

000 RECONSTRUCTION FOR GENERATION: REGULARIZ- 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 RECONSTRUCTION FOR GENERATION: REGULARIZ- ING MOTION DIFFUSION MODELS WITH MOTION RE- CONSTRUCTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Diffusion models have seen widespread adoption for text-driven human motion generation and related tasks due to their impressive generative capabilities and flexibility. However, current motion diffusion models face two major limitations: a representational gap caused by pre-trained text encoders that lack motion-specific information, and error accumulation during the iterative denoising process. This paper introduces **M**otion **R**econstruction for **G**ENeration (**MORG**EN) to address these challenges. First, MORGEN leverages a motion latent space as intermediate supervision for text-to-motion generation. To this end, MORGEN co-trains a motion reconstruction branch with two key objective functions: self-regularization to enhance the discrimination of the motion space and motion-centric latent alignment to enable accurate mapping from text to the motion latent space. Second, we propose Reconstructive Error Guidance (REG), a testing-stage guidance mechanism that exploits the diffusion model’s inherent self-correction ability to mitigate error accumulation. At each denoising step, REG uses the motion reconstruction branch to reconstruct the previous estimate, reproducing the prior error patterns. By amplifying the residual between the current prediction and the reconstructed estimate, REG highlights the improvements in the current prediction. Extensive experiments demonstrate that MORGEN achieves significant improvements and state-of-the-art performance. Our code will be released.

1 INTRODUCTION

Imagine giving a textual description and immediately witnessing a lifelike avatar execute it with physically plausible and faithful body movements in the correct sequence. This vision drives human motion generation with applications in virtual reality (Du et al., 2023), game content creation (Liang et al., 2024a), and embodied robotics (Xia et al., 2021). The task is inherently challenging because language is abstract while motion is continuous, high-dimensional, and kinematically constrained—demanding both fine-grained semantic understanding and robust many-to-many mappings between natural language and human motion dynamics.

This challenge has sparked extensive research interest, which can be broadly categorized into two main approaches: VQ-VAE-based and diffusion-based methods. Among these, diffusion-based methods have gained widespread adoption across downstream tasks, including motion in-betweening (Cohan et al., 2024), human-object interaction (Li et al., 2024), and human-human interaction modeling (Liang et al., 2024b), owing to their exceptional flexibility and controllability. Existing diffusion-based methods typically leverage pre-trained text encoders to obtain robust textual embeddings, such as T5 (Ni et al., 2021), CLIP (Radford et al., 2021), and DistilBERT (Sanh et al., 2019). Conditioned on these textual embeddings, motion diffusion models learn to recover motion data from noise through iterative denoising processes. Recent advances have incorporated various techniques, including latent diffusion (Chen et al., 2023), preference optimization (Sheng et al., 2024), hierarchical semantic graphs (Jin et al., 2023), and retrieval-augmented generation (Zhang et al., 2023b), which have achieved notable improvements in inference speed, motion realism, and semantic-motion alignment.

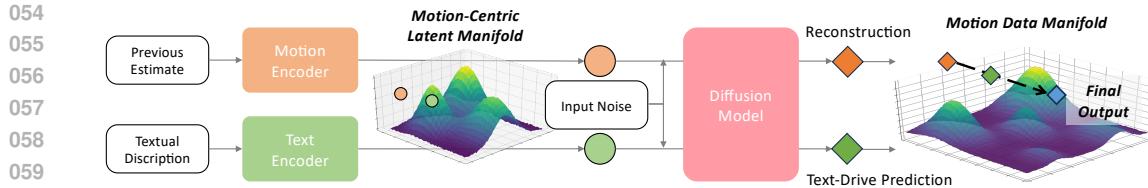


Figure 1: At inference time, MORGAN first maps a textual description onto a motion-centric latent manifold and then predicts using a diffusion model. Meanwhile, it reconstructs previous estimates that contain error patterns. By contrasting these predictions, MORGAN uses the reconstruction as a negative reference to drive the output away from poor estimates and towards the real data manifold.

Nevertheless, motion diffusion models still face severe limitations in both text models and the denoising process. First, pre-trained text models typically lack motion-specific information. While CLIP captures visual concepts that correlate with actions, it fails to encode essential temporal dynamics and kinematic constraints, having been trained exclusively on static image-text pairs. This absence forces models to bridge an unnecessarily large representational gap, hindering the learning of accurate semantic-to-dynamic mappings. Second, diffusion models suffer from error accumulation (Chung et al., 2022). More specifically, early denoising steps, which must recover motion from nearly pure noise, are particularly prone to generating error patterns. Once such artifacts emerge, they can implicitly propagate across subsequent denoising steps, leading to degraded sample quality.

Herein, we introduce **M**otion **R**econstruction for **G**ENeration (**MORGAN**), a novel diffusion-based framework to address these challenges. For the first problem, we leverage the latent space learned through motion reconstruction as an intermediate supervision for text-to-motion generation. Specifically, MORGAN employs a two-stream pipeline (Ahuja & Morency, 2019): motion reconstruction—where the diffusion model reconstructs motion sequences conditioned on motion-encoder latents; and text-to-motion generation—where the same diffusion model generates motion from text-encoder latents. Based on this pipeline, MORGAN innovatively incorporates two objectives: (a) **self-regularization**, which computes a cross-entropy loss in the motion latent space to enhance discrimination between motion latents, helping to learn a compact yet expressive motion representation; and (b) **motion-centric latent alignment**, aligning the text latent space with the motion latent space, with carefully designed gradients to ensure stable end-to-end training. These designs together enable MORGAN to map text embeddings into a motion-aware latent space, inherently embedding the dynamic features required for realistic motion synthesis and bridging the representation gap.

To address the second problem, we introduce **R**econstructive **E**rror **G**uidance (**REG**), which harnesses the self-correcting ability of diffusion models to mitigate error accumulation. Our core insight is that diffusion models can inherently self-correct, which is similar to how they restore clean data from noise. To maximize this property, at each denoising step in the testing stage, the motion reconstruction branch reconstructs the previous estimate, capturing the earlier error patterns. We then calculate the residual between the current text-driven prediction and this reconstruction, and integrate the residual into the prediction to generate the final output. This residual highlights the improvements in the current prediction. By amplifying this term, REG directs the sampling process away from error-prone regions, thereby reducing error accumulation and enhancing the quality of generated motions throughout denoising.

By integrating these core innovations, MORGAN enables the generation of more realistic and semantically aligned motions from text. Extensive experiments show that MORGAN achieves significant improvements and state-of-the-art performance: on the HumanML3D dataset (Guo et al., 2022), MORGAN achieves an R-Precision@1 of 56.3% and an FID of 0.037 with only 20 inference steps. Consistent performance gains are also observed on the KIT-ML dataset (Plappert et al., 2016). Comprehensive ablation studies further confirm that each component makes a meaningful contribution to the overall performance improvements.

2 RELATED WORK

Text-Driven Human Motion Generation. Current research on text-to-motion generation has consolidated mainly around two principal families: diffusion models and vector-quantized variational

108 autoencoders (VQ-VAE). Early diffusion-based approaches such as Motion Diffusion Model (Tevet
 109 et al., 2022c) and MotionDiffuse (Zhang et al., 2022) trained denoising networks directly in the raw
 110 motion space, followed by a series of extensions that target finer semantic alignment (Zhang et al.,
 111 2023c), open-vocabulary coverage (Liang et al., 2024a), retrieval-enhanced consistency (Zhang
 112 et al., 2023b), or keyframe-centric stability (Bae et al., 2025). In parallel, latent diffusion meth-
 113 ods first encode motions into a continuous latent space and perform denoising there, aiming for
 114 improved efficiency and quality, e.g., MLD (Chen et al., 2023), MotionLCM (Dai et al., 2024),
 115 Salad (Hong et al., 2025). Conversely, VQ-VAE-based pipelines—pioneered by T2M-GPT (Zhang
 116 et al., 2023a) and advanced through MMM (Pinyoanuntapong et al., 2024b), MoMask (Guo et al.,
 117 2024), BAMM (Pinyoanuntapong et al., 2024a), MoGenTS (Yuan et al., 2024), BAD (Hosseyni
 118 et al., 2025), KinMo (Zhang et al., 2025), and LaMP (Li et al., 2025)—have empirically exhib-
 119 ited higher motion fidelity, typically reflected in lower FID scores than diffusion counterparts. In
 120 this paper, MORGGEN demonstrates that diffusion-based approaches can achieve FID performance
 121 comparable to that of VQ-based approaches.
 122

