
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RECONSTRUCTION FOR GENERATION: REGULARIZ-
ING MOTION DIFFUSION MODELS WITH MOTION RE-
CONSTRUCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion models have seen widespread adoption for text-driven human motion
generation and related tasks due to their impressive generative capabilities and
flexibility. However, current motion diffusion models face two major limita-
tions: a representational gap caused by pre-trained text encoders that lack motion-
specific information, and error accumulation during the iterative denoising pro-
cess. This paper introduces MOtion Reconstruction for GENeration (MORGEN)
to address these challenges. First, MORGEN leverages a motion latent space
as intermediate supervision for text-to-motion generation. To this end, MOR-
GEN co-trains a motion reconstruction branch with two key objective functions:
self-regularization to enhance the discrimination of the motion space and motion-
centric latent alignment to enable accurate mapping from text to the motion latent
space. Second, we propose Reconstructive Error Guidance (REG), a testing-stage
guidance mechanism that exploits the diffusion model’s inherent self-correction
ability to mitigate error accumulation. At each denoising step, REG uses the mo-
tion reconstruction branch to reconstruct the previous estimate, reproducing the
prior error patterns. By amplifying the residual between the current prediction
and the reconstructed estimate, REG highlights the improvements in the current
prediction. Extensive experiments demonstrate that MORGEN achieves signifi-
cant improvements and state-of-the-art performance. Our code will be released.

1 INTRODUCTION

Imagine giving a textual description and immediately witnessing a lifelike avatar execute it with
physically plausible and faithful body movements in the correct sequence. This vision drives hu-
man motion generation with applications in virtual reality (Du et al., 2023), game content creation
(Liang et al., 2024a), and embodied robotics (Xia et al., 2021). The task is inherently challenging
because language is abstract while motion is continuous, high-dimensional, and kinematically con-
strained—demanding both fine-grained semantic understanding and robust many-to-many mappings
between natural language and human motion dynamics.

This challenge has sparked extensive research interest, which can be broadly categorized into
two main approaches: VQ-VAE-based and diffusion-based methods. Among these, diffusion-
based methods have gained widespread adoption across downstream tasks, including motion in-
betweening (Cohan et al., 2024), human-object interaction (Li et al., 2024), and human-human in-
teraction modeling (Liang et al., 2024b), owing to their exceptional flexibility and controllability.
Existing diffusion-based methods typically leverage pre-trained text encoders to obtain robust tex-
tual embeddings, such as T5 (Ni et al., 2021), CLIP (Radford et al., 2021), and DistilBERT (Sanh
et al., 2019). Conditioned on these textual embeddings, motion diffusion models learn to recover
motion data from noise through iterative denoising processes. Recent advances have incorporated
various techniques, including latent diffusion (Chen et al., 2023), preference optimization (Sheng
et al., 2024), hierarchical semantic graphs (Jin et al., 2023), and retrieval-augmented generation
(Zhang et al., 2023b), which have achieved notable improvements in inference speed, motion real-
ism, and semantic-motion alignment.
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Figure 1: At inference time, MORGEN first maps a textual description onto a motion-centric latent
manifold and then predicts using a diffusion model. Meanwhile, it reconstructs previous estimates
that contain error patterns. By contrasting these predictions, MORGEN uses the reconstruction as a
negative reference to drive the output away from poor estimates and towards the real data manifold.

Nevertheless, motion diffusion models still face severe limitations in both text models and the de-
noising process. First, pre-trained text models typically lack motion-specific information. While
CLIP captures visual concepts that correlate with actions, it fails to encode essential temporal dy-
namics and kinematic constraints, having been trained exclusively on static image-text pairs. This
absence forces models to bridge an unnecessarily large representational gap, hindering the learning
of accurate semantic-to-dynamic mappings. Second, diffusion models suffer from error accumula-
tion (Chung et al., 2022). More specifically, early denoising steps, which must recover motion from
nearly pure noise, are particularly prone to generating error patterns. Once such artifacts emerge,
they can implicitly propagate across subsequent denoising steps, leading to degraded sample quality.

Herein, we introduce MOtion Reconstruction for GENeration (MORGEN), a novel diffusion-based
framework to address these challenges. For the first problem, we leverage the latent space learned
through motion reconstruction as an intermediate supervision for text-to-motion generation. Specif-
ically, MORGEN employs a two-stream pipeline (Ahuja & Morency, 2019): motion reconstruc-
tion—where the diffusion model reconstructs motion sequences conditioned on motion-encoder
latents; and text-to-motion generation—where the same diffusion model generates motion from
text-encoder latents. Based on this pipeline, MORGEN innovatively incorporates two objectives:
(a) self-regularization, which computes a cross-entropy loss in the motion latent space to enhance
discrimination between motion latents, helping to learn a compact yet expressive motion representa-
tion; and (b) motion-centric latent alignment, aligning the text latent space with the motion latent
space, with carefully designed gradients to ensure stable end-to-end training. These designs together
enable MORGEN to map text embeddings into a motion-aware latent space, inherently embedding
the dynamic features required for realistic motion synthesis and bridging the representation gap.

