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Abstract
This paper introduces EasyInv, an easy yet novel
approach that significantly advances the field of
DDIM Inversion by addressing the inherent in-
efficiencies and performance limitations of tradi-
tional iterative optimization methods. At the core
of our EasyInv is a refined strategy for approximat-
ing inversion noise, which is pivotal for enhancing
the accuracy and reliability of the inversion pro-
cess. By prioritizing the initial latent state, which
encapsulates rich information about the original
images, EasyInv steers clear of the iterative re-
finement of noise items. Instead, we introduce a
methodical aggregation of the latent state from
the preceding time step with the current state, ef-
fectively increasing the influence of the initial
latent state and mitigating the impact of noise.
We illustrate that EasyInv is capable of delivering
results that are either on par with or exceed those
of the conventional DDIM Inversion approach,
especially under conditions where the model’s
precision is limited or computational resources
are scarce. Concurrently, our EasyInv offers an
approximate threefold enhancement regarding in-
ference efficiency over off-the-shelf iterative op-
timization techniques. See code at https://
github.com/potato-kitty/EasyInv.

1. Introduction
Diffusion models are renowned for their ability to gener-
ate high-quality images that closely match given prompts.
Among the many diffusion models, Stable Diffusion
(SD) (Rombach et al., 2022) stands out as one of the most
widely utilized models. Another contemporary diffusion
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Figure 1. Comparison of inversion methods including vanilla
DDIM Inversion (Couairon et al., 2023), Fixed-Point Iteration (Pan
et al., 2023), ReNoise (Garibi et al., 2024) and our EasyInv.

model gaining popularity is DALL-E 3 (Betker et al., 2023),
which offers users access to its API and the ability to inter-
act with it through platforms like ChatGPT (Openai, 2024).
These models have transformed the visual arts industry and
have attracted substantial attention from the research com-
munity. While renowned generative diffusion models have
made strides, a prevalent limitation is their reliance on tex-
tual prompts for input. This approach becomes restrictive
when users seek to iteratively refine an image, as the sole
reliance on prompts hinders flexibility. Although solutions
such as ObjectAdd (Zhang et al., 2024) and P2P (Hertz
et al., 2022) have been proposed to address image editing
challenges, they are still confined to the realm of prompted
image manipulation. Given that diffusion models generate
images from noise inputs, a potential breakthrough lies in
identifying the corresponding noise for any given image.
This would enable the diffusion model to initiate the genera-
tion process from a known starting point, thereby allowing
for precise control over the final output. The recent innova-
tion of DDIM Inversion (Couairon et al., 2023) overcomes
this by reversing the denoising process to introduce noise.
This technique retrieves the initial noise configuration after
a series of reference steps, thereby preserving the integrity
of the original image while affording the user the ability to
manipulate the output by adjusting the denoising parameters.
With DDIM inversion, the generative process becomes more
adaptable, facilitating the creation and subsequent editing
of images with greater precision and control. For example,
MasaCtrl (Cao et al., 2023) first transforms a real image into
a noise representation and then identifies the arrangement of
objects during the denoising phase. Portrait Diffusion (Liu
et al., 2023) inverts both the source and target images. It
merges their respective Q, K and V values for mixups.
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Considering the reliance on inversion techniques to preserve
the integrity of the input image, the quality of the inversion
process is paramount, as it profoundly influences subsequent
tasks. As depicted in Figure 1(a), the performance of DDIM
Inversion has been found to be less than satisfactory due
to the discrepancy between the noise estimated during the
inversion process and the noise expected in the sampling pro-
cess. Consequently, numerous studies have been conducted
to enhance its efficacy. In Null-Text inversion (Mokady
et al., 2023), researchers observed that using a null prompt
as input, the diffusion model could generate optimal results
during inversion, suggesting that improvements to inversion
might be better achieved in the reconstruction branch. Ju et
al.’s work (Ju et al., 2023) exemplifies this approach by cal-
culating the distance between latents at the current step and
the previous step. PTI (Dong et al., 2023) opts to update the
conditional vector in each step to guide the reconstruction
branch for improving consistency. ReNoise (Garibi et al.,
2024) focuses on refining the inversion process itself. This
method iteratively adds and then denoises noise at each time
step, using the denoised noise as input for the subsequent
iteration. However, as shown in Figure 1(b), it can result in a
black image output when dealing with certain special inputs,
which will be discussed in detail in Section 4. Pan et al. (Pan
et al., 2023), while maintaining the iterative updating pro-
cess, also amalgamated noise from previous steps with the
current step’s noise. However, this method’s performance is
limited in less effective models as displayed in Figure 1(c).
For instance, it performs well in SD-XL (Podell et al., 2023)
but fails to yield proper results in SD-V1-4 (Rombach et al.,
2022). We attribute this to their sole focus on optimizing
noise; when the noise is highly inaccurate, such simple opti-
mization strategies encounter difficulties. Additionally, the
iterative updating of noise is time-consuming, as Pan et al.’s
method requires multiple model inferences per time step.