123 **Pre-trained Text Models and Two-Stream Methods.** Since text-to-motion datasets are signifi-
 124 cantly smaller than typical text or text–image datasets, most methods utilize pre-trained text models
 125 to extract robust text embeddings. CLIP is widely used for its visual-textual embedding space (Tevet
 126 et al., 2022a), but recent research suggests it may not be optimal for aligning text and motion. In-
 127 stead, these studies suggest fine-tuning text encoders to learn a joint language–motion embedding
 128 space explicitly (Maldonado et al., 2025; Zhang et al., 2025). This approach can be traced back to
 129 early two-stream methods (Ahuja & Morency, 2019), which utilize dual branches—motion recon-
 130 struction and text-to-motion generation—and share a decoder to learn a joint language–motion space
 131 implicitly. Subsequent works further constrain this space using latent alignment, KL divergence, or
 132 contrastive learning (Ghosh et al., 2021; Petrovich et al., 2022; 2023). Our method is inspired by
 133 these approaches but differs fundamentally: we center the alignment on a carefully designed motion
 134 latent space, with the text space aligning to it. We demonstrate that, when employing a diffusion
 135 model as the decoder, focusing on modeling detailed motion dynamics yields better motion synthesis
 136 results than forcing the learning of a joint language–motion space.
 137

138 **Diffusion Guidance.** Guidance in diffusion sampling typically combines multiple score esti-
 139 mates to enrich the effective target distribution or to impose auxiliary conditioning (Dhariwal &
 140 Nichol, 2021; Ho & Salimans, 2022; Karras et al., 2024). Common estimates include conditional
 141 score estimates $\nabla_{x_t} \log p(x_t|t, c)$, unconditional score estimates $\nabla_{x_t} \log p(x_t|t)$, classifier gradi-
 142 ents $\nabla_{x_t} \log p(y|x_t)$, and CLIP-derived similarity gradients (Dhariwal & Nichol, 2021; Nichol et al.,
 143 2021; Ho & Salimans, 2022). Recent works further introduce deliberately weakened auxiliary scores
 144 by degrading the predictor—e.g., applying dropout (Karras et al., 2024), skipping layers (Stability
 145 AI, 2024), or perturbing attention (Ahn et al., 2024). These weak scores function as contrastive
 146 references: amplifying samples favored by stronger scores while suppressing those aligned with
 147 weaker ones improves fidelity and semantic alignment. In the same spirit, we derive a weakened
 148 motion-conditioned score by conditioning the predictor on a motion latent that carries previously
 149 introduced error patterns, and use it as a contrastive reference within our guidance mechanism.
 150

3 METHOD

151 **Overview.** MORGGEN generates a sequence of realistic human motion from a given text description.
 152 This process starts by extracting text embeddings with pre-trained text models. These embeddings
 153 are mapped onto a motion latent manifold and decoded into a motion sequence using a diffusion
 154 model. MORGGEN also reconstructs the past motion estimate as a negative reference in the infer-
 155 ence stage, as illustrated in Figure 1. By guiding predictions away from this reference, MORGGEN
 156 achieves improved sampling quality.
 157

158 For a thorough understanding of MORGGEN, we begin by presenting the overall architecture, which
 159 features two main branches: motion reconstruction and text-to-motion generation (Section 3.1).
 160 Next, we detail the training objectives, introducing self-regularization and motion-centric latent
 161 alignment, which facilitate learning an expressive motion latent space and enable effective mapping
 162 from text to motion latents (Section 3.1). Lastly, we provide an in-depth explanation of Reconstruc-
 163 tive Error Guidance and inference sampling (Section 3.3). Figure 2 provides an overview.
 164

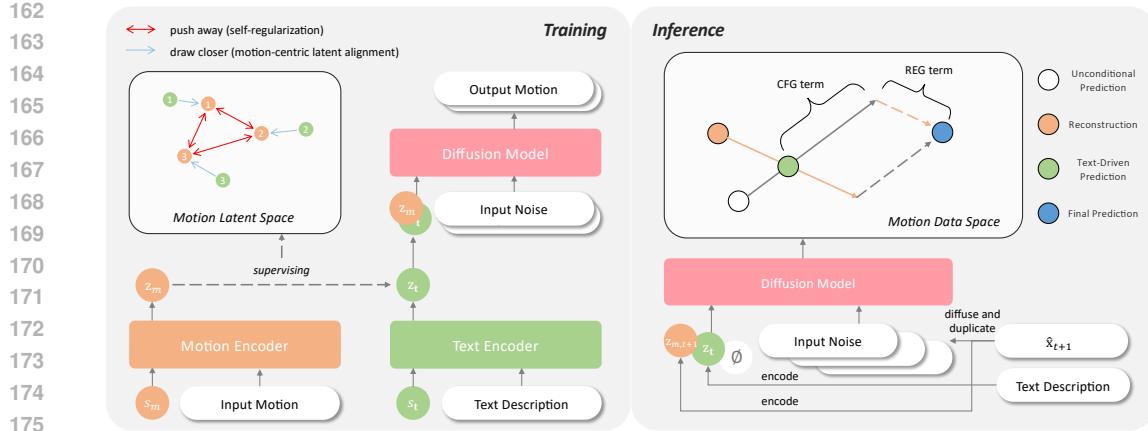


Figure 2: **Overview of MORGAN.** During training, MORGAN learns a motion latent space through motion reconstruction, with self-regularization to encourage better separability between motion latents, resulting in improved semantic resolution. The text latents from the text encoder are drawn closer to corresponding motion latents through motion-centric latent alignment. At each inference step, given the last step prediction $\hat{x}_{t+1,s}$ and text description, MORGAN first encodes them into latents $z_{m,t+1}$ and z_t . Then, these latents, together with a zero vector \emptyset and input noise, are fed into diffusion motion to obtain reconstruction, text-driven prediction, and unconditional prediction. These outputs are combined to produce the final output.

3.1 MORGAN ARCHITECTURE

Given a motion sequence $\mathbf{x}_0 \in \mathbb{R}^{T \times d}$ or a text description \mathbf{t} , MORGAN either reconstructs the input motion or generates a motion sequence to match a given description. This is achieved through two branches: motion reconstruction and text-to-motion generation, both of which share the Motion Diffusion Model (MDM) (Shafir et al., 2023) as the decoder.

Motion Diffusion Model. MDM is modeled as a Markov noising chain $\{\mathbf{x}_t\}_{t=0}^T$ with \mathbf{x}_0 drawn from the data distribution. The forward diffusion process incrementally adds Gaussian noise: $q(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1 - \beta_t} \mathbf{x}_{t-1}, \beta_t I)$. In the reverse process, a denoiser D learns to recover clean motion from a noisy input \mathbf{x}_t : $\hat{\mathbf{x}}_t = D(\mathbf{x}_t, t, c)$, where $\hat{\mathbf{x}}_t$ is the motion estimate at timestep t and c denotes the conditioning.

Motion Reconstruction. The motion reconstruction branch encodes \mathbf{x} into a motion latent \mathbf{z}_m using a transformer-based motion encoder $E_m(\cdot)$, which takes a special token \mathbf{s}_m and the motion sequence as input. The output \mathbf{z}_m represents the global concept of the sequence. The diffusion decoder D takes \mathbf{z}_m , timestep t , and noisy motion \mathbf{x}_t to predict the clean motion. This process can be expressed as:

$$\mathbf{z}_m = E_m(\mathbf{s}_m, \mathbf{x}_0), \quad \hat{\mathbf{x}}_0 = D(\mathbf{x}_t, t, \mathbf{z}_m). \quad (1)$$

Here t denotes the diffusion timestep, which is sampled uniformly as $t \sim \mathcal{U}\{0, \dots, T-1\}$, where T is the total number of diffusion steps.