To address the second problem, we introduce Reconstructive Error Guidance (REG), which har-
nesses the self-correcting ability of diffusion models to mitigate error accumulation. Our core in-
sight is that diffusion models can inherently self-correct, which is similar to how they restore clean
data from noise. To maximize this property, at each denoising step in the testing stage, the motion
reconstruction branch reconstructs the previous estimate, capturing the earlier error patterns. We
then calculate the residual between the current text-driven prediction and this reconstruction, and
integrate the residual into the prediction to generate the final output. This residual highlights the
improvements in the current prediction. By amplifying this term, REG directs the sampling process
away from error-prone regions, thereby reducing error accumulation and enhancing the quality of
generated motions throughout denoising.

By integrating these core innovations, MORGEN enables the generation of more realistic and se-
mantically aligned motions from text. Extensive experiments show that MORGEN achieves sig-
nificant improvements and state-of-the-art performance: on the HumanML3D dataset (Guo et al.,
2022), MORGEN achieves an R-Precision@1 of 56.3% and an FID of 0.037 with only 20 infer-
ence steps. Consistent performance gains are also observed on the KIT-ML dataset (Plappert et al.,
2016). Comprehensive ablation studies further confirm that each component makes a meaningful
contribution to the overall performance improvements.

2 RELATED WORK

Text-Driven Human Motion Generation. Current research on text-to-motion generation has con-
solidated mainly around two principal families: diffusion models and vector-quantized variational
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autoencoders (VQ-VAE). Early diffusion-based approaches such as Motion Diffusion Model (Tevet
et al., 2022c) and MotionDiffuse (Zhang et al., 2022) trained denoising networks directly in the raw
motion space, followed by a series of extensions that target finer semantic alignment (Zhang et al.,
2023c), open-vocabulary coverage (Liang et al., 2024a), retrieval-enhanced consistency (Zhang
et al., 2023b), or keyframe-centric stability (Bae et al., 2025). In parallel, latent diffusion meth-
ods first encode motions into a continuous latent space and perform denoising there, aiming for
improved efficiency and quality, e.g., MLD (Chen et al., 2023), MotionLCM (Dai et al., 2024),
Salad (Hong et al., 2025). Conversely, VQ-VAE-based pipelines—pioneered by T2M-GPT (Zhang
et al., 2023a) and advanced through MMM (Pinyoanuntapong et al., 2024b), MoMask (Guo et al.,
2024), BAMM (Pinyoanuntapong et al., 2024a), MoGenTS (Yuan et al., 2024), BAD (Hosseyni
et al., 2025), KinMo (Zhang et al., 2025), and LaMP (Li et al., 2025)—have empirically exhib-
ited higher motion fidelity, typically reflected in lower FID scores than diffusion counterparts. In
this paper, MORGEN demonstrates that diffusion-based approaches can achieve FID performance
comparable to that of VQ-based approaches.

Pre-trained Text Models and Two-Stream Methods. Since text-to-motion datasets are signifi-
cantly smaller than typical text or text–image datasets, most methods utilize pre-trained text models
to extract robust text embeddings. CLIP is widely used for its visual-textual embedding space (Tevet
et al., 2022a), but recent research suggests it may not be optimal for aligning text and motion. In-
stead, these studies suggest fine-tuning text encoders to learn a joint language–motion embedding
space explicitly (Maldonado et al., 2025; Zhang et al., 2025). This approach can be traced back to
early two-stream methods (Ahuja & Morency, 2019), which utilize dual branches—motion recon-
struction and text-to-motion generation—and share a decoder to learn a joint language-motion space
implicitly. Subsequent works further constrain this space using latent alignment, KL divergence, or
contrastive learning (Ghosh et al., 2021; Petrovich et al., 2022; 2023). Our method is inspired by
these approaches but differs fundamentally: we center the alignment on a carefully designed motion
latent space, with the text space aligning to it. We demonstrate that, when employing a diffusion
model as the decoder, focusing on modeling detailed motion dynamics yields better motion synthesis
results than forcing the learning of a joint language-motion space.

Diffusion Guidance. Guidance in diffusion sampling typically combines multiple score esti-
mates to enrich the effective target distribution or to impose auxiliary conditioning (Dhariwal &
Nichol, 2021; Ho & Salimans, 2022; Karras et al., 2024). Common estimates include conditional
score estimates ∇xt

log p(xt|t, c), unconditional score estimates ∇xt
log p(xt|t), classifier gradi-

ents ∇xt
log p(y|xt), and CLIP-derived similarity gradients (Dhariwal & Nichol, 2021; Nichol et al.,

2021; Ho & Salimans, 2022). Recent works further introduce deliberately weakened auxiliary scores
by degrading the predictor—e.g., applying dropout (Karras et al., 2024), skipping layers (Stability
AI, 2024), or perturbing attention (Ahn et al., 2024). These weak scores function as contrastive
references: amplifying samples favored by stronger scores while suppressing those aligned with
weaker ones improves fidelity and semantic alignment. In the same spirit, we derive a weakened
motion-conditioned score by conditioning the predictor on a motion latent that carries previously
introduced error patterns, and use it as a contrastive reference within our guidance mechanism.

3 METHOD

Overview. MORGEN generates a sequence of realistic human motion from a given text description.
This process starts by extracting text embeddings with pre-trained text models. These embeddings
are mapped onto a motion latent manifold and decoded into a motion sequence using a diffusion
model. MORGEN also reconstructs the past motion estimate as a negative reference in the infer-
ence stage, as illustrated in Figure 1. By guiding predictions away from this reference, MORGEN
achieves improved sampling quality.