In this paper, we conduct an in-depth analysis and recognize
that the foundation of any inversion process is the initial
latent state derived from a real image. Errors introduced
at each step of the inversion process can accumulate, lead-
ing to a suboptimal reconstruction. Current methodologies,
which focus on optimizing the transition between successive
steps, may not be adequate to address this issue holistically.
To tackle this, we propose a novel approach that considers
the inversion process as a whole, underscoring the signifi-
cance of the initial latent state throughout the process. Our
approach, named EasyInv, incorporates a straightforward
mechanism to periodically reinforce the influence of the
initial latent state during the inversion. This is realized
by blending the current latent state with the previous one
at strategically selected intervals, thereby increasing the
weight of the initial latent state and diminishing the noise’s
impact. As a result, EasyInv ensures a reconstructed version
that remains closer to the original image, as illustrated in
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Figure 2. Visualization of latent states at midway denoising steps
for various inversion methods. Our EasyInv shows enhanced con-
vergence by closely approximating the original image.

Figure 1(d). Furthermore, by building upon the traditional
DDIM Inversion framework (Couairon et al., 2023), EasyInv
does not depend on iterative optimization between adjacent
steps, thus enhancing computational efficiency. In Figure 2,
we present a visualization of the latent states at the midpoint
of the total denoising steps for various inversion methods.
The outcomes of our EasyInv are more closely aligned with
the original image compared to all other methods, demon-
strating that EasyInv achieves faster convergence.

2. Related Works
Diffusion Model. In recent years, there has been sig-
nificant progress in the field of generative models, with
diffusion models emerging as a particularly popular ap-
proach. The seminal denoising diffusion probabilistic mod-
els (DDPM) (Ho et al., 2020) introduced a practical frame-
work for image generation based on the diffusion process.
This method stands out from its predecessors, such as gen-
erative adversarial networks (GANs), due to its iterative
nature. During the data preparation phase, Gaussian noise is
incrementally added to a real image until it transitions into
a state that is indistinguishable from raw Gaussian noise.
Subsequently, a model can be trained to predict the noise
added at each step, enabling users to input any Gaussian
noise and obtain a high-quality image as a result. Ho et
al. (Ho et al., 2020) provided a robust theoretical foundation
for their model, which has facilitated further advancements.
Generative process in DDPM is both time-consuming and
inherently stochastic due to the random noise introduced
at each step. To address these limitations, the denoising
diffusion implicit models (DDIM) were developed (Song
et al., 2020). By reformulating DDPM, DDIM has reduced
the amount of random noise added at each step. This refor-
mulation results in a more deterministic denoising process.
Furthermore, the absence of random noise allows for the
aggregation of several denoising steps, thereby reducing the
overall computation time required to generate an image.