Text-to-Motion Generation. The text-to-motion branch mirrors the motion reconstruction branch, encoding the text embedding \mathbf{f}_t with a text encoder E_t and then decoding with D :

$$\mathbf{z}_t = E_t(\mathbf{s}_t, \mathbf{f}_t), \quad \hat{\mathbf{x}}_0 = D(\mathbf{x}_t, t, \mathbf{z}_t). \quad (2)$$

Here, $\mathbf{f}_t \in \mathbb{R}^{L \times d_f}$ is the token-level text embedding extracted from \mathbf{t} (where L is sequence length), \mathbf{s}_t is the special input token, and \mathbf{z}_t is the latent produced by the text encoder E_t .

3.2 OPTIMIZATION OBJECTIVES

The training objectives of MORGAN consist of four key components: reconstruction, text-driven generation, self-regularization, and motion-centric latent alignment. For clarity, we divide these objectives into two categories: (1) reconstruction and text-driven generation, which follow established

two-stream approaches (Ahuja & Morency, 2019; Petrovich et al., 2022), and (2) self-regularization and motion-centric latent alignment, which are our novel contributions aimed at learning a compact yet expressive motion latent space and enabling the effective mapping from text to motion latents. Below, we provide a detailed introduction to the formulation and specific function of each objective.

Reconstruction. This objective encourages the diffusion model, given the motion latent \mathbf{z}_m , timestep t , and noisy motion \mathbf{x}_t , to accurately reconstruct the input motion sequence:

$$L_{\text{rec}} = \mathbb{E}_{\mathbf{x}_0, t} [\|D(\mathbf{x}_t, t, \mathbf{z}_m) - \mathbf{x}_0\|_2^2] = \mathbb{E}_{\mathbf{x}_0, t} [\|D(\mathbf{x}_t, t, E_m(\mathbf{s}_m, \mathbf{x}_0)) - \mathbf{x}_0\|_2^2]. \quad (3)$$

This loss jointly trains both the diffusion model and the motion encoder, aiming for a strong motion decoder, a motion encoder that extracts abstract representations of motion, and a compact latent space with essential motion dynamics.

Text-Driven Generation. In this objective, the diffusion model learns to generate motion conditioned on the text latent \mathbf{z}_t , timestep t , and noisy motion \mathbf{x}_t :

$$L_{\text{gen}} = \mathbb{E}_{\mathbf{x}_0, t, \mathbf{t}} [\|D(\mathbf{x}_t, t, \mathbf{z}_t) - \mathbf{x}_0\|_2^2] = \mathbb{E}_{\mathbf{x}_0, t} [\|D(\mathbf{x}_t, t, E_t(\mathbf{s}_t, \mathbf{f}_t)) - \mathbf{x}_0\|_2^2]. \quad (4)$$

This objective encourages the diffusion model to adapt to conditioning on the text latent manifold, since there are inherent differences between the text and motion manifolds.

Self-Regularization. This objective can be viewed as a cross-entropy loss operating on the motion latent space. For a batch of size B , let the normalized motion latents be $\tilde{\mathbf{z}}_m^i$, and define the similarity $\text{sim}(\tilde{\mathbf{z}}_m^i, \tilde{\mathbf{z}}_m^j) = (\tilde{\mathbf{z}}_m^i)^\top \tilde{\mathbf{z}}_m^j$, which corresponds to cosine similarity after normalization. With a temperature parameter $\tau = 1$, and treating only identical indices as positive pairs, the loss is defined as:

$$L_{\text{sr}} = \frac{1}{B} \sum_{i=1}^B -\log \frac{\exp(\text{sim}(\tilde{\mathbf{z}}_m^i, \tilde{\mathbf{z}}_m^i)/\tau)}{\sum_{j=1}^B \exp(\text{sim}(\tilde{\mathbf{z}}_m^i, \tilde{\mathbf{z}}_m^j)/\tau)}. \quad (5)$$

This loss encourages better separability among motion latents, producing a broader and more expressive manifold with improved semantic resolution. Consequently, the refined latent space enables more precise mapping from text representations to motion latents in the subsequent alignment objective.

Motion-Centric Latent Alignment. This objective aligns the text manifold with the motion manifold. Given a paired text description and motion sequence, this objective minimizes the distance between the corresponding text latent \mathbf{z}_t and motion latent \mathbf{z}_m :

$$L_{\text{latent}} = \mathbb{E}_{\mathbf{z}_m, \mathbf{z}_t} [\|\mathbf{z}_t - (1 - \beta) \text{sg}(\mathbf{z}_m) - \beta \mathbf{z}_m\|_2^2], \quad (6)$$

where $\text{sg}(\cdot)$ is the stop-gradient operator and β modulates the flow of gradients to the motion encoder E_m . We set $\beta = 0.01$ so that MORGAN’s latent space remains motion-centric, yet flexible enough to adapt minimally to the text space. This is based on two insights: (1) prioritizing motion space leads to stronger performance than enforcing a fully joint language-motion space, as mapping motion to text sacrifices important motion dynamics, and (2) with end-to-end training, motion latents evolve during alignment. A purely text-to-motion alignment ($\beta = 0$) makes optimization harder. Thus, a small β supports convergence while retaining motion information.

Overall Objective. The final training objective is a weighted sum:

$$L_{\text{overall}} = L_{\text{rec}} + L_{\text{gen}} + w_{\text{sr}} L_{\text{sr}} + w_{\text{latent}} L_{\text{latent}}, \quad (7)$$

where w_{sr} and w_{latent} are hyperparameters that determine the significance of the L_{sr} and L_{latent} terms, respectively. We empirically set both w_{sr} and w_{latent} as 1.

3.3 INFERENCE

Reconstructive Error Guidance. During training, diffusion models operate exclusively on the canonical data manifold, where the noised input follows $x_t = \sqrt{\alpha_t} x_0 + \sqrt{1 - \alpha_t} \epsilon$. However, during inference, their predictions often exhibit error patterns and drift away from this manifold. Denoising

270 based on such off-manifold predictions further exacerbates the deviation. Overall, diffusion models
 271 can cause the sampling path to deviate from the data manifold, resulting in degraded sampling
 272 quality (Chung et al., 2022).

273 We hypothesize that diffusion models possess an inherent capacity to self-correct such error patterns—a capability analogous to their fundamental ability to recover clean data from noise. How-
 274 ever, this corrective potential requires explicit activation and guidance. To harness this intrinsic
 275 error-correction capability, we propose an intuitive approach that operates at each denoising step.
 276

277 Specifically, at inference step t , we first reconstruct the prediction from the previous step $t + 1$ to
 278 explicitly capture the embedded error patterns. We then amplify the improvement achieved by the
 279 current step’s prediction through a residual amplification mechanism. Let $\hat{\mathbf{x}}_{t+1,s}$ denote the final
 280 output at step $t + 1$. Our method can be formulated as:
 281

$$\hat{\mathbf{x}}_{t,s} = D(\mathbf{x}_t, t, \mathbf{z}_t) + w(D(\mathbf{x}_t, t, \mathbf{z}_t) - D(\mathbf{x}_t, t, \mathbf{z}_{m,t+1})), \quad (8)$$

282 where $\mathbf{z}_{m,t+1} = E_m(\mathbf{s}_m, \hat{\mathbf{x}}_{t+1,s})$ represents the reconstructed motion latent from the previous step,
 283 and $w \geq 0$ is a weighting coefficient that controls the amplification strength of the residual correction
 284 term. We term this inference strategy Reconstructive Error Guidance (REG).
 285

286 **Inference Sampling.** Finally, during inference, we combine REG with the commonly used
 287 classifier-free guidance (CFG) for sampling. The final output for each denoising step t , denoted
 288 as $\hat{\mathbf{x}}_{t,s}$, is computed as:
 289

$$\hat{\mathbf{x}}_{t,s} = D(\mathbf{x}_t, t, \mathbf{z}_t) + w_1 \underbrace{(D(\mathbf{x}_t, t, \mathbf{z}_t) - D(\mathbf{x}_t, t, \mathbf{z}_{m,t+1}))}_{\text{REG term}} + w_2 \underbrace{(D(\mathbf{x}_t, t, \mathbf{z}_t) - D(\mathbf{x}_t, t, \emptyset))}_{\text{CFG term}}, \quad (9)$$

290 where the final term represents the standard CFG residual between conditional and unconditional
 291 predictions (with unconditional input denoted by \emptyset). Here, w_1 and w_2 respectively control the
 292 influence of REG and CFG.
 293

295 4 EXPERIMENT

298 4.1 DATASETS AND METRICS

300 **Datasets.** HumanML3D (Guo et al., 2022) is a large-scale text–motion dataset containing 14,616
 301 motion sequences from AMASS (Mahmood et al., 2019), each annotated with 44,970 sequence-level
 302 textual descriptions. By comparison, the KIT dataset (Plappert et al., 2016) is smaller, offering 3,911
 303 motion sequences and 6,353 textual descriptions. For both datasets, we use the standard redundant
 304 motion representation, which includes joint velocities, positions, and rotations.