For a thorough understanding of MORGEN, we begin by presenting the overall architecture, which
features two main branches: motion reconstruction and text-to-motion generation (Section 3.1).
Next, we detail the training objectives, introducing self-regularization and motion-centric latent
alignment, which facilitate learning an expressive motion latent space and enable effective mapping
from text to motion latents (Section 3.1). Lastly, we provide an in-depth explanation of Reconstruc-
tive Error Guidance and inference sampling (Section 3.3). Figure 2 provides an overview.
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Figure 2: Overview of MORGEN. During training, MORGEN learns a motion latent space
through motion reconstruction, with self-regularization to encourage better separability between
motion latents, resulting in improved semantic resolution. The text latents from the text encoder are
drawn closer to corresponding motion latents through motion-centric latent alignment. At each in-
ference step, given the last step prediction x̂t+1,s and text description, MORGEN first encodes them
into latents zm,t+1 and zt. Then, these latents, together with a zero vector ∅ and input noise, are fed
into diffusion motion to obtain reconstruction, text-driven prediction, and unconditional prediction.
These outputs are combined to produce the final output.

3.1 MORGEN ARCHITECTURE

Given a motion sequence x0 ∈ RT×d or a text description t, MORGEN either reconstructs the
input motion or generates a motion sequence to match a given description. This is achieved through
two branches: motion reconstruction and text-to-motion generation, both of which share the Motion
Diffusion Model (MDM) (Shafir et al., 2023) as the decoder.

Motion Diffusion Model. MDM is modeled as a Markov noising chain {xt}Tt=0 with x0 drawn
from the data distribution. The forward diffusion process incrementally adds Gaussian noise:
q(xt|xt−1) = N

(
xt;

√
1− βt xt−1, βtI

)
. In the reverse process, a denoiser D learns to recover

clean motion from a noisy input xt: x̂t = D(xt, t, c), where x̂t is the motion estimate at timestep t
and c denotes the conditioning.

Motion Reconstruction. The motion reconstruction branch encodes x into a motion latent zm
using a transformer-based motion encoder Em(·), which takes a special token sm and the motion
sequence as input. The output zm represents the global concept of the sequence. The diffusion
decoder D takes zm, timestep t, and noisy motion xt to predict the clean motion. This process can
be expressed as:

zm = Em(sm,x0), x̂0 = D(xt, t, zm). (1)
Here t denotes the diffusion timestep, which is sampled uniformly as t ∼ U{0, . . . , T − 1}, where
T is the total number of diffusion steps.

Text-to-Motion Generation. The text-to-motion branch mirrors the motion reconstruction branch,
encoding the text embedding ft with a text encoder Et and then decoding with D:

zt = Et(st, ft), x̂0 = D(xt, t, zt). (2)

Here, ft ∈ RL×df is the token-level text embedding extracted from t (where L is sequence length),
st is the special input token, and zt is the latent produced by the text encoder Et.

3.2 OPTIMIZATION OBJECTIVES

The training objectives of MORGEN consist of four key components: reconstruction, text-driven
generation, self-regularization, and motion-centric latent alignment. For clarity, we divide these ob-
jectives into two categories: (1) reconstruction and text-driven generation, which follow established
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two-stream approaches (Ahuja & Morency, 2019; Petrovich et al., 2022), and (2) self-regularization
and motion-centric latent alignment, which are our novel contributions aimed at learning a compact
yet expressive motion latent space and enabling the effective mapping from text to motion latents.
Below, we provide a detailed introduction to the formulation and specific function of each objective.

Reconstruction. This objective encourages the diffusion model, given the motion latent zm,
timestep t, and noisy motion xt, to accurately reconstruct the input motion sequence:

Lrec = Ex0,t

[
∥D(xt, t, zm)− x0∥22

]
= Ex0,t

[
∥D(xt, t, Em(sm,x0))− x0∥22

]
. (3)

This loss jointly trains both the diffusion model and the motion encoder, aiming for a strong motion
decoder, a motion encoder that extracts abstract representations of motion, and a compact latent
space with essential motion dynamics.

Text-Driven Generation. In this objective, the diffusion model learns to generate motion condi-
tioned on the text latent zt, timestep t, and noisy motion xt:

Lgen = Ex0,t,t

[
∥D(xt, t, zt)− x0∥22

]
= Ex0,t

[
∥D(xt, t, Et(st, ft))− x0∥22

]
. (4)

This objective encourages the diffusion model to adapt to conditioning on the text latent manifold,
since there are inherent differences between the text and motion manifolds.

Self-Regularization. This objective can be viewed as a cross-entropy loss operating on the motion
latent space. For a batch of size B, let the normalized motion latents be z̃im, and define the similarity
sim(z̃im, z̃jm) = (z̃im)⊤z̃jm, which corresponds to cosine similarity after normalization. With a
temperature parameter τ = 1, and treating only identical indices as positive pairs, the loss is defined
as:

Lsr =
1

B

B∑
i=1

− log
exp(sim(z̃im, z̃im)/τ)∑B
j=1 exp(sim(z̃im, z̃jm)/τ)

. (5)

This loss encourages better separability among motion latents, producing a broader and more ex-
pressive manifold with improved semantic resolution. Consequently, the refined latent space enables
more precise mapping from text representations to motion latents in the subsequent alignment ob-
jective.