Image Inversion. Converting a real image into noise is piv-
otal in real image editing using diffusion models. The preci-
sion of this process has a profound impact in the final edit,
with the critical element being the accurate identification
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of the noise added at each step. Couairon et al. (Couairon
et al., 2023) swapped the roles of independent and implicit
variables within the denoising function of the DDIM model,
enabling it to predict the noise that should be introduced
to the current latents. However, it is essential to recognize
that the denoising step in a diffusion model is inherently
an approximation, and when this approximation is utilized
inversely, discrepancies between the model’s output and the
actual noise value are likely to be exacerbated. To address
this issue, ReNoise (Garibi et al., 2024) iterates through
each noising step multiple times. For each inversion step,
they employ an iterative approach to add and subsequently
reduce noise, with the noise reduced in the final iteration
being carried forward to the subsequent iteration. Pan et
al. (Pan et al., 2023) offered a theoretical underpinning to
the ReNoise. Iterative optimization from ReNoise is clas-
sified under the umbrella of fixed-point iteration methods.
Building upon Anderson’s seminal work (Anderson, 1965),
Pan et al. have advanced the field by proposing their novel
method for optimizing noise during the inversion process.

3. Methodology
3.1. Preliminaries

DDIM Inversion. Let zT denote a noise tensor with zT ∼
I(0, I). The DDIM (Couairon et al., 2023) leverages a pre-
trained neural network εθ to perform T denoising diffusion
steps. Each step aims to estimate the underlying noise and
subsequently restore a less noisy version of the tensor, zt−1,
from its noisy counterpart zt as:

zt−1 =

√
αt−1

αt
zt+(√

1

αt−1
− 1−

√
1

αt
− 1

)
· εθ
(
zt, t, τθ(y)

)
,

(1)

where t = T → 1, and {αt}Tt=1 constitutes a prescribed
variance set that guides the diffusion process. Furthermore,
τθ serves as an intermediate representation that encapsulates
the textual condition y. We denote:

d(zt) = εθ
(
zt, t, τθ(y)

)
. (2)

Re-evaluating Equation (1), we derive DDIM Inversion pro-
cess (Couairon et al., 2023) as presented in Equation (3).
In this reformulation, we relocate an approximate z∗t to the
left-hand side, resulting in the following expression:
z
∗
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∗
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(3)

Review. Given an image I∗, after encoding it into the latent
z∗0, we initiate T inversion steps using Equation (3) to obtain

the noise z∗T . Starting with zT = z∗T , we proceed with a
denoising process in Equation (1) to infer an approximate
reconstruction z0 that resembles the original latent z∗0. The
primary source of error in this reconstruction arises from the
difference between the noise predicted during the inversion
process εθ

(
z∗t−1, t− 1, τθ(y)

)
and the noise expected in the

sampling process, εθ
(
zt, t, τθ(y)

)
, denoted as εt, at each

iterative step. This discrepancy originates from an imprecise
approximation of the time step from t to t− 1. Therefore,
reducing the discrepancy between the predicted noises at
each step is crucial for achieving an accurate reconstruc-
tion, which is essential for the success of subsequent image
editing tasks. For simplicity below, we define:

ε∗t = εθ
(
z∗t−1, t− 1, τθ(y)

)
, εt = εθ

(
zt, t, τθ(y)

)
. (4)

3.2. Fixed-Point Iteration

The vanilla DDIM Inversion method, as discussed, involves
an approximation that is not entirely precise for ε∗t . To ad-
dress this, researchers have sought to refine a more accurate
approximation of ε∗t , thereby ensuring that the desired con-
ditions are optimally met. This refinement process aims
to enhance the precision of the method, leading to more
reliable results in the context of the application:

ε∗t = εt. (5)

For clarity, let’s first restate Equation (3) as follows:

z∗t = g(ε∗t ), (6)

which represents the introduction of adding noise to the
latent state z∗t−1. Under the assumption of Equation (5), it
should be the case that:

zt = z∗t . (7)

Subsequently, by employing the noise estimation function
from Equation (2), we obtain:

d
(
zt) = d

(
g(ε∗t )

)
. (8)

Combining d(zt) = εt and Equation (5), we obtain:

ε∗t = d
(
g(ε∗t )

)
. (9)

This formulation presents a fixed-point problem, which per-
tains to a value that remains unchanged under a specific
transformation (Bauschke et al., 2011). In the context of
functions, a fixed point is an element that is invariant under
the application of the function. We seek a ε∗t that, when
transformed by g and followed by d, can map back to itself,
signifying an optimal solution as per Equation (5).
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Fixed-point iteration is a computational technique designed
to identify the fixed points of a function. It functions through
an iterative process, as delineated below:

(ε∗t )
n = d

(
g(ε∗t )

n−1
)
, (10)

where n denotes the iteration count. This iterative process
can be enhanced through acceleration techniques such as An-
derson acceleration (Anderson, 1965). However, calculat-
ing a complex ε∗t can be quite onerous. An empirical acceler-
ation method proposed (Pan et al., 2023) introduces a refine-
ment for ε∗t by setting:

(
ε∗t )

n = εθ((z
∗
t )

n, t−1, τθ(y)
)

and
(ε∗t )

n−1 = εθ
(
(z∗t )

n−1, t− 1, τθ(y)
)
. They finally reach:

(z∗t )
n+1 = g(0.5 · (ε∗t )n + 0.5 · (ε∗t )n−1), (11)

where the term 0.5 · (ε∗t )n + 0.5 · (ε∗t )n−1 represents the
refinement technique for ε∗t as suggested by Pan et al. If we
were to apply the function d to both sides of Equation (11), it
would align perfectly with the form of Equation (10). Their
experiments have demonstrated that this approach is more
effective than both Anderson’s method (Anderson, 1965)
and other techniques in inversion tasks.

Despite the progress made, this paper acknowledges in-
herent limitations in the practical implementation of the
inversion technique. (1) Inversion Efficiency: While the
method outlined in Equation (11) has shown improvements
over traditional fixed-point iteration, it still relies on iter-
ative optimization. The need for multiple forward passes
through the diffusion model is computationally demanding
and can result in inefficiencies in downstream applications.
(2) Inversion Performance: The theoretical improvements
presented assume that ε∗t = εt. However, iterative optimiza-
tion does not guarantee the exact fulfillment of Equation (7)
for every time step t. Therefore, while the method may the-
oretically offer superior performance, cumulative errors can
sometimes lead to practical outcomes that are less satisfac-
tory than those achieved with the standard DDIM Inversion
method, as shown in Figure 1.

3.3. Kalman Filter

The Kalman filter is designed to estimate the state of a dy-
namic system from noisy measurements. It assumes two
states of the system: the predicted state, xk, which is cal-
culated using the process function, and the observed state,
yk, which represents the measured state of the system. For
instance, the position of an object could be predicted using
its velocity and time, while its position might be observed
via a radar. Here, k denotes the time-step. Ideally, xk and
yk should be identical; however, in practice, both are prone
to inaccuracies. The Kalman filter aims to provide an op-
timized estimate by combining both values. The relevant
equations are as follows:

xk = Axk−1 +Buk + wk−1. (12)

yk = Hxk + vk. (13)

In these equations, xk represents the true value at time-step
k, which we aim to estimate; uk−1 is the control input at
time step k − 1, such as acceleration; wk−1 and vk are
random noise or errors introduced during calculation and
measurement, thus yk represents the measurement value;
A and B are weight matrices; and H is the transformation
matrix. When xk and yk are of the same type, the matrix H
can be omitted. In practice the value of wk−1 is unknown,
otherwise the precise results would be calculated without
the needs of Kalman filter. Instead, we have the predicted
value x̄k, which is x̄k = Axk−1+Buk. The key idea of the
Kalman filter is to fuse these x̄k and yk in order to obtain
a more accurate estimation of the system state. The fusion
process is typically represented as:

x̃k = αx̄k + βymeasure, (14)

where α+ β = I and ymeasure = H−1yk. We can rewrite
the fusion equation as:

x̃k = (1−β)x̄k+βH−1yk = x̄k+β(H−1yk− x̄k), (15)

When we set β = K ·H the objective function would be:

x̃k = x̄k +K(yk −Hx̄k). (16)

Here, K is the Kalman gain. Additionally, x̄k = Ax̃k−1 +
Buk is the predicted estimate of the true state xk, based on
the previous estimate x̃k−1.