305 **Metrics.** We assess the generated motions with five complementary metrics. R-Precision and
 306 Multimodal-Dist measure the semantic alignment between generated motions and text descriptions.
 307 Fréchet Inception Distance (FID) evaluates the distributional similarity between generated motions
 308 and the ground truth in a learned latent space. Diversity quantifies the variability within the generated
 309 motion set, while MultiModality Distance (MM Dist) captures the average variance among motions
 310 conditioned on the same description.

312 4.2 IMPLEMENTATION DETAILS

314 We adopt exactly the same text and motion encoders as those in TEMOS (Petrovich et al., 2022).
 315 Both of them are implemented as 6-layer, encoder-only transformers. The text encoder takes the
 316 text embeddings extracted by DistilBERT (Sanh et al., 2019) as input. The latent dimensionality is
 317 set to 256 for HumanML3D and 192 for KIT-ML. For the diffusion model that generates motion
 318 sequences from the latents, we use the MDM architecture (Shafir et al., 2023), consisting of an 8-
 319 layer, encoder-only Transformer backbone with a latent size of 512. Training is performed with a
 320 batch size of 64, a learning rate of 0.0001, and the AdamW optimizer. Models are trained for 450K
 321 steps on HumanML3D and 400K steps on KIT-ML. The diffusion process runs over $T = 50$ steps
 322 during training, with 10% of conditional latents replaced by zero vectors for classifier-free guidance.
 323 During inference, 20 denoising steps, spaced linearly from $[0, \dots, T - 1]$, are used, resulting in 20
 324 inference steps. Reconstructive Error Guidance and classifier-free guidance use weights $w_1 = 5.0$
 325 and $w_2 = 1.5$, respectively.

324 4.3 COMPARISON WITH STATE-OF-THE-ART METHODS
325326 Table 1: Quantitative results of text-to-motion generation on the HumanML3D test set.
327

328 Method	329 FID \downarrow	330 R-Precision			331 MM Dist \downarrow	332 Diversity \uparrow	333 MM \uparrow
		334 Top 1	335 Top 2	336 Top 3			
337 VQ-VAE-based	Ground Truth	0.002 \pm .000	0.511 \pm .003	0.703 \pm .003	0.797 \pm .002	2.974 \pm .008	9.503 \pm .065
	T2M-GPT (Zhang et al., 2023a)	0.116 \pm .004	0.491 \pm .003	0.680 \pm .003	0.775 \pm .002	3.118 \pm .011	9.761 \pm .081
	338 MMM (Pinyoanuntapong et al., 2024b)	0.080 \pm .003	0.504 \pm .003	0.696 \pm .003	0.794 \pm .002	2.998 \pm .007	9.411 \pm .058
	339 MoMask (Guo et al., 2024)	0.045 \pm .002	0.521 \pm .002	0.713 \pm .002	0.807 \pm .002	2.958 \pm .008	-
	BAMM (Pinyoanuntapong et al., 2024a)	0.055 \pm .002	0.525 \pm .002	0.720 \pm .003	0.814 \pm .003	2.919 \pm .008	9.717 \pm .089
	340 MoGenTS (Yuan et al., 2024)	0.033 \pm .001	0.529 \pm .003	0.719 \pm .002	0.812 \pm .002	2.867 \pm .006	9.570 \pm .077
	BAD (Hosseyni et al., 2025)	0.065 \pm .003	0.517 \pm .002	0.713 \pm .003	0.808 \pm .003	2.901 \pm .008	9.694 \pm .068
	341 KinMo (Zhang et al., 2025)	0.039 \pm .003	0.532 \pm .002	0.724 \pm .003	0.821 \pm .003	2.901 \pm .010	9.674 \pm .058
	342 LaMP (Li et al., 2025)	0.032 \pm .002	0.557 \pm .003	0.751 \pm .002	0.843 \pm .001	2.759 \pm .007	9.571 \pm .069
	343 MDM (Tevet et al., 2022c)	0.489 \pm .025	0.418 \pm .075	0.604 \pm .001	0.707 \pm .004	3.360 \pm .023	9.450 \pm .066
344 Diffusion-based	345 MLD (Chen et al., 2023)	0.473 \pm .013	0.481 \pm .003	0.673 \pm .003	0.772 \pm .002	3.196 \pm .010	9.724 \pm .082
	346 ReMoDiffuse (Zhang et al., 2023b)	0.103 \pm .004	0.510 \pm .005	0.698 \pm .006	0.795 \pm .004	2.974 \pm .016	9.018 \pm .075
	347 FineMoGen (Zhang et al., 2023c)	0.151 \pm .008	0.504 \pm .002	0.690 \pm .002	0.784 \pm .002	2.998 \pm .008	9.263 \pm .094
	MotionLCM (Dai et al., 2024)	0.304 \pm .012	0.502 \pm .003	0.698 \pm .002	0.798 \pm .002	3.012 \pm .007	9.607 \pm .066
	348 StableMoFusion (Huang et al., 2024)	0.098 \pm .003	0.553 \pm .003	0.748 \pm .002	0.841 \pm .002	-	9.748 \pm .092
	349 CLoSD (Tevet et al., 2022b)	0.283 \pm .000	0.464 \pm .000	0.668 \pm .000	0.777 \pm .000	3.150 \pm .000	9.210 \pm .000
	350 Salad (Hong et al., 2025)	0.076 \pm .002	0.581 \pm .003	0.769 \pm .003	0.857 \pm .002	2.649 \pm .009	9.696 \pm .096
	351 sMDM (Bae et al., 2025)	0.130 \pm .000	0.494 \pm .000	0.682 \pm .000	0.776 \pm .000	3.051 \pm .000	9.663 \pm .000
	352 MORGGEN (Ours, $w_{latent} = 1.0$)	0.037 \pm .002	0.563 \pm .003	0.755 \pm .002	0.843 \pm .002	2.693 \pm .008	9.496 \pm .094
	353 MORGGEN (Ours, $w_{latent} = 0.5$)	0.032 \pm .002	0.561 \pm .003	0.751 \pm .002	0.839 \pm .002	2.716 \pm .007	9.487 \pm .084