Motion-Centric Latent Alignment. This objective aligns the text manifold with the motion
manifold. Given a paired text description and motion sequence, this objective minimizes the distance
between the corresponding text latent zt and motion latent zm:

Llatent = Ezm,zt

[
∥zt − (1− β) sg(zm)− βzm∥22

]
, (6)

where sg(·) is the stop-gradient operator and β modulates the flow of gradients to the motion encoder
Em. We set β = 0.01 so that MORGEN’s latent space remains motion-centric, yet flexible enough to
adapt minimally to the text space. This is based on two insights: (1) prioritizing motion space leads
to stronger performance than enforcing a fully joint language-motion space, as mapping motion to
text sacrifices important motion dynamics, and (2) with end-to-end training, motion latents evolve
during alignment. A purely text-to-motion alignment (β = 0) makes optimization harder. Thus, a
small β supports convergence while retaining motion information.

Overall Objective. The final training objective is a weighted sum:

Loverall = Lrec + Lgen + wsrLsr + wlatentLlatent, (7)

where wsr and wlatent are hyperparameters that determine the significance of the Lsr and Llatent terms,
respectively. We empirically set both wsr and wlatent as 1.

3.3 INFERENCE

Reconstructive Error Guidance. During training, diffusion models operate exclusively on the
canonical data manifold, where the noised input follows xt =

√
ᾱtx0+

√
1− ᾱtϵ. However, during

inference, their predictions often exhibit error patterns and drift away from this manifold. Denoising

5
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based on such off-manifold predictions further exacerbates the deviation. Overall, diffusion models
can cause the sampling path to deviate from the data manifold, resulting in degraded sampling
quality (Chung et al., 2022).

We hypothesize that diffusion models possess an inherent capacity to self-correct such error pat-
terns—a capability analogous to their fundamental ability to recover clean data from noise. How-
ever, this corrective potential requires explicit activation and guidance. To harness this intrinsic
error-correction capability, we propose an intuitive approach that operates at each denoising step.

Specifically, at inference step t, we first reconstruct the prediction from the previous step t + 1 to
explicitly capture the embedded error patterns. We then amplify the improvement achieved by the
current step’s prediction through a residual amplification mechanism. Let x̂t+1,s denote the final
output at step t+ 1. Our method can be formulated as:

x̂t,s = D(xt, t, zt) + w (D(xt, t, zt)−D(xt, t, zm,t+1)) , (8)
where zm,t+1 = Em(sm, x̂t+1,s) represents the reconstructed motion latent from the previous step,
and w ≥ 0 is a weighting coefficient that controls the amplification strength of the residual correction
term. We term this inference strategy Reconstructive Error Guidance (REG).

Inference Sampling. Finally, during inference, we combine REG with the commonly used
classifier-free guidance (CFG) for sampling. The final output for each denoising step t, denoted
as x̂t,s, is computed as:
x̂t,s = D(xt, t, zt) + w1 (D(xt, t, zt)−D(xt, t, zm,t+1))︸ ︷︷ ︸

REG term

+w2 (D(xt, t, zt)−D(xt, t,∅))︸ ︷︷ ︸
CFG term

, (9)

where the final term represents the standard CFG residual between conditional and unconditional
predictions (with unconditional input denoted by ∅). Here, w1 and w2 respectively control the
influence of REG and CFG.

4 EXPERIMENT

4.1 DATASETS AND METRICS

Datasets. HumanML3D (Guo et al., 2022) is a large-scale text–motion dataset containing 14,616
motion sequences from AMASS (Mahmood et al., 2019), each annotated with 44,970 sequence-level
textual descriptions. By comparison, the KIT dataset (Plappert et al., 2016) is smaller, offering 3,911
motion sequences and 6,353 textual descriptions. For both datasets, we use the standard redundant
motion representation, which includes joint velocities, positions, and rotations.

Metrics. We assess the generated motions with five complementary metrics. R-Precision and
Multimodal-Dist measure the semantic alignment between generated motions and text descriptions.
Fréchet Inception Distance (FID) evaluates the distributional similarity between generated motions
and the ground truth in a learned latent space. Diversity quantifies the variability within the generated
motion set, while MultiModality Distance (MM Dist) captures the average variance among motions
conditioned on the same description.

4.2 IMPLEMENTATION DETAILS

We adopt exactly the same text and motion encoders as those in TEMOS (Petrovich et al., 2022).
Both of them are implemented as 6-layer, encoder-only transformers. The text encoder takes the
text embeddings extracted by DistilBERT (Sanh et al., 2019) as input. The latent dimensionality is
set to 256 for HumanML3D and 192 for KIT-ML. For the diffusion model that generates motion
sequences from the latents, we use the MDM architecture (Shafir et al., 2023), consisting of an 8-
layer, encoder-only Transformer backbone with a latent size of 512. Training is performed with a
batch size of 64, a learning rate of 0.0001, and the AdamW optimizer. Models are trained for 450K
steps on HumanML3D and 400K steps on KIT-ML. The diffusion process runs over T = 50 steps
during training, with 10% of conditional latents replaced by zero vectors for classifier-free guidance.
During inference, 20 denoising steps, spaced linearly from [0, . . . , T − 1], are used, resulting in 20
inference steps. Reconstructive Error Guidance and classifier-free guidance use weights w1 = 5.0
and w2 = 1.5, respectively.
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4.3 COMPARISON WITH STATE-OF-THE-ART METHODS

