading books. In The IEEE International Conference on Computer Vision (ICCV),
December 2015.

A APPENDIX

A.1 SUPPLEMENTARY EXPERIMENTS

Varying Batch Size. We evaluate the secure inference with batch size ∈ {1, 2, 4, 8} on Bert-base
model. As shown in Table 4, the communication size and runtime increase about linearly to the batch
size for all the methods. Ditto remains about 1.4× and 4.0× faster than PUMA and MPCFormer,
respectively.

Table 4: Inference efficiency on Bert-base with varying batch size. The input length is set to 128.

Model Method
#Batch Size

1 2 4 8

Comm. Time Comm. Time Comm. Time Comm. Time

Bert-base

Baseline 15.12 53.17 30.21 97.56 60.49 185.63 120.77 365.76

MPCFormer 6.70 124.81 11.77 227.82 21.93 432.06 42.25 839.83

PUMA 10.59 43.98 21.20 79.70 42.27 153.88 84.65 297.90

Ditto
4.35 30.58 8.68 56.29 17.35 107.52 34.96 208.63

2.43× 1.44× 2.44× 1.42× 2.44× 1.43× 2.42× 1.43×

Varying Network Environment. We evaluate the secure inference under two different network
settings, i.e., LAN and WAN. Since secure inference based on MPC is communication-bound, the
network status has a significant effect on the efficiency. As shown in Table 5, the runtime increases
dramatically in WAN, which is nearly 10× that in LAN. This is because WAN has a smaller band-
width and higher latency. Compared to PUMA, Ditto is still 1.46 ∼ 1.53× faster in WAN due to
the reduction of communication overhead.

A.2 FORMULATED PROTOCOL CONSTRUCTIONS

In this section, we present the formulated protocol constructions for the fixed-point computation of
GeLU and Softmax functions mentioned in Section 3.3, and the type cast MPC primitives introduced
in Section 4.3.1.

The approximation of GeLU function that computes GeLU(x) = 0.125x2+0.25x+0.5 is presented
in Algorithm 1. The Softmax function that computes with different fixed-point representations are
shown in Algorithm 2.

14

https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/SFCS.1986.25
http://proceedings.mlr.press/v139/yao21a.html
http://papers.nips.cc/paper_files/paper/2022/hash/adf7fa39d65e2983d724ff7da57f00ac-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/adf7fa39d65e2983d724ff7da57f00ac-Abstract-Conference.html

Under review as a conference paper at ICLR 2024

Table 5: Inference efficiency of Bert-base and GPT2-base under different network environments.

Network Model Runtime (s)

Baseline MPCFormer PUMA Ditto

Bert-base LAN 53.17 124.81 43.98 30.58 1.44×
WAN 551.45 888.55 444.43 303.50 1.46×

GPT2-base LAN 39.60 57.57 38.33 20.30 1.89×
WAN 382.98 588.14 357.65 233.32 1.53×

Algorithm 1 Approximated GeLU Protocol

Input: Fixed-point x over FXPf
ℓ ; Polynomial coefficients a, b, c = {0.125, 0.25, 0.5}

Output: Fixed-point y over FXPf
ℓ ;

1: aint = ⌊a · 2f⌉, bint = ⌊b · 2f⌉, cint = ⌊c · 2f⌉
2: ŷ = aint · x/2f + bint, ▷ 0.125 · x+ 0.25
3: y = x · ŷ/2f + cint, ▷ x · (0.125 · x+ 0.25) + 0.5
4: return y

In the following, the Algorithm 3 and Algorithm 4 depict the construction of downcast and upcast
operations in the MPC domain, respectively.

A.3 CORRECTNESS ANALYSIS

In this section, we analyze the correctness of proposed type cast protocols in Section 4.3.1. The
type cast in MPC involves converting shares among rings of different sizes. Consider two rings,
Z2ℓ and Z2ℓ′ , and let JxKℓ = {x0, x1, x2} be the input sharing of x over the first ring. Our goal
is to obtain the sharing of x over the second ring, denoted as Jx′Kℓ′ = {x′

0, x
′
1, x

′
2}. We note that

JxKℓ and JxKℓ′ are encoded over FXPf
ℓ and FXPf ′

ℓ′ , respectively. Hence, we require x/2f = x′/2f
′
.

Note that to ensure correctness, we have the assumption that x′ can be represented using ℓ′ bits, i.e.,
x′ ∈ [−2ℓ

′−1, 2ℓ
′−1 − 1].

Proof. Based on the relationship between {ℓ, f} and {ℓ′, f ′}, we have two cases that correspond to
downcast and upcast, respectively.