3.4. EasyInv

To facilitate our subsequent analysis, we introduce the
notation ᾱt to represent

√
αt

αt−1
and β̄t to denote√

αt

αt−1

(√
1

αt−1
− 1 −

√
1
αt

− 1
)

. With these notations,

we can reframe Equation (3) as follow:

z∗t = ᾱtz
∗
t−1 + β̄tε

∗
t . (17)

Similarly, we can express the form of z∗t−1 as:

z∗t−1 = ᾱt−1z
∗
t−2 + β̄t−1ε

∗
t−1. (18)

By combining these two formulas, we derive:

z∗t = ᾱtᾱt−1z
∗
t−2 + ᾱtβ̄t−1ε

∗
t−1 + β̄tε

∗
t . (19)

This can be further generalized to:

z∗t = (

t∏
i=1

ᾱi)z
∗
0 +

t∑
i=1

(β̄i

t∏
j=i+1

ᾱj)ε
∗
i . (20)
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From Equation (20), it is evident that z∗t is a weighted sum
of z0 and a series of noise terms ε∗i . The denoising process
of Equation (1) aims to iteratively reduce the impact of these
noise terms. In prior research, the crux of inversion is to
introduce the appropriate noise ε∗i at each step to identify a
suitable z∗t . This allows the model to obtain z0 as the final
output after the denoising process. However, iteratively
updating ε∗i can be time-consuming, and when the model
lacks high precision, achieving satisfactory results within a
reasonable number of iterations may be challenging.

To address this, we propose an alternative perspective. Dur-
ing inversion, rather than searching for better noise, we
aggregate the latent state from the last time step z∗t̄−1 with
the current latent state z∗t̄ at specific time steps t̄, as illus-
trated in the following formula:

z∗t̄ = ηz∗t̄ + (1− η)z∗t̄−1, (21)

where η is a trade-off parameter. The selection of t̄ and η
will be discussed in Section 4.1. Considering Equation (16),
when applying it to solve the inversion problem, we obtain
the following equation:

z∗t̄ = Kz∗t̄ + (1−K)yk, (22)

where H is ignored since yk and x̄k show be same kind of
data. z∗t̄ represents the estimated value x̃k. Next, we replace
the measured value yk with z∗t̄−1, because while zt cannot
be directly measured during the inversion process at time-
step t− 1, the difference vt = zt − zt−1 is assumed to be
Gaussian noise, in accordance with the basic principles of
diffusion models. Thus, zt−1 can be treated as the measured
value xk in Equation (13) for the inversion problem. The
equation then becomes:

z∗t̄ = Kz∗t̄ + (1−K)z∗t̄−1. (23)

Typically, determining the Kalman Gain K is the main
goal of the Kalman filter algorithm, which can be compu-
tationally expensive. However, the approach described in
Equation (21) can be viewed as a simplified version of the
Kalman filter, where K is treated as a constant value, deter-
mined empirically. With this method, the added noise for
inverting z∗t̄−1 to z∗t̄ would be:

z∗t̄ − z∗t̄−1 = η(z̄∗t̄ − z∗t̄−1). (24)

Here, z̄∗t̄ represents the original z∗t̄ on the right-hand side
of Equation (21), generated via DDIM inversion in our
case. As indicated in Equation (24), the distribution tran-
sition from z∗t̄−1 to z∗t̄ in our method mirrors the distri-
bution pattern of DDIM inversion, maintaining the same
variance. Due to η < 1, the average value is reduced. In
other words, our method preserves the noise pattern of the
original method but applies a rescaling factor.

Algorithm 1 illustrates the approximate operation of our
method in conjunction with an inversion framework.

Algorithm 1 Add EasyInv to an existing inversion method

Require: A inversion algorithm Inv(), total inversion steps
T , latent z, chosen steps t̄, empirical parameter η

1: for t in T do
2: zt+1 = Inv(zt, t)
3: if t in t̄ then
4: zt+1 = η ∗ zt+1 + (1− η) ∗ zt
5: end if
6: end for

Output: inverted latent zT

4. Experimentation
In Table 1 and Table 2, we compare our EasyInv over other
inversion methods, using SD V1.4 on one NVIDIA GTX
3090 GPU. For Fixed-Point Iteration (Pan et al., 2023), we
re-implemented it using settings from the paper. We set the
data type of all methods to float16 by default to improve
efficiency. The inversion and denoising steps are T = 50,
except for Fixed-Point Iteration, which recommends T =
20. For our EasyInv, we set 0.05 · T < t̄ < 0.25 · T
and η = 0.5. In Table 3 we compare the performance of
different down-string tasks when using different inversion
methods, the dataset and codes we used in this experiment
are from PNPinversion (Ju et al., 2024).