341 Table 2: Quantitative results of text-to-motion generation on the KIT test set.
342

343 Method	344 FID \downarrow	345 R-Precision			346 MM Dist \downarrow	347 Diversity \uparrow	348 MM \uparrow
		349 Top 1	350 Top 2	351 Top 3			
352 VQ-VAE-based	Ground Truth	0.031 \pm .004	0.424 \pm .005	0.649 \pm .006	0.779 \pm .006	2.788 \pm .012	11.08 \pm .097
	T2M-GPT (Zhang et al., 2023a)	0.512 \pm .029	0.416 \pm .006	0.627 \pm .006	0.745 \pm .006	3.007 \pm .023	10.92 \pm .108
	353 MMM (Pinyoanuntapong et al., 2024b)	0.316 \pm .028	0.404 \pm .005	0.621 \pm .005	0.744 \pm .004	2.977 \pm .019	10.91 \pm .101
	354 MoMask (Guo et al., 2024)	0.204 \pm .011	0.433 \pm .007	0.656 \pm .005	0.781 \pm .005	2.779 \pm .022	-
	BAMM (Pinyoanuntapong et al., 2024a)	0.183 \pm .013	0.438 \pm .009	0.661 \pm .009	0.788 \pm .005	2.723 \pm .026	11.01 \pm .094
	355 MoGenTS (Yuan et al., 2024)	0.143 \pm .004	0.445 \pm .006	0.671 \pm .006	0.797 \pm .005	2.711 \pm .024	10.92 \pm .090
	BAD (Hosseyni et al., 2025)	0.221 \pm .012	0.417 \pm .006	0.631 \pm .006	0.750 \pm .006	2.941 \pm .025	11.00 \pm .100
	356 LaMP (Li et al., 2025)	0.141 \pm .013	0.479 \pm .006	0.691 \pm .005	0.826 \pm .005	2.704 \pm .018	10.93 \pm .101
	357 MDM (Tevet et al., 2022c)	0.547 \pm .070	0.404 \pm .002	0.616 \pm .013	0.737 \pm .005	3.074 \pm .018	10.75 \pm .203
	358 MLD (Chen et al., 2023)	0.404 \pm .027	0.390 \pm .008	0.609 \pm .008	0.734 \pm .007	3.204 \pm .027	10.80 \pm .117
359 Diffusion-based	360 ReMoDiffuse (Zhang et al., 2023b)	0.155 \pm .006	0.427 \pm .014	0.641 \pm .004	0.765 \pm .055	2.814 \pm .012	10.80 \pm .105
	361 FineMoGen (Zhang et al., 2023c)	0.178 \pm .007	0.432 \pm .006	0.649 \pm .005	0.772 \pm .006	2.869 \pm .014	10.85 \pm .115
	362 StableMoFusion (Huang et al., 2024)	0.258 \pm .029	0.445 \pm .006	0.660 \pm .005	0.782 \pm .004	-	10.94 \pm .077
	363 Salad (Hong et al., 2025)	0.296 \pm .012	0.477 \pm .006	0.711 \pm .005	0.828 \pm .005	2.585 \pm .016	11.10 \pm .095
	364 MORGGEN (Ours)	0.189 \pm .014	0.466 \pm .005	0.688 \pm .006	0.801 \pm .005	2.675 \pm .020	11.12 \pm .089

355 We quantitatively compare MORGGEN with state-of-the-art (SOTA) methods on HumanML3D and
356 KIT-ML. The results are shown in Table 1 and Table 2, respectively. As demonstrated in Ta-
357 ble 1, MORGGEN achieves SOTA performance on the most widely used HumanML3D benchmark.
358 Compared with diffusion-based methods, MORGGEN shows a substantial improvement in FID and
359 achieves near-SOTA performance in semantic accuracy as measured by R-Precision, ranking just
360 behind Salad. When compared to VQ-VAE-based approaches, MORGGEN surpasses them in seman-
361 tic accuracy and achieves highly competitive FID—a feat not previously attained by diffusion-based
362 methods. MORGGEN thus demonstrates that diffusion-based motion generation models can reach
363 state-of-the-art FID levels. On the KIT-ML dataset, whose smaller scale poses significant chal-
364 lenges for training motion generation models—particularly diffusion-based ones—MORGGEN, like
365 the previous best diffusion-based method Salad (Hong et al., 2025), experiences a performance drop.
366 Nevertheless, MORGGEN’s results remain highly competitive within this context.

367 Importantly, by adjusting the latent alignment weight w_{latent} , MORGGEN can reach either state-of-
368 the-art FID or achieve even better semantic accuracy (in terms of R-Precision and MM Dist). For
369 our final model, we use $w_{latent} = 1.0$ as a balanced choice. Additional experiments on the impact of
370 weight selection are detailed in Appendix A.3.

371 4.4 ABLATION STUDIES

372 To assess the impact of key design choices within MORGGEN, we conduct comprehensive ablation
373 studies on HumanML3D. Specifically, these study includes: (1) *Incremental Experiments*—starting
374 from a baseline model, we progressively introduce key design components, culminating in the com-
375 plete MORGGEN; (2) *Loss Hyperparameter Analysis*—we investigate the effects of loss function
376 hyperparameters β and τ for latent alignment and self-regularization; and (3) *Guidance Evalu-
377 ation*—we examine the effectiveness of our proposed Reconstructive Error Guidance and the addi-
378 tional benefits achieved when it is combined with classifier-free guidance (CFG).

378

379

Table 3: Incremental experiments on key designs within MORGGEN.

E_m	Components			FID↓	R-Precision			MM Dist↓	Diversity↑
	L_{latent}	L_{sr}	REG		Top 1	Top 2	Top 3		
✓				0.786 \pm .016	0.417 \pm .002	0.613 \pm .002	0.729 \pm .003	3.433 \pm .012	10.063 \pm .076
✓				0.624 \pm .013	0.493 \pm .004	0.695 \pm .002	0.800 \pm .002	3.045 \pm .013	10.188 \pm .096
✓	✓			0.243 \pm .009	0.527 \pm .003	0.719 \pm .002	0.812 \pm .002	2.896 \pm .008	9.703 \pm .086
✓	✓	✓		0.126 \pm .005	0.560 \pm .003	0.751 \pm .002	0.842 \pm .002	2.720 \pm .007	9.689 \pm .095
✓	✓	✓	✓	0.037 \pm .002	0.563 \pm .003	0.755 \pm .002	0.843 \pm .002	2.693 \pm .008	9.496 \pm .094

380

381

382

383

384

385

386

387

Table 4: Effect of hyperparameters β and τ .

β	τ	FID↓	R-Precision			MM Dist↓	Diversity↑
			Top 1	Top 2	Top 3		
1.00	1.0	0.336 \pm .005	0.492 \pm .003	0.693 \pm .003	0.796 \pm .002	3.047 \pm .010	9.849 \pm .080
0.10	1.0	0.136 \pm .005	0.534 \pm .002	0.732 \pm .002	0.826 \pm .002	2.835 \pm .009	9.742 \pm .088
0.01	1.0	0.037 \pm .002	0.563 \pm .003	0.753 \pm .002	0.843 \pm .002	2.693 \pm .008	9.496 \pm .094
0.00	1.0	0.051 \pm .003	0.557 \pm .002	0.747 \pm .003	0.837 \pm .002	2.712 \pm .008	9.424 \pm .079
0.01	2.0	0.044 \pm .002	0.562 \pm .003	0.755 \pm .002	0.841 \pm .002	2.701 \pm .007	9.575 \pm .081
0.01	1.0	0.037 \pm .002	0.563 \pm .003	0.755 \pm .002	0.843 \pm .002	2.693 \pm .008	9.496 \pm .094
0.01	0.5	0.044 \pm .002	0.556 \pm .002	0.748 \pm .002	0.838 \pm .002	2.726 \pm .007	9.484 \pm .081

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

Incremental Experiments. Table 3 presents the results of our incremental ablation studies. To rigorously assess the contribution of each component, we begin with a clean baseline consisting of MORGGEN’s text encoder and diffusion model only. We keep these modules exactly the same as those in MORGGEN and progressively add key components. The baseline demonstrates limited performance, partly due to the challenging inference setting of only 20 steps. Introducing the motion encoder E_m —which forms a dual-branch architecture, similar to a direct application of Ahuja & Morency (2019) to diffusion models—provides only a modest improvement, suggesting that implicitly learning a joint language-motion space is of limited effectiveness. Incorporating L_{latent} delivers substantial further gains, though still falls short of state-of-the-art performance. Adding L_{sr} leads to results that surpass most diffusion-based approaches reported in Table 1. Finally, enabling REG elevates MORGGEN to state-of-the-art performance. Collectively, these findings demonstrate the necessity and effectiveness of each design choice.

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

Hyperparameter Analysis. Table 4 presents the results of our hyperparameter analysis. In this table, β controls the gradient flow from the latent alignment loss L_{latent} to the motion encoder E_m , with $\beta = 0$ fully blocking the gradient and $\beta = 1$ allowing unrestricted gradient flow. Our results show that allowing equal proximity between text and motion latents ($\beta = 1$) is suboptimal, as this alignment comes at the expense of motion information in the motion latents. In fact, reducing the gradient flow to E_m improves performance, with the best results achieved at $\beta = 0.01$. We attribute this to the constant evolution of the motion latent space during training, which increases the difficulty of latent alignment. By setting $\beta = 0.01$, we ease the alignment process while preserving essential motion information in the latent space. Another parameter shown in the Table 4, τ , determines the sharpness of similarity in L_{sr} . A smaller τ produces sharper similarities, pushing motion latents farther apart; if too extreme, this can distort the structure of the motion manifold. In contrast, a larger τ smooths the similarity, relaxing the constraints between latents, but may reduce gains in semantic resolution. Empirically, we found $\tau = 1$ offers a desirable balance.