Case 1: {ℓ, f} > {ℓ′, f ′} (Downcast). In Algorithm 3, the input x is firstly right-shifted by t =

f − f ′ bits to lower the precision. The following step is to convert x/2f−f ′
to the smaller ring Z2ℓ′

using modulo operation.

The above steps can be formulated as

x′ = x/2t = ((x0 + x1 + x2) mod 2ℓ)/2t

= x0/2
t + x1/2

t + x2/2
t − w · 2ℓ−t + w′

= (x0/2
t + x1/2

t + x2/2
t − w · 2ℓ−t + w′) mod 2ℓ

′

= (x0/2
t mod 2ℓ

′
) + (x1/2

t mod 2ℓ
′
) + (x2/2

t mod 2ℓ
′
)

− (w · 2ℓ−t mod 2ℓ
′
) + w′ mod 2ℓ

′

(2)

where w′ ∈ {0, 1, 2} denotes the potential carry bits from the lower t bits. Since we have ℓ − t =

64− (18− 8) = 54, ℓ′ = 32, w · 2ℓ−t mod 2ℓ
′
= 0. We can finally get

x′ = (x0/2
t mod 2ℓ

′
) + (x1/2

t mod 2ℓ
′
) + (x2/2

t mod 2ℓ
′
) + w′

= (x′
0 + x′

1 + x′
2 + w′) mod 2ℓ

′ (3)

The probabilistic w′ occurs at the lowest significant bit, thus merely having a negligible impact of
precision 2−f ′

. The correctness of Algorithm 3 thus holds.

15

Under review as a conference paper at ICLR 2024

Algorithm 2 Approximated Softmax Protocol

Input: Fixed-point x over FXPf
ℓ ; ℓ < ℓ′ and f < f ′

Output: Fixed-point y over FXPf
ℓ ;

1: x = x−Max(x), ▷ Max computes with precision bit f
2: x̂ = Cast(x,FXPf

ℓ ,FXP
f ′

ℓ′), ▷ from FXPf
ℓ to FXPf ′

ℓ′

3: x̂exp = Exp(x̂), ▷ Exponential computes with precision bit f ′

4: ŷ = x̂exp/Sum(x̂exp, axis = −1)

5: y = Cast(ŷ,FXPf ′

ℓ′ ,FXP
f
ℓ), ▷ from FXPf ′

ℓ′ to FXPf
ℓ

6: return y

Algorithm 3 Secure DownCast Protocol

Input: RSS-shared JxKℓ over FXPf
ℓ ;

Output: RSS-shared Jx′Kℓ′ over FXPf ′

ℓ′ , where x/2f = x′/2f
′
.

1: Pi for i ∈ {0, 1, 2} proceed as follows:

x′
i = xi ≫ (f − f ′) mod 2ℓ

′

x′
i+1 = xi+1 ≫ (f − f ′) mod 2ℓ

′
, ▷ x/2f−f ′

mod 2ℓ
′
= x′ mod 2ℓ

′

2: return Jx′Kℓ′ = {x′
0, x

′
1, x

′
2}.

Case 2: {ℓ, f} < {ℓ′, f ′} (Upcast). The input x is firstly converted to the larger ring Z2ℓ′ using
Algorithm 4, followed by a left-shifting of t bits. Regarding Algorithm 4, the masking goes as

(x+ r) mod 2ℓ = x+ r − ŵ · 2ℓ (4)

where ŵ = (x+ r)
?
> 2ℓ. The above equation can be transformed into

x mod 2ℓ
′
= (x+ r) mod 2ℓ − r + ŵ · 2ℓ mod 2ℓ

′
(5)

The correctness holds as long as ŵ is correct. Recall that we add a bias to ensure that the MSB of x
is 0, x + r wraps around 2ℓ if and only if the MSB of r (i.e., rℓ−1) is 1 and the MSB of y = x + r
mod 2ℓ (i.e., yℓ−1) is 0. Therefore, we can correctly compute the wrap as ŵ = rℓ−1 ∧ ¬yℓ−1. As
to the bias, we have a trick that limits the range of x ∈ [−2ℓ−2, 2ℓ−2 − 1] and choose 2ℓ−2 as the
bias. As a result, any input x = x + r ∈ [0, 2ℓ−1 − 1] is positive. After the conversion, the bias
can be conveniently subtracted to eliminate its influence. The following left-shift operation can be
regarded as multiplication by a public constant 2t, thus satisfying x′/2f

′
= x · 2t/2f ′

= x/2f .