We use three major qualitative metrics: LPIPS index (Zhang
et al., 2018), SSIM (Wang et al., 2004), and PSNR with the
inference time. We sample 2,298 images from the COCO
2017 test and validation sets (Lin et al., 2014).

4.1. Quantitative Results

Table 1 presents the quantitative results of different methods.
EasyInv achieves a competitive LPIPS score of 0.321, better
than ReNoise (0.316) and Fixed-Point Iteration (0.373), indi-
cating closer perceptual similarity to the original image. For
SSIM, EasyInv achieves the highest score of 0.646, show-
ing superior structural similarity crucial for maintaining

Table 1. A comparative result of quantitative outcomes.
LPIPS (↓) SSIM (↑) PSNR (↑) Time (↓)

DDIM Inversion 0.328 0.621 29.717 5s
ReNoise 0.316 0.641 31.025 16s

Fixed-Point Iteration 0.373 0.563 29.107 14s
EasyInv (Ours) 0.321 0.646 30.189 5s

Table 2. A comparative result of half- and full-precision EasyInv.
LPIPS (↓) SSIM (↑) PSNR (↑) Time (↓)

Full Precision 0.321 0.646 30.184 9s
Half Precision 0.321 0.646 30.189 5s
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Table 3. Performance of downstream methods. Results except “Ours+DirectInv” are from PNPinversion (Ju et al., 2024). DDIM
inversion (Couairon et al., 2023) for DDIM, Null-text inversion (Mokady et al., 2023) for NT, Negative-Prompt Inversion (Miyake et al.,
2023) for NP, StyleDiffusion (Wang et al., 2023) for StyleD, PNPinversion (Ju et al., 2024) for DirectInv, Prompt-to-Prompt (Hertz et al.,
2022) for P2P, MasaCtrl (Cao et al., 2023) for MasaCtrl, Pix2Pix-Zero (Parmar et al., 2023) for P2P-Zero and Plug-and-Play (Tumanyan
et al., 2023) for PnP.
† averaged results on A800 and RTX3090 since different environment leads to slightly different performance.
∗ uses Stable Diffusion v1.5 as base model (others all use Stable Diffusion v1.4).

Method Structure Background Preservation CLIP Similarity

Inverse Editing Distance×103 ↓ PSNR ↑ LPIPS×103 ↓ MSE×104 ↓ SSIM×102 ↑ Whole ↑ Edited ↑
DDIM P2P 69.43 17.87 208.80 219.88 71.14 25.01 22.44
NT† P2P 13.44 27.03 60.67 35.86 84.11 24.75 21.86
NP P2P 16.17 26.21 69.01 39.73 83.40 24.61 21.87

StyleD P2P 11.65 26.05 66.10 38.63 83.42 24.78 21.72

DirectInv P2P 11.65 27.22 54.55 32.86 84.76 25.02 22.10
Ours+DirectInv P2P 11.58 27.30 53.52 32.37 84.80 24.97 22.00

DDIM MasaCtrl 28.38 22.17 106.62 86.97 79.67 23.96 21.16

DirectInv MasaCtrl 24.70 22.64 87.94 81.09 81.33 24.38 21.35
Ours+DirectInv MasaCtrl 23.82 22.72 87.65 79.73 81.82 24.36 21.32

DDIM P2P-Zero 61.68 20.44 172.22 144.12 74.67 22.80 20.54

DirectInv P2P-Zero 49.22 21.53 138.98 127.32 77.05 23.31 21.05
Ours+DirectInv P2P-Zero 48.02 21.54 136.78 124.00 77.71 23.40 20.93