429

430

431

Guidance Evaluation. Table 5 presents the results of our guidance evaluation. The findings show that classifier-free guidance (CFG) substantially improves semantic accuracy, as measured by R-Precision. In contrast, our proposed reconstructive error guidance (REG) notably enhances the overall realism of the generated motion, reflected by lower FID scores. Furthermore, combining both strategies enables MORGGEN to achieve state-of-the-art performance.

426

4.5 QUALITATIVE ANALYSIS

427

428

429

430

431

We compare the qualitative results of MORGGEN with those generated by MDM (Shafir et al., 2023), MoMask (Guo et al., 2024), and Salad (Hong et al., 2025). Figure 3 illustrates three groups of comparisons, with the input text descriptions shown below each group. As each text prompt consists of multiple actions, this setup poses a significant challenge for accurate motion generation. It can be

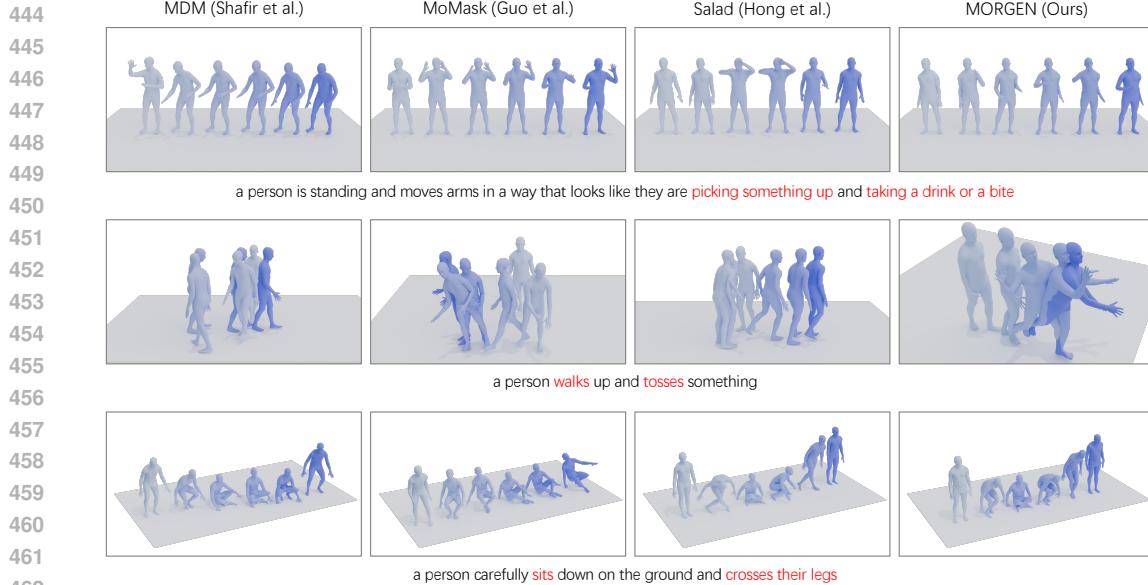
432

433
434
Table 5: Effect of Reconstructive Error Guidance (REG) and classifier-free guidance (CFG). w_1 and
435
 w_2 respectively control the influence of REG and CFG.

w_1	w_2	FID \downarrow	Top 1	R-Precision Top 2	Top 3	MM Dist \downarrow	Diversity \uparrow
0.0	0.0	0.293 \pm .009	0.531 \pm .003	0.723 \pm .002	0.817 \pm .002	2.875 \pm .008	9.690 \pm .092
3.0	0.0	0.075 \pm .003	0.548 \pm .003	0.741 \pm .002	0.831 \pm .002	2.766 \pm .008	9.431 \pm .084
4.0	0.0	0.072 \pm .003	0.545 \pm .002	0.740 \pm .002	0.829 \pm .002	2.772 \pm .007	9.361 \pm .082
5.0	0.0	0.088 \pm .003	0.541 \pm .003	0.737 \pm .003	0.826 \pm .002	2.791 \pm .007	9.300 \pm .085
0.0	1.5	0.126 \pm .005	0.560 \pm .003	0.751 \pm .002	0.842 \pm .002	2.720 \pm .007	9.689 \pm .095
0.0	2.5	0.106 \pm .005	0.560 \pm .003	0.753 \pm .002	0.843 \pm .002	2.710 \pm .006	9.639 \pm .096
0.0	3.5	0.101 \pm .004	0.560 \pm .003	0.753 \pm .002	0.842 \pm .002	2.712 \pm .007	9.592 \pm .093
5.0	1.5	0.037 \pm .002	0.563 \pm .003	0.755 \pm .002	0.843 \pm .002	2.693 \pm .008	9.496 \pm .094

422

423



450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

Figure 3: Qualitative evaluation on the HumanML3D Dataset. Please zoom in for details.

observed that baseline methods often fail to faithfully execute the entire set of actions described in the text. For example, in the second row (“a person walks up and tosses something”), most methods only execute the walking motion. Additionally, some outputs display distortions, such as unnatural transitions—in the third row, MoMask during sitting down and Salad during standing up. In contrast, our method successfully completes all actions described by each text prompt, demonstrating a high degree of semantic accuracy and realism.

5 CONCLUSION

In this work, we present **MORGAN**, a novel framework that leverages motion reconstruction to regularize text-driven motion diffusion models. Our approach focuses on learning a motion-centric latent space via motion reconstruction, specifically designed to capture essential motion dynamics while achieving high semantic resolution. This latent space serves as intermediate supervision for text-to-motion generation, bridging the representational gap between abstract language and high-dimensional, kinematically constrained human motion. We further present Reconstructive Error Guidance (REG), a technique that mitigates error accumulation during sampling by exploiting the diffusion model’s inherent self-correcting ability. Experimental results show that MORGAN achieves state-of-the-art performance on standard benchmarks. In the future, we plan to extend this approach by training the motion reconstruction branch on larger, unlabeled motion datasets to obtain a more generalized motion latent space and enable the generation of more diverse motions.

486 REFERENCES
487

488 Donghoon Ahn, Hyoungwon Cho, Jaewon Min, Wooseok Jang, Jungwoo Kim, SeonHwa Kim,
489 Hyun Hee Park, Kyong Hwan Jin, and Seungryong Kim. Self-rectifying diffusion sampling with
490 perturbed-attention guidance. In *European Conference on Computer Vision (ECCV)*, pp. 1–17.
491 Springer, 2024.

492 Chaitanya Ahuja and Louis-Philippe Morency. Language2pose: Natural language grounded pose
493 forecasting. In *International Conference on 3D Vision (3DV)*, pp. 719–728. IEEE, 2019.

494 Jinseok Bae, Inwoo Hwang, Young Yoon Lee, Ziyu Guo, Joseph Liu, Yizhak Ben-Shabat,
495 Young Min Kim, and Mubbasir Kapadia. Less is more: Improving motion diffusion models
496 with sparse keyframes. *arXiv preprint arXiv:2503.13859*, 2025.

497 Xin Chen, Biao Jiang, Wen Liu, Zilong Huang, Bin Fu, Tao Chen, and Gang Yu. Executing your
498 commands via motion diffusion in latent space. In *Computer Vision and Pattern Recognition
(CVPR)*, pp. 18000–18010, 2023.

499 Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. Improving diffusion models for
500 inverse problems using manifold constraints. *International Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH)*, 35:25683–25696, 2022.

501 Setareh Cohan, Guy Tevet, Daniele Reda, Xue Bin Peng, and Michiel van de Panne. Flexible
502 motion in-betweening with diffusion models. In *International Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH)*, pp. 1–9, 2024.

503 Wenxun Dai, Ling-Hao Chen, Jingbo Wang, Jinpeng Liu, Bo Dai, and Yansong Tang. Motionlcm:
504 Real-time controllable motion generation via latent consistency model. In *European Conference
on Computer Vision (ECCV)*, pp. 390–408. Springer, 2024.

505 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Confer-
506 ence on Neural Information Processing Systems (NeurIPS)*, 34:8780–8794, 2021.

507 Yuming Du, Robin Kips, Albert Pumarola, Sebastian Starke, Ali Thabet, and Artsiom Sanakoyeu.
508 Avatars grow legs: Generating smooth human motion from sparse tracking inputs with diffusion
509 model. In *Computer Vision and Pattern Recognition (CVPR)*, pp. 481–490, 2023.