A.4 SECURITY PROOF

Theorem 1. Based on replicated secret sharing, the protocol DownCast securely performs the share
extension against the semi-honest adversary, with honest-majority assumption.

Proof. The DownCast protocol relies on local right-shift and modulo operations, which are per-
formed individually by each party on the shares they hold. No communication of shares between
parties is required for these computations. Owing to the nature of the underlying RSS scheme, each
party alone cannot reveal the secret data, proving the overall security of the protocol.

Theorem 2. Based on replicated secret sharing, the protocol UpCast securely performs the share
extension against the semi-honest adversary in the (PRF,DownCast)-hybrid model, with honest-
majority assumption.

Proof. UpCast facilitates the computation by letting P2 locally sample data-independent correlated
randomness and offload the subsequent computations to the left two parties, i.e., P0 and P1. Recall

16

Under review as a conference paper at ICLR 2024

Algorithm 4 Secure UpCast Protocol

Input: RSS-shared JxKℓ over FXPf
ℓ ;

Output: RSS-shared Jx′Kℓ′ over FXPf ′

ℓ′ , where x′ = x.
1: P2 proceeds as follows:

Samples bits {ri} for i ∈ [0, ℓ− 1] and computes r =

ℓ−1∑
i=0

ri ∗ 2i.

Generates 2-out-of-2 sharing of r and rℓ−1 as ⟨r⟩ℓ′ = {r0, r1}, ⟨rℓ−1⟩ℓ′ = {rℓ−1,0, rℓ−1,1}.
Sends the shares to P0 and P1. ▷ Pi holds ri and rℓ−1,i, 1 round.

2: Pi for i ∈ {0, 1, 2} generate random numbers z0, z2 ∈ Z2ℓ′ using PRF:

P2 and P0 samples z0
P2 and P1 samples z2

3: P0 and P1 obtain ⟨r⟩ℓ by invoking DownCast(⟨r⟩ℓ′ ≪ (f ′−f)), ▷ using ⟨r⟩ℓ′ from Step-1

4: P0 and P1 convert JxKℓ to ⟨x̂⟩ℓ = {x̂0, x̂1} by constructing x̂0 = x1 + x2, x̂1 = x0, where Pi

holds x̂i and x = x̂.
5: P0 and P1 executes the following steps:

⟨y⟩ℓ = ⟨x̂⟩ℓ + ⟨r⟩ℓ and open y = Reveal(⟨y⟩ℓ), ▷ y = x̂+ r, 1 round
⟨ŵ⟩ℓ′ = ⟨rℓ−1⟩ℓ′ · ¬yℓ−1, ▷ ŵ = rℓ1 · ¬yℓ−1

⟨x′⟩ℓ′ = y − ⟨r⟩ℓ′ + ⟨ŵ⟩ℓ′ · 2ℓ, ▷ x = y − r + ŵ · 2ℓ

and outputs ⟨x′⟩ℓ′ = {x′
0, x

′
1}, s.t., x′

0 + x′
1 mod 2ℓ

′
= x.

6: Pi for i ∈ {0, 1} proceed as follows:

P0 computes x′
0 = x′

0 − z0, ▷ using random number z0 from Step-2

P1 computes x′
1 = x′

1 − z2, ▷ using random number z2 from Step-2

P0 and P1 exchanges x′
0 and x′

1 ▷ 1 round

7: P0 outputs (z0, x′
0 + x′

1), P1 outputs (x′
0 + x′

1, z2) and P2 outputs (z2, z0).
8: return Jx′Kℓ′ = {z0, x′

0 + x′
1, z2}.

that we have honest-majority assumption, P2 cannot collude with either P0 or P1. Hence, although
P2 knows the plaintext value of randomness, he cannot reveal the input x without the information
of the revealed y in Step-5. The randomness r is a random ℓ-bit integer. Its sharing over Z2ℓ′ is
generated by P2 and we let P0 and P1 use DownCast to obtain its sharing over Z2ℓ in Step-3. As
long as the security of DownCast holds, the security of Step-3 holds. Subsequently, the mask-and-
open operation computes y = x + r over Z2ℓ . Since r is uniformly sampled over Z2ℓ , and the
computation modulos 2ℓ, information-theoretical security is guaranteed. Despite the information of
y, both P0 and P1 cannot crack x. Regarding the computation of ŵ, it also merely involves local
computations, thus leaking no information to help crack x. Finally, in Step-6, the two random values
z0, z2 over Z2ℓ′ generated using PRF in Step-2 are used to convert the two-out-of-two sharing of x′

into RSS. P0 and P1 use z0 and z2 respectively to mask the shares they hold, while P2 directly take
z0 and z2 as his share. Since z0 and z2 are both uniformly sampled over Z2ℓ′ , the masked shares
exchanged between P0 and P1 does not leak any information. Since we assume the pair-wise seeds
in PRF are securely distributed to the parties, the security of PRF holds, consequently the security
of UpCast.