DDIM PnP∗ 28.22 22.28 113.46 83.64 79.05 25.41 22.55

DirectInv PnP∗ 24.29 22.46 106.06 80.45 79.68 25.41 22.62
Ours+DirectInv PnP∗ 22.88 22.56 102.34 78.57 80.27 25.38 22.53

image coherence. For PSNR, EasyInv scores 30.189, close
to ReNoise’s highest score of 31.025, indicating high im-
age fidelity. EasyInv completes the inversion process in the
fastest time of 5 seconds, matching DDIM Inversion (Coua-
iron et al., 2023), and quicker than ReNoise (16 seconds)
and Fixed-Point Iteration (14 seconds), highlighting its effi-
ciency without compromising on quality. EasyInv performs
strongly across all metrics, with the highest SSIM score
indicating effective preservation of image structure. Its effi-
cient inversion makes it suitable for real-world applications
where both quality and speed are crucial.

Table 2 compares EasyInv’s performance in half-precision
(float16) and full-precision (float32) formats. Both achieve
the same LPIPS score of 0.321, indicating consistent percep-
tual similarity to the original image. Similarly, both achieve
an SSIM score of 0.646, showing preserved structural in-
tegrity with high fidelity. For PSNR, half precision slightly
outperforms full precision with scores of 30.189 and 30.184.
This slight advantage in PSNR for half precision is note-
worthy given its well reduced computation time. The most
significant difference is observed in the time metric, where
half precision completes the inversion process in 5 seconds,
approximately 44% faster than full precision, which takes
9 seconds. This efficiency gain highlights EasyInv’s excep-

tional optimization for half precision, offering faster speeds
and reduced resources without compromising output quality.

In Table 3, we compare the performance of several down-
stream tasks using our method and other inversion tech-
niques. Most of the results in this table are from PNPInver-
sion (Ju et al., 2024), where a dataset for 9 different image
editing tasks is introduced, along with the corresponding
code for both editing and evaluation. We used these codes
and dataset for this experiment. The only modification we
made was to incorporate our method into DirectInv, the in-
version method proposed in their work (Ju et al., 2024), and
its results are indicate as ‘ours+DirectInv’ in Table 3. As
we pointed out, our method is able to combined with most
existing inversion algorithm. The results in Table 3 show
the our advantage. By adding our method, the performance
of DirectInv improves in 5 out of 7 metrics across all editing
tasks, with minimal changes in the remaining 2 metrics.

4.2. Qualitative Results

We visually evaluate all methods using SD-V1-4. Figure 3
displays the results using images sourced from the inter-
net. These images also feature large areas of white color.
ReNoise struggles with images containing significant white
areas, resulting in black images. Fixed-Point Iteration and
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Original image DDIM Inversion EasyInv (Ours)ReNoise Fixed Point

Figure 3. A visual assessment of various inversion techniques.

Original
image

EasyInv
(Ours)

Original
image

EasyInv
(Ours)

Figure 4. More visual results of our EasyInv.

DDIM Inversion also fail to generate satisfactory results
in such cases, suggesting these images pose challenges for
inversion methods. Our method, shown in the figure, effec-
tively addresses these challenges, demonstrating robustness
and enhancing performance in handling special scenarios.
These findings underscore the efficacy of our approach, par-
ticularly in addressing challenging cases that are less com-
mon in the COCO dataset. For better illustrations, we show
more visual examples in Figure 4.

4.3. Ablation Studies

To clarify our experimental choices, in Table 4 we present
ablation studies on the parameter η, conducted on the same
dataset as in Table 3. Note that η = 1 would correspond to a
standard DDIM inversion and η = 0 would bypass the inver-
sion operation. Therefore, we exclude them. Our findings
indicate that η = 0.5 yields the best overall performance.