Table 1: Quantitative results of text-to-motion generation on the HumanML3D test set.
Method FID↓ R-Precision MM Dist↓ Diversity↑ MM↑Top 1 Top 2 Top 3

Ground Truth 0.002±.000 0.511±.003 0.703±.003 0.797±.002 2.974±.008 9.503±.065 -

V
Q

-V
A

E
-b

as
ed

T2M-GPT (Zhang et al., 2023a) 0.116±.004 0.491±.003 0.680±.003 0.775±.002 3.118±.011 9.761±.081 1.856±.011

MMM (Pinyoanuntapong et al., 2024b) 0.080±.003 0.504±.003 0.696±.003 0.794±.002 2.998±.007 9.411±.058 1.164±.041

MoMask (Guo et al., 2024) 0.045±.002 0.521±.002 0.713±.002 0.807±.002 2.958±.008 - 1.241±.040

BAMM (Pinyoanuntapong et al., 2024a) 0.055±.002 0.525±.002 0.720±.003 0.814±.003 2.919±.008 9.717±.089 1.687±.051

MoGenTS (Yuan et al., 2024) 0.033±.001 0.529±.003 0.719±.002 0.812±.002 2.867±.006 9.570±.077 -
BAD (Hosseyni et al., 2025) 0.065±.003 0.517±.002 0.713±.003 0.808±.003 2.901±.008 9.694±.068 1.194±.044

KinMo (Zhang et al., 2025) 0.039±.003 0.532±.002 0.724±.003 0.821±.003 2.901±.010 9.674±.058 1.321±.039

LaMP (Li et al., 2025) 0.032±.002 0.557±.003 0.751±.002 0.843±.001 2.759±.007 9.571±.069 -

D
iff

us
io

n-
ba

se
d

MDM (Tevet et al., 2022c) 0.489±.025 0.418±.005 0.604±.001 0.707±.004 3.360±.023 9.450±.066 2.860±1.11

MLD (Chen et al., 2023) 0.473±.013 0.481±.003 0.673±.003 0.772±.002 3.196±.010 9.724±.082 2.413±.079

ReMoDiffuse (Zhang et al., 2023b) 0.103±.004 0.510±.005 0.698±.006 0.795±.004 2.974±.016 9.018±.075 1.795±.043

FineMoGen (Zhang et al., 2023c) 0.151±.008 0.504±.002 0.690±.002 0.784±.002 2.998±.008 9.263±.094 2.696±.079

MotionLCM (Dai et al., 2024) 0.304±.012 0.502±.003 0.698±.002 0.798±.002 3.012±.007 9.607±.066 2.259±.092

StableMoFusion (Huang et al., 2024) 0.098±.003 0.553±.003 0.748±.002 0.841±.002 - 9.748±.092 1.774±.051

CLoSD (Tevet et al., 2022b) 0.283±.000 0.464±.000 0.668±.000 0.777±.000 3.150±.000 9.210±.000 -
Salad (Hong et al., 2025) 0.076±.002 0.581±.003 0.769±.003 0.857±.002 2.649±.009 9.696±.096 1.751±.062

sMDM (Bae et al., 2025) 0.130±.000 0.494±.000 0.682±.000 0.776±.000 3.051±.000 9.663±.000 -
MORGEN (Ours, wlatent = 1.0) 0.037±.002 0.563±.003 0.755±.002 0.843±.002 2.693±.008 9.496±.094 1.066±.038

MORGEN (Ours, wlatent = 0.5) 0.032±.002 0.561±.003 0.751±.002 0.839±.002 2.716±.007 9.487±.084 1.142±.038

Table 2: Quantitative results of text-to-motion generation on the KIT test set.
Method FID↓ R-Precision MM Dist↓ Diversity↑ MM↑Top 1 Top 2 Top 3

Ground Truth 0.031±.004 0.424±.005 0.649±.006 0.779±.006 2.788±.012 11.08±.097 -

V
Q

-V
A

E
-b

as
ed

T2M-GPT (Zhang et al., 2023a) 0.512±.029 0.416±.006 0.627±.006 0.745±.006 3.007±.023 10.92±.108 1.856±.011

MMM (Pinyoanuntapong et al., 2024b) 0.316±.028 0.404±.005 0.621±.005 0.744±.004 2.977±.019 10.91±.101 1.232±.039

MoMask (Guo et al., 2024) 0.204±.011 0.433±.007 0.656±.005 0.781±.005 2.779±.022 - 1.131±.043

BAMM (Pinyoanuntapong et al., 2024a) 0.183±.013 0.438±.009 0.661±.009 0.788±.005 2.723±.026 11.01±.094 1.609±.065

MoGenTS (Yuan et al., 2024) 0.143±.004 0.445±.006 0.671±.006 0.797±.005 2.711±.024 10.92±.090 -
BAD (Hosseyni et al., 2025) 0.221±.012 0.417±.006 0.631±.006 0.750±.006 2.941±.025 11.00±.100 1.170±.047

LaMP (Li et al., 2025) 0.141±.013 0.479±.006 0.691±.005 0.826±.005 2.704±.018 10.93±.101 -

D
iff

us
io

n-
ba

se
d

MDM (Tevet et al., 2022c) 0.547±.070 0.404±.002 0.616±.013 0.737±.005 3.074±.018 10.75±.203 1.806±.180

MLD (Chen et al., 2023) 0.404±.027 0.390±.008 0.609±.008 0.734±.007 3.204±.027 10.80±.117 2.192±.071