A.5 ILLUSTRATION OF TRAINING LOSS DURING DISTILLATION

The training curve in Figure 3 depicts the loss between layer-wise outputs of the original model
and the model generated by Ditto (with quantization and GeLU approximation). It is evident that

17

Under review as a conference paper at ICLR 2024

0 5000 10000 15000 20000 25000
Training step

2

4

6

8

10

12

Lo
ss

Training curve for CoLA on Bert

Bert-base
Bert-large

(a) Training loss of Bert on CoLA dataset.

0 10000 20000 30000 40000 50000 60000 70000
Training step

0

2500

5000

7500

10000

12500

15000

17500

Lo
ss

Training curve for Wikitext on GPT2

GPT2-base
GPT2-medium

(b) Training loss of GPT2 on Wikitext103 dataset.

Figure 3: Training loss of layer-wise outputs of Bert and GPT2 models.

the model produced by Ditto significantly deviates from the original model, with a maximum
loss of 12 for Bert and nearly 18000 for GPT2. This substantial divergence indicates that without
quantization-aware distillation, the converted model would have a low utility.

A.6 ILLUSTRATION OF ACTIVATION DISTRIBUTION

In this section, we analyze the activation distribution of Bert and GPT2 models, focusing on the
hidden states generated by the intermediate Transformer blocks. As depicted in Figure 4, we observe
that the majority of activations in these intermediate layers have absolute values close to zero, with
only a small proportion of outliers. For Bert, the outliers fall below 25, while for GPT2, they are
below 500. This distribution signifies that the quantization scheme employed in Ditto is capable
of representing all intermediate values without encountering significant overflows.

A.7 ILLUSTRATION OF FIXED-POINT INFERENCE

The difference between fixed-point inference against traditional floating-point inference is illustrated
in Figure 5. FP32 denotes float32, and FXP-ℓ, f (FXP-ℓ′, f ′) represents FXPf

ℓ (FXPf ′

ℓ′). We have
ℓ < ℓ′ and f < f ′. In floating-point inference (Figure 5a), all the computations are computed using
FP32. While in Ditto (Figure 5b), all the variables (i.e., activations and weights) in each layer
are quantized into fixed-point representation with different precision (marked in orangered). The
concrete computations are also carried out using fixed-point arithmetic.

For the linear layers (using FXPf
ℓ), the fixed-point weights and activations serve as the inputs to

linear operation, and the outputs are truncated and clipped to align the fixed-point representation.

While for the non-linear layers, we first perform fixed-point conversion to raise the precision, i.e.,
from 2−f to 2−f ′

for the sake of numerical stability. The non-linear functions are approximated
using fixed-point arithmetic (using FXPf ′

ℓ′) that are detailed in Section 4.2.1.

A.8 HYPER-PARAMETER CHOICE

Fine-tuning Configuration. Regarding the fine-tuning of Bert models for different classification
tasks (re-train the last prediction layer), we use a batch size of 32 for Bert-base and 16 for Bert-large.
All the inputs are of sequence length 128. We train the models for 3 epochs on RTE, CoLA, QQP
and QNLI datasets. We run a grid search with learning rate in [2e-5, 3e-5, 4e-5, 5e-5]. While for
GPT2 models, we reuse the trained model parameters from Hugging Face. Concretely, we use pre-
trained GPT2-base 5 and GPT2-medium 6 models pre-trained over the Wikitext-103 dataset Merity
et al. (2016).

5GPT2-base on wikitext-103: https://huggingface.co/Graphcore/gpt2-wikitext-103
6GPT2-medium on wikitext-103https://huggingface.co/Graphcore/gpt2-medium-wikitext-103

18

https://huggingface.co/Graphcore/gpt2-wikitext-103
https://huggingface.co/Graphcore/gpt2-medium-wikitext-103

Under review as a conference paper at ICLR 2024

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer

0

2

4

6

8

10

12

14

H
id

de
n

St
at

es
 (A

bs
)

Distribution of hidden states for Bert-base

(a) Activation distribution of Bert-base

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Layer

0

5

10

15

20

H
id

de
n

St
at

es
 (A

bs
)

Distribution of hidden states for Bert-large

(b) Activation distribution of Bert-large

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer

0

25

50

75

100

125

150

175

H
id

de
n

St
at

es
 (A

bs
)

Distribution of hidden states for GPT2-base

(c) Activation distribution of GPT2-base

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Layer

0

100

200

300

400

500

H
id

de
n

St
at

es
 (A

bs
)

Distribution of hidden states for GPT2-medium

(d) Activation distribution of GPT2-medium

Figure 4: Activation distribution on Bert and GPT2 models.