Table 4. Ablation Experiments on η.
Setting Structure Background Preservation CLIP Similarity

η Editing Distance×103 ↓ PSNR ↑ LPIPS×103 ↓ MSE×104 ↓ SSIM×102 ↑ Whole ↑ Edited ↑

0.2 PnP∗ 25.90 23.29 113.86 66.11 80.13 24.66 21.60

0.4 PnP∗ 24.44 23.29 107.18 66.32 80.69 24.82 21.76

0.5 PnP∗ 22.88 22.56 102.34 78.57 80.27 25.38 22.53

0.6 PnP∗ 23.36 23.21 101.37 67.96 81.07 25.02 22.00

0.8 PnP∗ 22.89 22.92 98.44 72.30 80.94 25.30 22.29

Original Image (d) EasyInv (Ours)(c) Fixed-Point(a) DDIM Inversion (b) ReNoise

Figure 5. Results of MasaCtrl (Cao et al., 2023) with prompt “A
football”, using inverted latent by different methods as input.

4.4. Downstream Image Editing

To showcase the practical utility of our EasyInv, we have
employed various inversion techniques within the realm
of consistent image synthesis and editing. We have seam-
lessly integrated these inversion methods into MasaCtrl (Cao
et al., 2023), a widely-adopted image editing approach that
extracts correlated local content and textures from source
images to ensure consistency. For demonstrative purposes,
we present an image of a “peach” alongside the prompt
“A football.” The impact of inversion quality is depicted
in Figure 5. It is clear that our inversion method demon-
strates superior performance in both texture and shape. We
also apply our EasyInv to two additional downstream tasks:
DiffusionTrend (Zhan et al., 2024) for virtual try-on and
UniVST (Song et al., 2024) for video style transferring. In
Figure 6, using our method results in better consistency of
the cloth compared to DDIM and results in Figure 7 show
that DDIM inversion leads to chaotic outcomes, whereas
our method yields much clearer results.

Fixed PointDDIM Inversion EasyInv

Figure 6. Comparison from DiffusionTrend (Zhan et al., 2024).

7



EasyInv: Toward Fast and Better DDIM Inversion

Origin DDIM EasyInv Origin DDIM EasyInv

Figure 7. Comparison from UniVST (Song et al., 2024).

4.5. Limitations

One potential risk is the phenomenon known as “over-
denoising,” which occurs when there is a disproportionate
focus on achieving a pristine final-step latent state. This
may result in overly smooth image outputs, as exemplified
by the “peach” figure in Figure 3. In most real-world image
editing tasks, this is not a typical issue, as these tasks often
involve style migration, which inherently alters the details of
the original image. However, in specific applications, such
as using diffusion models for creating advertisements, this
could pose a challenge. Nonetheless, our experimental re-
sults highlight that the method’s two key benefits outweigh
this minor shortcoming. Firstly, it is capable of delivering
satisfactory outcomes even with models that may under-
perform relative to other methods. Secondly, it enhances
inversion efficiency by reverting to the original DDIM In-
version baseline (Couairon et al., 2023), thereby eliminating
the necessity for iterative optimizations. This strategy not
only simplifies the process but also ensures the maintenance
of high-quality outputs, marking it as a noteworthy advance-
ment over current methodologies.

In conclusion, our research has made significant strides with
the introduction of EasyInv. As we look ahead, our com-
mitment to advancing this technology remains unwavering.
Our future research agenda will be focused on the persistent
enhancement and optimization of the techniques. This will
be done with the ultimate goal of ensuring that our method is
not only robust and efficient but also highly adaptable to the
diverse and ever-evolving needs of industrial applications.

5. Conclusion
Our EasyInv addresses the inefficiencies and performance
limitations in traditional iterative optimization methods. By
emphasizing the importance of the initial latent state and
introducing a refined strategy for approximating inversion
noise, EasyInv enhances both the accuracy efficiency of the
inversion process. Our method reinforces the initial latent
state’s influence, mitigating the impact of noise and ensuring
a closer reconstruction to the original image. This approach
not only matches but often surpasses the performance of
existing DDIM Inversion methods, especially in scenarios
with limited model precision or computational resources.
EasyInv also shows a remarkable improvement in infer-
ence efficiency, achieving approximately three times faster
processing than standard iterative techniques. Through ex-
tensive evaluations, we have shown that EasyInv delivers
high-quality results, making it a robust and efficient solution
for image inversion tasks. The simplicity and effectiveness
of EasyInv underscore its potential for broader applications.
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