ReMoDiffuse (Zhang et al., 2023b) 0.155±.006 0.427±.014 0.641±.004 0.765±.055 2.814±.012 10.80±.105 1.239±.028

FineMoGen (Zhang et al., 2023c) 0.178±.007 0.432±.006 0.649±.005 0.772±.006 2.869±.014 10.85±.115 1.877±.093

StableMoFusion (Huang et al., 2024) 0.258±.029 0.445±.006 0.660±.005 0.782±.004 - 10.94±.077 1.362±.062

Salad (Hong et al., 2025) 0.296±.012 0.477±.006 0.711±.005 0.828±.005 2.585±.016 11.10±.095 1.004±.040

MORGEN (Ours) 0.189±.014 0.466±.005 0.688±.006 0.801±.005 2.675±.020 11.12±.089 1.159±.051

We quantitatively compare MORGEN with state-of-the-art (SOTA) methods on HumanML3D and
KIT-ML. The results are shown in Table 1 and Table 2, respectively. As demonstrated in Ta-
ble 1, MORGEN achieves SOTA performance on the most widely used HumanML3D benchmark.
Compared with diffusion-based methods, MORGEN shows a substantial improvement in FID and
achieves near-SOTA performance in semantic accuracy as measured by R-Precision, ranking just
behind Salad. When compared to VQ-VAE-based approaches, MORGEN surpasses them in seman-
tic accuracy and achieves highly competitive FID—a feat not previously attained by diffusion-based
methods. MORGEN thus demonstrates that diffusion-based motion generation models can reach
state-of-the-art FID levels. On the KIT-ML dataset, whose smaller scale poses significant chal-
lenges for training motion generation models—particularly diffusion-based ones—MORGEN, like
the previous best diffusion-based method Salad (Hong et al., 2025), experiences a performance drop.
Nevertheless, MORGEN’s results remain highly competitive within this context.

Importantly, by adjusting the latent alignment weight wlatent, MORGEN can reach either state-of-
the-art FID or achieve even better semantic accuracy (in terms of R-Precision and MM Dist). For
our final model, we use wlatent = 1.0 as a balanced choice. Additional experiments on the impact of
weight selection are detailed in Appendix A.3.

4.4 ABLATION STUDIES

To assess the impact of key design choices within MORGEN, we conduct comprehensive ablation
studies on HumanML3D. Specifically, these study includes: (1) Incremental Experiments—starting
from a baseline model, we progressively introduce key design components, culminating in the com-
plete MORGEN; (2) Loss Hyperparameter Analysis—we investigate the effects of loss function
hyperparameters β and τ for latent alignment and self-regularization; and (3) Guidance Evalua-
tion—we examine the effectiveness of our proposed Reconstructive Error Guidance and the addi-
tional benefits achieved when it is combined with classifier-free guidance (CFG).
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Table 3: Incremental experiments on key designs within MORGEN.
Components FID↓ R-Precision MM Dist↓ Diversity↑

Em Llatent Lsr REG Top 1 Top 2 Top 3

0.786±.016 0.417±.002 0.613±.002 0.729±.003 3.433±.012 10.063±.076

✓ 0.624±.013 0.493±.004 0.695±.002 0.800±.002 3.045±.013 10.188±.096

✓ ✓ 0.243±.009 0.527±.003 0.719±.002 0.812±.002 2.896±.008 9.703±.086

✓ ✓ ✓ 0.126±.005 0.560±.003 0.751±.002 0.842±.002 2.720±.007 9.689±.095

✓ ✓ ✓ ✓ 0.037±.002 0.563±.003 0.755±.002 0.843±.002 2.693±.008 9.496±.094

Table 4: Effect of hyperparameters β and τ .

β τ FID↓ R-Precision MM Dist↓ Diversity↑
Top 1 Top 2 Top 3

1.00 1.0 0.336±.005 0.492±.003 0.693±.003 0.796±.002 3.047±.010 9.849±.080

0.10 1.0 0.136±.005 0.534±.002 0.732±.002 0.826±.002 2.835±.009 9.742±.088

0.01 1.0 0.037±.002 0.563±.003 0.755±.002 0.843±.002 2.693±.008 9.496±.094

0.00 1.0 0.051±.003 0.557±.002 0.747±.003 0.837±.002 2.712±.008 9.424±.079

0.01 2.0 0.044±.002 0.562±.003 0.755±.002 0.841±.002 2.701±.007 9.575±.081

0.01 1.0 0.037±.002 0.563±.003 0.755±.002 0.843±.002 2.693±.008 9.496±.094

0.01 0.5 0.044±.002 0.556±.002 0.748±.002 0.838±.002 2.726±.007 9.484±.081

Incremental Experiments. Table 3 presents the results of our incremental ablation studies. To
rigorously assess the contribution of each component, we begin with a clean baseline consisting of
MORGEN’s text encoder and diffusion model only. We keep these modules exactly the same as
those in MORGEN and progressively add key components. The baseline demonstrates limited per-
formance, partly due to the challenging inference setting of only 20 steps. Introducing the motion
encoder Em—which forms a dual-branch architecture, similar to a direct application of Ahuja &
Morency (2019) to diffusion models—provides only a modest improvement, suggesting that implic-
itly learning a joint language-motion space is of limited effectiveness. Incorporating Llatent delivers
substantial further gains, though still falls short of state-of-the-art performance. Adding Lsr leads
to results that surpass most diffusion-based approaches reported in Table 1. Finally, enabling REG
elevates MORGEN to state-of-the-art performance. Collectively, these findings demonstrate the
necessity and effectiveness of each design choice.