MatMul (FP32)

Weight (FP32) Activation (FP32)

Activation (FP32)

Softmax/GeLU/LayerNorm (FP32)

(a) Floating-point computation

MatMul (FXP-!, #)

Weight (FP32) Activation (FP32)

Weight (FXP-!, #) Activation (FXP-!, #)

Fixed-point Quantization (!, #)

Fixed-point Truncation (#)

Activation (FXP-!, #)

Softmax/GeLU/LayerNorm (FXP-!′, #′)

Activation (FXP-!′, #′)

Fixed-point Conversion (!′, #′)

Fixed-point Clip (!)

(b) Fixed-point computation

Figure 5: Comparison of fixed-point quantization schemes against original floating-point scheme.

Distillation Configuration. The distillation involves two stages: the hidden state distillation and
logits distillation, with learning rates of 5e-5 and 1e-5, respectively. In general, we follow the hyper-
parameter setting in Li et al. (2023). Regarding Bert models, we train the student model for 50
epochs on RTE, 50 epochs on CoLA, 5 epochs on QQP and 10 epochs on QNLI. All the input
sequences are of length 128. For GPT2 models, we train for 1 epoch on Wikitext-103, and the input
sequences are of length 50. For the Bert-base model, we use a batch size of 32. While for Bert-large
and GPT2 models, we use a batch size of 16 due to GPU memory limitation.

19

Under review as a conference paper at ICLR 2024

A.9 POLYNOMIAL APPROXIMATION OF GELU IN PUMA

PUMA Dong et al. (2023) proposed to use a piece-wise approximation of low-degree polynomi-
als for more efficient yet accurate computation of secure GeLU function. In general, the GeLU
approximation is split into four splines as follows:

GeLU(x) =

0, x < −4

f0(x), −4 ≤ x < −1.95

f1(x), −1.95 ≤ x ≤ 3

x, x > 3

, (6)

where the polynomials f0, f1 are obtained using numpy.ployfit7. The coefficients of the two poly-
nomials are listed below.

f0(x) = −0.011034134030615728x3 − 0.11807612951181953x2

−0.42226581151983866x− 0.5054031199708174

f1(x) = 0.0018067462606141187x6 − 0.037688200365904236x4

+0.3603292692789629x2 + 0.5x+ 0.008526321541038084

(7)

A.10 TAILORED EXPONENTIAL APPROXIMATION

We here describe the tailored exponential approximation for softmax Dong et al. (2023) that is
utilized in this work. In general, the exponential function is approximated using a two-segment
piecewise function defined in Equation 8. The approximation is specifically designed for the softmax
function, which normalizes the input by subtracting the maximum value (x = x − maxi(x)). As
a result, the inputs to the exponential function are non-positive, allowing us to employ a Taylor
series approximation that maintains precision without significant loss. In our implementation, we
set the parameters Texp to −14 and t to 5 to ensure an efficient and accurate approximation of the
exponential function. The specific details and formulas can be found in Dong et al. (2023).

Exp(x) =

{
0, x < Texp

(1 + x
2t)

2t , x ∈ [Texp, 0].
(8)

7https://numpy.org/doc/stable/reference/generated/numpy.polyfit.html

20

https://numpy.org/doc/stable/reference/generated/numpy.polyfit.html

	Introduction
	Related Work
	Background
	Transformer and its Variants
	Secure Multi-Party Computation
	Model Quantization

	Design
	High-Level Workflow
	MPC-friendly Model Quantization and Distillation
	MPC-friendly Fixed-point Model Quantization
	Quantization-aware Distillation

	Secure Model Inference upon MPC
	Type Conversion MPC primitives
	Quantization-aware MPC execution

	Experiments
	Utility Evaluation
	Efficiency Evaluation
	Extensive Experiments

	Conclusion
	Appendix
	Supplementary Experiments
	Formulated Protocol Constructions
	Correctness Analysis
	Security Proof
	Illustration of Training Loss During Distillation
	Illustration of Activation Distribution
	Illustration of Fixed-point Inference
	Hyper-parameter Choice
	Polynomial approximation of GeLU in PUMA
	Tailored Exponential Approximation