510 Anindita Ghosh, Noshaba Cheema, Cennet Oguz, Christian Theobalt, and Philipp Slusallek. Syn-
511 thesis of compositional animations from textual descriptions. In *International Conference on
512 Computer Vision (ICCV)*, pp. 1396–1406, 2021.

513 Chuan Guo, Shihao Zou, Xinxin Zuo, Sen Wang, Wei Ji, Xingyu Li, and Li Cheng. Generating
514 diverse and natural 3d human motions from text. In *Computer Vision and Pattern Recognition
(CVPR)*, pp. 5152–5161, 2022.

515 Chuan Guo, Yuxuan Mu, Muhammad Gohar Javed, Sen Wang, and Li Cheng. Momask: Generative
516 masked modeling of 3d human motions. In *Computer Vision and Pattern Recognition (CVPR)*,
517 pp. 1900–1910, 2024.

518 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint
519 arXiv:2207.12598*, 2022.

520 Seokhyeon Hong, Chaelin Kim, Serin Yoon, Junghyun Nam, Sihun Cha, and Junyong Noh. Salad:
521 Skeleton-aware latent diffusion for text-driven motion generation and editing. In *Computer Vision
522 and Pattern Recognition (CVPR)*, pp. 7158–7168, 2025.

523 Seyed Rohollah Hosseyni, Ali Ahmad Rahmani, Seyed Jamal Seyedmohammadi, Sanaz Seyedin,
524 and Arash Mohammadi. Bad: Bidirectional auto-regressive diffusion for text-to-motion genera-
525 tion. In *International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5.
526 IEEE, 2025.

527 Yiheng Huang, Hui Yang, Chuanchen Luo, Yuxi Wang, Shibiao Xu, Zhaoxiang Zhang, Man Zhang,
528 and Junran Peng. Stablemofusion: Towards robust and efficient diffusion-based motion genera-
529 tion framework. *Proceedings of the 32nd ACM International Conference on Multimedia*, 2024.
530 URL <https://api.semanticscholar.org/CorpusID:269635285>.

540 Peng Jin, Yang Wu, Yanbo Fan, Zhongqian Sun, Wei Yang, and Li Yuan. Act as you wish: Fine-
 541 grained control of motion diffusion model with hierarchical semantic graphs. *Advances in Neural*
 542 *Information Processing Systems*, 36:15497–15518, 2023.

543 Tero Karras, Miika Aittala, Tuomas Kynkänniemi, Jaakko Lehtinen, Timo Aila, and Samuli Laine.
 544 Guiding a diffusion model with a bad version of itself. *Advances in Neural Information Processing*
 545 *Systems*, 37:52996–53021, 2024.

546 Jiaman Li, Alexander Clegg, Roozbeh Mottaghi, Jiajun Wu, Xavier Puig, and C Karen Liu. Con-
 547 trollable human-object interaction synthesis. In *European Conference on Computer Vision*, pp.
 548 54–72. Springer, 2024.

549 Zhe Li, Weihao Yuan, Yisheng He, Lingteng Qiu, Shenhao Zhu, Xiaodong Gu, Weichao Shen, Yuan
 550 Dong, Zilong Dong, and Laurence T Yang. Lamp: Language-motion pretraining for motion gen-
 551 eration, retrieval, and captioning. *International Conference on Learning Representations (ICLR)*,
 552 2025.

553 Han Liang, Jiacheng Bao, Ruichi Zhang, Sihan Ren, Yuecheng Xu, Sibei Yang, Xin Chen, Jingyi
 554 Yu, and Lan Xu. Omg: Towards open-vocabulary motion generation via mixture of controllers.
 555 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 556 482–493, 2024a.

557 Han Liang, Wenqian Zhang, Wenxuan Li, Jingyi Yu, and Lan Xu. Intergen: Diffusion-based multi-
 558 human motion generation under complex interactions. *International Journal of Computer Vision*,
 559 pp. 1–21, 2024b.

560 Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Gerard Pons-Moll, and Michael J. Black.
 561 AMASS: Archive of motion capture as surface shapes. In *International Conference on Computer*
 562 *Vision*, pp. 5442–5451, October 2019.

563 Gabriel Maldonado, Armin Danesh Pazho, Ghazal Alinezhad Noghre, Vinit Katariya, and Hamed
 564 Tabkhi. Moclip motion-aware fine-tuning and distillation of clip for human motion generation. In
 565 *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 2931–2941, 2025.

566 Jianmo Ni, Gustavo Hernandez Abrego, Noah Constant, Ji Ma, Keith B Hall, Daniel Cer, and Yin-
 567 fei Yang. Sentence-t5: Scalable sentence encoders from pre-trained text-to-text models. *arXiv*
 568 *preprint arXiv:2108.08877*, 2021.

569 Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
 570 Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
 571 text-guided diffusion models. *arXiv preprint arXiv:2112.10741*, 2021.

572 Mathis Petrovich, Michael J Black, and Gü̈l Varol. Temos: Generating diverse human motions from
 573 textual descriptions. In *European Conference on Computer Vision*, pp. 480–497. Springer, 2022.

574 Mathis Petrovich, Michael J Black, and Gü̈l Varol. Tmr: Text-to-motion retrieval using contrastive
 575 3d human motion synthesis. In *Proceedings of the IEEE/CVF International Conference on Com-*
 576 *puter Vision*, pp. 9488–9497, 2023.

577 Ekkasit Pinyoanuntapong, Muhammad Usama Saleem, Pu Wang, Minwoo Lee, Srijan Das, and
 578 Chen Chen. Bamm: Bidirectional autoregressive motion model. In *European Conference on*
 579 *Computer Vision*, pp. 172–190. Springer, 2024a.

580 Ekkasit Pinyoanuntapong, Pu Wang, Minwoo Lee, and Chen Chen. Mmm: Generative masked
 581 motion model. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 582 *Recognition*, pp. 1546–1555, 2024b.

583 Matthias Plappert, Christian Mandery, and Tamim Asfour. The kit motion-language dataset. *Big*
 584 *data*, 4(4):236–252, 2016.

585 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 586 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 587 models from natural language supervision. In *International conference on machine learning*, pp.
 588 8748–8763. PMLR, 2021.

594 Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
 595 bert: smaller, faster, cheaper and lighter. *arXiv preprint arXiv:1910.01108*, 2019.
 596

597 Yonatan Shafir, Guy Tevet, Roy Kapon, and Amit H Bermano. Human motion diffusion as a gener-
 598 ative prior. *arXiv preprint arXiv:2303.01418*, 2023.

599 Jenny Sheng, Matthieu Lin, Andrew Zhao, Kevin Pruvost, Yu-Hui Wen, Yangguang Li, Gao Huang,
 600 and Yong-Jin Liu. Exploring text-to-motion generation with human preference. In *Proceedings of*
 601 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1888–1899, 2024.

602 Stability AI. Stable diffusion 3.5. <https://github.com/Stability-AI/sd3.5>, 2024.

603 Guy Tevet, Brian Gordon, Amir Hertz, Amit H Bermano, and Daniel Cohen-Or. Motionclip: Ex-
 604 posing human motion generation to clip space. In *European Conference on Computer Vision*, pp.
 605 358–374. Springer, 2022a.

606 Guy Tevet, Sigal Raab, Setareh Cohan, Daniele Reda, Zhengyi Luo, Xue Bin Peng, Amit H
 607 Bermano, and Michiel van de Panne. Closd: Closing the loop between simulation and diffu-
 608 sion for multi-task character control. In *International Conference on Learning Representations*
 609 (*ICLR*), 2022b.

610 Guy Tevet, Sigal Raab, Brian Gordon, Yonatan Shafir, Daniel Cohen-Or, and Amit H Bermano.
 611 Human motion diffusion model. *arXiv preprint arXiv:2209.14916*, 2022c.

612 Fei Xia, Chengshu Li, Roberto Martín-Martín, Or Litany, Alexander Toshev, and Silvio Savarese.
 613 Relmogen: Integrating motion generation in reinforcement learning for mobile manipulation. In
 614 *2021 IEEE International Conference on Robotics and Automation (ICRA)*, pp. 4583–4590. IEEE,
 615 2021.