Hyperparameter Analysis. Table 4 presents the results of our hyperparameter analysis. In this
table, β controls the gradient flow from the latent alignment loss Llatent to the motion encoder Em,
with β = 0 fully blocking the gradient and β = 1 allowing unrestricted gradient flow. Our results
show that allowing equal proximity between text and motion latents (β = 1) is suboptimal, as this
alignment comes at the expense of motion information in the motion latents. In fact, reducing the
gradient flow to Em improves performance, with the best results achieved at β = 0.01. We attribute
this to the constant evolution of the motion latent space during training, which increases the difficulty
of latent alignment. By setting β = 0.01, we ease the alignment process while preserving essential
motion information in the latent space. Another parameter shown in the Table 4, τ , determines the
sharpness of similarity in Lsr. A smaller τ produces sharper similarities, pushing motion latents
farther apart; if too extreme, this can distort the structure of the motion manifold. In contrast, a
larger τ smooths the similarity, relaxing the constraints between latents, but may reduce gains in
semantic resolution. Empirically, we found τ = 1 offers a desirable balance.

Guidance Evaluation. Table 5 presents the results of our guidance evaluation. The findings
show that classifier-free guidance (CFG) substantially improves semantic accuracy, as measured by
R-Precision. In contrast, our proposed reconstructive error guidance (REG) notably enhances the
overall realism of the generated motion, reflected by lower FID scores. Furthermore, combining
both strategies enables MORGEN to achieve state-of-the-art performance.

4.5 QUALITATIVE ANALYSIS

We compare the qualitative results of MORGEN with those generated by MDM (Shafir et al., 2023),
MoMask (Guo et al., 2024), and Salad (Hong et al., 2025). Figure 3 illustrates three groups of
comparisons, with the input text descriptions shown below each group. As each text prompt consists
of multiple actions, this setup poses a significant challenge for accurate motion generation. It can be
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Table 5: Effect of Reconstructive Error Guidance (REG) and classifier-free guidance (CFG). w1 and
w2 respectively control the influence of REG and CFG.

w1 w2 FID↓ R-Precision MM Dist↓ Diversity↑
Top 1 Top 2 Top 3

0.0 0.0 0.293±.009 0.531±.003 0.723±.002 0.817±.002 2.875±.008 9.690±.092

3.0 0.0 0.075±.003 0.548±.003 0.741±.002 0.831±.002 2.766±.008 9.431±.084

4.0 0.0 0.072±.003 0.545±.002 0.740±.002 0.829±.002 2.772±.007 9.361±.082

5.0 0.0 0.088±.003 0.541±.003 0.737±.003 0.826±.002 2.791±.007 9.300±.085

0.0 1.5 0.126±.005 0.560±.003 0.751±.002 0.842±.002 2.720±.007 9.689±.095

0.0 2.5 0.106±.005 0.560±.003 0.753±.002 0.843±.002 2.710±.006 9.639±.096

0.0 3.5 0.101±.004 0.560±.003 0.753±.002 0.842±.002 2.712±.007 9.592±.093

5.0 1.5 0.037±.002 0.563±.003 0.755±.002 0.843±.002 2.693±.008 9.496±.094

a person is standing and moves arms in a way that looks like they are picking something up and taking a drink or a bite

a person walks up and tosses something

a person carefully sits down on the ground and crosses their legs

MDM (Shafir et al.) MoMask (Guo et al.) Salad (Hong et al.) MORGEN (Ours)

Figure 3: Qualitative evaluation on the HumanML3D Dataset. Please zoom in for details.

observed that baseline methods often fail to faithfully execute the entire set of actions described in
the text. For example, in the second row (“a person walks up and tosses something”), most methods
only execute the walking motion. Additionally, some outputs display distortions, such as unnatural
transitions—in the third row, MoMask during sitting down and Salad during standing up. In contrast,
our method successfully completes all actions described by each text prompt, demonstrating a high
degree of semantic accuracy and realism.

5 CONCLUSION

In this work, we present MORGEN, a novel framework that leverages motion reconstruction to
regularize text-driven motion diffusion models. Our approach focuses on learning a motion-centric
latent space via motion reconstruction, specifically designed to capture essential motion dynam-
ics while achieving high semantic resolution. This latent space serves as intermediate supervi-
sion for text-to-motion generation, bridging the representational gap between abstract language and
high-dimensional, kinematically constrained human motion. We further present Reconstructive Er-
ror Guidance (REG), a technique that mitigates error accumulation during sampling by exploiting
the diffusion model’s inherent self-correcting ability. Experimental results show that MORGEN
achieves state-of-the-art performance on standard benchmarks. In the future, we plan to extend this
approach by training the motion reconstruction branch on larger, unlabeled motion datasets to obtain
a more generalized motion latent space and enable the generation of more diverse motions.
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Table 6: Effect of encoder latent dimension dE .
dE FID↓ R-Precision MM Dist↓ Diversity↑

Top 1 Top 2 Top 3

128 0.046±.003 0.552±.003 0.743±.003 0.833±.002 2.749±.008 9.502±.073

192 0.050±.003 0.559±.002 0.748±.003 0.836±.002 2.717±.008 9.573±.054

256 0.037±.002 0.563±.003 0.755±.002 0.843±.002 2.693±.008 9.496±.094

320 0.049±.003 0.565±.002 0.760±.003 0.848±.002 2.691±.009 9.554±.079

512 0.061±.003 0.560±.003 0.753±.002 0.842±.002 2.721±.005 9.610±.084

Table 7: Effect of objective weights.

wlatent wsr FID↓ R-Precision MM Dist↓ Diversity↑
Top 1 Top 2 Top 3

1.0 1.0 0.037±.002 0.563±.003 0.755±.002 0.843±.002 2.693±.008 9.496±.094

1.0 0.5 0.055±.003 0.560±.003 0.751±.003 0.841±.002 2.703±.009 9.482±.080

1.0 0.1 0.063±.004 0.555±.004 0.747±.002 0.837±.002 2.729±.006 9.532±.074

1.0 0.0 0.109±.005 0.533±.003 0.722±.002 0.815±.002 2.859±.009 9.508±.084

0.5 1.0 0.032±.002 0.561±.003 0.751±.002 0.839±.002 2.716±.007 9.487±.084

0.1 1.0 0.056±.002 0.534±.003 0.730±.002 0.822±.001 2.839±.007 9.465±.062

0.0 1.0 0.422±.016 0.476±.003 0.673±.003 0.778±.002 3.134±.010 9.451±.075

A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

This work utilized Large Language Models (LLMs) as auxiliary tools to support our research pro-
cess. Specifically, LLMs were employed for text refinement and language polishing to improve
clarity and readability.

We emphasize that all LLM-generated or LLM-refined text underwent thorough review and revision
by the authors to ensure accuracy, appropriateness, and alignment with our research findings.

The authors take full responsibility for all content presented in this paper and have employed LLMs
rigorously and responsibly to enhance, rather than replace, human scholarly judgment and expertise.

A.2 ANALYSIS OF ENCODER LATENT DIMENSION

The dimensionality of the encoder’s latent space, dE—which determines the size of the motion and
text latents—is a key hyperparameter in our model. A larger dE can capture more intricate details
but increases the model’s parameter count and the risk of overfitting, while a smaller dE may result
in information loss. In our main experiments, we set dE to 256. Here, we further explore how
varying dE influences MORGEN’s performance.

As shown in Table 6, altering dE leads to only minor fluctuations in performance, indicating that
MORGEN is relatively robust to this hyperparameter. Interestingly, even when dE is halved to
128, MORGEN’s performance only decreases slightly. This suggests that the learned latent space is
highly compact.

A.3 SENSITIVITY ANALYSIS OF OBJECTIVE WEIGHTS

We investigate the impact of the weights wlatent and wsr, which correspond to motion-centric latent
alignment and self-regularization, respectively. The results are presented in Table 7. It can be
observed that setting either weight to zero results in a significant performance drop. However, as
long as both weights are nonzero, changes in their values have only a minor effect on performance.
These findings highlight the importance of each objective component and demonstrate MORGEN’s
robustness to variations in weight assignment.

A.4 INFERENCE EFFICIENCY

The proposed Reconstructive Error Guidance (REG) introduces an additional reconstruction step
for previous predictions during inference, which increases inference time. However, experiments
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Table 8: Experiments on inference efficiency.

Method enable REG at step t AITS↓ FID↓ R-Precision
Top 1 Top 2 Top 3

MDM-50steps None 0.490 0.398±.010 0.456±.002 0.646±.003 0.752±.002

MORGEN-20steps

None 0.226 0.126±.005 0.560±.003 0.751±.002 0.842±.002

[46,44] 0.235 0.088±.003 0.559±.003 0.753±.002 0.842±.002

[46, 44, 41, 39] 0.261 0.057±.002 0.560±.003 0.753±.002 0.843±.002

[46, 44, 41, 39, 36, 34] 0.284 0.046±.002 0.560±.003 0.754±.002 0.843±.002

All except the inital step 0.398 0.037±.002 0.563±.003 0.755±.002 0.843±.002

show that MORGEN requires substantially fewer inference steps than most commonly used motion
diffusion models. As discussed in Section 4.2, training uses T = 50 diffusion steps. For efficient
inference, we automatically select 20 denoising steps by linearly spacing them within the interval
[0, . . . , T − 1], resulting in the following indices:

t = [49, 46, 44, 41, 39, 36, 34, 31, 28, 26, 23, 21, 18, 15, 13, 10, 8, 5, 3, 0]

We compare MDM-50steps and several configurations where REG is applied at different steps,
reporting both their average inference time per sentence (AITS) (Chen et al., 2023) and the resulting
generation quality. AITS is calculated on the HumanML3D test set by setting the batch size to 1 and
excluding model and dataset loading time. Note that MDM-50steps is an improved variant of the
original MDM, offering higher inference efficiency and better generation results compared to those
reported in the original paper (Shafir et al., 2023).

The results summarized in Table 8 show that, due to fewer inference steps, MORGEN achieves sig-
nificantly higher efficiency even when REG is enabled at every step (except the initial one, which
lacks a previous prediction). Notably, enabling REG only in the early denoising steps already leads
to a marked improvement in FID. This supports our claim in the introduction that early denoising
steps—responsible for recovering motion from nearly pure noise—are particularly prone to gener-
ating error patterns, and thus benefit most from the application of REG.
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