616 Weihao Yuan, Yisheng He, Weichao Shen, Yuan Dong, Xiaodong Gu, Zilong Dong, Liefeng Bo, and
 617 Qixing Huang. Mogents: Motion generation based on spatial-temporal joint modeling. *Advances*
 618 *in Neural Information Processing Systems*, 37:130739–130763, 2024.

619 Jianrong Zhang, Yangsong Zhang, Xiaodong Cun, Yong Zhang, Hongwei Zhao, Hongtao Lu,
 620 Xi Shen, and Ying Shan. Generating human motion from textual descriptions with discrete
 621 representations. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 622 *recognition*, pp. 14730–14740, 2023a.

623 Mingyuan Zhang, Zhongang Cai, Liang Pan, Fangzhou Hong, Xinying Guo, Lei Yang, and Ziwei
 624 Liu. Motiondiffuse: Text-driven human motion generation with diffusion model. *arXiv preprint*
 625 *arXiv:2208.15001*, 2022.

626 Mingyuan Zhang, Xinying Guo, Liang Pan, Zhongang Cai, Fangzhou Hong, Huirong Li, Lei Yang,
 627 and Ziwei Liu. Remodiffuse: Retrieval-augmented motion diffusion model. In *Proceedings of*
 628 *the IEEE/CVF International Conference on Computer Vision*, pp. 364–373, 2023b.

629 Mingyuan Zhang, Huirong Li, Zhongang Cai, Jiawei Ren, Lei Yang, and Ziwei Liu. Finemogen:
 630 Fine-grained spatio-temporal motion generation and editing. *Advances in Neural Information*
 631 *Processing Systems*, 36:13981–13992, 2023c.

632 Pengfei Zhang, Pinxin Liu, Hyeongwoo Kim, Pablo Garrido, and Bindita Chaudhuri. Kinmo:
 633 Kinematic-aware human motion understanding and generation. *International Conference on*
 634 *Computer Vision (ICCV)*, 2025.

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

Table 6: Effect of encoder latent dimension d_E .

d_E	FID \downarrow	Top 1	R-Precision		MM Dist \downarrow	Diversity \uparrow
			Top 2	Top 3		
128	0.046 \pm .003	0.552 \pm .003	0.743 \pm .003	0.833 \pm .002	2.749 \pm .008	9.502 \pm .073
192	0.050 \pm .003	0.559 \pm .002	0.748 \pm .003	0.836 \pm .002	2.717 \pm .008	9.573 \pm .054
256	0.037 \pm .002	0.563 \pm .003	0.755 \pm .002	0.843 \pm .002	2.693 \pm .008	9.496 \pm .094
320	0.049 \pm .003	0.565 \pm .002	0.760 \pm .003	0.848 \pm .002	2.691 \pm .009	9.554 \pm .079
512	0.061 \pm .003	0.560 \pm .003	0.753 \pm .002	0.842 \pm .002	2.721 \pm .005	9.610 \pm .084

655

656

657

Table 7: Effect of objective weights.

w_{latent}	w_{sr}	FID \downarrow	R-Precision			MM Dist \downarrow	Diversity \uparrow
			Top 1	Top 2	Top 3		
1.0	1.0	0.037 \pm .002	0.563 \pm .003	0.755 \pm .002	0.843 \pm .002	2.693 \pm .008	9.496 \pm .094
1.0	0.5	0.055 \pm .003	0.560 \pm .003	0.751 \pm .003	0.841 \pm .002	2.703 \pm .009	9.482 \pm .080
1.0	0.1	0.063 \pm .004	0.555 \pm .004	0.747 \pm .002	0.837 \pm .002	2.729 \pm .006	9.532 \pm .074
1.0	0.0	0.109 \pm .005	0.533 \pm .003	0.722 \pm .002	0.815 \pm .002	2.859 \pm .009	9.508 \pm .084
0.5	1.0	0.032 \pm .002	0.561 \pm .003	0.751 \pm .002	0.839 \pm .002	2.716 \pm .007	9.487 \pm .084
0.1	1.0	0.056 \pm .002	0.534 \pm .003	0.730 \pm .002	0.822 \pm .001	2.839 \pm .007	9.465 \pm .062
0.0	1.0	0.422 \pm .016	0.476 \pm .003	0.673 \pm .003	0.778 \pm .002	3.134 \pm .010	9.451 \pm .075

658

659

A APPENDIX

660

A.1 THE USE OF LARGE LANGUAGE MODELS

661

This work utilized Large Language Models (LLMs) as auxiliary tools to support our research process. Specifically, LLMs were employed for text refinement and language polishing to improve clarity and readability.

662

We emphasize that all LLM-generated or LLM-refined text underwent thorough review and revision by the authors to ensure accuracy, appropriateness, and alignment with our research findings.

663

The authors take full responsibility for all content presented in this paper and have employed LLMs rigorously and responsibly to enhance, rather than replace, human scholarly judgment and expertise.

664

A.2 ANALYSIS OF ENCODER LATENT DIMENSION

665

The dimensionality of the encoder’s latent space, d_E —which determines the size of the motion and text latents—is a key hyperparameter in our model. A larger d_E can capture more intricate details but increases the model’s parameter count and the risk of overfitting, while a smaller d_E may result in information loss. In our main experiments, we set d_E to 256. Here, we further explore how varying d_E influences MORGAN’s performance.

666

As shown in Table 6, altering d_E leads to only minor fluctuations in performance, indicating that MORGAN is relatively robust to this hyperparameter. Interestingly, even when d_E is halved to 128, MORGAN’s performance only decreases slightly. This suggests that the learned latent space is highly compact.

667

A.3 SENSITIVITY ANALYSIS OF OBJECTIVE WEIGHTS

668

We investigate the impact of the weights w_{latent} and w_{sr} , which correspond to motion-centric latent alignment and self-regularization, respectively. The results are presented in Table 7. It can be observed that setting either weight to zero results in a significant performance drop. However, as long as both weights are nonzero, changes in their values have only a minor effect on performance. These findings highlight the importance of each objective component and demonstrate MORGAN’s robustness to variations in weight assignment.

669

A.4 INFERENCE EFFICIENCY

670

671

The proposed Reconstructive Error Guidance (REG) introduces an additional reconstruction step for previous predictions during inference, which increases inference time. However, experiments

702

703

Table 8: Experiments on inference efficiency.

704

705

Method	enable REG at step t	AITs↓		FID↓		R-Precision		
				Top 1	Top 2	Top 3		
MDM-50steps	None	0.490	$0.398 \pm .010$	$0.456 \pm .002$	$0.646 \pm .003$	$0.752 \pm .002$		
	None	0.226	$0.126 \pm .005$	$0.560 \pm .003$	$0.751 \pm .002$	$0.842 \pm .002$		
	[46,44]	0.235	$0.088 \pm .003$	$0.559 \pm .003$	$0.753 \pm .002$	$0.842 \pm .002$		
	[46, 44, 41, 39]	0.261	$0.057 \pm .002$	$0.560 \pm .003$	$0.753 \pm .002$	$0.843 \pm .002$		
MORGAN-20steps	[46, 44, 41, 39, 36, 34]	0.284	$0.046 \pm .002$	$0.560 \pm .003$	$0.754 \pm .002$	$0.843 \pm .002$		
	All except the initial step	0.398	$0.037 \pm .002$	$0.563 \pm .003$	$0.755 \pm .002$	$0.843 \pm .002$		

706

707

708

709

710

711

712

713

714

715

show that MORGAN requires substantially fewer inference steps than most commonly used motion diffusion models. As discussed in Section 4.2, training uses $T = 50$ diffusion steps. For efficient inference, we automatically select 20 denoising steps by linearly spacing them within the interval $[0, \dots, T - 1]$, resulting in the following indices:

716

$$t = [49, 46, 44, 41, 39, 36, 34, 31, 28, 26, 23, 21, 18, 15, 13, 10, 8, 5, 3, 0]$$

717

718

719

720

721

722

723

We compare MDM-50steps and several configurations where REG is applied at different steps, reporting both their average inference time per sentence (AITs) (Chen et al., 2023) and the resulting generation quality. AITS is calculated on the HumanML3D test set by setting the batch size to 1 and excluding model and dataset loading time. Note that MDM-50steps is an improved variant of the original MDM, offering higher inference efficiency and better generation results compared to those reported in the original paper (Shafir et al., 2023).

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755